WorldWideScience

Sample records for vascular plant component

  1. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  3. How do bryophytes govern generative recruitment of vascular plants?

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Graae, B.J.; Douma, J.C.; Grau, O.; Milbau, A.; Shevtsova, A.; Wolters, L.; Cornelissen, J.H.C.

    2011-01-01

    Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific

  4. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  5. Early vascular plants in the Czech Republic

    OpenAIRE

    Uhlířová, Monika

    2017-01-01

    Vascular plants are characterized as a group of plants, which are already fully adapted to live on the land. Their evolution is a result of a set of adaptations that have required the necessary changes at anatomical and morphological level. Some evidences about the rise of vascular plants appear in the fossil record from the Middle Ordovician in the form of spores and later also from the Early Silurian in the form of megafossils. The aim of the thesis is to briefly describe and discuss the mo...

  6. Origin and radiation of the earliest vascular land plants.

    Science.gov (United States)

    Steemans, Philippe; Hérissé, Alain Le; Melvin, John; Miller, Merrell A; Paris, Florentin; Verniers, Jacques; Wellman, Charles H

    2009-04-17

    Colonization of the land by plants most likely occurred in a stepwise fashion starting in the Mid-Ordovician. The earliest flora of bryophyte-like plants appears to have been cosmopolitan and dominated the planet, relatively unchanged, for some 30 million years. It is represented by fossilized dispersed cryptospores and fragmentary plant remains. In the Early Silurian, cryptospore abundance and diversity diminished abruptly as trilete spores appeared, became abundant, and underwent rapid diversification. This change coincides approximately with the appearance of vascular plant megafossils and probably represents the origin and adaptive radiation of vascular plants. We have obtained a diverse trilete spore occurrence from the Late Ordovician that suggests that vascular plants originated and diversified earlier than previously hypothesized, in Gondwana, before migrating elsewhere and secondarily diversifying.

  7. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  9. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  10. Physicochemical hydrodynamics of porous structures in vascular plants

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon

    2013-11-01

    Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  11. Modelling the development and arrangement of the primary vascular structure in plants.

    Science.gov (United States)

    Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano

    2014-09-01

    The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.

  12. Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments

    OpenAIRE

    Verloove, F.

    2013-01-01

    Se propone correcciones taxonómicas y nomenclaturales respecto a 88 taxones no nativos de la lista de plantas vasculares de las Islas Canarias (España). Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments. Corrections and other adjustments are proposed for 88 non-native taxa from the checklist of vascular plants from the Canary Islands (Spain).

  13. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China

    Science.gov (United States)

    Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants. PMID:27391239

  14. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Directory of Open Access Journals (Sweden)

    Liping Li

    Full Text Available With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM, the Uygur Medicine (UM, and the Kazak Medicine (KM for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1 medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2 medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3 CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1, in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2, for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  15. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Science.gov (United States)

    Li, Liping; Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  16. Moss and vascular plant indices in Ohio wetlands have similar environmental predictors

    Science.gov (United States)

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Adams, Jean V.; Viau, Nick

    2016-01-01

    Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).

  17. Use of gold nanoparticles to detect water uptake in vascular plants.

    Science.gov (United States)

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  18. Vascular Plant and Vertebrate Inventory of Chiricahua National Monument

    Science.gov (United States)

    Powell, Brian F.; Schmidt, Cecilia A.; Halvorson, William L.; Anning, Pamela

    2009-01-01

    This report summarizes the results of the first comprehensive inventory of vascular plants and vertebrates at Chiricahua National Monument (NM) in Arizona. This project was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in the Sonoran Desert Network of parks in Arizona and New Mexico. In 2002, 2003, and 2004 we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Chiricahua NM to document the presence of species within the boundaries of the monument. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the monument. This report is also the first summary of previous research from the monument and therefore it provides an important overview of survey efforts to date. We used data from our inventory and previous research to compile complete species lists for the monument and to assess inventory completeness. We recorded a total of 424 species, including 37 not previously found at the monument (Table 1). We found 10 species of non-native plants and one non-native mammal. Most non-native plants were found along the western boundary of the monument. Based on a review of our inventory and past research at the monument, there have been a total of 1,137 species of plants and vertebrates found at the monument. We believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network. The mammal community at the monument had the highest species richness (69 species) and the amphibian and reptile community was among the lowest species richness (33 species) of any park in the Sonoran Desert Network. Species richness of the plant and bird communities was intermediate. Among the important determinants of species richness for all groups is the geographic location of the monument

  19. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  20. Diversity of vascular plants of Piestany and surroundings

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In the present work is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  1. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Science.gov (United States)

    Liu, Yang; Wang, Bin; Cui, Peng; Li, Libo; Xue, Jia-Yu; Yu, Jun; Qiu, Yin-Long

    2012-01-01

    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  2. The plant vascular system: Evolution, development and functions

    Science.gov (United States)

    William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo

    2013-01-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made...

  3. Investigating water transport through the xylem network in vascular plants.

    Science.gov (United States)

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  4. Aboveground persistence of vascular plants in relationship to the levels of airborne nutrient deposition

    NARCIS (Netherlands)

    Hendriks, R.J.J.; Ozinga, W.A.; Berg, van den L.J.L.; Noordwijk, E.; Schaminee, J.H.J.; Groenendael, van J.M.

    2014-01-01

    This paper examines whether high atmospheric nitrogen deposition affects aboveground persistence of vascular plants. We combined information on local aboveground persistence of vascular plants in 245 permanent plots in the Netherlands with estimated level of nitrogen deposition at the time of

  5. Temporal deconvolution of vascular plant signatures delivered to coastal sediments

    Science.gov (United States)

    Vonk, J.; Drenzek, N. J.; Hughen, K. A.; Stanley, R.; Montluçon, D. B.; McIntyre, C.; Southon, J. R.; Santos, G.; Andersson, A.; Sköld, M.; Eglinton, T. I.

    2017-12-01

    Presently, relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record. It is clear that there are multiple potential intermediate storage pools and transport trajectories that vascular plant carbon may experience, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here we use molecular-level radiocarbon (14C) analysis to develop down-core 14C profiles for higher plant leaf wax-derived fatty acids isolated from sediments from three sites across a 60-degrees latitudinal gradient (Cariaco Basin, Saanich Inlet, and Mackenzie Delta). The sediment profiles were used as a direct measure of the storage and transport times experienced by these biomolecular tracer compounds. Residence times are evaluated by comparing these records to the 14C history of atmospheric CO2. Using a modeling framework, we conclude that there is, in addition to a variable "young" pool, a millennial pool of compounds that consists of 49-78 % of the fractional contribution of organic carbon (OC) that exhibits variable ages for the different depositional settings. For the Mackenzie Delta sediments, we find a mean age of the millennial pool of 28 ky, suggesting pre-aging in permafrost soils, whereas the millennial pool in Saanich Inlet and Cariaco Basin sediments is younger with 7.9 and 2.4-3.2 ky, respectively, suggesting limited storage in terrestrial reservoirs. The "young" pool, conditionally defined as vascular plant C in deltaic and marine settings undergoes pre-aging in terrestrial reservoirs. The age distribution, reflecting storage and transport times, depends on landscape-specific factors such as local topography, hydrographic characteristics, and degree of soil build-up and preservation.

  6. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.

    Science.gov (United States)

    Charra-Vaskou, Katline; Badel, Eric; Burlett, Régis; Cochard, Hervé; Delzon, Sylvain; Mayr, Stefan

    2012-09-01

    Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s) = 2.0 × 10(-4) m(2) MPa(-1) s(-1)) and safety (P(50) = - 1.5 MPa) than stem xylem (k(s) = 7.7 × 10(-4) m(2) MPa(-1) s(-1); P(50) = - 3.6 to - 3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was - 0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to - 3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.

  8. Neuropsychiatric symptoms in patients with Alzheimer’s disease with a vascular component

    Directory of Open Access Journals (Sweden)

    Mariola Bidzan

    2014-06-01

    Full Text Available objective. Vascular changes are observed in most cases of Alzheimer’s disease (AD. Observations of AD and vascular disease (VD allow us to surmise that vascular changes may not only affect cognitive impairment in AD but may also have a negative influence on the neuropsychiatric symptoms which often occur in the course of the disease. The aim of the study was to evaluate the impact of vascular factors on the neuropsychiatric symptoms in Alzheimer’s Disease. material and methods. The study included 48 people with a preliminary diagnosis of Alzheimer’s Disease on the basis of NINCDS/ADRDA criteria. The evaluation of impairments in cognitive functioning was carried out by means of the Alzheimer Disease Assessment Scale – the cognitive part (ADAS – cog, whereas the behavioural and psychological symptoms were evaluated by means of the Neuropsychiatric Inventory – the version adapted for residents of nursing homes for the elderly (Neuropsychiatric Inventory – Nursing Home Version (NPI – NH. The score on the Hachinski scale was the basis for dividing the study participants into two groups – those with a mild vascular component (0–1 points on the Hachinski scale and those with a severe vascular component (2–4 points. results. The analyzed groups did not differ with respect to the intensity of cognitive impairments (ADAS-cog or age of the participants. Scores obtained on the NPI – NH scale as well as some of its elements (depression/dysphoria and anxiety had a discriminating value. Studies show that vascular factors are a serious risk factor for neuropsychiatric symptoms in AD. conclusions. Vascular factors in Alzheimer’s Disease influence the presence of neuropsychiatric symptoms. In the course of angiogenic dementia a greater frequency in depressive disorders was shown. The most visible differences between individuals with a greater and lesser burden of vascular factors was in the realm of depressive and dysphoric disorders.

  9. [Diversity and distribution of the threatened medicinal vascular plants in Lancang].

    Science.gov (United States)

    Chi, Xiu-Lian; Yuan, Yi-Kai; Fang, Bo; Zhang, Xiao-Bo; Yang, Han-Yu; Zhao, Zhi-Ping; Li, Guo; Fu, Kai-Cong; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The rich diversity in medicinal plants provides an important material basic for the development of Traditional Chinese medicine in China. It is important to explore the present situation of medicinal plants within special regions in order to provide scientific instructions for their sustainable protection and exploitation and utilization. In this study, we carried out the field survey according to the guideline of national survey of Chinese material medica resources and the guideline of plant species diversity survey and estimation at county level with the line transect method. With the field surveyed data, we explored the diversity and distribution of the threatened medicinal vascular plants in Lancang. We found that there were 33 species of the threatened medicinal vascular plants in this county. These species were from 23 genera and 17 families, and were composed of one critical endangered, 10 endangered and 22 vulnerable species. They were widely distributed across the whole county and were most concentrated in the town of Nuozhadu, Fazhanhe, Nuofu and Zhutang, which were located in the southeastern, southwestern and western of Lancang, respectively. We also found that the plant species richness followed a unimodal pattern along elevation. In addition, we found that the areas of Nuozhadu Nature Reserve in Lancang only covered six threatened medicinal vascular plants, while most of the regions with high species richness were not well protected. Therefore, we proposed to make more efforts to improve the protection measurements in order to better protect and utilize the medicinal plants in Lancang. Copyright© by the Chinese Pharmaceutical Association.

  10. Diversity of vascular plants of Piestany and surroundings (presentation)

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In this presentation is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  11. The impact of various scaffold components on vascularized bone constructs.

    Science.gov (United States)

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  12. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    Science.gov (United States)

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  13. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  14. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change.

    Science.gov (United States)

    Gavazov, Konstantin; Albrecht, Remy; Buttler, Alexandre; Dorrepaal, Ellen; Garnett, Mark H; Gogo, Sebastien; Hagedorn, Frank; Mills, Robert T E; Robroek, Bjorn J M; Bragazza, Luca

    2018-03-23

    Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO 2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO 2 radiocarbon (bomb- 14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change. © 2018 John Wiley & Sons Ltd.

  15. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  16. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  17. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  18. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  19. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T&E) vascular plant species on the Oak Ridge Reservation (ORR). T&E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T&E plant species found on or near the U.S. Department of Energy`s (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T&E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T&E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, {open_quotes}T&E species{close_quotes} include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T&E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival.

  20. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T ampersand E) vascular plant species on the Oak Ridge Reservation (ORR). T ampersand E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T ampersand E plant species found on or near the U.S. Department of Energy's (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T ampersand E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T ampersand E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, open-quotes T ampersand E speciesclose quotes include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T ampersand E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their

  1. RAINBIO: a mega-database of tropical African vascular plants distributions

    Directory of Open Access Journals (Sweden)

    Dauby Gilles

    2016-11-01

    Full Text Available The tropical vegetation of Africa is characterized by high levels of species diversity but is undergoing important shifts in response to ongoing climate change and increasing anthropogenic pressures. Although our knowledge of plant species distribution patterns in the African tropics has been improving over the years, it remains limited. Here we present RAINBIO, a unique comprehensive mega-database of georeferenced records for vascular plants in continental tropical Africa. The geographic focus of the database is the region south of the Sahel and north of Southern Africa, and the majority of data originate from tropical forest regions. RAINBIO is a compilation of 13 datasets either publicly available or personal ones. Numerous in depth data quality checks, automatic and manual via several African flora experts, were undertaken for georeferencing, standardization of taxonomic names and identification and merging of duplicated records. The resulting RAINBIO data allows exploration and extraction of distribution data for 25,356 native tropical African vascular plant species, which represents ca. 89% of all known plant species in the area of interest. Habit information is also provided for 91% of these species.

  2. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    Science.gov (United States)

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  3. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  4. Flora of vascular plants in the Chilgapsan Provincial Park, Korea

    Directory of Open Access Journals (Sweden)

    Ro-Young Lee

    2014-09-01

    Full Text Available The flora of Chilgapsan Provincial Park in Cheongyang-gun (Chungcheongnam-do, Korea was surveyed from 2000 to 2014. In 19 field surveys, vascular plants were revealed 490 taxa belonging to 97 families, 309 genera, 433 species, four subspecies, 48 varieties, and five forms. Plants of various categories were discovered in this study. For the Korean endemic plants 15 taxa were recorded, and 11 taxa designated by the Korean Forest Service as rare plants were investigated in this region. The plants above the third degree among the floristic regional indicator plants designated by the Korean Ministry of Environment were 10 taxa. In addition, 33 taxa of naturalized and 73 taxa of cultivated plants were recorded.

  5. New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants.

    Science.gov (United States)

    Cagliari, Alexandro; Turchetto-Zolet, Andreia Carina; Korbes, Ana Paula; Maraschin, Felipe Dos Santos; Margis, Rogerio; Margis-Pinheiro, Marcia

    2014-01-01

    NF-Y is a conserved oligomeric transcription factor found in all eukaryotes. In plants, this regulator evolved with a broad diversification of the genes coding for its three subunits (NF-YA, NF-YB and NF-YC). The NF-YB members can be divided into Leafy Cotyledon1 (LEC1) and non-LEC1 types. Here we presented a comparative genomic study using phylogenetic analyses to validate an evolutionary model for the origin of LEC-type genes in plants and their emergence from non-LEC1-type genes. We identified LEC1-type members in all vascular plant genomes, but not in amoebozoa, algae, fungi, metazoa and non-vascular plant representatives, which present exclusively non-LEC1-type genes as constituents of their NF-YB subunits. The non-synonymous to synonymous nucleotide substitution rates (Ka/Ks) between LEC1 and non-LEC1-type genes indicate the presence of positive selection acting on LEC1-type members to the fixation of LEC1-specific amino acid residues. The phylogenetic analyses demonstrated that plant LEC1-type genes are evolutionary divergent from the non-LEC1-type genes of plants, fungi, amoebozoa, algae and animals. Our results point to a scenario in which LEC1-type genes have originated in vascular plants after gene expansion in plants. We suggest that processes of neofunctionalization and/or subfunctionalization were responsible for the emergence of a versatile role for LEC1-type genes in vascular plants, especially in seed plants. LEC1-type genes besides being phylogenetic divergent also present different expression profile when compared with non-LEC1-type genes. Altogether, our data provide new insights about the LEC1 and non-LEC1 evolutionary relationship during the vascular plant evolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. The Root-Associated Microbial Community of the World’s Highest Growing Vascular Plants

    Czech Academy of Sciences Publication Activity Database

    Angel, R.; Conrad, R.; Dvorský, Miroslav; Kopecký, Martin; Kotilínek, M.; Hiiesalu, Inga; Schweingruber, F. H.; Doležal, Jiří

    2016-01-01

    Roč. 72, č. 2 (2016), s. 394-406 ISSN 0095-3628 Institutional support: RVO:67985939 Keywords : vascular plants * upward migration * subnival soil * plant-associated bacteria Subject RIV: EF - Botanics Impact factor: 3.630, year: 2016

  8. Distributions of vascular plants in the Czech Republic. Part 3

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Zdeněk; Danihelka, Jiří; Lepší, M.; Lepší, P.; Ekrt, L.; Chrtek, Jindřich; Kocián, J.; Prančl, Jan; Kobrlová, L.; Hroneš, M.; Šulc, Václav

    2016-01-01

    Roč. 88, č. 4 (2016), s. 459-544 ISSN 0032-7786 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : distribution * vascular plants * Czech Republic Subject RIV: EF - Botanics Impact factor: 3.000, year: 2016

  9. Database of Vascular Plants of Canada (VASCAN): a community contributed taxonomic checklist of all vascular plants of Canada, Saint Pierre and Miquelon, and Greenland.

    Science.gov (United States)

    Desmet, Peter; Brouillet, Luc

    2013-01-01

    The Database of Vascular Plants of Canada or VASCAN (http://data.canadensys.net/vascan) is a comprehensive and curated checklist of all vascular plants reported in Canada, Greenland (Denmark), and Saint Pierre and Miquelon (France). VASCAN was developed at the Université de Montréal Biodiversity Centre and is maintained by a group of editors and contributors. For every core taxon in the checklist (species, subspecies, or variety), VASCAN provides the accepted scientific name, the accepted French and English vernacular names, and their synonyms/alternatives in Canada, as well as the distribution status (native, introduced, ephemeral, excluded, extirpated, doubtful or absent) of the plant for each province or territory, and the habit (tree, shrub, herb and/or vine) of the plant in Canada. For reported hybrids (nothotaxa or hybrid formulas) VASCAN also provides the hybrid parents, except if the parents of the hybrid do not occur in Canada. All taxa are linked to a classification. VASCAN refers to a source for all name, classification and distribution information. All data have been released to the public domain under a CC0 waiver and are available through Canadensys and the Global Biodiversity Information Facility (GBIF). VASCAN is a service to the scientific community and the general public, including administrations, companies, and non-governmental organizations.

  10. LWR nuclear power plant component failures

    International Nuclear Information System (INIS)

    Schmidt, W.H.

    1980-10-01

    An analysis of the most significant light water reactor (LWR) nuclear power plant component failures, from information in the computerized Nuclear Safety Information Center (NSIC) data bank, shows that for both pressurized water reactor (PWR) and boiling water reactor (BWR) plants the component category most responsible for reactor shutdowns is valves. Next in importance for PWR shutdowns is steam generators followed by seals of all kinds. For BWR plants, seals, and pipes and pipe fittings are the second and third most important component failure categories which lead to reactor shutdown. The data are for records extending from early 1972 through September 1978. A list of the most significant component categories and a breakdown of the number of component citations for both PWR and BWR reactor types are presented

  11. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  12. Sphagnum modifies climate-change impacts on subarctic vascular bog plants.

    NARCIS (Netherlands)

    Dorrepaal, E.; Aerts, R.; Cornelissen, J.H.C.; van Logtestijn, R.S.P; Callaghan, T.V.

    2006-01-01

    1. Vascular plant growth forms in northern peatlands differ in their strategies to cope with the harsh climate, low nutrient availability and progressively increasing height of the Sphagnum carpet in which they grow. Climate change may therefore affect growth forms differentially, both directly and

  13. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline.

    Science.gov (United States)

    Piombino, Aldo

    2016-01-01

    Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.

  15. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.

    Science.gov (United States)

    Uchida, Naoyuki; Tasaka, Masao

    2013-12-01

    Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.

  16. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  17. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    Science.gov (United States)

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of

  18. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient.

    Science.gov (United States)

    Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D

    2010-04-01

    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.

  19. Distribution and functional traits of charophytes and vascular plants

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars

    rare species are specialists in particular environments, while the abundant species have traits such as broad salinity tolerance, tall shoots, vegetative reproduction and variable life form. Vascular plants, in contrast to charophytes, occupy the entire gradient from submerged to drained conditions......A large variety of plant species of very different evolutionary origin are found within and along the margins of aquatic ecosystems. These species have very different adaptations depending on the particular environmental condition under which they grow. This thesis examines the role...... of these adaptations or functional traits for the distribution on large scales and along specific environmental gradients. Characean algae (charophytes) are an ancient group of aquatic plants found in most aquatic ecosystems. I confirmed that they have declined markedly during the 20th century, most likely...

  20. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.

    Science.gov (United States)

    Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V

    2015-12-01

    The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes.

    Science.gov (United States)

    Fuentes, Sara; Pires, Nuno; Østergaard, Lars

    2010-08-01

    The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.

  2. Roles of Vascular and Metabolic Components in Cognitive Dysfunction of Alzheimer disease: Short- and Long-term Modification by Non-genetic Risk Factors

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2013-11-01

    Full Text Available It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD. Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of 1 compromised vascular reactivity, 2 vascular lesions, 3 hypo/hyperglycemia, and 4 exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. Beta-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: 1 functional MRI or SPECT for cerebrovascular reactivity, 2 MRI for ischemic lesions and atrophy, 3 clinical episodes of hypoglycemia and hyperglycemia, 4 amyloid-PET and tau-PET for pathological features of AD, would be required.

  3. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors.

    Science.gov (United States)

    Sato, Naoyuki; Morishita, Ryuichi

    2013-11-05

    It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.

  4. Contrasts between bryophyte and vascular plant synecological responses in an SO/sub 2/-stressed white spruce association in Central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Winner, W.E.; Bewley, J.D.

    1978-01-01

    Canopy coverage analysis was used to examine the synecological changes exhibited by vascular plants and terrestrial mosses in a white spruce association exposed to SO/sub 2/ fumigation. Both these understory components were found to decline in coverage as SO/sub 2/ stress increased, but mosses were more sensitive to SO/sub 2/ in the more heavily stressed areas. This was observed along both an angle-dependent and a distance-dependent gradient of pollution stress. Diversity steadily declined with increasing SO/sub 2/ stress along the angle-dependent gradient but some localized increases in diversity occurred with increasing stress along the distance-dependent gradient. This was due to invasion of openings resulting from attrition of SO/sub 2/-sensitive species by weedy angiosperms and by vegetative growth of moss species more tolerant of pollution stress. Conclusions have been drawn about the productive strategy of vascular plants and mosses subjected to increasing concentrations of SO/sub 2/. We have elucidated the ecological consequences for community structure of the systematic removal of pollution-sensitive understory species from an otherwise stable vegetation unit.

  5. Vascular Plant and Vertebrate Inventory of Tuzigoot National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, E.W.; Halvorson, William Lee; Schmidt, Cecilia A.; Anning, P.; Docherty, K.

    2005-01-01

    Executive Summary From 2002 to 2004, we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tuzigoot National Monument (NM) and adjacent areas in Arizona. This was the first effort of its kind in the area and was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In addition to our own surveys, we also compiled a complete list of species that have been found by previous studies. We found 330 species, including 142 that had not previously been recorded at the monument (Table 1). We found 39 species of non-native plants, 11 non-native fishes, three non-native birds, and one non-native species each of amphibian and mammal. Based on our work and that of others, there have been 597 species of plants and vertebrates found at the monument. The bird community at the monument had the highest species richness of any national park unit in central and southern Arizona. We found all other taxa to have intermediate species richness compared to other park units in the region. This extraordinary species richness observed for birds, as well as for some other taxa, is due primarily to Tavasci Marsh and the Verde River, two critical sources of perennial water, which provide habitat for many regionally rare or uncommon species. The location of the monument at the northern edge of the Sonoran Desert and at the southern edge of the Mogollon Rim also plays an important role in determining the distribution and community composition of the plant and vertebrate communities. Based on our findings, we believe the high number of non-native species, especially fish and plants, should be of particular management concern. We detail other management challenges, most notably the rapid increase in housing and associated commercial development near the monument, which will continue to impact the plant and vertebrate communities. Based on our data and a review of past studies, we believe the

  6. Interactions between soil phototrophs and vascular plants in Himalayan cold deserts

    Czech Academy of Sciences Publication Activity Database

    Řeháková, Klára; Čapková, Kateřina; Dvorský, Miroslav; Kopecký, Martin; Altman, Jan; Šmilauer, P.; Doležal, Jiří

    2017-01-01

    Roč. 115, dec 2017 (2017), s. 568-578 ISSN 0038-0717 R&D Projects: GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : microbial communities * vascular plants * interactions Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.857, year: 2016

  7. Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint.

    Science.gov (United States)

    Mosyakin, S L; Bezusko, L G; Mosyakin, A S

    2007-01-01

    The article provides an overview of the problem of origin of the only native vascular plants of Antarctica, Deschampsia antartica (Poaceae) and Colobanthus quitensis (Caryophyllaceae), from the viewpoint of modern historical phytogeography and related fields of science. Some authors suggested the Tertiary relict status of these plants in Antarctica, while others favour their recent Holocene immigration. Direct data (fossil or molecular genetic ones) for solving this controversy is still lacking. However, there is no convincing evidence supporting the Tertiary relict status of these plants in Antarctica. Most probably D. antarctica and C. quitensis migrated to Antarctica in the Holocene or Late Pleistocene (last interglacial?) through bird-aided long-distance dispersal. It should be critically tested by (1) appropriate methods of molecular phylogeography, (2) molecular clock methods, if feasible, (3) direct paleobotanical studies, (4) paleoclimatic reconstructions, and (5) comparison with cases of taxa with similar distribution/dispersal patterns. The problem of the origin of Antarctic vascular plants is a perfect model for integration of modern methods of molecular phylogeography and phylogenetics, population biology, paleobiology and paleogeography for solving a long-standing enigma of historical plant geography and evolution.

  8. Sizes of secondary plant components for modularized IRIS balance of plant design

    International Nuclear Information System (INIS)

    Williamson, Martin; Townsend, Lawrence

    2003-01-01

    Herein we report on a conceptual design for a balance of plant (BOP) layout to coordinate with IRIS-like plants. The report consists of results of calculations that sizes of various BOP components. These calculations include the thermodynamic analyses and general sizing of the components in order to determine plant capability and plant layout for studies on modularity and transportability. Mathematical modeling of the BOP system involves a modified ORCENT2 code as well as standard heat transfer methods. Using typical values for PWR type plants, a general BOP design, and IRIS steam generator values, an ORCENT2 heat balance is carried out for the secondary side of the plant. Using the ORCENT2 output, standard heat transfer methods are then used to calculate system performance and component sizes. (author)

  9. Radiocontamination patterns of vascular plants in a forest ecosystem

    International Nuclear Information System (INIS)

    Nimis, P.L.; Bolognini, G.; Giovani, C.

    1994-01-01

    This study is based on measurements of radiocesium and potassium-40 in leaves, stems and roots of 48 vascular plants in a natural beech forest in the Carnic Alps (NE Italy). The data have been submitted to numerical classification, and the main results are: (a) radiocontamination patterns and ecology of the species are well related, (b) three main groups of species with different radiocontamination can be distinguished: plants in clearings, forest plants rooting in the organic soil layer, forest plants rooting in the mineral layer; (c) radiocesium tends to be retained in the roots, especially in plants in the clearings; (d) Pteridophytes, contrary to all other plants, are able to discriminate between cesium and potassium at leaf level; (e) for all other species, cesium and potassium, once taken up by the plant, exhibit a similar behaviour; (f) total contamination by radiocesium is related to the depth of the root systems, and to the unequal distribution of radiocesium in the soil profile. Species-specific mechanisms of differential absorption are not evident in the investigated forest; the radiocontamination of plants can be easily explained in ecological terms. Radiocontamination on a water basis (Bq/l) is suggested as being much more appropriate for solving certain radioecological problems

  10. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  11. Microbial community dynamics and transformation of vascular plant detritus in two wetland ecosystems

    International Nuclear Information System (INIS)

    Moran, M.A.

    1987-01-01

    The microbial ecology of two wetland ecosystems in southeastern Georgia, USA, was studied with respect to microbial community dynamics and microbially-mediated transformations of vascular plant detritus. In the Okefenokee Swamp, biomass of microorganisms in the water column and sediments was generally lower in winter months and higher during spring and summer. Biomass and activity (measured as 14 C-lignocellulose mineralization) differed significantly among five habitats within the Okefenokee, and also among locations within each habitat. Significant heterogeneity in the structure of Okefenokee microbial communities was found at scales from 30 cm to 150 m. In field and laboratory studies of vascular plant decomposition in the Okefenokee and a salt marsh on Sapelo Island, the mathematical model which best describes decomposition kinetics is the decaying coefficient model

  12. Feasibility study of component risk ranking for plant maintenance

    International Nuclear Information System (INIS)

    Ushijima, Koji; Yonebayashi, Kenji; Narumiya, Yoshiyuki; Sakata, Kaoru; Kumano, Tetsuji

    1999-01-01

    Nuclear power is the base load electricity source in Japan, and reduction of operation and maintenance cost maintaining or improving plant safety is one of the major issues. Recently, Risk Informed Management (RIM) is focused as a solution. In this paper, the outline regarding feasibility study of component risk ranking for plant maintenance for a typical Japanese PWR plant is described. A feasibility study of component risk raking for plant maintenance optimization is performed on check valves and motor-operated valves. Risk ranking is performed in two steps using probabilistic analysis (quantitative method) for risk ranking of components, and deterministic examination (qualitative method) for component review. In this study, plant components are ranked from the viewpoint of plant safety / reliability, and the applicability for maintenance is assessed. As a result, distribution of maintenance resources using risk ranking is considered effective. (author)

  13. IPRDS: component histories and nuclear plant aging

    International Nuclear Information System (INIS)

    Borkowski, R.J.; Kahl, W.K.

    1984-01-01

    A comprehensive assessment of nuclear power plant component operating histories, maintenance histories, and design and fabrication details is essential to understanding aging phenomena. As part of the In-Plant Reliability Data System (IPRDS), an attempt is being made to collect and analyze such information from a sampling of US nuclear power plants. Utilizing the IPRDS, one can reconstruct the failure history of the components and gain new insight into the causes and modes of failures resulting from normal or premature aging. This information assembled from the IPRDS can be combined with operating histories and postservice component inspection results for cradle-to-grave assessments of component aging under operating conditions. A comprehensive aging assessment can then be used to provide guidelines for improving the detection, monitoring, and mitigation of aging-related failures

  14. New Chorological Data for Rare Vascular Plants from Romania

    Directory of Open Access Journals (Sweden)

    Anastasiu Paulina

    2015-11-01

    Full Text Available New chorological data about seven rare vascular plant taxa are reported in the present paper: Conringia austriaca, Jurinea multiflora, Linaria arvensis, Nonea pallens, Ophrys apifera, Ophrys scolopax subsp. cornuta, Saponaria officinalis. For Linaria arvensis, previously considered doubtful in the absence of the herbarium material, we confirm its presence in Romania. The report of Nonea pallens is the first for Dobrogea, while the report of Jurinea multiflora is the first for Muntenia region of Romania.

  15. Prevention of ethanol-induced vascular injury and gastric mucosal lesions by sucralfate and its components: possible role of endogenous sulfhydryls

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, S.; Brown, A.

    1987-09-01

    The authors tested the hypothesis that sucralfate, which contains eight sulfate and aluminum molecules on a sucrose and its other components might decrease ethanol-induced vascular injury and hemorrhagic mucosal lesions through a sulfhydryl (SH)-sensitive process. Experiments performed in rats revealed that the entire sucralfate molecule is not a prerequisite for protection against ethanol-induced mucosal vascular injury and erosions. It appears that sulfate and sucrose octasulfate are potent components of sucralfate, although an equimolar amount of sucralfate is at least twice as effective in gastroprotection than its components. The SH alkylator N-ethylmaleimide abolished the gastroprotection by sucralfate, suggesting SH-sensitive process in the mucosal protection which seems to be associated with the prevention of rapidly developing vascular injury in the stomach of rats given ethanol.

  16. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation

    OpenAIRE

    Malmer, Nils; Albinsson, C; Svensson, B M; Wallén, Bo

    2003-01-01

    The interference between vascular plants and peat mosses with respect to nitrogen and phosphorus was studied in a fertilization experiment and with respect to competition for light in a removal experiment in poor fens with either soligenous or topogenous hydrology using Narthecium ossifragum (L.) Huds. and three species of Sphagnum sect. Sphagnum as targets. Adding fertilizer either on the moss surface or below it confirmed the hypotheses of an asymmetric competition for nutrients, viz. that ...

  17. Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

    NARCIS (Netherlands)

    Klosterman, S.J.; Subbarao, K.V.; Kang, S.; Veronese, P.; Gold, S.E.; Thomma, B.P.H.J.; Chen, Z.J.; Henrissat, B.; Lee, Y.H.; Park, J.; Garcia-Pedrajas, M.D.; Barbara, D.J.; Anchieta, A.; Jonge, de R.; Santhanam, P.; Maruthachalam, K.; Atallah, Z.; Amyotte, S.G.; Paz, Z.; Inderbitzin, P.; Hayes, R.J.; Heiman, D.I.; Young, S.; Zeng, Q.; Engels, R.; Galagan, J.; Cuomo, C.; Dobinson, K.F.; Ma, L.J.

    2011-01-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in

  18. In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees

    International Nuclear Information System (INIS)

    Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Liang, Jimin; Tian, Jie; Cao, Feng

    2014-01-01

    To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance. (paper)

  19. Dataset of herbarium specimens of threatened vascular plants in Catalonia.

    Science.gov (United States)

    Nualart, Neus; Ibáñez, Neus; Luque, Pere; Pedrol, Joan; Vilar, Lluís; Guàrdia, Roser

    2017-01-01

    This data paper describes a specimens' dataset of the Catalonian threatened vascular plants conserved in five public Catalonian herbaria (BC, BCN, HGI, HBIL and MTTE). Catalonia is an administrative region of Spain that includes large autochthon plants diversity and 199 taxa with IUCN threatened categories (EX, EW, RE, CR, EN and VU). This dataset includes 1,618 records collected from 17 th century to nowadays. For each specimen, the species name, locality indication, collection date, collector, ecology and revision label are recorded. More than 94% of the taxa are represented in the herbaria, which evidence the paper of the botanical collections as an essential source of occurrence data.

  20. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  1. Pathophysiology of Headaches with a Prominent Vascular Component

    Directory of Open Access Journals (Sweden)

    Juan A Pareja

    1996-01-01

    Full Text Available Vascular changes, whether preliminary or secondary, seem to accompany most headaches. The literature concerning pathophysiological mechanisms in headaches where vascular phenomena are a major, integral part, ie, migraine and cluster headache syndrome, is reviewed and the most common forms of headache associated with cerebrovascular disease are discussed. Emphasis is placed on the vascular phenomena and on the abundant hypotheses and theories regarding headache mechanisms. This review also presents alternative explanatory models, and compares the available anatomical, physiological and biochemical results.

  2. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  3. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.

    Science.gov (United States)

    Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G

    2011-05-11

    Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. Constraining Biomarkers of Dissolved Organic Matter Sourcing Using Microbial Incubations of Vascular Plant Leachates of the California landscape

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.

    2017-12-01

    Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.

  5. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    Science.gov (United States)

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed.

    Science.gov (United States)

    Runnie, I; Salleh, M N; Mohamed, S; Head, R J; Abeywardena, M Y

    2004-06-01

    In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.

  7. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    Science.gov (United States)

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reconstructing relative genome size of vascular plants through geological time.

    Science.gov (United States)

    Lomax, Barry H; Hilton, Jason; Bateman, Richard M; Upchurch, Garland R; Lake, Janice A; Leitch, Ilia J; Cromwell, Avery; Knight, Charles A

    2014-01-01

    The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Aging effects in PWR power plants components

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Diogo da S.; Guimaraes, Antonio C.F.; Moreira, Maria de Lourdes, E-mail: diogosb@outlook.com, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents a contribution to the study of aging process of components in commercial plants of Pressurized Water Reactors (PWRs). The analysis is made through application of the Fault Trees Method, Monte Carlo Method and Fussell-Vesely Importance Measure. The approach of the study of aging in nuclear power plants, besides giving attention to the economic factors involved directly with the extent of their operational life, also provide significant data on security issues. The latest case involving process of life extension of a PWR could be seen in Angra 1 Nuclear Power Plant through investing of $27 million for the installation of a new reactor lid. The corrective action has generated an estimated operating life extension of Angra I in twenty years, offering great economy compared with building cost of a new plant and anterior decommissioning, if it had reached the time operating limit of forty years. The Extension of the operating life of a nuclear power plant must be accompanied by a special attention to the components of the systems and their aging process. After the application of the methodology (aging analysis of the injection system of the containment spray) proposed in this work, it can be seen that 'the increase in the rate of component failure, due the aging process, generates the increase in the general unavailability of the system that containing these basic components'. The final results obtained were as expected and may contribute to the maintenance policy, preventing premature aging process in Nuclear Plant Systems. (author)

  11. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    Science.gov (United States)

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  12. Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.

    Science.gov (United States)

    Peña, Maria J; Darvill, Alan G; Eberhard, Stefan; York, William S; O'Neill, Malcolm A

    2008-11-01

    Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.

  13. Cross-scale modelling of alien and native vascular plant species richness in Great Britain: where is geodiversity information most relevant?

    Science.gov (United States)

    Bailey, Joseph; Field, Richard; Boyd, Doreen

    2016-04-01

    We assess the scale-dependency of the relationship between biodiversity and novel geodiversity information by studying spatial patterns of native and alien (archaeophytes and neophytes) vascular plant species richness at varying spatial scales across Great Britain. Instead of using a compound geodiversity metric, we study individual geodiversity components (GDCs) to advance our understanding of which aspects of 'geodiversity' are most important and at what scale. Terrestrial native (n = 1,490) and alien (n = 1,331) vascular plant species richness was modelled across the island of Great Britain at two grain sizes and several extent radii. Various GDCs (landforms, hydrology, geology) were compiled from existing national datasets and automatically extracted landform coverage information (e.g. hollows, valleys, peaks), the latter using a digital elevation model (DEM) and geomorphometric techniques. More traditional predictors of species richness (climate, widely-used topography metrics, land cover diversity, and human population) were also incorporated. Boosted Regression Tree (BRT) models were produced at all grain sizes and extents for each species group and the dominant predictors were assessed. Models with and without geodiversity data were compared. Overarching patterns indicated a clear dominance of geodiversity information at the smallest study extent (12.5km radius) and finest grain size (1x1km), which substantially decreased for each increase in extent as the contribution of climatic variables increased. The contribution of GDCs to biodiversity models was chiefly driven by landform information from geomorphometry, but hydrology (rivers and lakes), and to a lesser extent materials (soil, superficial deposits, and geology), were important, also. GDCs added significantly to vascular plant biodiversity models in Great Britain, independently of widely-used topographic metrics, particularly for native species. The wider consideration of geodiversity alongside

  14. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    Science.gov (United States)

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  15. Holistic and component plant phenotyping using temporal image sequence.

    Science.gov (United States)

    Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala

    2018-01-01

    Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for

  16. IPRDS - Component histories and nuclear plant aging

    International Nuclear Information System (INIS)

    Borkowski, R.J.; Kahl, W.K.

    1984-01-01

    A comprehensive assessment of nuclear power plant component operating histories, maintenance histories, and design and fabrication details is essential to understanding aging phenomena. As part of the In-Plant Reliability Data System (IPRDS), an attempt is being made to collect and analyze such information from a sampling of U.S. nuclear power plants. Utilizing the IPRDS, one can reconstruct the failure history of the components and gain new insight into the causes and modes of failures resulting from normal or premature aging. This information assembled from the IPRDS can be combined with operating histories and postservice component inspection results for ''cradle-to-grave'' assessments of component aging under operating conditions. A comprehensive aging assessment can then be used to provide guidelines for improving the detection, monitoring, and mitigation of aging-related failures. The examples chosen for this paper illustrate two aging-related areas: the effects of an improved preventive maintenance policy in mitigating aging of a feedwater pump and the identification of reoccuring failures in parts of diesel generators

  17. Revision of migrated pelvic acetabular components in THA with or without vascular involvement

    Directory of Open Access Journals (Sweden)

    Ștefan Cristea

    2016-05-01

    Full Text Available Purpose. The literature describes a high rate of mortality in cases of intrapelvic acetabular component migration, which is a rare but serious complication. Our aim is to establish and propose a treatment protocol according to our results and experience. Material and Methods. We performed eight (8 total hip revisions with acetabular cup migration between 2006 and 2012. A vascular graft was needed in four (4 of these cases. Two (2 cases were revisions after a spacer for infected arthroplasties. The protocol included the following: X-Ray examination (frontal and lateral views, CT angiography, a biological evaluation, a suitable pre-operative plan, at least six (6 units of blood stock, an experienced anesthesiologist, an experienced surgical team that included a vascular surgeon and a versatile arsenal of revision prostheses, bone grafts and vascular grafts. The anterolateral approach was generally used for hip revisions and the retroperitoneal approach in the dorsal decubitus position was used when vascular risk was involved. Results: The acetabular defect was reconstructed using bone grafts and tantalum revision cups in 4 cases, Burch-Schneider cages in 2 cases, a Kerboull ring in 1 case and a cementless oblong cup (Cotyle Espace in 1 case. In 4 cases, an iliac vessel graft procedure was conducted by the vascular surgeon. All patients survived the revision procedures and returned regularly for subsequent check-ups, during which they did not show any septic complications. Conclusions: Intrapelvic acetabular cup migration is a rare but serious complication that can occur after total hip arthroplasty in either septic or aseptic cases. An experienced, multidisciplinary team of surgeons should be involved in planning and conducting such complicated revisions.

  18. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice.

    Science.gov (United States)

    Seilkop, Steven K; Campen, Matthew J; Lund, Amie K; McDonald, Jacob D; Mauderly, Joe L

    2012-04-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/⁻) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE⁻/⁻ mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated "downwind" coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical-chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation.

  19. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    Science.gov (United States)

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  20. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  1. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  2. Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-27

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.

  3. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  4. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    Science.gov (United States)

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study

    Directory of Open Access Journals (Sweden)

    Anastasiia I. Evkaikina

    2014-02-01

    Full Text Available Plasmodesmata (PD serve for the exchange of information in form of miRNA, proteins and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (inability to form secondary PD is manifested in the symplastic organization of the shoot apical meristem (SAM which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplastic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

  6. Vascular Plant and Vertebrate Inventory of Tumacacori National Historical Park

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Anning, Pamela; Docherty, Kathleen

    2005-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Tumacacori National Historical Park (NHP) in southern Arizona. These surveys were part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. From 2000 to 2003 we surveyed for vascular plants and vertebrates (fish, amphibians, reptiles, birds, and mammals) at Tumacacori NHP to document presence of species within the administrative boundaries of the park's three units. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a long-term monitoring program. We recorded 591 species at Tumacacori NHP, significantly increasing the number of known species for the park (Table 1). Species of note in each taxonomic group include: * Plants: second record in Arizona of muster John Henry, a non-native species that is ranked a 'Class A noxious weed' in California; * Amphibian: Great Plains narrow-mouthed toad; * Reptiles: eastern fence lizard and Sonoran mud turtle; * Birds: yellow-billed cuckoo, green kingfisher, and one observation of the endangered southwestern willow flycatcher; * Fishes: four native species including an important population of the endangered Gila topminnow in the Tumacacori Channel; * Mammals: black bear and all four species of skunk known to occur in Arizona. We recorded 79 non-native species (Table E.S.1), many of which are of management concern, including: Bermudagrass, tamarisk, western mosquitofish, largemouth bass, bluegill, sunfish, American bullfrog, feral cats and dogs, and cattle. We also noted an abundance of crayfish (a non-native invertebrate). We review some of the important non-native species and make recommendations to remove them or to minimize their impacts on the native biota of the park. Based on the observed species richness, Tumacacori NHP possesses high biological diversity of plants, fish

  7. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants.

    Science.gov (United States)

    Vera-Sirera, Francisco; De Rybel, Bert; Úrbez, Cristina; Kouklas, Evangelos; Pesquera, Marta; Álvarez-Mahecha, Juan Camilo; Minguet, Eugenio G; Tuominen, Hannele; Carbonell, Juan; Borst, Jan Willem; Weijers, Dolf; Blázquez, Miguel A

    2015-11-23

    Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants.

    Science.gov (United States)

    Dvorský, Miroslav; Chlumská, Zuzana; Altman, Jan; Čapková, Kateřina; Řeháková, Klára; Macek, Martin; Kopecký, Martin; Liancourt, Pierre; Doležal, Jiří

    2016-04-13

    Vascular plants in the western Tibetan Plateau reach 6000 m--the highest elevation on Earth. Due to the significant warming of the region, plant ranges are expected to shift upwards. However, factors governing maximum elevational limits of plant are unclear. To experimentally assess these factors, we transplanted 12 species from 5750 m to 5900 m (upper edge of vegetation) and 6100 m (beyond range) and monitored their survival for six years. In the first three years (2009-2012), there were plants surviving beyond the regional upper limit of vegetation. This supports the hypothesis of dispersal and/or recruitment limitation. Substantial warming, recorded in-situ during this period, very likely facilitated the survival. The survival was ecologically a non-random process, species better adapted to repeated soil freezing and thawing survived significantly better. No species have survived at 6100 m since 2013, probably due to the extreme snowfall in 2013. In conclusion, apart from the minimum heat requirements, our results show that episodic climatic events are decisive determinants of upper elevational limits of vascular plants.

  9. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  10. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  11. The French Muséum national d'histoire naturelle vascular plant herbarium collection dataset

    Science.gov (United States)

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-02-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments.

  12. The French Muséum national d’histoire naturelle vascular plant herbarium collection dataset

    Science.gov (United States)

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-01-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d’histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments. PMID:28195585

  13. Fungal root symbionts of high-altitude vascular plants in the Himalayas.

    Science.gov (United States)

    Kotilínek, Milan; Hiiesalu, Inga; Košnar, Jiří; Šmilauerová, Marie; Šmilauer, Petr; Altman, Jan; Dvorský, Miroslav; Kopecký, Martin; Doležal, Jiří

    2017-07-26

    Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) form symbiotic relationships with plants influencing their productivity, diversity and ecosystem functions. Only a few studies on these fungi, however, have been conducted in extreme elevations and none over 5500 m a.s.l., although vascular plants occur up to 6150 m a.s.l. in the Himalayas. We quantified AMF and DSE in roots of 62 plant species from contrasting habitats along an elevational gradient (3400-6150 m) in the Himalayas using a combination of optical microscopy and next generation sequencing. We linked AMF and DSE communities with host plant evolutionary history, ecological preferences (elevation and habitat type) and functional traits. We detected AMF in elevations up to 5800 m, indicating it is more constrained by extreme conditions than the host plants, which ascend up to 6150 m. In contrast, DSE were found across the entire gradient up to 6150 m. AMF diversity was unimodally related to elevation and positively related to the intensity of AMF colonization. Mid-elevation steppe and alpine plants hosted more diverse AMF communities than plants from deserts and the subnival zone. Our results bring novel insights to the abiotic and biotic filters structuring AMF and DSE communities in the Himalayas.

  14. SASSYS-1 balance-of-plant component models for an integrated plant response

    International Nuclear Information System (INIS)

    Ku, J.-Y.

    1989-01-01

    Models of power plant heat transfer components and rotating machinery have been added to the balance-of-plant model in the SASSYS-1 liquid metal reactor systems analysis code. This work is part of a continuing effort in plant network simulation based on the general mathematical models developed. The models described in this paper extend the scope of the balance-of-plant model to handle non-adiabatic conditions along flow paths. While the mass and momentum equations remain the same, the energy equation now contains a heat source term due to energy transfer across the flow boundary or to work done through a shaft. The heat source term is treated fully explicitly. In addition, the equation of state is rewritten in terms of the quality and separate parameters for each phase. The models are simple enough to run quickly, yet include sufficient detail of dominant plant component characteristics to provide accurate results. 5 refs., 16 figs., 2 tabs

  15. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  16. New records of alien vascular plants from Marion and Prince Edward Islands, sub-Antarctic

    NARCIS (Netherlands)

    Gremmen, N.J.M.; Smith, V.

    1999-01-01

    A survey was made of the distribution of introduced vascular plants on Marion and Prince Edward Islands. The results of this survey were compared to results of previous surveys (1965/66, 1975, 1981, 1989). Four new introductions to Marion Island have taken place, three of which involved species that

  17. Generic nuclear power plant component failure data bank

    International Nuclear Information System (INIS)

    Araujo Goes, A.G. de; Gibelli, S.M.O.

    1988-11-01

    This report consist in the development of a generic nuclear power plant component failure data bank. This data bank was implemented in a PC-XT microcomputer, IBM compatible, using the Open Access II program. Generic failure data tables for Westinghouse nuclear power plants and for general PWR power plants are presented. They are the final product of a research which included a preselection and a selection of data collected from the available sources in the library of CNEN (National Nuclear Energy Commission) and from the CIN/CNEN (Neclear Information Center). Futhermore, a proposal of evaluating models of average failure rates of pumps and valves are also presented. Through the electronic data bank one can easily have a generic view of failure rate ranges as well as failure models foe a certain component. It is very importante to develop procedures to collect and store generic failure data that can be quickly accessed, in order to update the Probabilistic Safety Study of Angra-1 and to used in studies which may have component failures of nuclear power plant safety systems. In the future, data specialization can be achieved by means of statistical calculations involving specific data collected from the operational experience of Angra-1 nuclear power plant and the generic data bank. (author) [pt

  18. Effects of reindeer density on vascular plant diversity on North Scandinavian mountains

    Directory of Open Access Journals (Sweden)

    Johan Olofsson

    2005-04-01

    Full Text Available We studied the effects of reindeer grazing on species richness and diversity of vascular plants on dolomite influenced low alpine sites in the species rich northern part of the Scandes using 8 sites with different reindeer densities. Two sites were situated inside Malla Strict Nature Reserve, where reindeer grazing have been totally prohibited since 1981, and strongly restricted since 1950s. The six other sites were located in other species rich hotspot sites standardized to be as similar to the dolomite-influenced sites in Malla Strict Reserve as possible but varying in reindeer densities commonly found in the Fennoscandian mountain chain. Each site with a habitat complex especially rich in rare vascular plants (the Dryas heath – low herb meadow complex was systematically sampled in four plots of 2 m x 10 m. The plots were divided to 20 squares of 1 m x 1 m, and complete species lists of vascular plants were compiled for each of the squares. The first DCA (detrended correspondence analysis axis was strongly related to an index of reindeer grazing, indicating that grazing has a strong impact on the composition of the vegetation. None of the characteristics indices of biodiversity (species richness, evenness or Shannon-Wiener H’ was correlated with reindeer density. The local abundances of categories consisting of relatively rare plants (Ca favored plants and red listed plants of Finland showed significant, positive correlation with the intensity of reindeer grazing. We conclude that even though the density of reindeer has no influence on the total species richness or diversity of vascular plants, reindeer may still be important for regional biodiversity as it seems to favour rare and threatened plants. Moreover, our results imply that standard diversity indices may have limited value in the context of conservation biology, as these indices are equally influenced by rarities and by trivial species.Abstract in Swedish / Sammandrag: Vi

  19. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  20. Vascular plants of the Nevada Test Site and Central-Southern Nevada: ecologic and geographic distributions

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1976-01-01

    The physical environment of the Nevada Test Site and surrounding area is described with regard to physiography, geology, soils, and climate. A discussion of plant associations is given for the Mojave Desert, Transition Desert, and Great Basin Desert. The vegetation of disturbed sites is discussed with regard to introduced species as well as endangered and threatened species. Collections of vascular plants were made during 1959 to 1975. The plants, belonging to 1093 taxa and 98 families are listed together with information concerning ecologic and geographic distributions. Indexes to families, genera, and species are included. (HLW)

  1. Probabilistic methods in nuclear power plant component ageing analysis

    International Nuclear Information System (INIS)

    Simola, K.

    1992-03-01

    The nuclear power plant ageing research is aimed to ensure that the plant safety and reliability are maintained at a desired level through the designed, and possibly extended lifetime. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time- dependent decrease in reliability. The results of analyses can be used in the evaluation of the remaining lifetime of components and in the development of preventive maintenance, testing and replacement programmes. The report discusses the use of probabilistic models in the evaluations of the ageing of nuclear power plant components. The principles of nuclear power plant ageing studies are described and examples of ageing management programmes in foreign countries are given. The use of time-dependent probabilistic models to evaluate the ageing of various components and structures is described and the application of models is demonstrated with two case studies. In the case study of motor- operated closing valves the analysis are based on failure data obtained from a power plant. In the second example, the environmentally assisted crack growth is modelled with a computer code developed in United States, and the applicability of the model is evaluated on the basis of operating experience

  2. Ventilation systems and components of nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    The most important radiation and nuclear safety requirements for the design and manufacture of nuclear power plant ventilation systems and components are presented in the guide. Also the regulatory activities of the Finnish Centre for Radiation and Nuclear Safety (STUK) as regards the ventilation systems and components are explained. Documents and data which shall be submitted to STUK during the various phases of the regulatory procedure relating to the design, construction, commissioning and operation of the nuclear power plants are presented. (13 refs.)

  3. Application of environmentally-corrected fatigue curves to nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1996-01-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four US nuclear steam supply system vendors. For each facility, six locations were studied including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This paper discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  4. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada.

    Science.gov (United States)

    Braukmann, Thomas W A; Kuzmina, Maria L; Sills, Jesse; Zakharov, Evgeny V; Hebert, Paul D N

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  5. Analysis of failed nuclear plant components

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1993-01-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with an analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor

  6. Analysis of failed nuclear plant components

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1992-07-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (a) intergranular stress corrosion cracking of core spray injection piping in a boiling water reactor, (b) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressure water reactor, (c) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (d) failure of pump seal wear rings by nickel leaching in a boiling water reactor

  7. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes

    DEFF Research Database (Denmark)

    Epp, L. S.; Gussarova, C.; Boessenkool, S.

    2015-01-01

    temperatures. Lake sediments contain DNA paleorecords of the surrounding ecosystems and can be used to retrieve a variety of organismal groups from a single sample. In this study, we analyzed vascular plant, bryophyte, algal (in particular diatom) and copepod DNA retrieved from a sediment core spanning...... phases, and distinct temporal changes in plant presence were recovered. The plant DNA was mostly in agreement with expected vegetation history, but very early occurrences of vascular plants, including the woody Empetrum nigrum, document terrestrial vegetation very shortly after glacial retreat. Our study...... core. Our DNA record was stratigraphically coherent, with no indication of leaching between layers, and our cross-taxon comparisons were in accordance with previously inferred local ecosystem changes. Authentic ancient plant DNA was retrieved from nearly all layers, both from the marine and the limnic...

  8. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    Science.gov (United States)

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Plant systems/components modularization study. Final report

    International Nuclear Information System (INIS)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort

  10. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  11. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    Science.gov (United States)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  12. Vascular Plant and Vertebrate Inventory of Organ Pipe Cactus National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Halvorson, William L.

    2007-01-01

    Executive Summary We summarized inventory and monitoring efforts for plants and vertebrates at Organ Pipe Cactus National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 1,031 species of plants and vertebrates observed at the monument. Most of the species on the list are documented by voucher specimens. There are 59 non-native species established in the monument: one mammal, three birds, and 55 non-native plants. Most non-native plant species were first recorded along roads. In each taxon-specific chapter, we highlight areas that contribute disproportionately to species richness or that have unique species for the monument. Of particular importance are Quitobaquito Springs and Pond, which are responsible for the monument having one of the highest number of bird species in the Sonoran Desert Network of parks. Quitobaquito also contains the only fish in the monument, the endangered Quitobaquito pupfish (Cyprinodon eremus). Other important resources for the plants and vertebrates include the xeroriparian washes (e.g., Alamo Canyon) and the Ajo Mountains. Based on the review of past studies, we believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network.

  13. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  14. Analysis of failed nuclear plant components

    Science.gov (United States)

    Diercks, D. R.

    1993-12-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.

  15. Analysis of Active Components in Salvia Miltiorrhiza Injection Based on Vascular Endothelial Cell Protection

    Directory of Open Access Journals (Sweden)

    Shen Jie

    2014-09-01

    Full Text Available Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI. HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  16. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  17. Vascular plants of Mt. Dosolsan in the Demilitarized Zone Civilian Control Line

    Directory of Open Access Journals (Sweden)

    Jong Bin An

    2018-06-01

    Full Text Available This study is aimed at identifying the distribution of vascular plants growing at Mt. Dosolsan in Yanggu-gun, Gangwon-do. Field surveys were conducted for each season from March 2014 to November 2016. The flora of study area is found to consist of 516 taxa, 91 families, 296 genus, 455 species, four subspecies, 50 varieties, and seven forma. Rare plants were found to be of 31 taxa. Among them, rare plant species consisted of critically endangered species (CR degree: 2 (Lilium dauricum Ker Gawl., Cypripedium macranthos Sw., endangered species (EN degree: 5 (Loranthus tanakae Franch. & Sav. etc., vulnerable species (VU degree: 7 (Dryopteris laeta (Kom. C.Chr. etc., and least concerned (LC degree: 17 (Botrychium virginianum (L. Sw. etc.. In all the surveyed areas, a total of 20 taxa (Pseudostellaria setulosa Ohwi etc. were found to be endemic to Korea. The floristic special plants found in the surveyed areas were two taxa of grade V, 24 taxa of grade IV, and 31 taxa of grade III. The naturalized plants were identified as 15 taxa and included Chenopodium album L., Lotus corniculatus L., Robinia pseudoacacia L. etc.

  18. Dynamic analysis on cavitation and embolization in vascular plants under tension

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin; Lee, Sang Joon

    2014-11-01

    Plants can transport sap water from the soil to the tip of their leaves using the tensile forces created by leaf transpiration without any mechanical pumps. However, the high tension adversely induces a thermodynamically metastable state in sap water with negative pressure and gas bubbles are prone to be formed in xylem vessels. Cavitation easily breaks down continuous water columns and grows into embolization, which limits water transport through xylem vessels. Meanwhile, the repair process of embolization is closely related to water management and regulation of sap flow in plants. In this study, the cavitation and embolization phenomena of liquid water in vascular plants and a physical model system are experimentally and theoretically investigated in detail under in vivo and in vitro conditions. This study will not only shed light on the understanding of these multiphase flows under tension but also provide a clue to solve cavitation problems in micro-scale conduits and microfluidic network systems. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  19. The study of distribution characteristics of vascular and naturalized plants in Dokdo, South Korea

    Directory of Open Access Journals (Sweden)

    Su-Young Jung

    2014-06-01

    Full Text Available This study was performed to investigate the distribution of vascular plants and the characteristics of naturalized plants in Dokdo Island, South Korea. The survey was conducted a total of 5 times from June 2012 to September 2013. The number of plants confirmed in this study was 60 taxa in total: 29 families, 49 genera, 55 species, 2 subspecies and 3 varieties. To classify them by regional groups, 53 taxa were confirmed in the Dongdo and 38 taxa were confirmed in the Seodo. Among them, the distribution of Stellaria neglecta Weihe and Puccinellia nipponica Ohwi was first discovered in this study. The naturalized plants distributed in Dokdo was 7 taxa: Chenopodium album L., Sonchus asper (L. Hill, Sonchus oleraceus L., Ipomoea purpurea Roth, Brassica juncea (L. Czern., etc. Overall, concerns over the naturalized plants in Dokdo are high regardless of the scale of their distribution and the appearance frequency.

  20. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Peixoto, Raquel S; Cury, Juliano C; Sul, Woo Jun; Pellizari, Vivian H; Tiedje, James; Rosado, Alexandre S

    2010-08-01

    The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.

  1. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs.

    Science.gov (United States)

    Chávez Montes, Ricardo A; de Fátima Rosas-Cárdenas, Flor; De Paoli, Emanuele; Accerbi, Monica; Rymarquis, Linda A; Mahalingam, Gayathri; Marsch-Martínez, Nayelli; Meyers, Blake C; Green, Pamela J; de Folter, Stefan

    2014-04-23

    Small RNAs are pivotal regulators of gene expression that guide transcriptional and post-transcriptional silencing mechanisms in eukaryotes, including plants. Here we report a comprehensive atlas of sRNA and miRNA from 3 species of algae and 31 representative species across vascular plants, including non-model plants. We sequence and quantify sRNAs from 99 different tissues or treatments across species, resulting in a data set of over 132 million distinct sequences. Using miRBase mature sequences as a reference, we identify the miRNA sequences present in these libraries. We apply diverse profiling methods to examine critical sRNA and miRNA features, such as size distribution, tissue-specific regulation and sequence conservation between species, as well as to predict putative new miRNA sequences. We also develop database resources, computational analysis tools and a dedicated website, http://smallrna.udel.edu/. This study provides new insights on plant sRNAs and miRNAs, and a foundation for future studies.

  2. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  3. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  4. Vascular Plant and Vertebrate Inventory of Casa Grande Ruins National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Schmidt, Cecilia A.; Halvorson, William L.; Anning, Pamela; Docherty, Kathleen

    2006-01-01

    Executive Summary This report summarizes results of the first comprehensive biological inventory of Casa Grande Ruins National Monument (NM) in southern Arizona. Surveys at the monument were part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In 2001 and 2002 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Casa Grande Ruins NM to document the presence, and in some cases relative abundance, of species. By using repeatable study designs and standardized field techniques, which included quantified survey effort, we produced inventories that can serve as the basis for a biological monitoring program. Of the National Park Service units in the region, no other has experienced as much recent ecological change as Casa Grande Ruins NM. Once situated in a large and biologically diverse mesquite bosque near the perennially flowing Gila River, the monument is now a patch of sparse desert vegetation surrounded by urban and commercial development that is rapidly replacing agriculture as the dominant land use in the area. Roads, highways, and canals surround the monument. Development, and its associated impacts, has important implications for the plants and animals that live in the monument. The plant species list is small and the distribution and number of non-native plants appears to be increasing. Terrestrial vertebrates are also being impacted by the changing landscape, which is increasing the isolation of these populations from nearby natural areas and thereby reducing the number of species at the monument. These observations are alarming and are based on our review of previous studies, our research in the monument, and our knowledge of the biogeography and ecology of the Sonoran Desert. Together, these data suggest that the monument has lost a significant portion of its historic complement of species and these changes will likely intensify as

  5. Importance of biotic and abiotic components in feedback between plants and soil

    OpenAIRE

    Hanzelková, Věra

    2017-01-01

    The plant-soil feedback affects the forming of a plant community. Plants affect their own species as well as other species. The plant-soil feedback can be both positive and negative. Plants affect soil, change its properties, and the soil affects the plants reciprocally. Soil components can be divided into biotic and abiotic ones. The abiotic component is represented by physical and chemical properties of the soil. The main properties are the soil structure, the soil moisture, the soil temper...

  6. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change

    Directory of Open Access Journals (Sweden)

    Zoltán Bátori

    2014-01-01

    Full Text Available Limestone (karst surfaces in Hungary are rich in dolines, in which many endangered vascular plant species occur. To date, the majority of studies dealing with doline vegetation have focused on the local rather than the landscape level, without using comparative data from other areas. However, in this study we aimed to compare the vegetation pattern and species composition of dolines under different climate regimes of Hungary with regard to regional species pools. The fieldwork was carried out between 2005 and 2012. Twenty dolines were selected in the Mecsek Mountains (southern Hungary and nine dolines in the Aggtelek Karst area (northern Hungary. More than 900 vascular plants and more than 2000 plots were included in the study. The moving split window (MSW technique, nestedness analysis and principal coordinates analysis (PCoA were used to reveal the vegetation patterns in dolines. Although we found remarkable differences between the species composition of the two regions, dolines of both regions play a similar role in the preservation of different groups of species. Many plants, in particular mountain species, are restricted to the bottom of dolines where appropriate environmental conditions exist. In addition, depending on the doline geometry, many species of drier and warmer forests have colonized the upper slopes and rims. Thus, we can conclude that karst dolines of Hungary can be considered as reservoirs for many vascular plant species, therefore they are particularly important from a conservation point of view. Moreover, these dolines will likely become increasingly indispensable refugia for biodiversity under future global warming.

  7. Convergent evolution of vascular optimization in kelp (Laminariales).

    Science.gov (United States)

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  8. Vascular Plant and Vertebrate Inventory of Coronado National Memorial

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Swann, Don E.; Halvorson, William L.

    2007-01-01

    We conducted inventories for amphibians and reptiles, birds, and mammals; and summarized past inventories for vascular plants at Coronado National Memorial (NM) in Arizona. We used our data as well as data from previous research to compile species lists for the memorial, assess inventory completeness, and make suggestions on future monitoring efforts. There have been 940 species of plants and vertebrates recorded at Coronado NM (Table 1), of which 46 (5%) are non-native. The species richness of the memorial is one of the highest in the Sonoran Desert Network of park units, third only to park units that are two and one-half (Chiricahua National Monument), 19 (Saguaro National Park) and 70 (Organ Pipe Cactus National Monument) times larger in area. The high species diversities are due to the large elevational gradient, overlap of bigeographical regions, wide range of geology and soils, and diverse vegetation communities present at the memorial. Changes in species composition have occurred at the memorial over the last 20 years in all major taxonomic groups. These changes are likely due to increases in grassy plant species (both native and non-native) at the lower elevations of the memorial. We suspect that grassy plant cover has increased because of changes in grazing intensity, introduction of some non-native species, and a recent fire. All recent vertebrate inventories have yielded grassland obligate species not previously recorded at the memorial. Based on the review of past studies, we believe the inventory for most taxa, except bats, is nearly complete, though some rare or elusive species will likely be added with additional survey effort.

  9. Age-Related Degradation of Nuclear Power Plant Structures and Components

    International Nuclear Information System (INIS)

    Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

    1999-01-01

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk

  10. Studies on distribution pattern of 14C-assimilates in relation to vascular pattern derived from phyllotaxis of tomato plants

    International Nuclear Information System (INIS)

    Shishido, Y.; Seyama, N.; Hori, Y.

    1988-01-01

    The association of distribution of photosynthetic assimilates in tomato with phyllotaxis and arrangement of the vascular system was studied. To ascertain the phyllotaxis of tomato plants, which was alternate with four orthostichies with devergence of 90° (270°) and 180°, the vascular system was revealed by methylene blue (0.5%), eothine (1.0%) and fuchsin (1.0%) from leaf petioles and the distribution of photosynthetic assmilates was measured by 14 C. The vascular system of tomato basically consisted of four orthostichies with two vascular bundles from each leaf. The arrangement of the vascular systems evidently affected the movement of 14 C-assimilates to sinks. Such movement from each leaf was affected by the degree of connection of the vascular bundles. Since tomato has a sympodial branching system, the leaf which is apparently situated just above the inflorescence differentiated before the inflorescence. The vascular bundles of the leaf of the sympodial branch around the inflorescence developed between the inflorescence and the leaf just above it. This results in a comparatively small proportion of distribution to the inflorescence from the leaf just above it

  11. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  12. Heavy steel casting components for power plants 'mega-components' made of high Cr-steels

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, Reinhold [voestalpine Giesserei Linz GmbH, Linz (Austria)

    2010-07-01

    Steel castings of creep resistant steels play a key role in fossil fuel fired power plants for highly loaded components in the high and intermediate pressure section of the turbines. Inner and outer casings, valve casings, inlet connections and elbows are examples of such critical components. The most important characteristic in a power plant is the efficiency, which mainly drives the CO2-emission. As a consequence of steadily improving power plant efficiencies and ever stricter emission standards, steam parameters become more critical and the creep resistance of the cast materials must also be constantly improved. The foundries voestalpine Giesserei Linz and voestalpine Giesserei Traisen participated in the development of the new 9-10% Cr-steels for application up to 625 C/650 C and in the THERMIE project where Ni-base alloys for 700 C-power plants were developed. Beside the material development in the European research projects the commercial production had to be established for industrial processes and the newly developed materials have to be transferred from research into the commercial production of heavy cast components. After selecting the most promising alloy from the laboratory melts, welding tests were performed - mostly with matching electrodes also produced within COST/THERMIE. Base material and welds were investigated in respect of microstructure, creep resistance, mechanical properties and weldability. Heat treatment investigations were also necessary for optimization of the mechanical properties. Based on the results of these studies, pilot components and plates for testing welding processes were cast in order to verify the castability and weldability of larger parts and to make any necessary adjustments to chemical composition, heat treatment or welding parameters. Parallel to the ongoing creep tests within COST/THERMIE-program, the newly developed steel grades were introduced into the commercial production of large components. This involved finding

  13. Vascular plant flora in the Cytadela cemeteries in Poznań (Poland

    Directory of Open Access Journals (Sweden)

    Aneta Czarna

    2016-12-01

    Full Text Available The paper presents the spontaneous vascular flora and the flora originating from old or contemporary plantations found in all six currently existing cemeteries located in immediate vicinity on the slopes of the Cytadela Park in Poznań. These studies were carried out in the years 2011–2014. Over this period, 255 species of vascular plants were found. The most interesting species include: Chionodoxa luciliae, Rumex rugosus, Aegopodium podagraria ‘Variegatum’, Ficaria verna f. plenifolia, Galanthus nivalis f. pleniflora, Ornithogalum boucheanum, Ranunculus repens ‘Plena’, and hybrids: Dactylis ×intercedens, Gagea ×pomeranica, Ornithogalum boucheanum × O. nutans, Viola cyanea × V. odorata. A great number of spring geophytes, namely 31 species, was also found. Among species occurring spontaneously outside the graves, some were new for Poland, e.g., Chionodoxa luciliae, Ornithogalum boucheanum × O. nutans, Viola cyanea × V. odorata, while others were new for the Wielkopolska region: Rumex rugosus, Dactylis ×intercedens, Gagea ×pomeranica, as well as new for Poznań: Erigeron ramosus, Lilium bulbiferum, Muscari armeniacus, M. neglectum, Pimpinella nigra, Poa subcaerulea, and Veronica hederifolia s. s.

  14. How insects overcome two-component plant chemical defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Frederik

    2014-01-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds...... are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points......, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two...

  15. Floristic inventory of vascular plant in Nam Ha National Biodiversity Conservation Area, Lao People's Democratic Republic

    Directory of Open Access Journals (Sweden)

    Jeong Ho Park

    2018-06-01

    Full Text Available The floristic inventory of vascular plants in Nam Ha National Biodiversity Conservation Area was conducted to understand the plant diversity in the northern area of Lao People's Democratic Republic. From the joint field surveys between Korean and Laos experts conducted during 2015–2017, it was found that there are 64 families, 145 genera, and 189 species distributed in the Nam Ba National Biodiversity Conservation Area, and a total of 56 families, 117 genera, and 148 species which comprise more than 78% of the total species were identified as endemic plants to the Lao People's Democratic Republic. Considering the usage of the plants, there are 91 species of medicinal plants, 33 species of ornamental plants, eight species of edible plants, and 16 species of economic plants. In addition, it was found out that Dalbergia balansae and Cinnamomum macrocarpum are categorized as vulnerable in the International Union for Conservation of Nature (IUCN Red list, and 13 more species are categorized as the least concern.

  16. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  17. The evolution of development of vascular cambia and secondary growth

    Science.gov (United States)

    Andrew Groover; Rachel Spicer

    2010-01-01

    Secondary growth from vascular cambia results in radial, woody growth of stems. The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, woody lianas. We present examples of the extensive phylogenetic variation in secondary vascular growth and discuss current...

  18. Concept of a new method for fatigue monitoring of nuclear power plant components

    International Nuclear Information System (INIS)

    Zafosnik, M.; Cizelj, L.

    2007-01-01

    Fatigue is one of the well-understood aging mechanisms affecting mechanical components in many industrial facilities including nuclear power plants. Operational experience of nuclear power plants worldwide to date confirmed adequate design of safety related components against fatigue. In some cases however, for example when the plant life extension is envisioned, it may be very useful to monitor the remaining fatigue life of safety related components. Nuclear power plants components are classified into safety classes regarding their importance in mitigating the consequences of hypothetic accidents. Service life of components subjected to fatigue loading can be estimated with Usage Factor uk. A concept of the new method aiming both at monitoring the current state of the component and predicting its remaining lifetime in the life-extension conditions is presented. The method is based on determination of partial Usage Factor of components in which operating transients will be considered and compared to design transients. (author)

  19. Nuclear power plant component protection

    International Nuclear Information System (INIS)

    Michel, E.; Ruf, R.; Dorner, H.

    1976-01-01

    Described is a nuclear power plant installation which includes a concrete biological shield forming a pit in which a reactor pressure vessel is positioned. A steam generator on the outside of the shield is connected with the pressure vessel via coolant pipe lines which extend through the shield, the coolant circulation being provided by a coolant pump which is also on the outside of the shield. To protect these components on the outside of the shield and which are of mainly or substantially cylindrical shape, semicylindrical concrete segments are interfitted around them to form complete outer cylinders which are retained against outward separation radially from the components, by rings of high tensile steel which may be interspaced so closely that they provide, in effect, an outer steel cylinder. The invention is particularly applicable to pressurized-water coolant reactor installations

  20. Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes1[W][OPEN

    Science.gov (United States)

    Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila

    2014-01-01

    Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347

  1. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

    Science.gov (United States)

    Angel, Roey; Conrad, Ralf; Dvorsky, Miroslav; Kopecky, Martin; Kotilínek, Milan; Hiiesalu, Inga; Schweingruber, Fritz; Doležal, Jiří

    2016-08-01

    Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

  2. Taxonomic and phylogenetic diversity of vascular plants at Ma'anling volcano urban park in tropical Haikou, China: Reponses to soil properties.

    Science.gov (United States)

    Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng

    2018-01-01

    Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.

  3. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  4. Relationship between the shoot characteristics and plant resistance to vascular-streak dieback on cocoa

    Directory of Open Access Journals (Sweden)

    Agung Wahyu Soesilo

    2014-12-01

    Full Text Available Vascular-streak dieback (Oncobasidium theobromae is a serious disease on cocoa damaging the vegetative tissue especially on the branches and leaves. This research was aimed to identify the relationship between characteristics of sprouting ability and VSD resistance to confirm the response of cocoa to pruning treatment on VSD control and developing criteria for selection. Trial was carried out at Kaliwining Experimental Station of ICCRI, a VSD-endemic area by using 668 plants of hybrid populayion which were derivated from intercrossing among seven clones performing different response to VSD. The resistance was evaluated by scoring the plant damage with the scale of 0-6 on drought season in the year of 2009 and 2011. The characteristics of sprouting ability was assessed by recording the pruned trees for the variables of the number of re-growth shoot, shoot height, number of new shoot per pruned branches, shoot diameter and number of leaves per shoot. It was analyzed that the variables of the number of shoot per pruned branches, shoot diameter, shoot height and number of leaves per shoot were not significantly correlated to the score of VSD damage. Grouping of the resistance also performed similar results whereas mean of the sprouting variables were not different among group but the percentage of sprouted branches tend to be higher with the higher of the resistance (lower score. This result confirmed any mechanism of tolerance on VSD resistance by accelerating shoot rejuvenation on resistant plant. Key words : vascular-streak diaback, cocoa, resistance, characteristics of sprouting

  5. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  6. Cadmium remobilization from shoot to grain is related to pH of vascular bundle in rice.

    Science.gov (United States)

    Zhang, Bing-Lin; Ouyang, You-Nan; Xu, Jun-Ying; Liu, Ke

    2018-01-01

    The remobilization of cadmium (Cd) from shoots to grain is the key process to determine the Cd accumulation in grain. The apoplastic pH of plants is an important factor and signal in influencing on plant responding to environmental variation and inorganic elements uptake. It is proposed that pH of rice plants responds and influences on Cd remobilization from shoots to grain when rice is exposed to Cd stress. The results of hydroponic experiment showed that: pH of the rice leaf vascular bundles among 3 cultivars was almost increased, pH value of 1 cultivar was slightly increasing when rice plants were treated with Cd. The decrease degree of H + concentration in leaf vascular bundles was different among cultivars. The cultivar with higher decreasing in H + concentration, showed higher Cd transfer efficiency from shoots to grain. The H + concentration of leaf vascular bundles under normal condition was negatively correlated to cadmium accumulation in leaf. Moreover, pH change was related to Cd accumulation in shots and remobilization from shoots to grain. Uncovering the role of pH response is a key component for the understanding Cd uptake and remobilization mechanism for rice production. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    Science.gov (United States)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  8. Formation of higher plant component microbial community in closed ecological system

    Science.gov (United States)

    Tirranen, L. S.

    2001-07-01

    Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

  9. Studies on distribution pattern of {sup 14}C-assimilates in relation to vascular pattern derived from phyllotaxis of tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Y. [National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan); Seyama, N.; Hori, Y.

    1988-12-15

    The association of distribution of photosynthetic assimilates in tomato with phyllotaxis and arrangement of the vascular system was studied. To ascertain the phyllotaxis of tomato plants, which was alternate with four orthostichies with devergence of 90° (270°) and 180°, the vascular system was revealed by methylene blue (0.5%), eothine (1.0%) and fuchsin (1.0%) from leaf petioles and the distribution of photosynthetic assmilates was measured by {sup 14}C. The vascular system of tomato basically consisted of four orthostichies with two vascular bundles from each leaf. The arrangement of the vascular systems evidently affected the movement of {sup 14}C-assimilates to sinks. Such movement from each leaf was affected by the degree of connection of the vascular bundles. Since tomato has a sympodial branching system, the leaf which is apparently situated just above the inflorescence differentiated before the inflorescence. The vascular bundles of the leaf of the sympodial branch around the inflorescence developed between the inflorescence and the leaf just above it. This results in a comparatively small proportion of distribution to the inflorescence from the leaf just above it.

  10. Convergent evolution of vascular optimization in kelp (Laminariales)

    DEFF Research Database (Denmark)

    Drobnitch, Sarah Tepler; Jensen, Kaare Hartvig; Prentice, Paige

    2015-01-01

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric...... (Phaeophyceae) are one such group—as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy...... and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong...

  11. Insertional mutagenesis in the vascular wilt pathogen Verticillium dahliae

    NARCIS (Netherlands)

    Santhanam, P.

    2014-01-01

    Vascular wilt diseases caused by soil-borne pathogens are among the most

    devastating plant diseases worldwide. The ascomycete fungus Verticillium dahliae

    causes vascular wilt diseases in hundreds of dicotyledonous plant species, including

    important crops such as eggplant,

  12. Plant components and authenticity of landscape architecture monuments

    Directory of Open Access Journals (Sweden)

    Miloš Pejchal

    2011-01-01

    Full Text Available Plants specifications emphasize the fundamental meaning of the “fourth space dimension” – time by their usage: (a the space cannot be composed as a static image; (b some used plants are not the planned part of the target state; (c delayed onset of full functionality; (d substantial importance of care for achieving and maintaining of the full functionality; (e cultivation measures must be implemented in a certain time period, i.e. the “time window”; (f replacement of already obsolete generation of full-grown and long-aged trees with a new generation is often carried out in the amended site conditions and different social situation. Historical authenticity of the plant components has the following specifics: (a its basic assumption may not be the original specimens of plants, it is the preservation of the principle contained in this original substance; (b the period during which the plant is able to represent the principle of the original substance is often shorter than the length of its existence; (c gradual recovery of surviving individuals is often difficult to impossible in plants groups and stands; (d it is often impossible to meet the recommendations of Venice Charter to not to apply the hypothesis and differentiation of added parts from the original ones. There was not paid enough attention to following aspects of the authenticity of plant components: (a the importance of particular developmental stages of the element; (b the role of age structure (the same age – different age for different types of elements; (c the effect of different length of the existence of space-formative elements (different periods of their recovery to the overall composition effect; (d role of historical technologies.

  13. In-plant reliability data base for nuclear power plant components: data collection and methodology report

    International Nuclear Information System (INIS)

    Drago, J.P.; Borkowski, R.J.; Pike, D.H.; Goldberg, F.F.

    1982-07-01

    The development of a component reliability data for use in nuclear power plant probabilistic risk assessments and reliabiilty studies is presented in this report. The sources of the data are the in-plant maintenance work request records from a sample of nuclear power plants. This data base is called the In-Plant Reliability Data (IPRD) system. Features of the IPRD system are compared with other data sources such as the Licensee Event Report system, the Nuclear Plant Reliability Data system, and IEEE Standard 500. Generic descriptions of nuclear power plant systems formulated for IPRD are given

  14. Vascular Plant and Vertebrate Inventory of Gila Cliff Dwellings National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Docherty, Kathleen; Anning, Pamela

    2006-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Gila Cliff Dwellings National Monument (NM) in western New Mexico. This project was part of a larger effort to inventory plants and vertebrates in eight National Park Service units in Arizona and New Mexico. Our surveys address many of the objectives that were set forth in the monument's natural resource management plan almost 20 years ago, but until this effort, those goals were never accomplished. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Gila Cliff Dwellings NM to document presence of species within the boundaries of the monument. For all taxonomic groups that we studied, we collected 'incidental' sightings on U.S. Forest Service lands adjacent to the monument, and in a few cases we did formal surveys on those lands. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a biological monitoring program for Gila Cliff Dwellings NM and surrounding lands. We recorded 552 species at Gila Cliff Dwellings NM and the surrounding lands (Table 1). We found no non-native species of reptiles, birds, or mammals, one non-native amphibian (American bullfrog), and 33 non-native plants. Particularly on lands adjacent to the monument we found that the American bullfrog was very abundant, which is a cause for significant management concern. Species of non-native plants that are of management concern include red brome, bufflegrass, and cheatgrass. For a park unit of its size and geographic location, we found the plant and vertebrate communities to be fairly diverse; for each taxonomic group we found representative species from a wide range of taxonomic orders and/or families. The monument's geographic location, with influences from the Rocky Mountain, Chihuahuan Desert, and Madrean ecological provinces, plays an important role in determining

  15. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  16. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  17. Linear-motion tattoo machine and prefabricated needle sets for the delivery of plant viruses by vascular puncture inoculation

    Science.gov (United States)

    Vascular puncture inoculation (VPI) of plant viruses previously has been conducted either manually or by use of a commercial engraving tool and laboratory-fabricated needle arrays. In an effort to improve this technique, a linear-motion tattoo machine driving industry-standard needle arrays was tes...

  18. A comprehensive checklist of vascular epiphytes of the Atlantic Forest reveals outstanding endemic rates.

    Science.gov (United States)

    Freitas, Leandro; Salino, Alexandre; Neto, Luiz Menini; Elias Almeida, Thaís; Mortara, Sara Ribeiro; Stehmann, João Renato; Amorim, André Marcio; Guimarães, Elsie Franklin; Coelho, Marcus Nadruz; Zanin, Ana; Forzza, Rafaela Campostrini

    2016-01-01

    Knowledge of the geographic distribution of plants is essential to underpin the understanding of global biodiversity patterns. Vascular epiphytes are important components of diversity and functionality of Neotropical forests but, unlike their terrestrial counterparts, they are under-represented in large-scale diversity and biogeographic analyses. This is the case for the Atlantic Forest - one of the most diverse and threatened biomes worldwide. We provide the first comprehensive species list of Atlantic Forest vascular epiphytes; their endemism patterns and threatened species occurrence have also been analyzed. A list with 2,256 species of (hemi-)epiphytes - distributed in 240 genera and 33 families - is presented based on the updated Brazilian Flora Checklist. This represents more than 15% of the total vascular plant richness in the Atlantic Forest. Moreover, 256 species are included on the Brazilian Red List. More than 93% of the overall richness is concentrated in ten families, with 73% represented by Orchidaceae and Bromeliaceae species alone. A total of 78% of epiphytic species are endemic to the Atlantic Forest, in contrast to overall vascular plant endemism in this biome estimated at 57%. Among the non-endemics, 13% of epiphytic species also occur either in the Amazon or in the Cerrado - the other two largest biomes of Brazil - and only 8% are found in two or more Brazilian biomes. This pattern of endemism, in addition to available dated phylogenies of some genera, indicate the dominance of recent radiations of epiphytic groups in the Atlantic Forest, showing that the majority of divergences dating from the Pliocene onwards are similar to those that were recently reported for other Neotropical plants.

  19. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption.

  20. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada.

    Science.gov (United States)

    Kuzmina, Maria L; Braukmann, Thomas W A; Fazekas, Aron J; Graham, Sean W; Dewaard, Stephanie L; Rodrigues, Anuar; Bennett, Bruce A; Dickinson, Timothy A; Saarela, Jeffery M; Catling, Paul M; Newmaster, Steven G; Percy, Diana M; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R; Zakharov, Evgeny V; Hebert, Paul D N

    2017-12-01

    Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

  1. Assessment and management of ageing of major nuclear power plant components important to safety: Metal components of BWR containment systems

    International Nuclear Information System (INIS)

    2000-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed toward technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific

  2. Modulating the level of components within plants

    Science.gov (United States)

    Bobzin, Steven Craig; Apuya, Nestor; Chiang, Karen; Doukhanina, Elena; Feldmann, Kenneth; Jankowski, Boris; Margolles-Clark, Emilio; Mumenthaler, Daniel; Okamuro, Jack; Park, Joon-Hyun; Van Fleet, Jennifer E.; Zhang, Ke

    2017-09-12

    Materials and Methods for identifying lignin regulatory region-regulatory protein associations are disclosed. Materials and methods for modulating lignin accumulation are also disclosed. In addition, methods and materials for modulating (e.g., increasing or decreasing) the level of a component (e.g., protein, oil, lignin, carbon, a carotenoid, or a triterpenoid) in plants are disclosed.

  3. Automated ultrasonic inspection of nuclear plant components

    International Nuclear Information System (INIS)

    Baron, J.A.; Dolbey, M.P.

    1982-01-01

    For reasons of safety and efficiency, automated systems are used in performing ultrasonic inspection of nuclear components. An automated system designed specifically for the inspection of headers in a nuclear plant is described. In-service inspection results obtained with this system are shown to correlate with pre-service inspection results obtained by manual methods

  4. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1995-03-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  5. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  6. [Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants].

    Science.gov (United States)

    Yu, Shao-Shuai; Sun, Qi-Wu; Zhang, Xiao-Ping; Tian, Sheng-Ni; Bo, Pei-Lei

    2012-10-01

    Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing. In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.

  7. Compiled data on the vascular aquatic plant program, 1975 - 1977. [for sewage lagoon

    Science.gov (United States)

    Wolverton, B. C.; Mcdonald, R.

    1977-01-01

    The performance of a single cell, facultative sewage lagoon was significantly improved with the introduction of vascular aquatic plants. Water hyacinth (Eichhornia crassipes) was the dominant plant from April to November; duckweed (Lemna spp.) and (Spirodela spp.) flourished from December to March. This 2 ha lagoon received approximately 475 cu m/day of untreated sewage and has a variable COD sub 5 loading rate of 22-30 kg/ha/day. During the first 14 months of operation with aquatic plants, the average influent BOD sub 5 was reduced by 95% from 110 mg/l to an average of 5 mg/l in the effluent. The average influent suspended solids were reduced by 90% from 97 mg/l to 10 mg/l in the effluent. Significant reductions in nitrogen and phosphorus were effected. The monthly kjeldahl nitrogen for influent and effluent averaged 12.0 and 3.4 mg/l, respectively, a reduction of 72%. The total phosphorus was reduced on an average of 56% from 3.7 mg/l influent to 1.6 mg/l effluent.

  8. Nuclear Plant Aging Research (NPAR) program plan: Components, systems, and structures

    International Nuclear Information System (INIS)

    1987-09-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems and major components at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechanisms of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring, and maintenance as means of mitigating such effects. Specifically, the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of equipment, a systems, and major components and thereby impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring, or of evaluating residual life of equipment, systems, and major components, which will ensure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  9. 14CO2 labeling. A reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants

    International Nuclear Information System (INIS)

    Bhupinder Singh; Sumedha Ahuja; Renu Pandey; Singhal, R.K.

    2014-01-01

    Root release of organic compounds and rate of the vascular sap flow are important for understanding the nutrient and the source-sink dynamics in plants, however, their determination is procedurally cumbersome and time consuming. We report here a simple method involving 14 C labeling for rapid and reliable measurement of root exudates and vascular sap flow rate in a variable groundnut population developed through seed gamma irradiation using a cobalt source ( 60 Co). An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  10. Traditional ecological knowledge among Sami reindeer herders in northern Sweden about vascular plants grazed by reindeer

    Directory of Open Access Journals (Sweden)

    Berit Inga

    2013-03-01

    Full Text Available Traditional knowledge about how reindeer utilize forage resources was expected to be crucial to reindeer herders. Seventeen Sami reindeer herders in four reindeer herding communities in Sweden (“samebyar” in Swedish were interviewed about plants species considered to be important reindeer food plants in scientific literature. Among 40 plant species, which the informants were asked to identify and indicate whether and when they were grazed by reindeer, they identified a total of 21 plant taxa and five plant groups. They especially recognised species that were used as human food by the Sami themselves, but certain specific forage plants were also identified. Detailed knowledge of vascular plants at the species level was surprisingly general, which may indicate that knowledge of pasture resources in a detailed species level is not of vital importance. This fact is in sharp contradiction to the detailed knowledge that Sami people express for example about reindeer (as an animal or snow (as physical element. The plausible explanation is that observations of individual plant species are unnecessarily detailed information in large-scale reindeer pastoralism, because the animals graze freely under loose herding and border surveillance.

  11. Tourism and recreation listed as a threat for a wide diversity of vascular plants: a continental scale review.

    Science.gov (United States)

    Rankin, Benjamin Luke; Ballantyne, Mark; Pickering, Catherine Marina

    2015-05-01

    Tourism and recreation are diverse and popular activities. They may also contribute to the risk of extinction for some plants because of the range and severity of their impacts, including in protected areas: but which species, where and how? To evaluate the extent to which tourism and recreation may be threatening process for plants, we conducted a continental level review of listed threats to endangered vascular plants using data from Australia. Of the 659 vascular plant species listed as critically endangered or endangered by the Australian Government, tourism and recreation were listed as a threat(s) for 42%. This is more than those listed as threatened by climate change (26%) and close to the proportion listed as threatened by altered fire regimes (47%). There are plant species with tourism and recreation listed threats in all States and Territories and from all but one bioregion in Australia. Although more than 45 plant families have species with tourism and recreation listed as threats, orchids were the most common species listed as at risk from these threats (90 species). The most common types of threats listed were visitors collecting plants in protected areas (113 species), trampling by hikers and others (84 species), damage from recreational vehicles (59 species) and road infrastructure (39 species). Despite the frequency with which tourism and recreation were listed as threats in Australia, research quantifying these threats and methods to ameliorate their impacts are still limited. Although this lack of information contributes to the challenge of managing tourism and recreation, impacts from visitors will often be easier to manage within natural areas than those from larger scale threats such as altered fire regimes and climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    Science.gov (United States)

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-01-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L-1 within the Sacramento River to 39.9 mg L-1 at the outfall from an island drain (median 3.0 mg L-1), while lignin concentrations ranged from 3.0 μL-1 within the Sacramento River to 111 μL-1 at the outfall from an island drain (median 11.6 μL-1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)-1 at an island drain to 0.84 mg (100 mg OC)-1 for a wetland (median 0.36 mg (100 mg OC)-1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized

  13. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    Science.gov (United States)

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  14. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  15. Component aging and reliability trends in Loviisa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jankala, K.E.; Vaurio, J.K.

    1989-01-01

    A plant-specific reliability data collection and analysis system has been developed at the Loviisa Nuclear Power Plant to perform tests for component aging and analysis of reliability trends. The system yields both mean values an uncertainty distribution information for reliability parameters to be used in the PSA project underway and in living-PSA applications. Several different trend models are included in the reliability analysis system. Simple analytical expressions have been derived from the parameters of these models, and their variances have been obtained using the information matrix. This paper is focused on the details of the learning/aging models and the estimation of their parameters and statistical accuracies. Applications to the historical data of the Loviisa plant are presented. The results indicate both up- and down-trends in failure rates as well as individuality between nominally identical components

  16. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada1

    Science.gov (United States)

    Kuzmina, Maria L.; Braukmann, Thomas W. A.; Fazekas, Aron J.; Graham, Sean W.; Dewaard, Stephanie L.; Rodrigues, Anuar; Bennett, Bruce A.; Dickinson, Timothy A.; Saarela, Jeffery M.; Catling, Paul M.; Newmaster, Steven G.; Percy, Diana M.; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P.; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Premise of the study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Results: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Discussion: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa. PMID:29299394

  17. Periodic inspection of CANDU nuclear power plant containment components

    International Nuclear Information System (INIS)

    1989-09-01

    This Standard is one in a series intended to provide uniform requirements for CANDU nuclear power plants. It provides requirements for the periodic inspection of containment components including the containment pressure suppression systems

  18. Fifty-five new records of vascular plants, and other discoveries for the flora of Santa Catarina, southern Brazil

    DEFF Research Database (Denmark)

    Funez, Luís A.; Hassemer, Gustavo; Ferreira, João Paulo R.

    2017-01-01

    The flora of Santa Catarina is the best known in Brazil, and yet considerable knowledge gaps remain. Aiming at filling these gaps, we present here 55 new records of vascular plants for this Brazilian state, and the re-collection of four species after more than 50 years. About 50% of new records...

  19. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  20. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  1. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    Directory of Open Access Journals (Sweden)

    Angela Wang

    2016-12-01

    Full Text Available Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark, orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  2. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  3. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  4. Vascular plants promote ancient peatland carbon loss with climate warming.

    Science.gov (United States)

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.

  5. Vascular Plant and Vertebrate Inventory of Tonto National Monument

    Science.gov (United States)

    Albrecht, Eric W.; Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.

    2007-01-01

    This report summarizes the results of the first biological inventory of plants and vertebrates at Tonto National Monument (NM). From 2001 to 2003, we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tonto NM to record species presence. We focused most of our efforts along the Cave Springs riparian area, but surveyed other areas as well. We recorded 149 species in the riparian area, and 369 species overall in the monument, including 65 plant species and four bird species that were previously unrecorded for the monument. We recorded 78 plant species in the riparian area that previous studies had not indicated were present there. Several species of each taxonomic group were found only in the riparian area, suggesting that because of their concentration in this small area these populations are vulnerable to disturbance and may be of management concern. Four of the bird species that we recorded (Bell's vireo, yellow warbler, summer tanager, and Abert's towhee) have been identified as riparian 'obligate' species by other sources. Bird species that are obligated to riparian areas are targets of conservation concern due to widespread degradation of riparian areas in the desert southwest over the last century. The flora and fauna of the riparian area would benefit from continued limited public access. The dependence of the riparian area on the spring and surface flow suggests monitoring of this resource per se would benefit management of the riparian area's flora and fauna as well. The monument would benefit from incorporating monitoring protocols developed by the Sonoran Desert Network Inventory and Monitoring program rather than initiating a separate program for the riparian area. Park managers can encourage the Inventory and Monitoring program to address the unique monitoring challenges presented by small spatial areas such as this riparian area, and can request specific monitoring recommendations. We suggest that repeat

  6. Effect of the addition of mixture of plant components on the mechanical properties of wheat bread

    Science.gov (United States)

    Wójcik, Monika; Dziki, Dariusz; Biernacka, Beata; Różyło, Renata; Miś, Antoni; Hassoon, Waleed H.

    2017-10-01

    Instrumental methods of measuring the mechanical properties of bread can be used to determine changes in the properties of it during storage, as well as to determine the effect of various additives on the bread texture. The aim of this study was to investigate the effect of the mixture of plant components on the physical properties of wheat bread. In particular, the mechanical properties of the crumb and crust were studied. A sensory evaluation of the end product was also performed. The mixture of plant components included: carob fiber, milled grain red quinoa and black oat (1:2:2) - added at 0, 5, 10, 15, 20, 25 % - into wheat flour. The results showed that the increase of the addition of the proposed additive significantly increased the water absorption of flour mixtures. Moreover, the use of the mixture of plant components above 5% resulted in the increase of bread volume and decrease of crumb density. Furthermore, the addition of the mixture of plant components significantly affected the mechanical properties of bread crumb. The hardness of crumb also decreased as a result of the mixture of plant components addition. The highest cohesiveness was obtained for bread with 10% of additive and the lowest for bread with 25% of mixture of plant components. Most importantly, the enrichment of wheat flour with the mixture of plant components significantly reduced the crust failure force and crust failure work. The results of sensory evaluation showed that the addition of the mixture of plant components of up to 10% had little effect on bread quality.

  7. Canadian programs on understanding and managing aging degradation of nuclear power plant components

    International Nuclear Information System (INIS)

    Chadha, J.A.; Pachner, J.

    1989-06-01

    Maintaining adequate safety and reliability of nuclear power plants and nuclear power plant life assurance and life extension are growing in importance as nuclear plants get older. Age-related degradation of plant components is complex and not fully understood. This paper provides an overview of the Canadian approach and the main activities and their results towards understanding and managing age-related degradation of nuclear power plant components, structures and systems. A number of pro-active programs have been initiated to anticipate, detect and mitigate potential aging degradation at an early stage before any serious impact on plant safety and reliability. These programs include Operational Safety Management Program, Nuclear Plant Life Assurance Program, systematic plant condition assessment, refurbishment and upgrading, post-service examination and testing, equipment qualification, research and development, and participation in the IAEA programs on safety aspects of nuclear power plant aging and life extension. A regulatory policy on nuclear power plants is under development and will be based on the domestic as well as foreign and international studies and experience

  8. Herbarium of vascular plants collection of the university of extremadura (Spain).

    Science.gov (United States)

    Espinosa, Marta; López, Josefa

    2013-01-01

    The herbarium of University of Extremadura (UNEX Herbarium) is formed by 36451 specimens of vascular plants whose main origin is the autonomous region of Extremadura (Spain) and Portugal, although it also contains a smaller number of specimens from different places, including the rest of peninsular Spain, the Baleares Islands, the Macaronesian region (Canary Islands, Madeira and Azores), northwest of Africa (Morocco) and Brazil. 98% of the total records are georeferenced. It is an active collection in continuous growth. Its data can be accessed through the GBIF data portal at http://data.gbif.org/datasets/resource/255 and http://www.eweb.unex.es/eweb/botanica/herbario/. This paper describes the specimen associated data set of the UNEX Herbarium, with an objective to disseminate the data contained in a data set with potential users, and promote the multiple uses of the data.

  9. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.

    Science.gov (United States)

    Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre

    2015-07-01

    Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    Science.gov (United States)

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy

  11. NDT: Replication avoids unnecessary replacement of power plant components

    International Nuclear Information System (INIS)

    Neubauer, B.; Wedel, U.

    1984-01-01

    Effective fracture prevention for components operating at high temperatures can be achieved without sacrificing useful life. This is done by nondestructive-metallographic examination at crack-susceptible locations of the components. Creep microcracks approximately one micron in size can be detected. RWTUV experience shows that, in general, the components need not be replaced or repaired until these microcracks have grown to form small creep macrocracks. The long prewarning period before macrocracks form provides assurance of safe operation for the full useful life of the components tested. The economic benefit achieved is considerable. Replication techniques have been widely applied by the authors in operating power plants since 1977. This nondestructive-evaluation method involves polishing small areas of selected piping-system components, preparing replicas of the polished areas, and examining the replicas under microscope for evidence of cavities, microcracks, or macrocracks

  12. TNO experience on sodium cleaning of large plant components by vacuum distillation

    Energy Technology Data Exchange (ETDEWEB)

    Smit, C Ch [MT-TNO Dept. 50-MW Sodium Component Test Facility, Hengelo (Netherlands)

    1978-08-01

    The Intermediate Heat Exchanger and Steam generators developed within the framework of the SNR-programme are being tested in the 50 MW Test facility at Hengelo - The Netherlands. The facility was designed and built by Neratoom, and is operated by TNO, the Dutch Organisation for Applied Scientific Research. Sodium technology work, such as reported in this paper, is done in close cooperation with Neratoom and with TNO-laboratories at Apeldoorn, where several smaller sodium rigs and other facilities are available. The operation and maintenance of a large sodium test facility and sodium rigs lead to frequent cleaning of small plant components, test sections and sampling devices. The choice of method usually depends on the size of the component and the cleaning quality needed. The results are predictable and satisfactory. For large components, however, the situation is different. Although the basic cleaning methods using alcohol and moist gas are well-known, and procedures for the cleaning of small components are available, complete cleaning of tight crevices and threaded bolds cannot be guaranteed, and consequently the requalification procedure needs to include a complete disassembly and inspection of the cleaned component. For large components this policy cannot always be followed. In those cases for instance where an in-between internal inspection is required, or where only small modifications of the test object are necessary, other possibilities have to be considered. For this reason some work has been done to develop reliable vacuum distillation procedures for large components, based on the cleaning experience with small plant components. The results of these procedures applied to large plant components are reported in this paper.

  13. TNO experience on sodium cleaning of large plant components by vacuum distillation

    International Nuclear Information System (INIS)

    Smit, C.Ch.

    1978-01-01

    The Intermediate Heat Exchanger and Steam generators developed within the framework of the SNR-programme are being tested in the 50 MW Test facility at Hengelo - The Netherlands. The facility was designed and built by Neratoom, and is operated by TNO, the Dutch Organisation for Applied Scientific Research. Sodium technology work, such as reported in this paper, is done in close cooperation with Neratoom and with TNO-laboratories at Apeldoorn, where several smaller sodium rigs and other facilities are available. The operation and maintenance of a large sodium test facility and sodium rigs lead to frequent cleaning of small plant components, test sections and sampling devices. The choice of method usually depends on the size of the component and the cleaning quality needed. The results are predictable and satisfactory. For large components, however, the situation is different. Although the basic cleaning methods using alcohol and moist gas are well-known, and procedures for the cleaning of small components are available, complete cleaning of tight crevices and threaded bolds cannot be guaranteed, and consequently the requalification procedure needs to include a complete disassembly and inspection of the cleaned component. For large components this policy cannot always be followed. In those cases for instance where an in-between internal inspection is required, or where only small modifications of the test object are necessary, other possibilities have to be considered. For this reason some work has been done to develop reliable vacuum distillation procedures for large components, based on the cleaning experience with small plant components. The results of these procedures applied to large plant components are reported in this paper

  14. Evolving inspection technologies for reliable condition assessment of components and plants

    International Nuclear Information System (INIS)

    Baldev Raj

    1994-01-01

    Condition assessment of components and plants are being done regularly in many an industry. The methodologies adopted are being continuously refined. However, each of these methodologies are being applied in isolation, without realizing the synergistic advantage we derive when a global approach is taken for condition assessment. Developments in a variety of fields, that have a definite bearing on the reliability of condition assessment, are not applied (or even thought that they could be applied) together. The possible impact of evolving technologies in enhancing the efficiency of condition assessment of components and plants are discussed. (author). 11 refs

  15. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.

    Science.gov (United States)

    Nemie-Feyissa, Dugassa; Królicka, Adriana; Førland, Nina; Hansen, Margarita; Heidari, Behzad; Lillo, Cathrine

    2013-05-01

    Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg(2+) contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas.

    Science.gov (United States)

    Jiang, Yanbin; Fan, Miao; Hu, Ronggui; Zhao, Jinsong; Wu, Yupeng

    2018-05-29

    Mosses and leaves of vascular plants have been used as bioindicators of environmental contamination by heavy metals originating from various sources. This study aims to compare the metal accumulation capabilities of mosses and vascular species in urban areas and quantify the suitability of different taxa for monitoring airborne heavy metals. One pleurocarpous feather moss species, Haplocladium angustifolium , and two evergreen tree species, Cinnamomum bodinieri Osmanthus fragrans , and substrate soil were sampled in the urban area of different land use types in Wuhan City in China. The concentrations of Ag, As, Cd, Co, Cr, Cu, Mn, Mo, Ni, V, Pb, and Zn in these samples were analyzed by inductively coupled plasma mass spectrometry. The differences of heavy metals concentration in the three species showed that the moss species was considerably more capable of accumulating heavy metals than tree leaves (3 times to 51 times). The accumulated concentration of heavy metals in the moss species depended on the metal species and land use type. The enrichment factors of metals for plants and the correlations of metals in plants with corresponding metals in soil reflected that the accumulated metals in plants stemmed mostly from atmospheric deposition, rather than the substrate soil. Anthropogenic factors, such as traffic emissions from automobile transportation and manufacturing industries, were primarily responsible for the variations in metal pollutants in the atmosphere and subsequently influenced the metal accumulation in the mosses. This study elucidated that the moss species H. angustifolium is relatively more suitable than tree leaves of C. bodinieri and O. fragrans in monitoring heavy metal pollution in urban areas, and currently Wuhan is at a lower contamination level of atmospheric heavy metals than some other cities in China.

  17. Estimation of component failure rates for PSA on nuclear power plants 1982-1997

    International Nuclear Information System (INIS)

    Kirimoto, Yukihiro; Matsuzaki, Akihiro; Sasaki, Atsushi

    2001-01-01

    Probabilistic safety assessment (PSA) on nuclear power plants has been studied for many years by the Japanese industry. The PSA methodology has been improved so that PSAs for all commercial LWRs were performed and used to examine for accident management.On the other hand, most data of component failure rates in these PSAs were acquired from U.S. databases. Nuclear Information Center (NIC) of Central Research Institute of Electric Power Industry (CRIEPI) serves utilities by providing safety- , and reliability-related information on operation and maintenance of the nuclear power plants, and by evaluating the plant performance and incident trends. So, NIC started a research study on estimating the major component failure rates at the request of the utilities in 1988. As a result, we estimated the hourly-failure rates of 47 component types and the demand-failure rates of 15 component types. The set of domestic component reliability data from 1982 to 1991 for 34 LWRs has been evaluated by a group of PSA experts in Japan at the Nuclear Safety Research Association (NSRA) in 1995 and 1996, and the evaluation report was issued in March 1997. This document describes the revised component failure rate calculated by our re-estimation on 49 Japanese LWRs from 1982 to 1997. (author)

  18. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  19. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  20. Structural materials requirements for in-vessel components of fusion power plants

    International Nuclear Information System (INIS)

    Schaaf, B. van der

    2000-01-01

    The economic production of fusion energy is determined by principal choices such as using magnetic plasma confinement or generating inertial fusion energy. The first generation power plants will use deuterium and tritium mixtures as fuel, producing large amounts of highly energetic neutrons resulting in radiation damage in materials. In the far future the advanced fuels, 3 He or 11 B, determine power plant designs with less radiation damage than in the first generation. The first generation power plants design must anticipate radiation damage. Solid sacrificing armour or liquid layers could limit component replacements costs to economic levels. There is more than radiation damage resistance to determine the successful application of structural materials. High endurance against cyclic loading is a prominent requirement, both for magnetic and inertial fusion energy power plants. For high efficiency and compactness of the plant, elevated temperature behaviour should be attractive. Safety and environmental requirements demand that materials have low activation potential and little toxic effects under both normal and accident conditions. The long-term contenders for fusion power plant components near the plasma are materials in the range from innovative steels, such as reduced activation ferritic martensitic steels, to highly advanced ceramic composites based on silicon carbide, and chromium alloys. The steels follow an evolutionary path to basic plant efficiencies. The competition on the energy market in the middle of the next century might necessitate the riskier but more rewarding development of SiCSiC composites or chromium alloys

  1. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada: an annotated checklist of an Arctic flora

    Directory of Open Access Journals (Sweden)

    Jeffery M. Saarela

    2017-01-01

    Full Text Available The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa, a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata, seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium

  2. Determination of the remaining operational life of power plant components

    International Nuclear Information System (INIS)

    Eiden, H.; Vorwerk, K.; Graeff, D.; Hoff, E.

    1983-01-01

    The proceedings volume presents, in full wording, eight papers read at a TUEV Rheinland meeting in Johannesburg, South Africa, in August 1982. Subjects: Layout, quality assurance, service life analysis etc. of power plant components. (RW) [de

  3. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?

    Science.gov (United States)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.

    2015-11-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  4. Study of a simplified method of evaluating the economic maintenance importance of components in nuclear power plant system

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Takagi, Toshiyuki; Kodama, Noriko

    2014-01-01

    Safety risk importance of components in nuclear power plants has been evaluated based on the probabilistic risk assessment and used for the decisions in various plant managements. But economic risk importance of the components has not been discussed very much. Therefore, this paper discusses risk importance of the components from the viewpoint of plant economic efficiency and proposes a simplified evaluation method of the economic risk importance (or economic maintenance importance). As a result of consideration, the followings were obtained. (1) A unit cost of power generation is selected as a performance indicator and can be related to a failure rate of components in nuclear power plant which is a result of maintenance. (2) The economic maintenance importance has to major factors, i.e. repair cost at component failure and production loss associated with plant outage due to component failure. (3) The developed method enables easy understanding of economic impacts of plant shutdown or power reduction due to component failures on the plane which adopts the repair cost in vertical axis and the production loss in horizontal axis. (author)

  5. Structural health monitoring of power plant components based on a local temperature measurement concept

    International Nuclear Information System (INIS)

    Rudolph, Juergen; Bergholz, S.; Hilpert, R.; Jouan, B.; Goetz, A.

    2012-01-01

    The fatigue assessment of power plant components based on fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. It is comparable to structural health monitoring approaches in other engineering fields. The methods of fatigue evaluation of nuclear power plant components based on realistic thermal load data measured on the plant are addressed. In this context the Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) of nuclear power plant components are parts of the three staged approach to lifetime assessment and lifetime management of the AREVA Fatigue Concept (AFC). The three stages Simplified Fatigue Estimation (SFE), Fast Fatigue Evaluation (FFE) and Detailed Fatigue Calculation (DFC) are characterized by increasing calculation effort and decreasing degree of conservatism. Their application is case dependent. The quality of the fatigue lifetime assessment essentially depends on one hand on the fatigue model assumptions and on the other hand on the load data as the basic input. In the case of nuclear power plant components thermal transient loading is most fatigue relevant. Usual global fatigue monitoring approaches rely on measured data from plant instrumentation. As an extension, the application of a local fatigue monitoring strategy (to be described in detail within the scope of this paper) paves the way of delivering continuously (nowadays at a frequency of 1 Hz) realistic load data at the fatigue relevant locations. Methods of qualified processing of these data are discussed in detail. Particularly, the processing of arbitrary operational load sequences and the derivation of representative model transients is discussed. This approach related to realistic load-time histories is principally applicable for all fatigue relevant components and ensures a realistic fatigue evaluation. (orig.)

  6. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  7. [Herbalism, botany and components analysis study on original plants of frankincense].

    Science.gov (United States)

    Sun, Lei; Xu, Jimin; Jin, Hongyu; Tian, Jingai; Lin, Ruichao

    2011-01-01

    In order to clarify original plants of traditional Chinese medicine (TCM) frankincense, a GC method for determination essential oils and a HPLC method for determination boswellic acids were carried out together with analysis of herbalism, botany, components and pharmacology papers of frankincense. It was concluded that original plants of TCM frankincense include at least Boswellia sacra, B. papyrifera and B. serrata.

  8. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  9. Disentangling the influence of environmental and anthropogenic factors on the distribution of endemic vascular plants in Sardinia.

    Science.gov (United States)

    Fois, Mauro; Fenu, Giuseppe; Cañadas, Eva Maria; Bacchetta, Gianluigi

    2017-01-01

    Due to the impelling urgency of plant conservation and the increasing availability of high resolution spatially interpolated (e.g. climate variables) and categorical data (e.g. land cover and vegetation type), many recent studies have examined relationships among plant species distributions and a diversified set of explanatory factors; nevertheless, global and regional patterns of endemic plant richness remain in many cases unexplained. One such pattern is the 294 endemic vascular plant taxa recorded on a 1 km resolution grid on the environmentally heterogeneous island of Sardinia. Sixteen predictors, including topographic, geological, climatic and anthropogenic factors, were used to model local (number of taxa inside each 1 km grid cell) Endemic Vascular Plant Richness (EVPR). Generalized Linear Models were used to evaluate how each factor affected the distribution of local EVPR. Significant relationships with local EVPR and topographic, geological, climatic and anthropogenic factors were found. In particular, elevation explained the larger fraction of variation in endemic richness but other environmental factors (e.g. precipitation seasonality and slope) and human-related factors (e.g. the Human Influence Index (HII) and the proportion of anthropogenic land uses) were, respectively, positively and negatively correlated with local EVPR. Regional EVPR (number of endemic taxa inside each 100 m elevation interval) was also measured to compare local and regional EVPR patterns along the elevation gradient. In contrast to local, regional EVPR tended to decrease with altitude partly due to the decreasing area covered along altitude. The contrasting results between local and regional patterns suggest that local richness increases as a result of increased interspecific aggregation along altitude, whereas regional richness may depend on the interaction between area and altitude. This suggests that the shape and magnitude of the species-area relationship might vary with

  10. An approach to safety problems relating to ageing of nuclear power plant components

    International Nuclear Information System (INIS)

    Conte, M.; Deletre, G.; Henry, J.Y.; Le Meur, M.

    1989-10-01

    The safety of nuclear power plants, in France, is discussed. The attention is focused on the ageing phenomena, as a potential cause of the degradation of the systems functional capabilities. The allowance for ageing in design and its importance on safety, are analyzed. The understanding of phenomena relating to ageing and the components surveillance, are considered. As the effective ageing on the components of nuclear power plants is not fully understood, technical improvements and more accurate analysis are required

  11. Does cross-taxon analysis show similarity in diversity patterns between vascular plants and bryophytes? Some answers from a literature review.

    Science.gov (United States)

    Bagella, Simonetta

    2014-04-01

    The objective of this study was to clarify the taxon surrogacy hypothesis relative to vascular plants and bryophytes. A literature review was conducted to obtain papers that met the following criteria: (i) they examined species richness values; or (ii) they evaluated the species richness within the same study sites, or under the same spatial variation conditions. Twenty-seven papers were accessed. The richness of the two taxa, compared in 32 cases, positively co-varied in about half of the comparisons. The response to the spatial variation in environmental or human-induced factors of the two taxa in terms of species richness was rather variable. Based on current knowledge, the main documented findings regard forest habitats and nival gradients. In forest habitats, co-variation in species richness is likely when similar environments are analysed and seems to be strengthened for boreal forests. Along the nival gradient, a different response in terms of richness of the two taxa suggests that vascular plants cannot be considered good surrogates for bryophytes. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Development of a web-based fatigue life evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Seo, Hyong Won; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin; Choi, Sung Nam; Jang, Ki Sang; Hong, Sung Yull

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant

  13. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    Science.gov (United States)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  14. Role of endophytic fungi in the migration of the radionuclides in the vascular plants of the Ukrainian Polesye sphagniopratum

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Sokolova, E.V.; Kurchenko, I.N.; Orlov, A.A.

    2002-01-01

    It is known that the specific activity of 137 Cs in vegetative phytomass of cranberry and sphagnum in oligotrophic conditions of Ukrainian Polessye forest sphagniopratum amounts 5000 - 10000 Bq/kg of air-dry weight. Roots of cranberry in natural conditions never run up to peat and mainly are located in top layer of the sphagnum top which is sodden by a water, but specific activity of the radionuclide in swamp water is low (2 - 10 Bq/l). It was supposed that mycorrhizal and endophytic micromycetes take an essential part in transferring the mineral substances and 137 Cs from sphagnum mosses to ericoid plants under oligotrophic swamp conditions. Endophytic fungi from vascular plants were not investigated in Ukraine. The article is devoted to the estimation of distribution of endophytic fungi in plants which are dominants of the plant cover of sphagniopratum. 47 species of micromycetes which belong to 27 genera were identified. For moss and ericoid plants five mutual species of endophytic fungi was detected

  15. Countermeasure technologies against materials deterioration of nuclear power plant components

    International Nuclear Information System (INIS)

    2004-09-01

    This report was tentative safety standard on countermeasure technologies against materials deterioration of nuclear power plant components issued in 2004 on the base of the testing data obtained until March 2004, which was to be applied for technical evaluation for lifetime management of aged plants and preventive maintenance or repair of neutron irradiated components such as core shrouds and jet pumps. In order to prevent stress corrosion cracks (SCCs) of austenitic stainless steel welds of reactor components, thermal surface modification using laser beams was used on neutron irradiated materials with laser cladding or surface melting process methods by limiting heat input according to amount of accumulated helium so as to prevent crack initiation caused by helium bubble growth and coalescence. Laser cladding method of laser welding using molten sleeve set inside pipe surface to prevent SCCs of nickel-chromium-iron alloy welds, alloy 690 cladding method using tungsten inert gas (TIG) welding to prevent SCCs of nickel-chromium-iron alloy welds for dissimilar joints of pipes, and laser surface solid solution heat treatment method of laser irradiation on surfaces to prevent SCCs of austenitic stainless steel welds were also included as repair technologies. (T. Tanaka)

  16. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  17. Maintenance service for major component of PWR plant. Replacement of pressurizer safe end weld

    International Nuclear Information System (INIS)

    Miyoshi, Yoshiyuki; Kobayashi, Yuki; Yamamoto, Kazuhide; Ueda, Takeshi; Suda, Naoki; Shintani, Takashi

    2017-01-01

    In October 2016, MHI completed the replacement of safe end weld of pressurizer (Pz) of Ringhals unit 3, which was the first maintenance work for main component of pressurized water reactor (PWR) plant in Europe. For higher reliability and longer lifetime of PWR plant, MHI has conducted many kinds of maintenance works of main components of PWR plants in Japan against stress corrosion cracking due to aging degradation. Technical process for replacement of Pz safe end weld were established by MHI. MHI has experienced the work for 21 PWR units in Japan. That of Ringhals unit 3 was planned and conducted based on the experiences. In this work, Alloy 600 used for welds of nozzles of Pz was replaced with Alloy 690. Alloy 690 is more corrosive-resistant than Alloy 600. Specially designed equipment and technical process were developed and established by MHI to replace safe end weld of Pz and applied for the Ringhals unit 3 as a first application in Europe. The application had been performed in success and achieved the planned replacement work duration and total radiation dose by using sophisticated machining and welding equipment designed to meet the requirements to be small, lightweight and remote-controlled and operating by well skilled MHI personnel experienced in maintenance activities for major components of PWR plant in Japan. The success shows that the experience, activities and technology developed in Japan for main components of PWR plant shall be applicable to contribute reliable operations of nuclear power plants in Europe and other countries. (author)

  18. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  19. Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot.

    Science.gov (United States)

    Molina-Venegas, Rafael; Aparicio, Abelardo; Pina, Francisco José; Valdés, Benito; Arroyo, Juan

    2013-10-01

    We determined the environmental correlates of vascular plant biodiversity in the Baetic-Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic-Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi-partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic-Rifan hotspot. In the Baetic range, elevation was the most significant driver of nonendemic species beta diversity, while lithology and elevation were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities - especially in their western ranges - due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic-Rifan hotspot. Determinants

  20. Assessment and management of ageing of major nuclear power plant components important to safety: CANDU reactor assemblies

    International Nuclear Information System (INIS)

    2001-02-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance, design or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring, and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs) including the Soviet designed water moderated and water cooled energy reactors (WWERs), are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which

  1. Life Cycle Management Managing the Aging of Critical Nuclear Plant Components

    International Nuclear Information System (INIS)

    Meyer, Theodore A.; Elder, G. Gary; Llovet, Ricardo

    2002-01-01

    Life Cycle Management is a structured process to manage equipment aging and long-term equipment reliability for nuclear plant Systems, Structures and Components (SSCs). The process enables the identification of effective repair, replace, inspect, test and maintenance activities and the optimal timing of the activities to maximize the economic value to the nuclear plant. This paper will provide an overview of the process and some of the tools that can be used to implement the process for the SSCs deemed critical to plant safety and performance objectives. As nuclear plants strive to reduce costs, extend life and maximize revenue, the LCM process and the supporting tools summarized in this paper can enable development of a long term, cost efficient plan to manage the aging of the plant SSCs. (authors)

  2. Post-translational regulation of miRNA pathway components, AGO1 and HYL1, in plants

    DEFF Research Database (Denmark)

    Cho, Seok Keun; Ryu, Moon Young; Shah, Pratik

    2016-01-01

    , the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date...... findings on the PTMs of microprocessor and RNA silencing components in plants....

  3. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  4. Nuclear power plant systems, structures and components and their safety classification

    International Nuclear Information System (INIS)

    2000-01-01

    The assurance of a nuclear power plant's safety is based on the reliable functioning of the plant as well as on its appropriate maintenance and operation. To ensure the reliability of operation, special attention shall be paid to the design, manufacturing, commissioning and operation of the plant and its components. To control these functions the nuclear power plant is divided into structural and functional entities, i.e. systems. A systems safety class is determined by its safety significance. Safety class specifies the procedures to be employed in plant design, construction, monitoring and operation. The classification document contains all documentation related to the classification of the nuclear power plant. The principles of safety classification and the procedures pertaining to the classification document are presented in this guide. In the Appendix of the guide, examples of systems most typical of each safety class are given to clarify the safety classification principles

  5. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    Science.gov (United States)

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly

  6. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Drost, Charles A.; Halvorson, William Lee

    2006-01-01

    Executive Summary We summarize past inventory efforts for vascular plants and vertebrates at Montezuma Castle National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 784 species recorded at Montezuma Castle NM, of which 85 (11%) are non-native. In each taxon-specific chapter we highlight areas of resources that contributed to species richness or unique species for the monument. Of particular importance are Montezuma Well and Beaver and Wet Beaver creeks and the surrounding riparian vegetation, which are responsible for the monument having one of the highest numbers of bird species in the Sonoran Desert Network of park units. Beaver Creek is also home to populations of federally-listed fish species of concern. Other important resources include the cliffs along the creeks and around Montezuma Well (for cliff and cave roosting bats). Based on the review of past studies, we believe the inventory for most taxa is nearly complete, though some rare or elusive species will be added with additional survey effort. We recommend additional inventory, monitoring and research studies.

  7. Conceptual benefits of passive nuclear power plants and their effect on component design

    International Nuclear Information System (INIS)

    DeVine, J.C. Jr.

    1996-01-01

    Today, nearly ten years after the advanced light water reactor (ALWR) Program was conceived by US utility leaders, and a decade and a half since a new nuclear power plant was ordered in the US, the ALWR passive plant is coming into its own. This design concept, a midsized simplified light water reactor, features extremely reliable passive systems for accident prevention and mitigation and combines proven experience with state-of-the-art engineering and human factors. It is now emerging as the front runner to become the next generation reactor in the US and perhaps around the world. Although simple and straightforward in concept, the passive plant is in many respects a significant departure from previous trends in reactor engineering. Successful implementation of this concept presents numerous challenges to the designers of passive plant systems and components. This paper provides a brief history of the ALWR program, it outlines the ALWR passive plant design objectives and principles, and it summarizes with examples their implications on component design. (orig.)

  8. Regression to fuzziness method for estimation of remaining useful life in power plant components

    Science.gov (United States)

    Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.

    2014-10-01

    Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.

  9. Assessment and Management of ageing of major nuclear power plant components important to safety: PWR pressure vessels

    International Nuclear Information System (INIS)

    1999-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g., caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), including water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs; and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which involves the integration of

  10. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  11. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  12. Metabolic patterns of 14C incorporation by selected vascular plants following field incubations with acetate-2-14C in two plant successional stages in Glacier Bay, Alaska

    International Nuclear Information System (INIS)

    Wu, Pei-Hsing Lin

    1975-01-01

    Metabolic patterns of some vascular plants (Dryas sp., Vaccinium sp., Salix sp., Alnus sp., Epilobium sp.), occurring in successional habitats, following acetate-2- 14 C incubations in the field were demonstrated for the first time. Relative radioactivity within the alcoholic soluble fraction of each species reflects its distribution in successional communities. A high level of 14 C-sugars was present in the plants of the pioneer community; on the other hand a high level of 14 C-organic acids was present in the plants of the forest community. Three patterns, based on the relative activities of the sugar- and organic acid-pools were noted which correspond to the range and the frequency of occurrence of each species in the successional stages. Only two types of 14 C-amino acid levels were noted corresponding to the range of distribution. Plants having less than 10% relative radioactivity in amino acid-pools had a limited range of distribution and reside in only one habitat; plants having more than 10% radioactivity showed wider ranges of distribution occurring in at least two habitats. (auth.)

  13. Application of the Red List Index for conservation assessment of Spanish vascular plants.

    Science.gov (United States)

    Saiz, Juan Carlos Moreno; Lozano, Felipe Domínguez; Gómez, Manuel Marrero; Baudet, Ángel Bañares

    2015-06-01

    The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain. We assigned retrospective IUCN categories of threat to 98 species included in the Spanish Red List of 2010 but absent in the Spanish Red List of 2000. In addition, we tested the effect of different random and taxonomic and spatial Spanish samples on the overall RLI value. From 2000 to 2010, the IUCN categories of 768 species changed (10% of Spanish flora), mainly due to improved knowledge (63%), modifications in IUCN criteria (14%), and changes in threat status (12%). All measured national and subnational RLI values decreased during this period, indicating a general decline in the conservation status of the Spanish vascular flora. The Canarian RLI value (0.84) was the lowest, although the fastest deterioration in conservation status occurred on peninsular Spain (from 0.93 in 2000 to 0.92 in 2010). The RLI values based on subsamples of the Spanish Red List were not representative of RLI values for the entire country, which would discourage the use of small areas or small taxonomic samples to assess general trends in the endangerment of national biotas. The role of the RLI in monitoring of changes in biodiversity at the global and regional scales needs further reassessment because additional areas and taxa are necessary to determine whether the index is sufficiently sensitive for use in assessing temporal changes in species' risk of extinction. © 2015 Society for Conservation Biology.

  14. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    2005-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues

  15. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  16. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    Science.gov (United States)

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  17. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals

    International Nuclear Information System (INIS)

    1999-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant

  18. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges.

    Directory of Open Access Journals (Sweden)

    Jonathan Lenoir

    Full Text Available BACKGROUND: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? METHODOLOGY/PRINCIPAL FINDINGS: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region to quantify four diversity components: (i total number of species occurring in a region (total γ-diversity, (ii number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity, (iii pair-wise species compositional turnover between plots (plot-to-plot β-diversity and (iv number of species present per plot (plot α-diversity. We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. CONCLUSIONS/SIGNIFICANCE: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity

  19. In-plant reliability data base for nuclear plant components: a feasibility study on human error information

    International Nuclear Information System (INIS)

    Borkowski, R.J.; Fragola, J.R.; Schurman, D.L.; Johnson, J.W.

    1984-03-01

    This report documents the procedure and final results of a feasibility study which examined the usefulness of nuclear plant maintenance work requests in the IPRDS as tools for understanding human error and its influence on component failure and repair. Developed in this study were (1) a set of criteria for judging the quality of a plant maintenance record set for studying human error; (2) a scheme for identifying human errors in the maintenance records; and (3) two taxonomies (engineering-based and psychology-based) for categorizing and coding human error-related events

  20. Application of PHADEC method for the decontamination of radioactive steam piping components of Caorso plant

    International Nuclear Information System (INIS)

    Lo Frano, R.; Aquaro, D.; Fontani, E.; Pilo, F.

    2014-01-01

    Highlights: • Application of PHADEC chemical off-line methodology. • Decontamination of radioactive steam piping components of Caorso turbine building. • Experimental characterization of metallic components, e.g., by SEM analysis. • Measure of the efficiency of treatment by means of the reduction of activity and vs. the treatment time. • Minimization of secondary waste produced during decontamination activity of Caorso BWR plant. - Abstract: The dismantling of nuclear plants is a complex activity that originates often a large quantity of radioactive contaminated residue. In this paper the attention was focused on the PHADEC (PHosphoric Acid DEContamination) plant adopted for the clearance of Caorso NPP (in Italy) metallic systems and components contaminated by Co60 (produced by the neutron capture in the iron materials), like the main steam lines, moisture separator of the turbine buildings, etc. The PHADEC plant consists in a chemical off line treatment: the crud, deposited along the steam piping during life plant as an example, is removed by means of acid attacks in ponds coupled to a high pressure water washing. Due to the fact that the removed contaminated layers, essentially, iron oxides of various chemical composition, depend on components geometry, type of contamination and time of treatment in the PHADEC plant, it becomes of meaningful importance to suggest a procedure capable to improve the control of the PHADEC process parameters. This study aimed thus at the prediction and optimization of the mentioned treatment time in order to improve the efficiency of the plant itself and to achieve, in turn, the minimization of produced wastes. To the purpose an experimental campaign was carried out by analysing several samples, i.e., taken along the main steam piping line. Smear tests as well as metallographic analyses were carried out in order to determine respectively the radioactivity distribution and the crud composition on the inner surface of the

  1. Project of mechanical components for nuclear power plants

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do; Farias Brito David, D. de

    1984-01-01

    The equipment foreseen to be part of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design of the components. The design and calculation's concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities are described. (Author) [pt

  2. Potential Responses of Vascular Plants from the Pristine "Lost World" of the Neotropical Guayana Highlands to Global Warming: Review and New Perspectives.

    Science.gov (United States)

    Rull, Valentí; Vegas-Vilarrúbia, Teresa

    2017-01-01

    The neotropical Guayana Highlands (GH) are one of the few remaining pristine environments on Earth, and they host amazing biodiversity with a high degree endemism, especially among vascular plants. Despite the lack of direct human disturbance, GH plants and their communities are threatened with extinction from habitat loss due to global warming (GW). Geographic information systems simulations involving the entire known vascular GH flora (>2430 species) predict potential GW-driven extinctions on the order of 80% by the end of this century, including nearly half of the endemic species. These estimates and the assessment of an environmental impact value for each species led to the hierarchization of plants by their risk of habitat loss and the definition of priority conservation categories. However, the predictions assume that all species will respond to GW by migrating upward and at equal rates, which is unlikely, so current estimates should be considered preliminary and incomplete (although they represent the best that can be done with the existing information). Other potential environmental forcings (i.e., precipitation shifts, an increase in the atmospheric CO 2 concentration) and idiosyncratic plant responses (i.e., resistance, phenotypic acclimation, rapid evolution) should also be considered, so detailed eco-physiological studies of the more threatened species are urgently needed. The main obstacles to developing such studies are the remoteness and inaccessibility of the GH and, especially, the difficulty in obtaining official permits for fieldwork.

  3. Some current engineering topics in nuclear power plant components

    International Nuclear Information System (INIS)

    Amana, M.

    1977-01-01

    An analysis based on the principle of fracture mechanics, is presented for several engineering problems occuring in nuclear power plant components. The specific problems covered are: underclad cracking; stress corrosion cracking; cracks in HAZ of nozzle weld; feedwater nozzle corner crack; shift of transition temperature due to neutron irradiation; LWR local-ECC thermal shock experiment; and design and material selection of RPV in terms of fracture mechanics. (B.R.H.)

  4. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    Energy Technology Data Exchange (ETDEWEB)

    Pope, C. L. [Idaho State Univ., Pocatello, ID (United States); Savage, B. [Idaho State Univ., Pocatello, ID (United States); Johnson, B. [Idaho State Univ., Pocatello, ID (United States); Muchmore, C. [Idaho State Univ., Pocatello, ID (United States); Nichols, L. [Idaho State Univ., Pocatello, ID (United States); Roberts, G. [Idaho State Univ., Pocatello, ID (United States); Ryan, E. [Idaho State Univ., Pocatello, ID (United States); Suresh, S. [Idaho State Univ., Pocatello, ID (United States); Tahhan, A. [Idaho State Univ., Pocatello, ID (United States); Tuladhar, R. [Idaho State Univ., Pocatello, ID (United States); Wells, A. [Idaho State Univ., Pocatello, ID (United States); Smith, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-24

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  5. General model for Pc-based simulation of PWR and BWR plant components

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Abomustafa, A M [Faculty of enginnering, alfateh univerity Tripoli, (Libyan Arab Jamahiriya)

    1995-10-01

    In this paper, we present a basic mathematical model derived from physical principles to suit the simulation of PWR-components such as pressurizer, intact steam generator, ruptured steam generator, and the reactor component of a BWR-plant. In our development, we produced an NMMS-package for nuclear modular modelling simulation. Such package is installed on a personal computer and it is designed to be user friendly through color graphics windows interfacing. The package works under three environments, namely, pre-processor, simulation, and post-processor. Our analysis of results using cross graphing technique for steam generator tube rupture (SGTR) accident, yielded a new proposal for on-line monitoring of control strategy of SGTR-accident for nuclear or conventional power plant. 4 figs.

  6. Vascular Plant and Vertebrate Inventory of Saguaro National Park, Tucson Mountain District

    Science.gov (United States)

    Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.

    2007-01-01

    This report summarizes the results of the first comprehensive inventory of plants and vertebrates at the Tucson Mountain District (TMD) of Saguaro National Park, Arizona. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at the district to document the presence of species within its boundaries. Park staff also carried out extensive infrared-triggered camera work for medium and large mammals from 2002-2005 and results from that effort are reported here. Our spatial sampling design for all taxa employed a combination of random and nonrandom survey sites. Survey effort was greatest for medium and large mammals and herpetofauna. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the district. We also provide an overview of previous survey efforts in the district. We use data from our inventory and other surveys to compile species lists and to assess inventory completeness. The survey effort for herpetofauna, birds, and medium and large mammals was the most comprehensive ever undertaken in the district. We recorded a total of 320 plant and vertebrate species, including 21 species not previously found in the district (Table 1). Based on a review of our inventory and past research at the district, there have been a total of 723 species of plants and vertebrates found there. We believe inventories for most taxonomic groups are nearly complete. Based on our surveys, we believe the native plant and vertebrate community compositions of the district are relatively intact, though some species loss has occurred and threats are increasing, particularly to herpetofauna and larger mammals. Of particular note is the relatively small number of non-native species and their low abundance in the district, which is in contrast to many nearby natural areas. Rapidly expanding development on the west, north, and east sides of

  7. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J. [SAFE Research Center, Sungkyunkwan Univ., Suwon (Korea); Choi, S.N.; Jang, K.S.; Hong, S.Y. [Korea Electronic Power Research Inst., Daejeon (Korea)

    2004-07-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  8. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J.; Choi, S.N.; Jang, K.S.; Hong, S.Y.

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  9. Mosses in Ohio wetlands respond to indices of disturbance and vascular plant integrity

    Science.gov (United States)

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Viau, Nick

    2016-01-01

    We examined the relationships between an index of wetland habitat quality and disturbance (ORAM score) and an index of vascular plant integrity (VIBI-FQ score) with moss species richness and a moss quality assessment index (MQAI) in 45 wetlands in three vegetation types in Ohio, USA. Species richness of mosses and MQAI were positively associated with ORAM and VIBI-FQ scores. VIBI-FQ score was a better predictor of both moss species richness and MQAI than was either ORAM score or vegetation type. This result was consistent with the strict microhabitat requirements for many moss species, which may be better assessed by VIBI-FQ than ORAM. Probability curves as a function of VIBI-FQ score were then generated for presence of groups of moss species having the same degree of fidelity to substrate and plant communities relative to other species in the moss flora (coefficients of conservatism, CCs). Species having an intermediate- or high degree of fidelity to substrate and plant communities (i.e., species with CC ≥ 5) had a 50% probability of presence (P50) and 90% probability of presence (P90) in wetlands with intermediate- and high VIBI-FQ scores, respectively. Although moss species richness, probability of presence of species based on CC, and MQAI may reflect wetland habitat quality, the 95% confidence intervals around P50 and P90 values may be too wide for regulatory use. Moss species richness, MQAI, and presence of groups of mosses may be more useful for evaluating moss habitat quality in wetlands than a set of “indicator species.”

  10. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  11. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Maile, K; Jovanovic, A [MPA Stuttgart (Germany)

    1999-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  12. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  13. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters.

    Science.gov (United States)

    Sáez, Patricia L; Bravo, León A; Cavieres, Lohengrin A; Vallejos, Valentina; Sanhueza, Carolina; Font-Carrascosa, Marcel; Gil-Pelegrín, Eustaquio; Javier Peguero-Pina, José; Galmés, Jeroni

    2017-05-17

    Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Northern peatland carbon biogeochemistry. The influence of vascular plants and edaphic factors on carbon dioxide and methane exchange

    International Nuclear Information System (INIS)

    Oequist, M.

    2001-01-01

    The findings reported in this thesis and in the accompanying papers are based on both laboratory and field investigations of carbon transformation dynamics on the process scale and at the resolution of individual peatland plant communities. The data from one of the studies also is extrapolated in an attempt to identify environmental controls on regional scales in order to predict the response of northern peatlands to climate warming. The laboratory experiments focus on how climate variations, inducing fluctuations in groundwater level and also soil freeze-thaw cycles, influences organic matter mineralisation to carbon dioxide and methane. The field studies investigate year-to-year variations and interdecadal differences in carbon gas exchange at a subarctic peatland, and also how the physiological activities of vascular plants control methane emission rates. The main conclusions presented include: Soil freeze-thaw events may be very important for the annual carbon balance in northern peatlands, because they have the potential to increase mineralisation rates and alter biogeochemical degradation pathways. Vascular plants exert a strong influence on methane flux dynamics during the growing season, both by mediating methane transport and through substrate-based interactions with the soil microbial community. However, there are important species-related factors that govern the nature and extent of this influence. Caution has to be taken when extrapolating field data to estimate regional carbon exchange because the relevance of the specific environmental parameters that control this exchange varies depending on resolution. On broad spatial and temporal scales the best predictor of peatland methane emissions is mean soil temperature, but also microbial substrate availability (expressed as the organic acid concentration in peat water) is of importance. This temperature sensitivity represents a strong potential feedback mechanism on climate change

  15. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators. 2011 Update

    International Nuclear Information System (INIS)

    2011-11-01

    At present there are over four hundred forty operational nuclear power plants (NPPs) in IAEA Member States. Ageing degradation of the systems, structures of components during their operational life must be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This IAEA-TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuteriumuranium (CANDU) reactor, boiling water reactor (BWR), pressurized water reactor (PWR), and water moderated, water cooled energy reactor (WWER) plants are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life cycle management of the plant components, which involves the integration of ageing management and economic planning. The target audience of the reports consists of technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The component addressed in the present publication is the steam

  16. Control of Vascular Streak Dieback Disease of Cocoa with Flutriafol Fungicides

    Directory of Open Access Journals (Sweden)

    Febrilia Nur'aini

    2014-12-01

    Full Text Available Vascular streak dieback caused by the fungus Oncobasidium theobromae is one of the important diseases in cocoa crop in Indonesia. One approach to control the disease is by using fungicides. The aim of this research was to determine the effect of class triazole fungicides to the intensity of the vascular streak dieback disease on cocoa seedling phase, immature and mature cocoa. Experiments were conducted in Kotta Blater, PTPN XII and Kaliwining, Indonesian  Coffee and Cocoa Research Institute. Flutriafol 250 g/l with a concentration 0,05%, 0,1% and 0,15% foliar sprayed on cocoa seedlings, immature and mature cocoa. Active compound combination of Azoxystrobin and Difenoconazole with 0,1% concentration used as a comparation fungicides. The result showed that Flutriafol with 0,05%, 0,1% and 0,15% concentration and Azoxystrobin & Difenoconazol with 0,1% concentration could suppress the vascular streak dieback disease on seedlings. On immature plants, the application of Flutriafol was not effectively suppress the vascular streak dieback disease whereas the fungicide comparison could suppress with the efficacy level of 46.22%. On mature plants,both of fungicides could not suppress the vascular streak dieback disease. Key words: Fungicide, cocoa, vascular streak dieback, triazole, flutriafol, azoxystrobin+difenoconazol

  17. Critical components of odors in evaluating the performance of food waste composting plants

    International Nuclear Information System (INIS)

    Mao, I-F.; Tsai, C.-J.; Shen, S.-H.; Lin, T.-F.; Chen, W.-K.; Chen, M.-L.

    2006-01-01

    The current Taiwan government policy toward food waste management encourages composting for resource recovery. This study used olfactometry, gas chromatography-mass spectrometry (GC-MS) and gas detector tubes to evaluate the ambient air at three of the largest food waste composting plants in Taiwan. Ambient air inside the plants, at exhaust outlets and plant boundaries was examined to determine the comprehensive odor performance, critical components, and odor elimination efficiencies of various odor control engineering. Analytical results identified 29 compounds, including ammonia, amines, acetic acid, and multiple volatile organic compounds (VOCs) (hydrocarbons, ketones, esters, terpenes and S-compounds) in the odor from food waste composting plants. Concentrations of six components - ammonia, amines, dimethyl sulfide, acetic acid, ethyl benzene and p-Cymene - exceeded human olfactory thresholds. Ammonia, amines, dimethyl sulfide and acetic acid accounted for most odors compared to numerous VOCs. The results also show that the biotrickling filter was better at eliminating the concentrations of odor, NH 3 , amines, S-compounds and VOCs than the chemical scrubber and biofilters. All levels measured by olfactometry at the boundaries of food waste composting plants (range, 74-115 Odor Concentration (OC)) exceeded Taiwan's EPA standard of 50 OC. This study indicated that the malodor problem continued to be a significant problem for food waste recovery

  18. Critical components of odors in evaluating the performance of food waste composting plants

    Energy Technology Data Exchange (ETDEWEB)

    Mao, I-F. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China)]. E-mail: ifmao@ym.edu.tw; Tsai, C.-J. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China); Shen, S.-H. [Department of Environment Management, Jin Wen Institute of Technology, No. 99, An-Chung Rd., Hsin-Tien City, Taipei, Taiwan (China); Lin, T.-F. [Institute of Environmental Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Rd., Tainan, Taiwan (China); Chen, W.-K. [Department of Environment Management, Jin Wen Institute of Technology, No. 99, An-Chung Rd., Hsin-Tien City, Taipei, Taiwan (China); Chen, M.-L. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China)]. E-mail: mlchen@ym.edu.tw

    2006-11-01

    The current Taiwan government policy toward food waste management encourages composting for resource recovery. This study used olfactometry, gas chromatography-mass spectrometry (GC-MS) and gas detector tubes to evaluate the ambient air at three of the largest food waste composting plants in Taiwan. Ambient air inside the plants, at exhaust outlets and plant boundaries was examined to determine the comprehensive odor performance, critical components, and odor elimination efficiencies of various odor control engineering. Analytical results identified 29 compounds, including ammonia, amines, acetic acid, and multiple volatile organic compounds (VOCs) (hydrocarbons, ketones, esters, terpenes and S-compounds) in the odor from food waste composting plants. Concentrations of six components - ammonia, amines, dimethyl sulfide, acetic acid, ethyl benzene and p-Cymene - exceeded human olfactory thresholds. Ammonia, amines, dimethyl sulfide and acetic acid accounted for most odors compared to numerous VOCs. The results also show that the biotrickling filter was better at eliminating the concentrations of odor, NH{sub 3}, amines, S-compounds and VOCs than the chemical scrubber and biofilters. All levels measured by olfactometry at the boundaries of food waste composting plants (range, 74-115 Odor Concentration (OC)) exceeded Taiwan's EPA standard of 50 OC. This study indicated that the malodor problem continued to be a significant problem for food waste recovery.

  19. Risk-based assessment of the allowable outage times for the unit 1 leningrad nuclear power plant ECCS components

    International Nuclear Information System (INIS)

    Koukhar, Sergey; Vinnikov, Bronislav

    2009-01-01

    Present paper describes a method for risk - informed assessment of the Allowable Outage Times (AOTs). The AOT is the time, when components of a safety system allowed to be out of service during power operation or during shutdown operation off a plant. If the components are not restored during the time, the plant in operation must be shut down or the plant in a given shutdown mode has to go to safer shutdown mode. Application of the method is also provided for the equipment of the Unit 1 Leningrad NPP ECCS components. For solution of the problem it is necessary to carry out two series of computations using a Living PSA model, level 1. In the first series of the computations the core damage frequency (CDFb) for the base configuration of the plant is determined (there is no equipment out of service). Here the symbol 'b' means the base configuration of a plant. In the second series of the computations the core damage frequency (CDFi) for the configuration of the plant with the component (which is out of service) is calculated. That is here CDFi is determined for the failure probability of the component equal to 1.0 (component 'i' is unavailable). Then it is necessary to determine so called Risk Increase Factor (RIF) using the following ratio: RIFi = CDFi / CDFb. At last the AOT is calculated with the help of the ratio: AOTi = Tppr / RIFi, where Tppr is a period of time between two Planned Preventive Repairs (PPRs). 1. Using the risk based approach the AOTs were calculated for a set of the components of the Unit 1 Leningrad NPP ECCS components. 2. The main conclusion from the analysis is that the current deterministic AOTs for the ECCS components are conservative and should be extended. 3. The risk based extension of the AOTs for the ECCS components can prevent the Unit 1 Leningrad NPP to enter into the operating modes with increased risk. (author)

  20. Potential Responses of Vascular Plants from the Pristine “Lost World” of the Neotropical Guayana Highlands to Global Warming: Review and New Perspectives

    Science.gov (United States)

    Rull, Valentí; Vegas-Vilarrúbia, Teresa

    2017-01-01

    The neotropical Guayana Highlands (GH) are one of the few remaining pristine environments on Earth, and they host amazing biodiversity with a high degree endemism, especially among vascular plants. Despite the lack of direct human disturbance, GH plants and their communities are threatened with extinction from habitat loss due to global warming (GW). Geographic information systems simulations involving the entire known vascular GH flora (>2430 species) predict potential GW-driven extinctions on the order of 80% by the end of this century, including nearly half of the endemic species. These estimates and the assessment of an environmental impact value for each species led to the hierarchization of plants by their risk of habitat loss and the definition of priority conservation categories. However, the predictions assume that all species will respond to GW by migrating upward and at equal rates, which is unlikely, so current estimates should be considered preliminary and incomplete (although they represent the best that can be done with the existing information). Other potential environmental forcings (i.e., precipitation shifts, an increase in the atmospheric CO2 concentration) and idiosyncratic plant responses (i.e., resistance, phenotypic acclimation, rapid evolution) should also be considered, so detailed eco-physiological studies of the more threatened species are urgently needed. The main obstacles to developing such studies are the remoteness and inaccessibility of the GH and, especially, the difficulty in obtaining official permits for fieldwork. PMID:28179913

  1. Vascular Plant and Vertebrate Inventory of Saguaro National Park, Rincon Mountain District

    Science.gov (United States)

    Powell, Brian F.; Halvorson, William Lee; Schmidt, Cecilia A.

    2006-01-01

    Executive Summary This report summarizes the results of the first comprehensive inventory of plants and vertebrates at the Rincon Mountain District (RMD) of Saguaro National Park, Arizona. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at the district to document the presence of species within its boundaries. Park staff also surveyed for medium and large mammals using infrared-triggered cameras from 1999 to 2005. This report summarizes the methods and results of these two efforts. Our spatial sampling design was ambitious and was one of the first of its kind in the region to colocate study sites for vegetation and vertebrates using a stratified random design. We also chose the location of some study sites non-randomly in areas that we thought would have the highest species richness. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the district. We also provide an important overview of most previous survey efforts in the district. We use data from our inventory and other surveys to compile species lists and to assess inventory completeness. With the exception of plants, our survey effort was the most comprehensive ever undertaken in the district. We recorded a total of 801 plant and vertebrate species, including 50 species not previously found in the district (Table 1) of which five (all plants) are non-native species. Based on a review of our inventory and past research at the district, there have been a total of 1,479 species of plants and vertebrates found there. We believe inventories for all taxonomic groups are nearly complete. In particular, the plant, amphibian and reptile, and mammal species lists are the most complete of any comparably large natural area of the 'sky island' region of southern Arizona and adjacent Mexico. For each taxon-specific chapter we discuss patterns of species

  2. Evaluation of Component Failure Data of the Operating Nuclear Power Plants in Korea Based on NUREG/CR-6928

    International Nuclear Information System (INIS)

    Jeon, Hojun; Na, Janghwan; Shin, Taeyoung

    2014-01-01

    This paper focuses on ensuring the quality of component failure data. When performing data analysis in PSA, we have customized the component failure data based on Bayesian analysis using plant specific experiences and the generic data of Advanced Light Water Reactor Utility Requirements Document (ALWR URD). However, ALWR URD was established by collecting US nuclear power plant (NPP) practices from mid 1980s to early 1990s. We analyzed the component failure data using the raw data of component failures in Pressurized Water Reactor (PWR) plants by 2012. This paper presents the results from analyzing the component failure data based on the new generic data and the latest specific failure data. We also compare the new component failure data to the existing data of PSA models, and evaluate the risk impacts by applying the new data to the PSA models of reference NPPs in this paper. To apply the new generic data source to PSA models, we reviewed and compared NUREG/CR-6928 and the existing generic data source, ALWR URD. In addition, we analyzed the component failure data generated from 16 PWR plants by the end of 2012, and performed the Bayesian update with these raw data based on the new generic data source of NUREG/CR-6928. Also, we reviewed the PSA models of the reference NPP, and identified some important components to CDF. The failure data of the major components decreased in general by applying the new generic data and the latest plant specific data. As a result, the CDF of the reference NPP decreased over 30% compared to the value of the existing CDF

  3. Applications of cathodic protection for the protection of aqueous and soil corrosion of power plant components

    International Nuclear Information System (INIS)

    Sinha, A.K.; Mitra, A.K.; Bhakta, U.C.; Sanyal, S.K.

    2000-01-01

    Power plant components exposed to environments such as water and soil are susceptible to severe corrosion. Many times the effect of corrosion in power plant components can be catastrophic. The problem is aggravated for underground pipelines due to additional factors such as large network of pipelines, proximity to earth mat, high voltage transmission lines, corrosive chemicals, inadequate approach etc. Other components such as condenser water boxes, internals of pipelines, clarifier bridge structures, cooling water inlet gates and pipes etc. which are in continuous contact with water, are subjected to severe corrosion. The nature and locations of all such components are at places which are not accessible for routine maintenance and hence they require long term reliable protection against corrosion. Experience has shown that anti-corrosive coatings are inadequate in preventing corrosion and due to their location regular maintenance coatings are also not feasible. Under such circumstances the applications of cathodic protection provides a long term solution the design of cathodic protection, for such applications differs from the commonly employed cathodic protection for cross-country pipelines and submerged structures due to other complexities in the plant region and maintenance of the applied system. The present paper intends to discuss the applications of cathodic protection with suitable anti-corrosive coatings for protection of various power plant components and the specific features of each type of application. (author)

  4. Quality assurance grading criteria for plant systems and components: Results from a pilot plant project at Grand Gulf Nuclear Station. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.J.

    1995-12-01

    As part of the original design of a nuclear power plant, the NSSS vendor, architect/engineer and utility identified structures, systems and components (SSCs) as safety related and assigned them to a Q-list. A Q-list is usually very large, e.g. 75,000 components, which creates large ongoing annual operating costs for the utility. Operating experience and the greater knowledge of plant systems safety accumulated during the past 20 years have suggested that many components are not truly important to safety and do not warrant the Q-classification and the associated costs. The completion of Probabilistic Safety Analyses (PSAs) for many nuclear power plants has contributed to this greater knowledge. This report describes a practical application of PSA technology to modify the existing QA program at the Grand Gulf Nuclear Station. Section 1 introduces the term, QA Safety Significant (QASS), and relates it to the existing term, ''safety related''. Section 2 describes six deterministic criteria as a basis for classifying systems as QASS or non-QASS. An expert panel reviewed 421 systems at Grand Gulf Nuclear Station and identified 42 of them as QASS. All components in non-QASS systems are classified as non-QASS. For QASS systems, Section 3 describes five deterministic criteria for classifying components as QASS or non-QASS. By using these two sets of criteria, the expert panel found that the number of components requiring full QA compliance could be reduced by 24%. These results are summarized in Section 4

  5. The perception of strigolactones in vascular plants.

    Science.gov (United States)

    Lumba, Shelley; Holbrook-Smith, Duncan; McCourt, Peter

    2017-05-17

    Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecological communicators between plants and fungi and between parasitic plants and their hosts. Advances from model plant systems have begun to unravel how, as a hormone, strigolactone is perceived and transduced. In this Review, we summarize this information and examine how understanding strigolactone hormone signaling is leading to insights into parasitic plant infections. We specifically focus on how the development of chemical probes can be used in combination with model plant systems to dissect strigolactone's perception in the parasitic plant Striga hermonthica. This information is particularly relevant since Striga is considered one of the largest impediments to food security in sub-Saharan Africa.

  6. Quality assurance in the planning and construction of components for nuclear power plants and large chemical plants

    International Nuclear Information System (INIS)

    Doerling

    1975-01-01

    High safety technical requirements must be demanded of the components of these plants to avoid economical hazards and to protect life and health. These requirements necessitate that each phase of the task completion, i.e. in planning, construction, fabrication and assembly, be carried out systematically and totally in order to produce a component with optimum quality. Quality assurance cannot then merely be a quality control in a conventional sense carried out during fabrication. It is much more an aimed procedure which is oriented to the functional requirements of the components - or rather to the function carrier. The concept presented on the quality assurance gives me the right as a constructor to treat this subject. (orig./LH) [de

  7. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and ware out of components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of guidance reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of heavy water moderated reactors (HWRs), boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues

  8. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  9. Safety aspects of nuclear power plant component aging

    International Nuclear Information System (INIS)

    Conte, M.; Deletre, G.; Henry, J.Y.

    1988-01-01

    The safety of nuclear plants depends on the capacity of the systems they are composed to perform the functions they were designed for. The identification and understanding of phenomena liable to degrade this operational capacity thus constitute one of the safety problems for which allowance must be made at the earliest stage of a project. Aging, a natural and hence unavoidable process affecting all the components of an installation, was identified at a very early stage as being one of these phenomena. The investigation and implementation of solutions to the safety problems associated to aging make it necessary to: defining the domain in which the consequences of aging are to be evaluated, identifying the parameters involved, identifying the components sensitive to these parameters, understanding the mechanisms which govern its evolution. The results of qualification tests, and of tests and checks carried out at different stages of construction and operation, as well as allowance for operating experience, constitute the necessary basis for establishing or improving the regulatory requirements. The procedures for validating components and systems of the installation are also drawn up on the basis of these tests. Finally, the actions initiated within the scope of research and development programmes supply the additional data necessary for such validation, and provide the indispensable support for knowledge improvement

  10. Vascular Plants of the Chimbote Wetlands, Peru

    OpenAIRE

    Arana, César; Salinas, Letty

    2013-01-01

    Los humedales de Chimbote (09°05’51"S; 78°32’52"O) presentan una flora vascular compuesta por 41 especies en 18 familias. El 61% magnoliópsidas y el 39% liliópsidas. Las familias con mayor número de especies fueron Poaceae, Cyperaceae y Asteraceae. Las formas de crecimiento dominantes fueron las hierbas (85%) seguidas de arbustos (10%). En comparación con los humedales costeros de Lima, en Chimbote se presenta mayor riqueza de especies que en Medio Mundo (16 especies) y El Paraíso (25), aunqu...

  11. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history

    Directory of Open Access Journals (Sweden)

    Sergey Y. Morozov

    2018-04-01

    Full Text Available Trans-acting small interfering RNAs (ta-siRNAs are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3, which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.

  12. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history.

    Science.gov (United States)

    Morozov, Sergey Y; Milyutina, Irina A; Erokhina, Tatiana N; Ozerova, Liudmila V; Troitsky, Alexey V; Solovyev, Andrey G

    2018-01-01

    Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.

  13. Assessment and management of ageing of major nuclear power plant components important to safety. Primary piping in PWRs

    International Nuclear Information System (INIS)

    2003-07-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues. The

  14. Enriched vascularity in ameloblastomas, an indeterminate entity: Report of two cases

    Directory of Open Access Journals (Sweden)

    Usha Hegde

    2015-01-01

    Full Text Available Vascularity is a highly essential element that is required for the growth, development, and functioning of the body and variations in it can cause pathologies. It is one of the prime features of a proliferating lesion, where it aids in the growth of the lesion through its nutrition supply. Highly increased vascularity in a disease can itself affect the prognosis of the lesion, and in malignancies, it can induce tumor seeding and secondaries. Most of the pathologies including tumors, related to blood vessels, and vascularity are well established. There are some conditions, wherein altered vascularity is one of the prime components along with other diagnostic components of an established disease. In such cases, these lesions are diagnosed with special names, with varying biological behavior and prognosis in comparison to that of established entity. However, there still are few similar conditions whose nature is uncertain due to the rarity of the lesion and the insufficient scientific evidence which eludes the diagnostician. Here is the report of two cases of ameloblastoma, an established entity, with significant vascularity whose nature is indeterminate.

  15. Florisitic summary of 'Manual of Vascular Plants of Northeastern United States and Adjacent Canada', second edition

    Science.gov (United States)

    Bennett, J.P.

    1996-01-01

    The second edition of the Manual of Vascular Plants of Northeastern United States and Adjacent Canada by Gleason and Cronquist (1991) is the most recent and up-to-date taxonomic treatment of the flora of that region. Since no floristic summary of the Manual was included in the publication, a computer analysis of the taxonomic data of the Manual was performed in order to generate a floristic summary. Totals of 4285 species, 1091 genera, and 191 families were tabulated. The largest genus was Carex, with 230 species; the largest family was the Asteraceae, with 528 species. Comparisons made with earlier floras of the same region indicated small declines on the order of 10% for these taxonomic groups.

  16. Raman imaging to investigate ultrastructure and composition of plant cell walls : distribution of lignin and cellulose in black spruce wood (Picea mariana)

    Science.gov (United States)

    Umesh P. Agarwal

    2006-01-01

    A detailed understanding of the structural organization of the cell wall of vascular plants is important from both the perspectives of plant biology and chemistry and of commercial utilization. A state-of-the-art 633-nm laser-based confocal Raman microscope was used to determine the distribution of cell wall components in the cross section of black spruce wood in situ...

  17. General requirements for pressure-retaining systems and components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1991-11-01

    This standard specifies the general requirements for the design, fabrication and installation of pressure-retaining systems, components, and their supports in CANDU nuclear power plants. (16 figs., 2 tabs., 25 refs.)

  18. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    Directory of Open Access Journals (Sweden)

    Kuzmina Maria L

    2012-11-01

    Full Text Available Abstract Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK and a supplemental ribosomal DNA (ITS2 marker for a well-studied flora near Churchill, Manitoba. Results This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years. ITS2 worked equally well for the fresh and herbarium material (89% and 88%. However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples. A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69% was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Conclusions Our results

  19. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library.

    Science.gov (United States)

    Kuzmina, Maria L; Johnson, Karen L; Barron, Hannah R; Hebert, Paul Dn

    2012-11-28

    Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK) and a supplemental ribosomal DNA (ITS2) marker for a well-studied flora near Churchill, Manitoba. This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years). ITS2 worked equally well for the fresh and herbarium material (89% and 88%). However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples). A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69%) was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Our results provided fast and cost-effective solution to create a

  20. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    Science.gov (United States)

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show

  1. Application of the Safety Classification of Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-04-01

    This publication describes how to complete tasks associated with every step of the classification methodology set out in IAEA Safety Standards Series No. SSG-30, Safety Classification of Structures, Systems and Components in Nuclear Power Plants. In particular, how to capture all the structures, systems and components (SSCs) of a nuclear power plant to be safety classified. Emphasis is placed on the SSCs that are necessary to limit radiological releases to the public and occupational doses to workers in operational conditions This publication provides information for organizations establishing a comprehensive safety classification of SSCs compliant with IAEA recommendations, and to support regulators in reviewing safety classification submitted by licensees

  2. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  3. VASCULAR EPIPHYTE COMPONENT OCCURING IN URBAN TREES IN THE SQUARE PROFESSOR JOSE INACIO IN PIRATININGA COUNTY, SÃO PAULO STATE

    Directory of Open Access Journals (Sweden)

    Juliano Ricardo Fabricante

    2006-12-01

    Full Text Available Epiphytes are plants cropped in other plants to damage them. The main characteristics of this group of plants is unknown in this part of Brazil, making it important to study this subject. The aim of this work was to characterize the structural and the floristic composition of vascular epiphytes on urban trees; to classify ecological categories species, according to hoist and to calculate community diversity. The studied area (Professor Jose Inacio Square, standed at the municipal district of Piratininga, Sao Paulo State. The climate is Cwa according to Köeppen classification and sandy phase dark red oxisol (latosol. It had been identified 10 species encompassing 6 gender and 6 families, being with best improvement the Bromeliaceae, representing 30 % of data. Tillandsia, with 3 species, was the most abundant gender and featured holoepiphytes were represented, with 70% species. About epiphyte community structure: Tillandsia recurvata and Tillandsia tricholepis were the most important (with bigger VIe in the studies community. Diversity was 2.371 nats/individual to specie and 2.04 nats/individual per family. The small number of species and low diversity index should be due to local conditions, urban area, with different features from that founded at normal eco-systems.

  4. North Carolina Seagrass Submersed Rooted Vasculars 1990 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A GIS data set of polygon data interpreted from aerial photography taken by NOAA/NOS Photogrammetry Branch depicting areas of Aquatic Beds of Rooted Vascular Plants...

  5. North Carolina Seagrass Submersed Rooted Vasculars 1990 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A GIS data set of polygon data interpreted from aerial photography taken by NOAA/NOS Photogrammetry Branch depicting areas of Aquatic Beds of Rooted Vascular Plants...

  6. North Carolina Seagrass Submersed Rooted Vasculars 1990 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A GIS data set of polygon data interpreted from aerial photography taken by NOAA/NOS Photogrammetry Branch depicting areas of Aquatic Beds of Rooted Vascular Plants...

  7. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  8. Concrete component aging and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1986-09-01

    The objectives of this study are to (1) expand upon the work that was initiated in the first two Electric Power Research Institute studies relative to longevity and life extension considerations of safety-related concrete components in light-water reactor (LWR) facilities and (2) provide background that will logically lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based materials and components. These objectives are consistent with Nuclear Plant Aging Research (NPAR) Program goals: (1) to identify and characterize aging and service wear effects that, if unchecked, could cause degradation of structures, components, and systems and, thereby, impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring or of evaluating residual life of structures, components, and systems that will ensure timely detection of significant aging effects before loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  9. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  10. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry.

    Science.gov (United States)

    Chen, Guilin; Huang, Bill X; Guo, Mingquan

    2018-05-21

    Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Potential of plant growth regulator and chlormequat chloride on alfalfa seed components

    International Nuclear Information System (INIS)

    Chen, J. S.; Lin, H.; Han, W.

    2016-01-01

    The use of plant growth regulators (PGRs) has opened new prospects for increased seed production in grasses and legumes, but little information is available on the effects of PGRs combination with chlormequat chloride (CCC) on alfalfa (Medicago sativa L.) seed yield components. This study was conducted to evaluate the effects of applying chlormequat chloride in combination with three PGRs (Naphthylacetic acid (NAA), gibberellic acid 3 (GA), and brassinolide (BR)) on seed yield, aboveground biomass, plant height, lodging, yield components. CCC was applied annually at the stooling stage while three PGRs were applied twice each year at the stages of flower bud formation and peak flowering. Results provides evidence that: (i) each PGR consistently increased seed yields, and the numbers of seeds per stem compared to untreated plants; (ii) CCC treatment reduced plant height and lodging, but also significantly decreased seed yield and did not affect aboveground biomass. (iii) effectiveness of CCC application depends on climatic conditions, especially in North-east China. (iiii) the optimum combination of CCC with a PGR to increase alfalfa seed production was failed to identify. (iiiii) no interactions between PGRs and CCC on seed yield were observed and neither the PGRs nor the CCC. But alfalfa seed yield could be improved by combining a PGR such as NAA. Our Results suggest that these PGRs could be used in alfalfa breeding to increase seed yield while maintaining high seed quality. (author)

  12. Ageing study of protection automation components of Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Simola, K.; Haenninen, S.

    1993-07-01

    A study on ageing of reactor protection system of the Olkiluoto nuclear power plant is described. The objective of the study was to present an ageing analysis approach and apply in to the automation chains of reactor protection system of the Olkiluoto nuclear power plant. The study includes the measuring instrumentation, the protection logics, and the control electronics of some pumps and valves. The analysis is based on the information collected on the structure of the system, environmental conditions and maintenance practices of components, and operating experience. Based on this information, the possible ageing effects of equipment and their safety significance are evaluated. (orig.). (15 refs., 16 figs., 12 tabs.)

  13. Maintenance Management Support Systems for component aging estimation at nuclear power plants

    International Nuclear Information System (INIS)

    Shimizu, Shunichi; Ando, Yasumasa; Morioka, Toshihiko; Okuzumi, Naoaki

    1991-01-01

    Maintenance Management Support Systems (MMSSs) for nuclear power plants have been developed using component aging estimation methods and decision tree analysis for maintenance planning. The former evaluates actual component reliability through statistical analysis on field maintenance data. The latter provides preventive maintenance (PM) planning guidance using heuristic expert knowledge and estimated reliability parameters. The following aspects have been investigated: (1) A systematic and effective method of managing components/parts design information and field maintenance data (2) A method for estimating component aging based on a statistical analysis of field maintenance data (3) A method for providing PM planning guidance using estimated component reliability/performance parameters and decision tree analysis. Based on these investigations, two MMSSs were developed. One deals with 'general maintenance data', which are common to all component types and are amenable to common data handling. The other system deals with 'specific maintenance data', which are specific to an individual component type. Both systems provide PM planning guidance for PM cycles propriety and the PM work priority. The function of these systems were verified using simulated maintenance data. (author)

  14. Aquatic vascular plants as handicraft: a case study in southern Brazil

    Directory of Open Access Journals (Sweden)

    Mabel R. Báez-Lizarazo

    2017-11-01

    Full Text Available ABSTRACT This study aimed to evaluate knowledge about and the usage and importance of aquatic vascular plants (AVPs in the production of handicrafts by communities on the north coast of the state of Rio Grande do Sul in southern Brazil. The snowball technique was employed to locate people who use and have knowledge regarding the use of AVPs for handicrafts. Data were collected through semi-structured interviews and guided tours with 35 interviewees who were involved in artisanal activity at the time of the study. The data were analyzed using the importance value (IV index and the consensus value for the forms of use (CMU. The Spearman correlation test (rs was employed to determine the correlations of each social variable with the knowledge variables, and Mann-Whitney U tests to verify whether men and women exhibited differences in knowledge. The interviewees cited 16 AVPs that were employed in 17 types of handicrafts, among which the four main species were Schoenoplectus californicus, Typha domingensis, T. latifolia and Androtrichum giganteum. Interviewee age, residence time on site and time working with handicrafts were the main social parameters that described the level of knowledge and use of AVPs. These AVPs reflect cultural knowledge and complement family incomes.

  15. Design and application of model for training ultrasound-guided vascular cannulation in pediatric patients.

    Science.gov (United States)

    Pérez-Quevedo, O; López-Álvarez, J M; Limiñana-Cañal, J M; Loro-Ferrer, J F

    2016-01-01

    Central vascular cannulation is not a risk-free procedure, especially in pediatric patients. Newborn and infants are small and low-weighted, their vascular structures have high mobility because of tissue laxity and their vessels are superficial and with small diameter. These characteristics, together with the natural anatomical variability and poor collaboration of small children, make this technique more difficult to apply. Therefore, ultrasound imaging is increasingly being used to locate vessels and guide vascular access in this population. (a) To present a model that simulates the vascular system for training ultrasound-guided vascular access in pediatrics patients; (b) to ultrasound-guided vascular cannulation in the model. The model consisted of two components: (a) muscular component: avian muscle, (b) vascular component: elastic tube-like structure filled with fluid. 864 ecoguided punctures was realized in the model at different vessel depth and gauge measures were simulated, for two medical operators with different degree of experience. The average depth and diameter of vessel cannulated were 1.16 (0.42)cm and 0.43 (0.1)cm, respectively. The average number of attempts was of 1.22 (0.62). The percentage of visualization of the needle was 74%. The most frequent maneuver used for the correct location, was the modification of the angle of the needle and the relocation of the guidewire in 24% of the cases. The average time for the correct cannulations was 41 (35.8)s. The more frequent complications were the vascular perforation (11.9%) and the correct vascular puncture without possibility of introducing the guidewire (1.2%). The rate of success was 96%. The model simulates the anatomy (vascular and muscular structures) of a pediatric patient. It is cheap models, easily reproducible and a useful tool for training in ultrasound-guided puncture and cannulation. Copyright © 2015 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  16. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  17. Offshore Wind Power Plant Technology Catalogue - Components of wind power plants, AC collection systems and HVDC systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Antonios Cutululis, Nicolaos

    2017-01-01

    Traditionally, Offshore Wind Power Plants (OWPPs) are connected through many com-ponents as shown in the figure 1. An OWPP consists of controllable, variable speed Wind Turbines (WTs). These WTs are connected through Medium Voltage (MV) sub-marine cables typically at voltage level of upto 33-66 k...... for the cables as well reduce the power losses through them....

  18. Advancements in the design of safety-related systems and components of the MARS nuclear plant

    International Nuclear Information System (INIS)

    Caira, M.; Caruso, G.; Naviglio, A.; Sorabella, L.; Farello, C.E.

    1992-01-01

    In the paper, the advancements in the design of safety-related systems and components of the MARS nuclear plant, equipped with a 600 MW th PWR, are described. These advancements are due to the special safety features of this plant, which relies completely on inherent and passive safety. In particular, the new steps of the design of the innovative, completely passive, and with an unlimited autonomy Emergency core Cooling System are described, together with the characteristics of the last version of the steam generator, developed in a new design involving disconnecting components, for a fast erection and an easy maintenance. (author)

  19. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  20. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Science.gov (United States)

    Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this

  1. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Directory of Open Access Journals (Sweden)

    Kazi Md Kamrul Huda

    Full Text Available Plasma membrane Ca(2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+ from the cell, hence regulating Ca(2+ level within cells. Though plant Ca(2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied.The 1478 bp promoter sequence of rice plasma membrane Ca(2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs.The rice plasma membrane Ca(2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible

  2. Lifetime assessment and lifetime management for key components of nuclear power plants

    International Nuclear Information System (INIS)

    Dou Yikang; Sun Hanhong; Qu Jiadi

    2000-01-01

    On the bases of investigation on recent development of plant lifetime management in the world, the author gives some points of view on how to establish plant lifetime assessment (PLA) and management (PLM) systems for Chinese nuclear power plants. The main points lie in: 1) safety regulatory organizations, utilities and R and D institutes work cooperatively for PLA and PLM; 2) PLA and PLM make a interdependent cycle, which means that a good PLM system ensures authentic input for PLA, while veritable PLA provides valuable feedback for PLM improvement; 3) PLA and PLM should be initiated for some key components. The author also analyzes some important problems to be tackled in PLA and PLM from the view angle of a R and D institute

  3. Surgical treatment of complications associated with the Angio-Seal vascular closure device.

    Science.gov (United States)

    Cikirikcioglu, Mustafa; Cherian, Sanjay; Keil, Vera; Manzano, Norman; Gemayel, Gino; Theologou, Thomas; Kalangos, Afksendiyos

    2011-05-01

    Vascular closure devices are used to provide quick hemostasis and early ambulation after percutaneous interventions. The Angio-Seal (AS) vascular closure device forms a mechanical seal by closing the puncture site located between a bioabsorbable anchor within the lumen and a collagen sponge on the adventitia. Although morbidities associated with AS are reportedly infrequent, even the slightest inaccuracy in device implantation may result in displacement of these device components, leading to sudden and severe complications. We report the surgical treatment of complications associated with the use of AS in four patients, including acute limb ischemia, pseudoaneurysm formation, significant hemorrhage, and hypovolemic shock. A common factor in all these cases was that the components of the AS device were displaced from their original site of implantation, stressing the importance of proper device placement. All patients underwent successful surgical vascular repair. Our report highlights the need for exercising extreme care during device implantation, and also the requirement for vigilant inspection for any associated vascular complications commencing immediately after device implantation. It is vital that these device components are actively looked for and removed during surgical exploration so as to prevent future complications. Copyright © 2011. Published by Elsevier Inc.

  4. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Gas Centrifuge Enrichment Plant... 110—Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The...

  5. Relative planting times on the production components in sesame/cowpea bean intercropping in organic system

    Directory of Open Access Journals (Sweden)

    Afrânio César de Araújo

    2013-12-01

    Full Text Available Aiming at better land use, small farmers usually plant sesame and cowpea bean intercropped with other crops. The aim of this work was to analyze and quantify the influence of four relative planting times of the cowpea bean in intercropping with sesame from the standpoint of their production components, plant productivity and the index of land equivalent ratio (LER. The field experiment was conducted in a randomized blocks with four treatments and four replicates. The treatments were the sesame and the cowpea bean in intercropping with the cowpea bean planted at the same time, 7, 14 and 21days after than the sesame. A greater part of the production components of both the sesame as well the cowpea bean was affected by the intercropping and significant differences were noted among the treatments in a larger part of the parameters. As the planting of the cowpea bean became more distant from that of the sesame, the yield of the Pedaliaceae increased and the yield of the Fabaceae decreased. The results for LER findings on the other hand suggest that in the sesame/cowpea bean intercropping, when the Fabaceae is planted seven days after the sesame, there is better use of the land and a largest possibility to the producer earning a profit.

  6. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  7. Identification of nonlinear dynamics in power plant components using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Fernandez, B.; Tsai, W.K.

    1990-01-01

    Advances in digital computer technology have enabled widespread implementation of closed-loop digital control systems in a variety of industries. In some instances, however, the complexity of the plant and the uncertainty associated with the parameters involved in the mathematical modeling narrow the range of applicability of most systematic control system design methodologies. A multiyear project has been initiated to assess the feasibility of the artificial neural networks (ANNs) technology for computerized enhanced diagnostics and control of nuclear power plant components. At this stage of the project, a new methodology, based on backpropagation learning, has been developed for identifying the nonlinear dynamic systems from a set of input-output data known as the training set

  8. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation.

    Science.gov (United States)

    Aloni, Roni

    2013-11-01

    The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.

  9. Thermal damage of power plants components and their reparation. Aspects of welding engineering

    International Nuclear Information System (INIS)

    Kautz, H.R.; Zurn, H.E.D.

    1993-01-01

    In the last years, the technology of power plants has been developed. With the recommendation in environmental protection, the research is focussed on gaseous effluents purification . In case of were an accident, the welding engineering might repair the components. 47 refs

  10. Design issues and implications for the structural integrity and lifetime of fusion power plant components

    International Nuclear Information System (INIS)

    Karditas, P.J.

    1996-05-01

    This review discusses, with example calculations, the criteria, and imposed constraints and limitations, for the design of fusion components and assesses the implications for successful design and power plant operation. The various loading conditions encountered during the operation of a tokamak lead to structural damage and possible failure by such mechanisms as yielding, thermal creep rupture and fatigue due to thermal cycling, plastic strain cycling (ratcheting), crack growth-propagation and radiation induced swelling and creep. Of all the possible damage mechanisms, fatigue, creep and their combination are the most important in the structural design and lifetime of fusion power plant components operating under steady or load varying conditions. Also, the effect of neutron damage inflicted onto the structural materials and the degradation of key properties is of major concern in the design and lifetime prediction of components. Structures are classified by, and will be restricted by existing or future design codes relevant to medium and high temperature power plant environments. The ways in which existing design codes might be used in present and near future design activities, and the implications, are discussed; the desirability of an early start towards the development of fusion-specific design codes is emphasised. (UK)

  11. EPRI research on component aging and nuclear plant life extension

    International Nuclear Information System (INIS)

    Sliter, G.E.; Carey, J.J.

    1985-01-01

    This paper first describes several research efforts sponsored by the Electric Power Research Institute (EPRI) that examine the aging degradation of organic materials and the nuclear plant equipment in which they appear. This research includes a compendium of material properties characterizing the effects of thermal and radiation aging, shake table testing to evaluate the effects of aging on the seismic performance of electrical components, and a review of condition monitoring techniques applicable to electrical equipment. Also described is a long-term investigation of natural versus artificial aging using reactor buildings as test beds. The paper then describes how the equipment aging research fits into a broad-scoped EPRI program on nuclear plant life extension. The objective of this program is to provide required information, technology, and guidelines to enable utilities to significantly extend operating life beyond the current 40-year licensed term

  12. Component Fragility Research Program: Phase 1 component prioritization

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.

    1987-06-01

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize seismic ''fragilities'' - probabilities of failure conditioned on the severity of seismic input motion - that are based largely on limited test data and on engineering judgment. Under the NRC Component Fragility Research Program (CFRP), the Lawrence Livermore National Laboratory (LLNL) has developed and demonstrated procedures for using test data to derive probabilistic fragility descriptions for mechanical and electrical components. As part of its CFRP activities, LLNL systematically identified and categorized components influencing plant safety in order to identify ''candidate'' components for future NRC testing. Plant systems relevant to safety were first identified; within each system components were then ranked according to their importance to overall system function and their anticipated seismic capacity. Highest priority for future testing was assigned to those ''very important'' components having ''low'' seismic capacity. This report describes the LLNL prioritization effort, which also included application of ''high-level'' qualification data as an alternate means of developing probabilistic fragility descriptions for PRA applications

  13. Component behaviour in the 700 C power plant. Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Schmidt, Kay H.

    2013-01-01

    Currently martensitic steels are used in fossil fired power plants with maximum working temperatures up to 625 C. These steels do not show the required creep rupture strength at the target temperature of 700 C. For these high temperatures, new materials like the nickel base alloys have to be qualified for power plants services. Originating from the weld of turbine materials, nickel base alloys show outstanding creep rupture strength. An alloy with good prospects out of the material class of the nickel base alloys is Alloy 617 mod. However, this material is expensive due to its high nickel content. Furthermore, the complex machinability of this material leads to an additional increase in expenses. A complete fabrication of the boiler area using Alloy 617 mod is not economically feasible, which means that the usage of this material has to be limited to the temperature weld of 625 C to 700 C. For the boiler area with temperatures below 625 C the well proven 9 % to 12 % Cr-steels, like T/P92 and VM12/VM12-SHC may be used. In the weld of low temperatures up to 525 C the usage of the 2.5 % Cr-steel T/P24 offers numerous advantages, in particular in the fabrication of membrane walls. This material shows good creep properties up to temperatures of 525 C and, for thin walled components, T24 can be welded without post weld heat treatment by using suitable techniques. For a successful design and fabrication of a 700 C fossil fired power plant, appropriate materials have to be qualified. Here, a special focus is set on the creep properties of these materials. The presented work is a significant contribution to the qualification of these materials. First, the materials Alloy 617 mod, T/P92, VM12/VM12-SHC and T24 are briefly introduced and characterized. After this, the materials are investigated in a detailed creep testing program. This program includes investigations on base material, extracted from tubes, pipes and inductive bends of pipes. In addition, crossweld specimens

  14. 76 FR 27669 - Automotive Components Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division...

    Science.gov (United States)

    2011-05-12

    ... Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division, Including Workers Whose Wages Were Reported Under Ford Company, Visteon, MSX International, W.J. O'Neil Company, and Unibar, Saline... workers of Automotive Components Holdings, LLC, a Subsidiary of Ford Motor Company, Saline Plant Division...

  15. Developments of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2003-03-15

    The objective of this research is to develop an efficient evaluation technology and to investigate applicability of newly-developed technology, such as internet-based cyber platform, to operating power plants. Development of efficient evaluation systems for Nuclear Power Plant components, based on structural integrity assessment techniques, are increasingly demanded for safe operation with the increasing operating period of Nuclear Power Plants. The following five topics are covered in this project: development of assessment method for wall-thinned nuclear piping based on pipe test; development of structural integrity program for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for mam components of NPP; development of internet-based cyber platform and integrity program for primary components of NPP; effect of aging on strength of dissimilar welds.

  16. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance.

    Science.gov (United States)

    Al-Dashti, Yousef A; Holt, Roberta R; Stebbins, Charles L; Keen, Carl L; Hackman, Robert M

    2018-05-02

    An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors.

  17. Ecologic and geographic distributions of the vascular plants of southern Nye County, and adjacent parts of Clark, Lincoln, and Esmeralda Counties, Nevada. [Based on collections made in 1970

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J. C.

    1971-01-01

    A catalog is compiled of the vascular plants indiginous to Nye, Clark, Lincoln, and Esmeralda Counties of Nevada based on collections made in 1970. This compilation is an update of previous collections in these areas and is a supplement to report, UCLA--12-705. (ERB)

  18. The safety related aspects of pressure components in nuclear power plants

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1979-01-01

    Over the last two years the safety philosophy for nuclear power plants in the Federal Republic of Germany has changed considerably, as everyone working in the field perceives. The original and appropriate philosophy of risk minimalisation through graduated safety barriers has been more and more replaced by the utopian goal of total prevention of any damage. The reasons for this development are discussed briefly especially regarding pressure components. The very numerous pressure components of a nuclear power station are not all of equal importance with respect to safety. Although considerable efforts have been made, it has not been possible, to date, to achieve an agreement between operators, manufacturers, licensing authorities, independent experts, and other specialists about the safety related classification of the manifold pressure bearing parts in nuclear power stations. The background of this extremely regrettable situation is explained. In the last part of the paper the author suggests a simple and clear safety philosophy for pressure components in nuclear power stations. This philosophy is orientated both on Safety Regulations of the Radiation Protection Decree ('Strahlenschutzverordnung') of the 13th October 1976 and on the Safety Criteria for Nuclear Power Stations from 21st October 1977. Only a simple, clear framework can make a contribution to the further improvement of the already exceptional safety of nuclear facilities and to the removal of obstacles in the licensing procedure which, taken as a whole, tie up skilled personnel to a senseless degree, involve considerable financial expenditure, and have no relevance for the safety of nuclear power plants. (orig.) [de

  19. The effects of aging on electrical and I ampersand C components: Results of US Nuclear Plant Aging Research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1993-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  20. The effects of aging on electrical and I ampersand C components: Results of US nuclear plant aging research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1991-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  1. Condition Based Prognostics of Passive Components - A New Era for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Mohanty, S.; Prokofiev, I.; Tregoning, R.

    2012-01-01

    As part of a research project sponsored by the U.S. NRC, Argonne National Laboratory (ANL) conducted scoping studies to identify viable and promising sensors and techniques for in-situ inspection and real-time monitoring of degradation in nuclear power plant (NPP) systems, structures, and components (SSC). Significant advances have been made over the past two decades toward development of online monitoring (OLM) techniques for detection, diagnostics, and prognostics of degradation in active nuclear power plant (NPP) components (e.g., pumps, valves). However, early detection of damage and degradation in safety-critical passive components, (e.g. piping, tubing pressure vessel), is challenging, and will likely remain so for the foreseeable future. Ensuring the structural integrity of the reactor pressure vessel (RPV) and piping systems in particular is a prerequisite to long term safe operation of NPPs. The current practice is to implement inservice inspection (ISI) and preventive maintenance programs. While these programs have generally been successful, they are limited in that information is only obtained during plant outages. Additionally, these inspections, often the critical path in the outage schedule, are costly, time consuming, and involve potentially high dose to nondestructive examination/evaluation (NDE) personnel. A viable plant-wide on-line structural health monitoring program for continuous and automatic monitoring of critical SSCs could be a more effective approach for guarding against unexpected failures. Specifically, OLM information about the current condition of the SSCs could be input to an online prognostics (OLP) system to forecast their remaining useful life in real time. This paper provides an overview of scoping studies performed at ANL on assessing the viability of OLM and OLP systems for real time and automated monitoring and remaining of condition and the remaining useful life of passive components in NPPs. (author)

  2. Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants.

    Science.gov (United States)

    Villarreal, Juan Carlos; Renner, Susanne S

    2013-11-02

    Whether male and female gametes are produced by single or separate individuals shapes plant mating and hence patterns of genetic diversity among and within populations. Haploid-dominant plants ("bryophytes": liverworts, mosses and hornworts) can have unisexual (dioicous) or bisexual (monoicous) gametophytes, and today, 68% of liverwort species, 57% of moss species, and 40% of hornwort species are dioicous. The transitions between the two sexual systems and possible correlations with other traits have been studied in liverworts and mosses, but not hornworts. Here we use a phylogeny for 98 of the 200 species of hornworts, the sister group to vascular plants, representing roughly equal proportions of all monoicous and all dioicous species, to test whether transitions in sexual systems are predominantly from monoicy to dioicy as might be expected based on studies of mosses. We further investigate possible correlations between sexual system and spore size, antheridium number, ploidy level, and diversification rate, with character selection partly based on findings in mosses and liverworts. Hornworts underwent numerous transitions between monoicy and dioicy. The transition rate from dioicy to monoicy was 2× higher than in the opposite direction, but monoicous groups have higher extinction rates; diversification rates do not correlate with sexual system. A correlation important in mosses, that between monoicy and polyploidy, apparently plays a small role: of 20 species with chromosome counts, only one is polyploid, the monoicous Anthoceros punctatus. A contingency test revealed that transitions to dioicy were more likely in species with small spores, supporting the hypothesis that small but numerous spores may be advantageous for dioicous species that depend on dense carpets of gametophytes for reproductive assurance. However, we found no evidence for increased antheridium-per-chamber numbers in dioicous species. Sexual systems in hornworts are labile, and the higher

  3. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  4. Computer-aided stress analysis system for nuclear plant primary components

    International Nuclear Information System (INIS)

    Murai, Tsutomu; Tokumaru, Yoshio; Yamazaki, Junko.

    1980-06-01

    Generally it needs a vast quantity of calculation to make the stress analysis reports of nuclear plant primary components. In Japan, especially, stress analysis reports are under obligation to make for each plant. In Mitsubishi Heavy Industries, Ltd., We have been making great efforts to rationalize the process of analysis for about these ten years. As the result of rationalization up to now, a computer-aided stress analysis system using graphic display, graphic tablet, data file, etc. was accomplished and it needs us only the least hand work. In addition we developed a fracture safety analysis system. And we are going to develop the input generator system for 3-dimensional FEM analysis by graphics terminals in the near future. We expect that when the above-mentioned input generator system is accomplished, it will be possible for us to solve instantly any case of problem. (author)

  5. The vascular plants: open system of growth.

    Science.gov (United States)

    Basile, Alice; Fambrini, Marco; Pugliesi, Claudio

    2017-03-01

    What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs

  6. Pilot studies on management of ageing of nuclear power plant components: Results of Phase 1

    International Nuclear Information System (INIS)

    1992-10-01

    To facilitate cooperation between the IAEA Member States and thus to enhance the safety and reliability of operating nuclear plants the IAEA has initiated pilot studies on the management of ageing of four representative plant components: the primary nozzle of the reactor pressure vessel, a motor operated valve, the concrete containment building and instrumentation and control cables. Phase 1 of the studies has been completed and its results are presented in this report. The report documents current understanding of ageing and methods for monitoring and mitigation of this ageing for the above components, identifies existing knowledge and technology gaps and defines follow-up work to deal with these gaps. Refs, figs and tabs

  7. Fatigue evaluation including environmental effects for primary circuit components in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seichter, Johannes [Siempelkamp Pruef- und Gutachter-Gesellschaft mbH, Dresden (Germany); Reese, Sven H.; Klucke, Dietmar [E.ON Kernkraft GmbH, Hannover (Germany). Component Technology

    2013-06-01

    The influence of LWR coolant environment to the lifetime of materials in nuclear power plants is being discussed internationally. Environmental phenomena had been investigated in laboratory tests and published in recent years. The discussion is mainly focused both on the transition from laboratory to real plant components and on numerical calculation procedures. Since publishing of the NUREG/CR-6909 report in 2007, formulae for calculating the Fen factors have been modified several times. Various calculation procedures are discussed and recommendations are made how to avoid extremely conservative results. (orig.)

  8. [Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin].

    Science.gov (United States)

    Xu, Jing-Jing; Ci, Hua-Cong; He, Xing-Dong; Xue, Ping-Ping; Zhao, Xue-Lai; Guo, Jian-Tan; Gao, Yu-Bao

    2012-05-01

    Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.

  9. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts.

    Science.gov (United States)

    Jakobsson, Lars; van Meeteren, Laurens A

    2013-05-15

    Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Nanomedicine approaches in vascular disease: a review.

    Science.gov (United States)

    Gupta, Anirban Sen

    2011-12-01

    Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    Convey Peter

    2007-12-01

    Full Text Available Abstract Background Antarctic terrestrial vegetation is subject to one of the most extreme climates on Earth. Currently, parts of Antarctica are one of the fastest warming regions on the planet. During 3 growing seasons, we investigated the effect of experimental warming on the diversity and abundance of coastal plant communities in the Maritime Antarctic region (cryptogams only and the Falkland Islands (vascular plants only. We compared communities from the Falkland Islands (51°S, mean annual temperature 7.9°C, with those of Signy Island (60°S, -2.1°C and Anchorage Island (67°S, -2.6°C, and experimental temperature manipulations at each of the three islands using Open Top Chambers (OTCs. Results Despite the strong difference in plant growth form dominance between the Falkland Islands and the Maritime Antarctic, communities across the gradient did not differ in total diversity and species number. During the summer months, the experimental temperature increase at 5 cm height in the vegetation was similar between the locations (0.7°C across the study. In general, the response to this experimental warming was low. Total lichen cover showed a non-significant decreasing trend at Signy Island (p Conclusion These results suggest that small temperature increases may rapidly lead to decreased soil moisture, resulting in more stressful conditions for plants. The more open plant communities (grass and lichen appeared more negatively affected by such changes than dense communities (dwarf shrub and moss.

  12. Vascular flora and geoecology of Mont de la Table, Gaspesie, Quebec

    Science.gov (United States)

    Scott W. Bailey; Joann Hoy; Charles V. Cogbill

    2015-01-01

    The influence of substrate lithology on the distribution of many vascular and nonvascular plants has long been recognized, especially in alpine, subalpine, and other rocky habitats. In particular, plants have been classified as dependent on high-calcium substrates (i.e., calcicoles) based on common restriction to habitats developed in calcareous rocks, such as...

  13. Polyphophoinositides components of plant nuclear membranes

    International Nuclear Information System (INIS)

    Hendrix, K.W.; Boss, W.F.

    1987-01-01

    The polyphosphoinositides, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP 2 ), have been shown to be important components in signal transduction in many animal cells. Recently, these lipids have been found to be associated with plasma membrane but not microsomal membrane isolated from fusogenic wild carrot cells; however, in that study the lipids of the nuclear membrane were not analyzed. Since polyphosphoinositides had been shown to be associated with the nuclear membranes as well as the plasma membrane in some animal cells, it was important to determine whether they were associated with plant nuclear membranes as well. Cells were labeled for 18h with [ 3 H] inositol and the nuclei were isolated by a modification of the procedure of Saxena et al. Preliminary lipid analyses indicate lower amount of PIP and PIP 2 in nuclear membranes compared to whole protoplasts. This suggests that the nuclear membranes of carrot cells are not enriched in PIP and PIP 2 ; however, the Triton X-100 used during the nuclear isolation procedure may have affected the recovery of the lipids. Experiments are in progress to determine the effects of Triton X-100 on lipid extraction

  14. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  15. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in a assessment of the performance of these structural components, probabilistic methods. The benefits of a probabilistic approach are the clear treatment of uncertainly and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel). (authors)

  16. Study of aging effects in PWR power plants components - 15043

    International Nuclear Information System (INIS)

    Silva Borges, D. da; Lava, D.D.; Guimaraes, A.C.F.; Moreira, M. de L.

    2015-01-01

    In this paper we present a simulation about the aging process of the containment spray injection system (CSIS) of a pressurized water reactor (PWR) using the fault tree method (FT). The FT has the capacity to present the logic of events that leads to system unavailability, to capture frequency estimation of events, to model and calculate hazardous events frequency (before they happen) and help developing protective layers. The Monte Carlo method and Fussell-Vesely importance measure are used in this paper to determine the system unavailability probability and the most sensitive events to the aging process. The injection system fault tree consists of a main tree and 10 sub-trees. The main tree is composed of 35 basic events, 5 gates and 1 top event. The paper details the methodology. It can be seen that the increase of the failure rate of components due to the aging process, generates the increase in the general unavailability of the system that contains these components. The extension of the operating life of nuclear power plant must be accompanied by a special attention to the aging process of its components

  17. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in an assessment of the performance of these structural components, probabilistic methods provide an attractive alternative or supplement to more conventional deterministic methods. The benefits of a probabilistic approach are the clear treatment of uncertainty and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel)

  18. Case study on the use of PSA methods: Determining safety importance of systems and components at nuclear power plants

    International Nuclear Information System (INIS)

    1991-04-01

    This case study emphasizes the step of probabilistic safety assessment (PSA) regarding identification of systems and components important to nuclear plant safety. An importance analysis involves combining information that is both qualitative and probabilistic in nature to generate a numerical ranking to determine the system and/or component failures that dominate the risk. Such a ranking can suggest where hardware, software, human factors and component design changes can be implemented to improve plant safety. Examples of using ranking methodology are described. A qualitative ranking criteria is discussed for components and systems that are not included in a PSA. 18 refs, 7 figs, 18 tabs

  19. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  20. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  1. A multi-criteria decision making system for damage assessment of critical components in power plants

    International Nuclear Information System (INIS)

    Jovanovic, A.; Auerkari, P.; Brear, J.M.

    1996-01-01

    A multi-criteria decision making tool for engineering applications has been developed in the European project BE5935. The tool has been developed and applied in the area of power plants, primarily for the decisions regarding the inspection and maintenance planning in the area of power plants. Practical application of the methodology and of the software is shown here for the damage assessment of critical components. (authors)

  2. Effects of plant densities on yield, yield components and some morphological characters of two cultivators of oilseed rape (Brassica napus L.)

    DEFF Research Database (Denmark)

    Al-Barzinjy, M.; Stölen, O.; Christiansen, Jørgen Lindskrog

    2003-01-01

    Effects of Plant Densities on Yield, Yield Components and some Morphological Characters of two Cultivators of Oilseed Rape (Brassica napus L.)......Effects of Plant Densities on Yield, Yield Components and some Morphological Characters of two Cultivators of Oilseed Rape (Brassica napus L.)...

  3. A review of plant-based compounds and medicinal plants effective on atherosclerosis

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Sedighi

    2017-01-01

    Full Text Available Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications.

  4. New options for vascularized bone reconstruction in the upper extremity.

    Science.gov (United States)

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Nanos, George P; Moran, Steven L

    2015-02-01

    Originally described in the 1970s, vascularized bone grafting has become a critical component in the treatment of bony defects and non-unions. Although well established in the lower extremity, recent years have seen many novel techniques described to treat a variety of challenging upper extremity pathologies. Here the authors review the use of different techniques of vascularized bone grafts for the upper extremity bone pathologies. The vascularized fibula remains the gold standard for the treatment of large bone defects of the humerus and forearm, while also playing a role in carpal reconstruction; however, two other important options for larger defects include the vascularized scapula graft and the Capanna technique. Smaller upper extremity bone defects and non-unions can be treated with the medial femoral condyle (MFC) free flap or a vascularized rib transfer. In carpal non-unions, both pedicled distal radius flaps and free MFC flaps are viable options. Finally, in skeletally immature patients, vascularized fibular head epiphyseal transfer can provide growth potential in addition to skeletal reconstruction.

  5. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    Science.gov (United States)

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  6. Effect of Light Spectral Quality on Essential Oil Components in Ocimum Basilicum and Salvia Officinalis Plants

    Directory of Open Access Journals (Sweden)

    A. S. IVANITSKIKH

    2014-07-01

    Full Text Available In plants grown with artificial lighting, variations in light spectral composition can be used for the directed biosynthesis of the target substances including essential oils, e.g. in plant factories. We studied the effect of light spectral quality on the essential oil composition in Ocimum basilicum and Salvia officinalis plants grown in controlled environment. The variable-spectrum light modules were designed using three types of high-power light-emitting diodes (LEDs with emission peaked in red, blue and red light, white LEDs, and high-pressure sodium lamps as reference. Qualitative and quantitative essential oil determinations were conducted using gas chromatography with mass selective detection and internal standard method.Sweet basil plant leaves contain essential oils (са. 1 % including linalool, pinene, eugenol, camphor, cineole, and other components. And within the genetic diversity of the species, several cultivar groups can be identified according to the flavor (aroma perceived by humans: eugenol, clove, camphor, vanilla basil. Essential oil components produce particular flavor of the basil leaves. In our studies, we are using two sweet basil varieties differing in the essential oil qualitative composition – “Johnsons Dwarf” (camphor as a major component of essential oils and “Johnsons Lemon Flavor” (contains large amount of citral defining its lemon flavor.In sage, essential oil composition is also very variable. As for the plant responses to the light environment, the highest amount of the essential oils was observed at the regimes with white and red + blue LED light. And it was three times less with red light LEDs alone. In the first two environments, thujone accumulation was higher in comparison with camphor, while red LED light and sodium lamp light favored camphor biosynthesis (three times more than thujone. The highest amount of eucalyptol was determined in plants grown with red LEDs.

  7. Characterization of midrib vascular bundles of selected medicinal species in Rubiaceae

    Science.gov (United States)

    Nurul-Syahirah, M.; Noraini, T.; Latiff, A.

    2016-11-01

    An anatomical study was carried out on mature leaves of five selected medicinal species of Rubiaceae from Peninsular Malaysia. The chosen medicinal species were Aidia densiflora, Aidia racemosa, Chasallia chartacea, Hedyotis auricularia and Ixora grandifolia. The objective of this study is to determine the taxonomic value of midrib anatomical characteristics. Leaves samples were collected from Taman Paku Pakis, Universiti Kebangsaan Malaysia, Bangi, Selangor and Kledang Saiong Forest Reserve, Perak, Malaysia. Leaves samples then were fixed in spirit and acetic acid (3:1), the midrib parts then were sectioned using sliding microtome, cleared using Clorox, stained in Safranin and Alcian blue, mounted in Euparal and were observed under light microscope. Findings in this study have shown all species have collateral bundles. The midrib vascular bundles characteristics that can be used as tool to differentiate between species or genus are vascular bundles system (opened or closed), shape and arrangement of main vascular bundles, presence of both additional and medullary vascular bundles, position of additional vascular bundles, shape of medullary vascular bundles, presence of sclerenchyma cells ensheathed the vascular bundles. As a conclusion, midrib anatomical characteristics can be used to identify and discriminate medicinal plants species studied in the Rubiaceae.

  8. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A; Maile, K [MPA Stuttgart (Germany)

    1999-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  9. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A.; Maile, K. [MPA Stuttgart (Germany)

    1998-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  10. Aging management and PLEX in Swiss nuclear power plants and prioritization of safety class 2 and 3 components

    International Nuclear Information System (INIS)

    Fuchs, R.; Stejskal, J.

    2000-01-01

    In this presentation ageing management of systems and components important to safety of the Swiss nuclear power plants are presented. Status of electrical components, status of mechanical components as well as status of civil structures are reviewed. The scheme of the high pressure core spray system is included

  11. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants.

    Science.gov (United States)

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2013-01-01

    Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO(2)]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G(s)) to instantaneous changes in external [CO(2)] (C(a)) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO(2)] (1,500 ppm) and sub-ambient [O(2)] (13.0 %) compared to control conditions (380 ppm CO(2), 20.9 % O(2)). We found that active control of stomatal aperture to [CO(2)] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C(a) were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO(2)]. The relationship between the degree of stomatal aperture control to C(a) above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO(2)] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.

  12. Imaging findings and therapeutic alternatives for peripheral vascular malformations

    International Nuclear Information System (INIS)

    Monsignore, Lucas Moretti; Nakiri, Guilherme Seizem; Santos, Daniela dos; Abud, Thiago Giansante; Abud, Daniel Giansante

    2010-01-01

    Peripheral vascular malformations represent a spectrum of lesions that appear through the lifetime and can be found in the whole body. Such lesions are uncommon and are frequently confounded with infantile hemangioma, a common benign neoplastic lesion. In the presence of such lesions, the correlation between the clinical and radiological findings is extremely important to achieve a correct diagnosis, which will guide the best therapeutic approach. The most recent classifications for peripheral vascular malformations are based on the blood flow (low or high) and on the main vascular components (arterial, capillary, lymphatic or venous). Peripheral vascular malformations represent a diagnostic and therapeutic challenge, and complementary methods such as computed tomography, Doppler ultrasonography and magnetic resonance imaging, in association with clinical findings can provide information regarding blood flow characteristics and lesions extent. Arteriography and venography confirm the diagnosis, evaluate the lesions extent and guide the therapeutic decision making. Generally, low flow vascular malformations are percutaneously treated with sclerosing agents injection, while in high flow lesions the approach is endovascular, with permanent liquid or solid embolization agents. (author)

  13. Cost analysis of small hydroelectric power plants components and preliminary estimation of global cost

    International Nuclear Information System (INIS)

    Basta, C.; Olive, W.J.; Antunes, J.S.

    1990-01-01

    An analysis of cost for each components of Small Hydroelectric Power Plant, taking into account the real costs of these projects is shown. It also presents a global equation which allows a preliminary estimation of cost for each construction. (author)

  14. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    Science.gov (United States)

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  15. Health Effects of Bioactive Components in Plant Foods; Results and Opinion of the EU-COST926 Action

    NARCIS (Netherlands)

    Verkerk, R.; Piskula, M.; Bovy, Arnaud; Dekker, M.

    2014-01-01

    This paper reviews the main results of EU-action: “COST 926: Impact of new technologies on the health benefits and safety of bioactive plant compounds”. The bioavailability and the effects on gene expression of various bioactive components in plant foods are described in relation with their

  16. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  17. Risk-based management of remaining life of power plant components

    International Nuclear Information System (INIS)

    Roos, E.; Jovanovic, A.S.; Maile, K.; Auerkari, P.

    1999-01-01

    The paper describes application of different modules of the MPA-System ALIAS in risk-based management of remaining life of power plant components. The system allows comprehensive coverage of all aspects of the remaining life management, including also the risk analysis and risk management. In addition, thanks to the modular character of the system it is also possible to implement new methods: In the case described here, a new (probabilistic) method for determination of the next inspection time for the components exposed to creep loading has been developed and implemented in the system. Practical application of the method has shown (a) that the mean values obtained by the method fall into the range of results obtained by other methods (based on expert knowledge), and (b) that it is possible to quantify the probability of aberration from the mean values. This in turn allows quantifying the additional risks linked to e.g. prolonging of inspection intervals. (orig.) [de

  18. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  19. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  20. Service experience with AISI type 316 steel components in CEGB Midlands Region power plant

    International Nuclear Information System (INIS)

    Plastow, B.; Bagnall, B.I.; Yeldham, D.E.

    1979-01-01

    The service performance of AISI Type 316 steel components in sections up to 100 mm thick in Power Plant of the Midlands Region of the C.E.G.B. is reviewed. A comparison is drawn between the satisfactory performance of components whose dimensional stability is not critical and the difficulties experienced when rapid rates of change of temperature cause distortion in thick section components. Weldment manufacture and performance are reviewed and both are considered to be satisfactory. In general the material has performed well and the difficulties due to distortion have been overcome by imposing operating regimes which limit rates of temperature change. (author)

  1. Nuclear power plant life management. An overview of identification of key components in relation with degradation mechanism - IAEA guidelines presentation

    International Nuclear Information System (INIS)

    Bezdikian, Georges

    2005-01-01

    Nuclear Power Plant (NPP) lifetime has a direct bearing on the cost of the electricity generated from it. The annual unit cost of electricity is dependent upon the operational time, and also annual costs and the capital cost assumptions function of Euros/kw. If the actual NPP lifetime has been underestimated then an economic penalty could be incurred. But the ageing degradation, of nuclear power plants is an important aspect that requires to be addressed to ensure: - that necessary safety margins are maintained throughout service life; - the adequate reliability and therefore the economic viability of older plants is maintained; - that unforeseen an uncontrolled degradation of critical plant components does not foreshorten the plant lifetime. Accommodating the inevitable obsolescence of some components has also to be addressed during plant life. Plant lifetime management requires the identification and life assessment of those components which not only limit the lifetime of the plant but also those which cannot be reasonably replaced. The planned replacement of major or 'key' components needs to be considered - where economic considerations will largely dictate replacement or the alternative strategy of power plant decommissioning. The necessary but timely planning for maintenance and replacements is a necessary consideration so that functions and reliability are maintained. The reasons for the current increasing attention in the area of plant life management are diverse and range from the fact that many of the older plants are approaching for the oldest plants more than 30 years in operation, and for important number of NPPs between 20 and 30 years. The impact of plant life management on the economics of generating electricity is the subject of ongoing studies and it can readily be seen that there can be both savings and additional costs associated with these activities. Not all degradation processes will be of significance in eroding safety margins and there is a

  2. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  3. The drivers of plant diversity

    DEFF Research Database (Denmark)

    Jensen, Kristine Engemann

    dataset consisting of 72,533 vascular plant species in 432 families covering the New World. Eight plant growth forms were defined based on woodiness, structure, and root traits, and species names were standardized to the latest accepted scientific name. The data is used in Paper II and IV In Paper II we....... The study emphasise that using big, collected datasets is not without limitations, and we recommend using rarefaction for species richness estimation from such datasets. Paper IV investigates a well-known macroecological pattern, the latitudinal diversity gradient, for nine vascular plant functional groups......In this thesis we use a “big data” approach to describe and explain large-scale patterns of plant diversity. The botanical data used for the six papers come from three different databases covering the New World, North America, and Europe respectively. The data on plant distributions were combined...

  4. Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense.

    Science.gov (United States)

    Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus

    2016-01-01

    Dodders ( Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa . In a recent work we identified a pattern recognition receptor of tomato, "Cuscuta Receptor 1" (CuRe1), which is critical to detect a "Cuscuta factor" (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa . Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite.

  5. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  6. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  7. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  8. Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy

    Science.gov (United States)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee

    2016-04-01

    Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.

  9. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension.

    Science.gov (United States)

    Hunter, Kendall S; Lee, Po-Feng; Lanning, Craig J; Ivy, D Dunbar; Kirby, K Scott; Claussen, Lori R; Chan, K Chen; Shandas, Robin

    2008-01-01

    Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated a method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero harmonic impedance value and PVR and suggested a correlation between higher-harmonic impedance values and pulmonary vascular stiffness. Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and pulmonary vascular stiffness from a single measurement, and that impedance is a better predictor of disease outcomes compared with PVR. Pressure and velocity waveforms within the main pulmonary artery were measured during right heart catheterization of patients with normal pulmonary artery hemodynamics (n = 14) and those with PAH undergoing reactivity evaluation (49 subjects, 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y = 1.095x + 1.381, R2 = 0.9620). In addition, the modulus sum of the first 2 harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (y = 13.39x - 0.8058, R2 = 0.7962). Among a subset of patients with PAH (n = 25), cumulative logistic regression between outcomes to total indexed impedance was better (R(L)2 = 0.4012) than between outcomes and indexed PVR (R(L)2 = 0.3131). Input impedance can be consistently and easily obtained from pulse-wave Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and

  10. Heavy metals in reindeer and their forage plants

    Directory of Open Access Journals (Sweden)

    O. Eriksson

    1990-09-01

    Full Text Available An attempt was made to assess the level of heavy metal transfer from forage plants to reindeer (Rangifer tarandus L. in an area in northern Lapland affected from dust from an open pit copper mine. Botanical analyses of rumen contents from reindeer provided information about the main plant species in the diet. Representative plant material was collected from sample plots within an 8 km radius from the central part of the mine and from a reference area situated about 200 km upwind of the mining site. The following plant species were analysed: Bryoria jremontii, Br. juscescens, Cladina rangiferina, Equisetum fluviatile, Descbampsiaflexuosa, Eriopborum vaginatum, Salix glauca, Salix pbylicifolia, Betula nana, and Vaccini-um myrtillus. The greatest difference between metal concentrations in the plants collected from dust contaminated area and from the reference area was found in lichens. Copper is the main metallic component of the ore and was found in higher concentrations in lichens coming from the area around the mine than in lichens from the reference area. Smaller differences were found in vascular plants. Dust particles, remaining on outer surfaces after snow smelt contributed to a limited extent to the metal contents. Species—specific accumulation of metals was observed in some plants. The uptake of lead and cadmium in some vascular plants was somewhat higher in the reference area compared with plants growing in the perifery of the mining center, probably due to the metal concentrations in the bedrock. Organ material (liver and kidney was collected from reindeer in both areas. No noticable effect on metal concentrations in the liver of the reindeer were found. Although the lead, cadmium and copper concentrations were higher in the organs collected from animals in the reference area than in those from the mining area, the levels were still below the concentrations regarded as harmful for the animals from toxicological point of view. The

  11. Sensing of Vascular Permeability in Inflamed Vessel of Live Animal

    Directory of Open Access Journals (Sweden)

    Sang A Park

    2018-01-01

    Full Text Available Increase in vascular permeability is a conclusive response in the progress of inflammation. Under controlled conditions, leukocytes are known to migrate across the vascular barriers to the sites of inflammation without severe vascular rupture. However, when inflammatory state becomes excessive, the leakage of blood components may occur and can be lethal. Basically, vascular permeability can be analyzed based on the intensity of blood outflow. To evaluate the amount and rate of leakage in live mice, we performed cremaster muscle exteriorization to visualize blood flow and neutrophil migration. Using two-photon intravital microscopy of the exteriorized cremaster muscle venules, we found that vascular barrier function is transiently and locally disrupted in the early stage of inflammatory condition induced by N-formylmethionyl-leucyl-phenylalanine (fMLP. Measurement of the concentration of intravenously (i.v. injected Texas Red dextran inside and outside the vessels resulted in clear visualization of real-time increases in transient and local vascular permeability increase in real-time manner. We successfully demonstrated repeated leakage from a target site on a blood vessel in association with increasing severity of inflammation. Therefore, compared to other methods, two-photon intravital microscopy more accurately visualizes and quantifies vascular permeability even in a small part of blood vessels in live animals in real time.

  12. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale.

    Directory of Open Access Journals (Sweden)

    Tiago Santana Balbuena

    2012-06-01

    Full Text Available Equisetum hyemale is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome- characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both E. hyemale rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the expression of the 87 characteristic proteins and revealed, based on the expression profile, the existence of 9 major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression and nucleotide and protein binding functions. Spatial differences analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH-domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25 and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  13. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants.

    Science.gov (United States)

    Nesler, Andrea; DalCorso, Giovanni; Fasani, Elisa; Manara, Anna; Di Sansebastiano, Gian Pietro; Argese, Emanuele; Furini, Antonella

    2017-03-25

    Cadmium (Cd) is a toxic trace element released into the environment by industrial and agricultural practices, threatening the health of plants and contaminating the food/feed chain. Biotechnology can be used to develop plant varieties with a higher capacity for Cd accumulation (for use in phytoremediation programs) or a lower capacity for Cd accumulation (to reduce Cd levels in food and feed). Here we generated transgenic tobacco plants expressing components of the Pseudomonas putida CzcCBA efflux system. Plants were transformed with combinations of the CzcC, CzcB and CzcA genes, and the impact on Cd mobilization was analysed. Plants expressing PpCzcC showed no differences in Cd accumulation, whereas those expressing PpCzcB or PpCzcA accumulated less Cd in the shoots, but more Cd in the roots. Plants expressing both PpCzcB and PpCzcA accumulated less Cd in the shoots and roots compared to controls, whereas plants expressing all three genes showed a significant reduction in Cd levels only in shoots. These results show that components of the CzcCBA system can be expressed in plants and may be useful for developing plants with a reduced capacity to accumulate Cd in the shoots, potentially reducing the toxicity of food/feed crops cultivated in Cd-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Identification of seismically risk-sensitive systems and components in nuclear power plants: feasibility study

    International Nuclear Information System (INIS)

    Azarm, M.; Boccio, J.; Farahzad, P.

    1983-06-01

    An approach for the identification of risk-sensitive components in a nuclear power plant during and after a seismic event is described. Application of the methodology to two hypothetical power plants - a Boiling Water Reactor and a Pressurized Water Reactor - are presented and the results are given in tabular and graphical form. Conclusions drawn and lessons learned through the course of this study, based on the relative importance of various accident scenarios and sensitivity analyses, are discussed. In addition, the areas that may need further investigation are identified

  15. Vascular flora of Kenya, based on the Flora of Tropical East Africa

    Directory of Open Access Journals (Sweden)

    Yadong Zhou

    2017-11-01

    Full Text Available Kenya, an African country with major higher plant diversity, has a corresponding diversity of plant associations, because of the wide geographic distribution, diverse climatic conditions and soil types. In this article, all vascular plants of Kenya were counted based on the completed "Flora of Tropical East Africa (FTEA", and all families and genera were revised using recent molecular systematics research, forming a "Synoptic List of Families and Genera of Kenyan Vascular Plants (SLFGKVP". In total, there are 225 families, 1538 genera and 6293 indigenous species and and 62 families, 302 genera and 588 exotic species in Kenya. The Fabaceae with 98 genera and 576 Species is the largest family. Two of the seven plant distribution regions of Kenya, K4 and K7 are the most species-richest areas with regard to both total and endemic species, with 3375 and 3191 total species and 174 and 185 endemic species in K4 and K7 respectively. While, K3 and K5 have the highest density of both total and endemic species. K1 has the lowest density of total species, and K2 has the lowest density of endemic species.

  16. Ecology of the Nevada Test Site. I. Geographic and ecologic distributions of the vascular flora (annotated checklist)

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J C

    1965-04-01

    A checklist of vascular plants of the Nevada Test Site is presented for use in studies of plant ecology. Data on the occurrence and distribution of plant species are included. Collections were made from both undisturbed and disturbed sites.

  17. Use of on-line fatigue monitoring of nuclear reactor components as a tool for plant life extension

    International Nuclear Information System (INIS)

    Stevens, G.L.; Ranganath, S.

    1991-01-01

    In this paper the application of an on-line fatigue monitoring system for tracking fatigue usage in operating power plants is described. The system, like several others which have been developed, uses the influence function approach, operates on a microcomputer, and determines component stresses using temperature, pressure, and flow rate data that are typically available from plant computers. Using plant-unique influence functions developed specifically for each component location, the system calculates stresses as a function of time and computes the fatigue usage. Stress values are calculated at time internals defined by the user and the fatigue values are saved on files for use at a later time. The application of the GE Fatigue Monitoring System (GEFMS) to calculate fatigue usage in the feedwater nozzle of a GE boiling Water Reactor is described in this paper

  18. Predicting Vascular Plant Diversity in Anthropogenic Peatlands: Comparison of Modeling Methods with Free Satellite Data

    Directory of Open Access Journals (Sweden)

    Ivan Castillo-Riffart

    2017-07-01

    Full Text Available Peatlands are ecosystems of great relevance, because they have an important number of ecological functions that provide many services to mankind. However, studies focusing on plant diversity, addressed from the remote sensing perspective, are still scarce in these environments. In the present study, predictions of vascular plant richness and diversity were performed in three anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER, and MSI. Also, we compared the suitability of these sensors using two modeling methods: random forest (RF and the generalized linear model (GLM. As predictors for the empirical models, we used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated using recursive feature elimination (RFE. Fourteen out of the 17 predictors chosen by RFE were textural metrics, demonstrating the importance of the spatial context to predict species richness and diversity. Non-significant differences were found between the algorithms; however, the GLM models often showed slightly better results than the RF. Predictions obtained by the different satellite sensors did not show significant differences; nevertheless, the best models were obtained with ASTER (richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and GLM respectively, followed by OLI and MSI. Diversity obtained higher accuracies than richness; nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.

  19. Affinity and selectivity of plant proteins for red wine components relevant to color and aroma traits.

    Science.gov (United States)

    Granato, Tiziana Mariarita; Ferranti, Pasquale; Iametti, Stefania; Bonomi, Francesco

    2018-08-01

    The effects of fining with various plant proteins were assessed on Aglianico red wine, using both the young wine and wine aged for twelve and twenty-four months, and including wine unfined or fined with gelatin as controls. Color traits and fining efficiency were considered, along with the content of various types of phenolics and of aroma-related compounds of either varietal or fermentative origin. All agents had comparable fining efficiency, although with distinct kinetics, and had similar effects on wine color. Individual plant proteins and enzymatic hydrolyzates differed in their ability to interact with some anthocyanins, with specific proanthocyanidins complexes, and with some aroma components of fermentative origin. Changes in varietal aroma components upon fining were very limited or absent. Effects of all the fining agents tested in this study on the anthocyanidin components were most noticeable in young red wine, and decreased markedly with increasing wine ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50 + year herbivore exclosure experiment near Barrow, Alaska

    International Nuclear Information System (INIS)

    Johnson, D R; Lara, M J; Tweedie, C E; Shaver, G R; Batzli, G O; Shaw, J D

    2011-01-01

    To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.

  1. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    OpenAIRE

    Jelenić, Srećko

    2003-01-01

    Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM) crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosp...

  2. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  3. Phytogeography of the vascular páramo flora of Podocarpus National Park, south Ecuador

    NARCIS (Netherlands)

    Lozano, P.; Cleef, A.M.; Bussmann, R.W.

    2009-01-01

    A plant ecological transect study of the páramos of the Podocarpus massif, southern Ecuador, was carried out between July 2001 and August 2004. Including herbarium records 187 vascular plant genera were found, which were used for the present phytogeographical analysis. Three geographic flora

  4. Vascular pathology: Cause or effect in Alzheimer disease?

    Science.gov (United States)

    Rius-Pérez, S; Tormos, A M; Pérez, S; Taléns-Visconti, R

    2018-03-01

    Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead to neuronal damage and dementia. Destruction of the organisation of the blood brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context would thus be responsible for any subsequent neuronal damage since these factors promote aggregation of β-amyloid peptide in the brain. The link between neurodegeneration and vascular dysfunction pathways has provided new drug targets and therapeutic approaches that will add to the treatments for AD. It is difficult to determine whether the vascular component in AD is the cause or the effect of the disease, but there is no doubt that vascular pathology has an important relationship with AD. Vascular dysfunction is likely to act synergistically with neurodegenerative changes in a cycle that exacerbates the cognitive impairment found in AD. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  6. Responsiveness of cold tolerant chickpea characteristics in fall and spring planting: II. yield and yield components

    Directory of Open Access Journals (Sweden)

    ahmad nezami

    2009-06-01

    Full Text Available Previous research in Mashhad collection chickpeas (MCC has shown that there are some cold tolerant genotypes for fall planting in the highlands. To obtain more detailed information about the reaction of these genotypes to fall and spring planting, the yield and yield component responses of 33 chickpea genotypes (32 cold tolerant genotypes and one susceptible genotypes to four planting dates (28 Sep., 16 Oct., 2 Nov., and 7 Mar. were evaluated in 2000-2001 growing season. The experiment was conducted at the experimental field of college of agriculture, Ferdowsi University of Mashhad as a split plot design with two replications. The planting dates were imposed as main plot and chickpea genotypes as subplot. Effects of planting date and genotype on percent of plant survival (PPS after winter, number. of pod per plant, 100 seed weight, yield and Harvest Index (HI were significant (p

  7. Pilot studies of management of ageing of nuclear power plant instrumentation and control components

    International Nuclear Information System (INIS)

    Burnay, S.G.; Simola, K.; Kossilov, A.; Pachner, J.

    1993-01-01

    This paper describes pilot studies which have been implemented to study the aging behavior of safety related component parts of nuclear power plants. In 1989 the IAEA initiated work on pilot studies related to the aging of such components. Four components were identified for study. They are the primary nozzle of a reactor vessel; a motor operated isolating valve; the concrete containment building; and instrumentation and control cables within the containment facility. The study was begun with phase 1 efforts directed toward understanding the aging process, and methods for monitoring and minimizing the effects of aging. Phase 2 efforts are directed toward aging studies, documentation of the ideas put forward, and research to answer questions identified in phase 1. This paper describes progress made on two of these components, namely the motor operated isolation valves, and in-containment I ampersand C cables

  8. Flora of vascular plants of selected Poznań cemeteries

    Directory of Open Access Journals (Sweden)

    Aneta Czarna

    2012-12-01

    Full Text Available The presence of 395 species of vascular flora at four rarely used cemeteries within the Poznań city was confirmed in 2010. Apart from naturally occurring species, cultivated species were noted equally. Among species appearing spontaneously between the graves, species new for the flora of Poland: Chionodoxa forbesii, Ch. luciliae, Puschkinia scilloides, new for the flora of Wielkopolska: Bidens ferulifolius, Hyacinthoides hispanica and new for the flora of Poznań: Erigeron ramosus, Lilium bulbiferum, Pimpinella nigra, Poa subcaerulea, Veronica hederifolia s.s., were recorded. Names of taxa originating from cultivation are underlined.

  9. Experience with nonuniform damping in the seismic analysis of nuclear plant components

    International Nuclear Information System (INIS)

    Winkel, B.V.; Julyk, L.J.

    1983-01-01

    Individual components of nuclear power plants may exhibit pronounced differences in damping magnitude. Various methods for accounting for nonuniform damping in a structural model are reviewed and evaluated. The methods are compared by solving a beam/pipe model subjected to a typical seismic ground motion. A two-degree-of-freedom variable damping parameter study is also presented. Based upon the experience of evaluating and applying the available methods, application guidelines are presented

  10. Operating experiences with passive systems and components in German nuclear power plants

    International Nuclear Information System (INIS)

    Maqua, M.

    1996-01-01

    Operating experience with passive systems and components is limited to the equipment installed in existing NPPs. In German power plants, this experience is available for equipment of the IAEA categories A, C and D. The presentation is focused on typical examples out of these three categories. An overview is given on the number of reported events and typical failure modes. Selected failures are discussed in detail. 1 ref., 6 figs, 7 tabs

  11. Operating experiences with passive systems and components in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maqua, M [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    1996-12-01

    Operating experience with passive systems and components is limited to the equipment installed in existing NPPs. In German power plants, this experience is available for equipment of the IAEA categories A, C and D. The presentation is focused on typical examples out of these three categories. An overview is given on the number of reported events and typical failure modes. Selected failures are discussed in detail. 1 ref., 6 figs, 7 tabs.

  12. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Guidice, S.J.; Inlow, R.O.

    1995-01-01

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  13. Treatment of core components from nuclear power plants with PWR and BWR reactors - 16043

    International Nuclear Information System (INIS)

    Viermann, Joerg; Friske, Andreas; Radzuweit, Joerg

    2009-01-01

    During operation of a Nuclear Power Plant components inside the RPV get irradiated. Irradiation has an effect on physical properties of these components. Some components have to be replaced after certain neutron doses or respectively after a certain operating time of the plant. Such components are for instance water channels and control rods from Boiling Water Reactors (BWR) or control elements, poisoning elements and flow restrictors from Pressurized Water Reactors (PWR). Most of these components are stored in the fuel pool for a certain time after replacement. Then they have to be packaged for further treatment or for disposal. More than 25 years ago GNS developed a system for disposal of irradiated core components which was based on a waste container suitable for transport, storage and disposal of Intermediate Level Waste (ILW), the so-called MOSAIK R cask. The MOSAIK R family of casks is subject of a separate presentation at the ICEM 09 conference. Besides the MOSAIK R cask the treatment system developed by GNS comprised underwater shears to cut the components to size as well as different types of equipment to handle the components, the shears and the MOSAIK R casks in the fuel pool. Over a decade of experience it showed that this system although effective needed improvement for BWR plants where many water channels and control rods had to be replaced after a certain operating time. Because of the large numbers of components the time period needed to cut the components in the pool had a too big influence on other operational work like rearranging of fuel assemblies in the pool. The system was therefore further developed and again a suitable cask was the heart of the solution. GNS developed the type MOSAIK R 80 T, a cask that is capable to ship the unsegmented components with a length of approx. 4.5 m from the Power plants to an external treatment centre. This treatment centre consisting of a hot cell installation with a scrap shear, super-compactor and a heavy

  14. Requirements for class 1C, 2C, and 3C pressure-retaining components and supports in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    This Standard applies to pressure-retaining components of CANDU nuclear power plants that have a code classification of Class 1C, 2C or 3C. These are pressure-retaining components where, because of the design concept, the rules of the ASME Boiler and Pressure Vessel Code do not exist, are not applicable, or are not sufficient. The Standard provides rules for the design, fabrication, installation, examination and inspection of these components and supports. It provides rules intended to ensure the pressure-retaining integrity of components, not the operability. It also provides rules for the support of fueling machines. The Standard applies only to new construction prior to the plant being declared in service

  15. Effects of air blast on power plant structures and components

    International Nuclear Information System (INIS)

    Kot, C.A.; Valentin, R.A.; McLennan, D.A.; Turula, P.

    1978-10-01

    The effects of air blast from high explosives detonation on selected power plant structures and components are investigated analytically. Relying on a synthesis of state of the art methods estimates of structural response are obtained. Similarly blast loadings are determined from compilations of experimental data reported in the literature. Plastic-yield line analysis is employed to determine the response of both concrete and steel flat walls (plates) under impulsive loading. Linear elastic theory is used to investigate the spalling of concrete walls and mode analysis methods predict the deflection of piping. The specific problems considered are: the gross deformation of reinforced concrete shield and containment structures due to blast impulse, the spalling of concrete walls, the interaction or impact of concrete debris with steel containments and liners, and the response of exposed piping to blast impulse. It is found that for sufficiently close-in detonations and/or large explosive charge weights severe damage or destruction will result. This is particularly true for structures or components directly exposed to blast impulse

  16. Flora-On: Occurrence data of the vascular flora of mainland Portugal.

    Science.gov (United States)

    Pereira, Ana Júlia; Francisco, Ana; Porto, Miguel

    2016-01-01

    The Flora-On dataset currently includes 253,310 occurrence records for the class Embryopsidae (vascular plants), comprising data collated via the platform http://flora-on.pt/ relating to observation records of vascular plants across mainland Portugal. Observations are uploaded directly to the database primarily by experienced botanists and naturalists, typically on a weekly basis, and consist of geo-referenced data points for species (or infraspecific taxa) along with their date of observation and phenological state. The Flora-On project aims to compile and make publicly accessible chorological, ecological, morphological and photographic information for the entire vascular flora of Portugal. The project's website offers powerful query and visualization capabilities, of which we highlight the probabilistic bioclimatic and phenological queries which operate based on the empirical density distributions of species in those variables. Flora-On was created and continues to be maintained by volunteers who are Associate members of Sociedade Portuguesa de Botânica (Botanical Society of Portugal). Given its focus on research-grade and current data, the Flora-On project represents a significant contribution to the knowledge of the present distribution and status of the Portuguese flora.

  17. Vascular epiphytic component in an urban forest fragment in Criciuma, Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Telma Elyta Vilhalba Azeredo

    2013-06-01

    Full Text Available This study aimed to conduct a floristic and phytosociological survey, as well as analyze the spatial distribution of the vascular epiphytic component in an urban forest fragment belonging to the submontane dense ombrophilous forest in the town of Criciuma, Santa Catarina, Brazil. In addition, information on the ecological groups of epiphytic species and the strategies for pollination and dispersal were also presented. One sampled 60 trees as phorophytes with DBH ≥ 10 cm, through the point-centered quarter method, and the expeditious walking method was used for recording the epiphytic species which weren’t sampled in the phorophytes through the phytosociological method. The frequency was evaluated having the occurrence of epiphytes in the phorophytes and the segments on the bole and crown as a basis. One recorded the presence of epiphytes in the phorophytes in the segments on the bole and crown. One found 65 species distributed into 39 genera and 14 families, out of which 49 were sampled in the phytosociological survey and the remaining ones in the walking survey. Bromeliaceae showed the highest richness, followed by Orchidaceae, and Cactaceae. Tillandsia recurvata (L. L. was firstly mentioned in the southern state. The specific diversity was estimated as H’ = 3.33 and evenness (E was equal to 0.86. The ecological group of holoepiphytes was the most representative one in the area under study. Entomophily and anemochory were the prevailing strategies for pollination and dispersal, respectively. In the phytosociological survey, the number of epiphytic species in the phorophytes ranged from 0 to 21. The highest importance values were those related to Rhipsalis teres (Vell. Steud. and Microgramma vacciniifolia (Langsd. & Fisch. Copel.

  18. Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics.

    Science.gov (United States)

    Huang, Shuai; Balgi, Aruna; Pan, Yaping; Li, Meng; Zhang, Xiaoran; Du, Lilin; Zhou, Ming; Roberge, Michel; Li, Xin

    2016-12-05

    Nucleotide-binding leucine-rich repeat (NLR) proteins serve as immune receptors in both plants and animals. To identify components required for NLR-mediated immunity, we designed and carried out a chemical genetics screen to search for small molecules that can alter immune responses in Arabidopsis thaliana. From 13 600 compounds, we identified Ro 8-4304 that was able to specifically suppress the severe autoimmune phenotypes of chs3-2D (chilling sensitive 3, 2D), including the arrested growth morphology and heightened PR (Pathogenesis Related) gene expression. Further, six Ro 8-4304 insensitive mutants were uncovered from the Ro 8-4304-insensitive mutant (rim) screen using a mutagenized chs3-2D population. Positional cloning revealed that rim1 encodes an allele of AtICln (I, currents; Cl, chloride; n, nucleotide). Genetic and biochemical analysis demonstrated that AtICln is in the same protein complex with the methylosome components small nuclear ribonucleoprotein D3b (SmD3b) and protein arginine methyltransferase 5 (PRMT5), which are required for the biogenesis of small nuclear ribonucleoproteins (snRNPs) involved in mRNA splicing. Double mutant analysis revealed that SmD3b is also involved in the sensitivity to Ro 8-4304, and the prmt5-1 chs3-2D double mutant is lethal. Loss of AtICln, SmD3b, or PRMT5 function results in enhanced disease resistance against the virulent oomycete pathogen Hyaloperonospora arabidopsidis Noco2, suggesting that mRNA splicing plays a previously unknown negative role in plant immunity. The successful implementation of a high-throughput chemical genetic screen and the identification of a small-molecule compound affecting plant immunity indicate that chemical genetics is a powerful tool to study whole-organism plant defense pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  19. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  20. Flora of fieId plantings and parks and its origin

    Directory of Open Access Journals (Sweden)

    Czesław Hołdyński

    2013-12-01

    Full Text Available The object of the studies presented in this paper was the flora of field plantings of different origin. The vascular flora ofthe plantings examined comprises 254 taxons, including 53 trees and shrubs, and 201 herbaceous vascular plants. The flora is rich and diverse. In 26,8% of taxons it is presents in all types of plantings. More than half of the registered species occurs once or twice only in all 23 planting groups studied. A detailed analysis of the flora examined shows that field plantings in agricultural landscapes may, in a small number of cases, constitute a source of weeds diaspores propagating in fields.

  1. Lithuanian requirements for ageing management of systems and components important to safety of nuclear power plant

    International Nuclear Information System (INIS)

    Ramanauskiene, A.

    2000-01-01

    In this paper the Lithuanian requirements for ageing management of systems and components important to safety of Ignalina nuclear power plant (two RBMK-1500 water-cooled graphite moderated channel-type power reactors) are presented

  2. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis

    Directory of Open Access Journals (Sweden)

    Oliveira-Esquerre K.P.

    2002-01-01

    Full Text Available This work presents a way to predict the biochemical oxygen demand (BOD of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.

  3. Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots

    NARCIS (Netherlands)

    Gujas, Bojan; Cruz, Tiago M D; Kastanaki, Elizabeth; Vermeer, Joop E M; Munnik, Teun; Rodriguez-Villalon, Antia

    2017-01-01

    The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big

  4. Patterns of Gondwana plant colonisation anddiversification

    Science.gov (United States)

    Anderson, J. M.; Anderson, H. M.; Archangelsky, S.; Bamford, M.; Chandra, S.; Dettmann, M.; Hill, R.; McLoughlin, S.; Rösler, O.

    Charting the broad patterns of vascular plant evolution for Gondwana againstthe major global environmental shifts and events is attempted here for the first time. This is based on the analysis of the major vascular plant-bearing formations of the southern continents (plus India) correlated against the standard geological time-scale. Australia, followed closely by South America, are shown to yield by far the most complete sequences of productive strata. Ten seminal turnover pulses in the unfolding evolutionary picture are identified and seen to be linked to continental drift, climate change and mass global extinctions. The rise of vascular plants along the tropical belt, for instance, followed closely after the end-Ordovician warming and extinction. Equally remarkable is that the Late Devonian extinction may have caused both the terrestrialisation of the vertebrates and the origin of the true gymnosperms. The end-Permian extinction, closure of Iapetus, together with warming, appears to have set in motion an unparalleled, explosive, gymnosperm radiation; whilst the Late Triassic extinction dramatically curtailed it. It is suggested that the latitudinal diversity gradient clearly recognised today, where species richness increases towards the tropics, may have been partly reversed during phases of Hot House climate. Evidence hints at this being particularly so at the heyday of the gymnosperms in the Late Triassic super-Hot House world. As for the origin of terrestrial, vascular, plant life, the angiosperms seem closely linked to a phase of marked shift from Ice House to Hot House. Insect and tetrapod evolutionary patterns are discussed in the context of the plants providing the base of the ever-changing ecosystems. Intimate co-evolution is often evident. This isn't always the case, for example the non-linkage between the dominant, giant, long-necked, herbivorous sauropod dinosaurs and the dramatic radiation of the flowering plants in the Mid Cretaceous.

  5. A study on the crack inspection signal characteristics for power plant components by phased array UT

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Lim, Sang Gyu; Kil, Du Song

    2001-01-01

    Phased array ultrasonic testing system has become available for practical application in complicated geometry such as turbine blade root, tenon, disc in power industry. This research describes the characteristics of phased array UT signal for various type of blade roots in thermal Power Plant turbines. This application of Phased array ultrasonic testing system has been promoted mainly to save inspection time and labor cost of turbine inspection. The characteristic of phase array UT signal for power plant component is very simple to understand but to difficult for perform the inspection. Since our sophisticated inspection technique and systems are essential for the inspection of steam turbine blade roots that require high reliability, we intend to develop new technology and improve phased array technique based on the wide and much experience for the inspection of turbine components.

  6. Aging of concrete components and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1987-01-01

    Nuclear power currently supplies about 16% of the US electricity requirements, with the percentage expected to rise to 20% by 1990. Despite the increasing role of nuclear power in energy production, cessation of orders for new nuclear plants in combination with expiration of operating licenses for several plants in the next 15 to 20 years results in a potential loss of electrical generating capacity of 50 to 60 gigawatts during the time period 2005 to 2020. A potential timely and cost-effective solution to the problem of meeting future energy demand is available through extension of the service life of existing nuclear plants. Any consideration of plant life extension, however, must consider the concrete components in these plants, since they play a vital safety role. Under the USNRC Nuclear Plant Aging Research (NPAR) Program, a study was conducted to review operating experience and to provide background that will lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based structures. The approach followed was in conformance with the NPAR strategy

  7. Algoflora and vascular flora of a limestone spring in the Warta river valley

    Directory of Open Access Journals (Sweden)

    Joanna Żelazna-Wieczorek

    2011-01-01

    Full Text Available Qualitative analysis of algae, including microhabitats and vascular vegetation in a spring niche, together with basic physical and chemical characteristics is presented. 175 diatom taxa as well as taxa of macroalgae and vascular plants were determined in the spring niche, and the community types were defined. Seasonal variability of diatom communities was observed. The influence of a flood as a catastrophe on the community of diatoms and macroalgae was noticed.

  8. Ageing studies on materials, components and process instruments used in nuclear power plants

    International Nuclear Information System (INIS)

    Bora, J.S.

    1997-04-01

    This report is a compilation of test results of thermal and radiation ageing tests carried out in the laboratory over a period of 25 years on diverse engineering materials, components and instruments used in nuclear power plants. Test items covered are different types of electrical cables, elastomers, surface coatings, electrical and electronics components and process instruments. Effects of thermal and radiation ageing on performance parameters are shown in tabular forms. Apart from finding the characteristics, capabilities and limitations of test items, ageing research has helped in pin-pointing sub-standard and critical parts and necessary corrective action has been taken. This report is expected to be quite useful to the manufacturers users and researchers for reference and guidance. (author)

  9. Three technical issues in fatigue damage assessment of nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Shah, V.N.

    1991-01-01

    This paper addresses three technical issues that affect the fatigue damage assessment of nuclear power plant components: the effect of the environment on the fatigue life, the importance of the loading sequence in calculating the fatigue crack-initiation damage, and the adequacy of current inservice inspection requirements and methods to characterize fatigue cracks. The environmental parameters that affect the fatigue life of carbon and low alloy steel components are the sulphur content in the steel, the temperature, the amount of dissolved oxygen in the coolant, and the presence of oxidizing agents such as copper oxide. The occurrence of large-amplitude stress cycles early in a component's life followed by low-amplitude stress cycles may cause crack initiation at a cumulative usage factor less than 1.0. The current inservice inspection requirements include volumetric inspections of welds but not of some susceptible sites in the base metal. In addition, the conventional ultrasonic testing techniques need to be improved for reliable detection and accurate sizing of fatigue cracks. 28 refs., 4 figs., 1 tab

  10. PLANT DIVERSITY OF THE ZHELTOKAMENSKIY OPEN CAST MINES

    Directory of Open Access Journals (Sweden)

    Yarova T.A.

    2012-11-01

    Full Text Available Floristic structure data of soil algae, lichens, mosses, and vascular plants are given. Rare plant species which are protected at the Ukrainian, European, and International levels were revealed. The species list of trees and bushes was conducted. The soil analysis was carried out by such parameters: pH-value, the maintenance of hygroscopic water, the maintenance of mineral substances. Vegetation biomass on the open cast mines sample areas is defined. Ecological analysis of the biotopes of registered algae species was performed. The ecological analysis of the vascular plants species biotopes was carried out.The estimation of the perspective vegetation pattern was suggested for natural restoration of the open cast mines. The plant species are selected according to the ecological and morphological characteristics for plant rehabilitation and planting of open cast mines.

  11. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S [CISE SpA, Milan (Italy); Crudeli, R [ENEL SpA, Milan (Italy)

    1999-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  12. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S. [CISE SpA, Milan (Italy); Crudeli, R. [ENEL SpA, Milan (Italy)

    1998-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  13. Immune state of patients of vegeto-vascular dystonia, clean-up workers of the Chernobyl accident

    International Nuclear Information System (INIS)

    Sakhno, T.A.; Davydova, T.I.; Bazika, D.A.; Chumak, A.A.

    1995-01-01

    Immune state of 272 clean-up workers, participants of the Chernobyl Power Plant accident, suffering from vegeto-vascular dystonia is studied. Comparison groups were formed by 20 healthy clean-up workers, 25 vegeto-vascular dystonia patients non-participating in the clean-up works, and 60 healthy donors. Immune state disturbances in the vegeto-vascular dystonia patients have unidirectional changing but among the clear-up workers their expression was much significant coinciding with the more severe clinical courses of disease comparing to the patients non-participating in the clean-up works

  14. Requirements for class 1, 2, and 3 pressure-retaining systems and components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1991-09-01

    This third edition of CAN/CSA-N285.1 supersedes the 1981 and 1975 editions. It provides the specific requirements for design, fabrication, and installation of Class 1, 2 and 3 pressure-retaining systems and components in CANDU nuclear power plants, and over pressure protection of the heat transport system. The general requirements for pressure-retaining systems and components are given in CSA Standard CAN/CSA-N285.0, with which Class 1, 2 and 3 systems and components must also comply

  15. Some experience from seismic check-ups of components of Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Masopust, R.

    1987-01-01

    The first Czechoslovak nuclear power plant with the so-called partial anti-seismic design will be built in Mochovce. The evaluation of seismic resistance is prescribed only for equipment and systems which secure the safe reactor shutdown, the withdrawal of residual heat and prevent uncontrolled release of radioactivity into the environment. The following variants were compared in the calculation analysis of the primary loop of the WWER-440 reactor for the Mochovce nuclear power plant: the seismically unsecured loop of a usual design for WWER-440 nuclear power plants, the loop provided with mechanical or hydraulic dampers and the loop provided with viscose shock absorbers. The tests showed that technically most suitable is the use of viscose shock absorbers which do not completely block the movement of the system during the earthquake but absorb it intensively. The viscose shock absorbers are also much cheaper than the dampers. Briefly described is experience with the experimental evaluation of the seismic resistance of components of the Mochovce nuclear power plant. Great difficulty was encountered by the non-existence in Czechoslovakia of a seismic table allowing simultaneous excitation in the vertical and horizontal directions. (Z.M.). 18 refs

  16. Redox processes in the rhizosphere of restored peatlands - The impact of vascular plant species on electrochemical properties of dissolved organic matter

    Science.gov (United States)

    Agethen, Svenja; Wolff, Franziska; Knorr, Klaus-Holger

    2016-04-01

    Restoration of cut over peatlands in Central Europe is challenging in a landscape overused for agriculture. Excess nutrient availability by excess fertilization triggers uncharacteristic vegetation that is one key driver for carbon cycling. Those nutrient rich systems are often dominated by graminoids, and were often found to emit substantial amounts of methane. Plants grown under nutrient rich conditions provide more labile carbon in rhizodeposition and litter that fuels methanogenesis. Such species often have aerenchyma that facilitates direct CH4 emissions to the atmosphere and therefore impair the climate cooling function of bogs. On the other hand, aerenchymatic tissue supplies oxygen to the rhizosphere, which may reduce methanogenesis or stimulate methane oxidation, as methanogenesis is a strictly anaerobic process. Which of the effects prevail is often unclear. Therefore, the aim of this study was to test the impact of different vegetation on rhizospheric redox conditions and methanogenesis, including aerenchymatic vascular plants that are dominant in restored cut over peatlands. As ombrotrophic peat is poor in inorganic electron acceptors (EAs) to suppress methanogenesis, we analyzed the electron acceptor (EACs) and electron donor capacities (EDCs) of dissolved organic matter (DOM) in the rhizosphere to understand the impact of vegetation on anaerobic organic matter degradation. We planted Juncus effusus, Eriophorum vaginatum, Eriophorum angustifolium, Sphagnum (mixture of S. magellanicum, S. papillosum, S. sec. acutifolia, 1/3 each) plus non-vegetated controls; six replicates per batch; in containers with untreated homogenized peat. The plants grow under constant conditions (20° C, 12h diurnal light cycles and 80% RH). Anoxic conditions were achieved by keeping the water table at +10 cm. For monitoring, the rhizosphere is equipped with suction and gas samplers. We measure dissolved CO2 and CH4 concentrations, inorganic EAs (NO3-, Fe(III), and SO42-) and

  17. [Morphological features of stromal-vascular component of the thymus of stillborn children and children under one year of life from mothers that do not follow a healthy lifestyle

    OpenAIRE

    Gorianikova I.N.

    2015-01-01

    Background. Morphofunctional state of the thymus of child in most cases is directly dependent on the mother health and her lifestyle. Objective. The purpose of the research was to reveal the morphological features of stromal-vascular component of the thymus of stillborn children and children under one year of life born from women who conducted a sedentary lifestyle, smoked, drank alcohol and ate the foods containing tartrazine. Methods. The material of the study was 67 thymuses of stillborn c...

  18. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    Science.gov (United States)

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  19. A study on the optimal replacement periods of digital control computer's components of Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il; Seong, Poong Hyun

    1993-01-01

    Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models of optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference. (Author)

  20. Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2012-07-01

    Full Text Available Hyperspectral (HS data represents an extremely powerful means for rapidly detecting crop stress and then aiding in the rational management of natural resources in agriculture. However, large volume of data poses a challenge for data processing and extracting crucial information. Multivariate statistical techniques can play a key role in the analysis of HS data, as they may allow to both eliminate redundant information and identify synthetic indices which maximize differences among levels of stress. In this paper we propose an integrated approach, based on the combined use of Principal Component Analysis (PCA and Canonical Discriminant Analysis (CDA, to investigate HS plant response and discriminate plant status. The approach was preliminary evaluated on a data set collected on durum wheat plants grown under different nitrogen (N stress levels. Hyperspectral measurements were performed at anthesis through a high resolution field spectroradiometer, ASD FieldSpec HandHeld, covering the 325-1075 nm region. Reflectance data were first restricted to the interval 510-1000 nm and then divided into five bands of the electromagnetic spectrum [green: 510-580 nm; yellow: 581-630 nm; red: 631-690 nm; red-edge: 705-770 nm; near-infrared (NIR: 771-1000 nm]. PCA was applied to each spectral interval. CDA was performed on the extracted components to identify the factors maximizing the differences among plants fertilised with increasing N rates. Within the intervals of green, yellow and red only the first principal component (PC had an eigenvalue greater than 1 and explained more than 95% of total variance; within the ranges of red-edge and NIR, the first two PCs had an eigenvalue higher than 1. Two canonical variables explained cumulatively more than 81% of total variance and the first was able to discriminate wheat plants differently fertilised, as confirmed also by the significant correlation with aboveground biomass and grain yield parameters. The combined

  1. Magnetic resonance venography of congenital vascular malformations of the extremities

    International Nuclear Information System (INIS)

    Laor, T.; Burrows, P.E.; Hoffer, F.A.

    1996-01-01

    Contrast angiography can demonstrate the vascular components of a vascular malformation, but can be technically challenging in small patients with complex venous anomalies. We reviewed the role of magnetic resonance venography (MRV) in the evaluation of children with predominantly low-flow, vascular malformations of the extremities. MRV (2D time-of-flight technique) and magnetic resonance (MR) imaging examinations were performed in ten young patients with congential predominantly low-flow vascular malformations of the extremities. MR imaging was used to characterize and determine the extent of the malformations, and MRV to evaluate the deep and superficial venous channels. In all patients, MRV studies were reviewed in conjunction with contrast angiograms, considered the gold standard, to confirm the findings. All signficant channel anomalies seen with contrast angiography were identified with MRV. In addition, MRV demonstrated some veins that were not intentionally opacified during contrast studies. MRV demonstrates both the superficial and deep conducting veins, whereas contrast angiography is a more directed study, evaluating only those channels intentionally opacified. Together, MR imaging and MRV data can non-invasively form the basis for determining the prognosis and choosing the individual treatment of congenital vascular malformations of the extremities. (orig.)

  2. Soil availability, plant uptake and soil to plant transfer of 99Tc-- A review

    International Nuclear Information System (INIS)

    Bennett, Roy; Willey, Neil

    2003-01-01

    The fission yield of 99 Tc from 239 Pu and 235 U is similar to that of 137 Cs or 90 Sr and it is therefore an important component of nuclear weapons fall-out, nuclear waste and releases from nuclear facilities. There is particular current interest in 99 Tc transfer from soil to plants for: (a) environmental impact assessments for terrestrial nuclear waste repositories, and (b) assessments of the potential for phytoextraction of radionuclides from contaminated effluent and soil. Vascular plants have high 99 Tc uptake capacity, a strong tendency to transport it to shoot material and accumulate it in vegetative rather than reproductive structures. The mechanisms that control 99 Tc entry to plants have not been identified and there has been little discussion of the potential for phytoextraction of 99 Tc contaminated effluents or soil. Here we review soil availability, plant uptake mechanisms and soil to plant transfer of 99 Tc in the light of recent advances in soil science, plant molecular biology and phytoextraction technologies. We conclude that 99 Tc might not be highly available in the long term from up to 50% of soils worldwide, and that no single mechanism that might be easily targeted by recombinant DNA technologies controls 99 Tc uptake by plants. Overall, we suggest that Tc might be less available in terrestrial ecosystems than is often assumed but that nevertheless the potential of phytoextraction as a decontamination strategy is probably greater for 99 Tc than for any other nuclide of radioecological interest

  3. Plant species invasions along the latitudinal gradient in the United States

    Science.gov (United States)

    Thomas J. Stohlgren; David Barnett; Curtis Flather; John Kartesz; Bruce Peterjohn

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the...

  4. Species richness of vascular plants along the climatic range of the Spanish dehesas at two spatial scales

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia del Barrio

    2014-04-01

    Full Text Available Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas.Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitats was 75.6 species, and average alpha richness for dehesa sites was 146.3. Gamma richness assessed for the overall dehesa habitat was 340.0 species. The species richness figures of normal dehesa mesohabitat were significantly lesser than of the eutrophic mesohabitat and lesser than the oligotrophic mesohabitat too. No significant differences were found for species richness among dehesa sites. We have found more dissimilarity at local scale (mesohabitat than at regional scale (habitat. Finally, the results of the similarity assessment between dehesa sites reflected both climatic and biogeographic gradients.Research highlights: An effective conservation of dehesas must take into account local and regional conditions all along their distribution range for ensuring the conservation of the main vascular plant species assemblages as well as the associated fauna.Keywords: Agroforestry systems; mesohabitat; non-parametric estimators; alpha richness; gamma richness; floristic similarity; climatic and biogeographic range.

  5. Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress

    Directory of Open Access Journals (Sweden)

    Hemmat A. Ibrahim

    2016-12-01

    Full Text Available In the greenhouse experiment, wheat plants (Triticum aestivum L. cv. Giza 168 were treated with 10 mM of maltose and trehalose as foliar spray using Tween 20 as wetting agent at 15, 30 and 45 days post sowing with two times of irrigation at 10 and 20 days intervals. Two samples were taken after 45 and 120 days from planting. At the first sample date, plant height, shoot fresh and dry weights and leaf area were recorded. At harvesting time (the second sample no. of spikes/plant, no. of spikelets/plant and weight of 1000 grains were taken. Chemical analyses were conducted in leaves at the first sample date for determination of phenolic compounds, flavonoids, amino acids, reducing sugars, total soluble sugars, protein, proline, PAL, POD, ascorbate peroxidase, catalase, PPO and MDA. The obtained results indicated that maltose and trehalose had significant and positive effect on most growth parameters. Opposite trend was found in plant height, no. of spike/plant and weight of 1000 grains by drought treatment. Maltose and trehalose treatments enhanced in the most biochemical components whereas they decreased PAL and catalase activity. Variable trends in amino acids and ascorbate peroxidase were observed by drought. However, the drought has more stimulative effect in most cases than the first time period of irrigation. The results concluded that foliar applications with maltose or trehalose induced water stress tolerance in wheat plants. Maltose treatment gave the best results in most morphological parameters, grains yield and biochemical components than trehalose treatment.

  6. Herbarium of the University of Malaga (Spain: Vascular Plants Collection

    Directory of Open Access Journals (Sweden)

    Jose García Sánchez

    2013-09-01

    Full Text Available The herbarium of University of Málaga (MGC Herbarium is formed by four biological collections. The vascular plants collection (MGC-Cormof is the main collection of the herbarium. MGC-Cormof dataset aims to digitize and publish data associated with over 76.000 specimens deposited in the collection, of which 97.2% of the specimens are identified at species level. Since 2011, the University of Malaga’s Central Research Service (SCAI has been responsible for maintaining the herbariums and the dataset. The collection is growing continuously, with an annual intake of about 1.500 specimens. Nearly 96% of the collection is digitized, by Herbar v3.7.1 software (F. Pando et al. 1996–2011, making over 73.000 specimens accessible through the GBIF network (http://data.gbif.org/datasets/resource/8105/. At present, 247 families and 8.110 taxa, distributed in angiosperms (93.97%, ferns and fern allies (4.89% and gymnosperms (1.14%, constitute the MGC-Cormof collection. The families and genera best represented in the collection are Compositae, Leguminosae, Gramineae, Labiatae, Caryophyllaceae, Teucrium, Silene, Asplenium, Linaria and Quercus. Most of the specimens are from the Western Mediterranean Region, fundamentally Southern Spain (Andalusia: 82% of specimens and Northern Morocco (2.17%. Approximately, 63% of the specimens are georeferenced. The identification of the specimens in the collection has been carried out by the plant biology department at the University of Malaga and plus 40% of the specimens has been reviewed by experts. The MGC-Cormof dataset has been revised by DarwinTest v3.2 tool (Ortega-Maqueda and Pando 2008 before being published in GBIF. The data included in this database are important for conservation works, taxonomy, flora, cartography, phenology, palynology, among others.El Herbario de la Universidad de Málaga (Herbario MGC está constituido por cuatro colecciones biológicas. La colección de plantas vasculares (MGC Cormof es la

  7. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    , the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...

  8. Integrity evaluation of power plant components by fracture mechanics and related techniques

    International Nuclear Information System (INIS)

    Mukherjee, B.; Vanderglas, M.L.; Davies, P.H.

    1982-01-01

    Power plant components can be subject to unexpected failures with serious consequences, unless careful attention is paid to minute crack defects and their possible growth. The Linear Elastic Fracture Mechanics approach to structural integrity evaluation, as it appears in the ASME Code, is discussed. Projects related to material data generation and the development of structural analysis methods to make the above method usable are described. Several integrity-related questions outside the scope of the Code guidelines are documented, concluding with comments on possible future developments

  9. An example of RCCM application to exportation. Manufacture of components for 900 MW nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Bitouzet, P.

    1983-03-01

    The National Korean Electricy society KEPCO ordered the KNU9 and 10 power plants from FRAMATOME. This contract involve an important fabrication of components. The KHIC society has been indicated to manufacture the main components. This paper gives some precisions about the organization of the Technical Assistance for the Korean realization of five big components (pressure vessel, steam generator, pressurizer, accumulator and injection reservoir of boron), components manufactured according to French standard, including RCC (design and construction rules). Finally, it is shown how this Technical Assistance is carried out [fr

  10. Crack growth determination on laboratory components

    International Nuclear Information System (INIS)

    Hurst, R.C.

    1993-01-01

    In order to aid design and support remanent life assessment of plant components operating at elevated temperatures, the reliability of the analytical methods, which translate materials data procured from the laboratory to the behaviour of actual components, requires validation. Such a validation can of course be interpreted from operating plant, however the potential risks involved encourage the development of out of plant techniques for the validation of representative components. For meaningful validation, these techniques need careful control and high accuracy which can best be achieved in a laboratory environment. As the laboratory component test should be designed to simulate actual plant conditions as closely as possible, the direct extension of the results to the plant component case requires scaling up. Consequently the successful development of such a test may even lead to the advantageous situation where it could form an alternative to the conventional route where, for example, it may not be possible to obtain the plant component's metallurgical structure in a conventional specimen or, alternatively, when too many assumptions are required in the analysis when translating to different geometries and stress systems. Under these conditions, in spite of the more sophisticated test requirements, it may prove more reasonable to opt for the more representative laboratory component data for use in design or lifetime prediction. The present work describes the application of the component validation test philosophy to the problem of crack growth under two rather different loading conditions. In both cases, crack growth is measured using the direct current potential drop (PD) technique on tubular metallic components containing artificial defects, however the plant conditions to be simulated lead to either creep or thermal fatigue. The creep studies on Alloy 800H support heat exchanger design for nuclear plant, solar towers and chemical plant, whereas the work on the

  11. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Body of a Vascular Plant Is Composed of Three Tissue Systems . . . . . . . . . . . . . . . . . . . . . Structurally Stem, Leaf, and Root Differ Primarily...

  12. Seismic fragility of nuclear power plant components. Phase I

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.

    1986-06-01

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies

  13. 10 CFR Appendix H to Part 110 - Illustrative List of Electromagnetic Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... Equipment and Components Under NRC Export Licensing Authority H Appendix H to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. H Appendix H to Part 110—Illustrative List of Electromagnetic Enrichment Plant Equipment and Components Under...

  14. Tree size predicts vascular epiphytic richness of traditional cultivated tea plantations in Southwestern China

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2017-04-01

    Full Text Available Species–area relationship has been widely addressed on many plant communities, but very few have conducted on epiphytic communities. Epiphytic plants are plentiful on ancient tea trees (Camelia sinensis var. assamica in the well-known Jingmai tea plantation area, Langcang region of Yunnan Province, SW China, and add to the plant community biodiversity. We investigated 343 tea trees with various ground diameter, canopy area, under branch height, and tree height. A total of 146 vascular epiphytic plants, belonging to 19 species in seven families were recorded from the trunk or branches of 93 (27.11% investigated trees. We examined in situ abundance, richness, and diversity (Shannon–Weiner index of the recorded vascular epiphytes, and their relationships to tree variables. Our results showed that the distribution (abundance, richness, and diversity of epiphytic plants are significantly related to the canopy area (p<0.05 and basal diameter (p<0.0001 of tea trees, supporting their use as key factors and good predictor for the epiphyte’s appearance in this type of agro-ecosystems. We also concluded that the species–area relationship is a useful epiphytic species community research tool.

  15. Operating experience in cleaning sodium-wetted components at the KNK nuclear power plant

    International Nuclear Information System (INIS)

    Stade, K.Ch.

    1978-01-01

    Since 1969, components of the KNK facility, the first sodium cooled nuclear power plant in the Federal Republic of Germany, have been cleaned both by the alcohol and the wet gas techniques. This paper outlines the experience accumulated In the application of these methods, especially in cleaning steam generators and fuel elements. Some preliminary results are indicated of the attempt to clean a cold trap from the primary circuit of the KNK facility. (author)

  16. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  17. Synthesis of results obtained on sodium components and technology through the Generation IV International Forum SFR Component Design and Balance-of-Plant Project

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Rodriguez, G.; Kisohara, N.; Kim, J. B.; Gerber, A.; Ashurko, Y.; Toyama, S.

    2013-01-01

    Status: The viability of designing SFR components and BOP has been demonstrated with design, construction and operation of previous sodium-cooled reactors. The main objective of this R&D project is related to system performance, or by development on the use of AECS in the BOP that could allow further cost improvements. Objective: To conduct collaborative research and development of components and BOP for the SFR System. The Project has to satisfy the GIF’s criteria of safety, economy, sustainability, proliferation resistance and physical protection. Activities within this Project are addressing experimental and analytical evaluation of advanced ISI&R, LBB assessment, development of AECS with Brayton cycles, advanced SG technologies. Project activities will be based in part on the extensive historical R&D experience with component design and balance of plant for sodium-cooled fast reactors

  18. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  19. A preliminary study on a specifically expressed arabidopsis promotor in vascular bundle

    International Nuclear Information System (INIS)

    Gu Yunhong; Xie Chuanxiao; Wu Lifang; Yu Zengliang

    2003-01-01

    From a population of about 3500 single plants in Arabidopsis promoter trapping bank, one plant whose GUS-gene had been specifically expressed in vascular bundle, was screened by the method of gus tissue staining. The T-DNA flanking sequence was amplified using TAIL-PCR. This band will be purified and connected to TA cloning vector. After sequencing and searching in the genebank, its function will be demonstrated through transformation

  20. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  1. Lifetime management for mechanical systems, structures and components in nuclear power plants

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Schuler, X.

    2006-01-01

    Guidelines, codes and standards contain regulations and requirements with respect to the quality of mechanical systems, structures and components (SSC) of nuclear power plants. These concern safe operation during the total lifetime (lifetime management), safety against ageing phenomena (ageing management) as well as proof of integrity (e.g. break exclusion or avoidance of fracture). Within this field the ageing management is a key element. Depending on the safety-relevance of the SSC under observation including preventive maintenance various tasks are required in particular to clarify the mechanisms which contribute system-specifically to the damage of the components and systems and to define their controlling parameters which have to be monitored and checked. Appropriate continuous or discontinuous measures are to be considered in this connection. The approach to ensure a high standard of quality in operation and the management of the technical and organisational aspects are demonstrated and explained

  2. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR......-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wild-type vascular development, indicating the relevance...... of activation tagging for functional analysis of novel genes involved in plant development....

  3. Inservice inspection of heavy water plants - a tool in assessing damage to components and life extension

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Bhattacharys, D.K.; Baldev Raj

    1994-01-01

    Any system and its components are expected to give trouble free service over a certain period of time known as life time. The life time is estimated during the design stage. To achieve the design life, certain level of quality are to be defined and this quality has to be worked into the components by proper fabrication processes and their compliance with quality are to be checked. In addition, one has to guard against initiation or propagation of defects which may occur due to normal and abnormal service conditions. Non-destructive test (NDT) techniques are widely used for finding the health of the component. The role of NDT extends from the production stage to the entire life period of the system. This paper highlights the periodic in-service inspection (ISI) carried out on various components of the Heavy Water Plants (HWP) in India in assessing the integrity of the components and predicting the life of the components. (author). 3 refs., 4 figs

  4. Changes in Vascular Plant Biodiversity in the Netherlands in the 20th Century Explained by their Climatic and other Environmental Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tamis, W.L.M.; Van der Meijden, R.; Udo de Haes, H.A. [Nationaal Herbarium Nederland/Leiden University Branch, P.O. Box 9514, 2300, RA, Leiden (Netherlands); Van ' t Zelfde, M. [Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden (Netherlands)

    2005-09-01

    In the Netherlands nation-wide databases are available with about 10 million records of occurrences of vascular plant species in the 20th century on a scale of approximately 1 km{sup 2}. These data were analysed with a view to identifying relationships between changes in botanical biodiversity and climatic and other environmental factors. Prior to analysis the data were corrected for several major forms of survey bias. The records were broken down into three periods: 1902-1949, 1975-1984 and 1985-1999. Using multiple regression analysis, differences between successive periods were related to plant functional characteristics as explanatory variables. Between the periods 1902-1949 and 1975-1984 there were small but significant increases in the presence of both thermophilic ('warm') and psychrophilic ('cold') species. However, in the final decades of the 20th century there was a marked increase in thermophilic species only, coinciding with the marked increase in ambient temperature observed during this period, evidence at least of a rapid response of Dutch flora to climate change. Urbanisation was also examined as an alternative explanation for the increase in thermophilic plant species and was found to explain only 50% of the increased presence of such species in the final decades of the 20th century. Besides temperature-related effects, the most important change during the 20th century was a strong decline in oligotrophic and a marked increase in eutrophic plant species.

  5. Development of a simple method for classifying the degree of importance of components in nuclear power plants using probabilistic analysis technique

    International Nuclear Information System (INIS)

    Shimada, Yoshio; Miyazaki, Takamasa

    2006-01-01

    In order to analyze large amounts of trouble information of overseas nuclear power plants, it is necessary to select information that is significant in terms of both safety and reliability. In this research, a method of efficiently and simply classifying degrees of importance of components in terms of safety and reliability while paying attention to root-cause components appearing in the information was developed. Regarding safety, the reactor core damage frequency (CDF), which is used in the probabilistic analysis of a reactor, was used. Regarding reliability, the automatic plant trip probability (APTP), which is used in the probabilistic analysis of automatic reactor trips, was used. These two aspects were reflected in the development of criteria for classifying degrees of importance of components. By applying these criteria, a method of quantitatively and simply judging the significance of trouble information of overseas nuclear power plants was developed. (author)

  6. Components selection for ageing management

    International Nuclear Information System (INIS)

    Mingiuc, C.; Vidican, D.

    2002-01-01

    Full text: The paper presents a synthesis of methods and activities realized for the selection of critical components to assure plant safety and availability (as electricity supplier). There are presented main criteria for selection, screening process. For the resulted categories of components shall be applied different category of maintenance (condition oriented, scheduled or corrective), function of the importance and financial effort necessary to fulfil the task. 1. Systems and components screening for plant safety assurance For the systems selection, from Safety point of view, was necessary first, to define systems which are dangerous in case of failure (mainly by rupture/ release of radioactivity) and the safety systems which have to mitigate the effects. This is realized based on accident analysis (from Safety Report). Also where taken in to account the 4 basic Safety Principles: 'Reactor shut down; Residual heat removal; Radioactivity products confinement; NPP status monitoring in normal and accident conditions'. Following step is to establish safety support systems, which have to action to assure main safety systems operation. This could be realized based on engineering judgement, or on PSA Level I analysis. Finally shall be realized chains of the support systems, which have to work, till primary systems. For the critical components selection, was realized a Failure Mode and Effect Analysis (FMEA), considering the components effects of failures, on system safety function. 2. Systems and components screening for plant availability assurance The work was realized in two steps: Systems screening; Components screening The systems screening, included: General, analyze of the plant systems list and the definition of those which clearly have to run continue to assure the nominal power; Realization of a complex diagram to define interdependence between the systems (e.g. PHT and auxiliaries, moderator and auxiliaries, plant electrical diagram); Fill of special

  7. Interaction Effects of Planting Date and Weed Competition on Yield and Yield Components of Three white Bean Cultivars in Semirom

    Directory of Open Access Journals (Sweden)

    A. Yadavi

    2012-06-01

    Full Text Available Unsuitable planting and weed competition are the most important factors that greatly reduce the yield of bean. In order to study the effect of planting date on yield and yield components of three white bean cultivars in weed infest and weed free condition a factorial experiment with randomized complete block design and three replications was carried out at Semirom in 2009. The treatments were planting date (May10, May 25 and June 9 and white bean cultivars (Shekofa, Pak and Daneshkade and two levels of weed infestation (weedy and weed free. Results showed that planting date, weed competition and cultivars had significant effects on yield and yield components of white bean. The 30-day delay in planting date reduced the number of pods per plant, seeds per pod, 100 seed weight and biological yield of white bean cultivars, 22.5, 18, 20.1 and 22.5 percent respectively. Also weed competition, reduced the number of seeds per pod, 100 seed weight and biological yield respectively by 13.5, 5.7 and 27.1 percent. Result of planting date and weed competition interaction effects indicated that the weed competition decreased grain yield (53% in third planting date more than others and delay in planting date was companion with increasing weed density and dry weight in flowering stage of bean. Also Shekofa cultivar had highest grain yield (3379 kg/ha at the first planting date and weed free condition.

  8. The phylogenetic distribution of extrafloral nectaries in plants.

    Science.gov (United States)

    Weber, Marjorie G; Keeler, Kathleen H

    2013-06-01

    Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1-2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in vascular plants. Our current understanding of the

  9. Evaluation of the Waste Isolation Pilot Plant classification of systems, structures and components

    International Nuclear Information System (INIS)

    1985-07-01

    A review of the classification system for systems, structures, and components at the Waste Isolation Pilot Plant (WIPP) was performed using the WIPP Safety Analysis Report (SAR) and Bechtel document D-76-D-03 as primary source documents. The regulations of the US Nuclear Regulatory Commission (NRC) covering ''Disposal of High level Radioactive Wastes in Geologic Repositories,'' 10 CFR 60, and the regulations relevant to nuclear power plant siting and construction (10 CFR 50, 51, 100) were used as standards to evaluate the WIPP design classification system, although it is recognized that the US Department of Energy (DOE) is not required to comply with these NRC regulations in the design and construction of WIPP. The DOE General Design Criteria Manual (DOE Order 6430.1) and the Safety Analysis and Review System for AL Operation document (AL 54f81.1A) were reviewed in part. This report includes a discussion of the historical basis for nuclear power plant requirements, a review of WIPP and nuclear power plant classification bases, and a comparison of the codes and standards applicable to each quality level. Observations made during the review of the WIPP SAR are noted in the text of this reoport. The conclusions reached by this review are: WIPP classification methodology is comparable to corresponding nuclear power procedures. The classification levels assigned to WIPP systems are qualitatively the same as those assigned to nuclear power plant systems

  10. Detection of instrument or component failures in a nuclear plant by Luenberger observers

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Colley, R.W.; Alexandro, F.J.; Clark, R.N.

    1985-01-01

    A diagnostic system, which will distinguish between instrument failures (flowmeters, etc.) and component failures (valves, filters, etc.) that show the same symptoms, has been developed for nuclear Plants using Luenberger observers. Luenberger observers are online computer based modules constructed following the technology of Clark [3]. A seventh order model of an FFTF subsystem was constructed using the Advanced Continuous Simulation Language (ACSL) and was used to show through simulation that Luenberger observers can be applied to nuclear systems

  11. 75 FR 65514 - Automotive Components Holdings, LLC, A Subsidiary of Ford Motor Company, Saline Plant Division...

    Science.gov (United States)

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,029] Automotive Components Holdings, LLC, A Subsidiary of Ford Motor Company, Saline Plant Division, Saline, MI; Notice of Affirmative Determination Regarding Application for Reconsideration By application sent to this office on April 8, 2010, the...

  12. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant

    International Nuclear Information System (INIS)

    Choi, Jae-Boong; Yeum, Seung-Won; Ko, Han-Ok; Kim, Young-Jin; Kim, Hong-Key; Choi, Young-Hwan; Park, Youn-Won

    2010-01-01

    Structural and mechanical components in a nuclear power plant are designed to operate for its entire service life. Recently, a number of nuclear power plants are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. However, only a small portion of these components are of great importance for a significant aging degradation which would deeply affect the long-term safety and reliability of the related facilities. Therefore, it is beneficial to build a monitoring system to measure an aging status. While a number of integrity evaluation systems have been developed for NPPs, a real-time aging monitoring system has not been proposed yet . This paper proposes an expert system for the integrity evaluation of nuclear power plants based on a Web-based Reality Environment (WRE). The proposed system provides the integrity assessment for the major mechanical components of a nuclear power plant under concurrent working environments. In the WRE, it is possible for users to understand a mechanical system such as its size, geometry, coupling condition etc. In conclusion, it is anticipated that the proposed system can be used for a more efficient integrity evaluation of the major components subjected to an aging degradation.

  13. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Boong, E-mail: boong33@skku.ed [SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746 (Korea, Republic of); Yeum, Seung-Won; Ko, Han-Ok; Kim, Young-Jin [SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746 (Korea, Republic of); Kim, Hong-Key; Choi, Young-Hwan; Park, Youn-Won [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yusong-ku, Teajon 305-338 (Korea, Republic of)

    2010-01-15

    Structural and mechanical components in a nuclear power plant are designed to operate for its entire service life. Recently, a number of nuclear power plants are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. However, only a small portion of these components are of great importance for a significant aging degradation which would deeply affect the long-term safety and reliability of the related facilities. Therefore, it is beneficial to build a monitoring system to measure an aging status. While a number of integrity evaluation systems have been developed for NPPs, a real-time aging monitoring system has not been proposed yet . This paper proposes an expert system for the integrity evaluation of nuclear power plants based on a Web-based Reality Environment (WRE). The proposed system provides the integrity assessment for the major mechanical components of a nuclear power plant under concurrent working environments. In the WRE, it is possible for users to understand a mechanical system such as its size, geometry, coupling condition etc. In conclusion, it is anticipated that the proposed system can be used for a more efficient integrity evaluation of the major components subjected to an aging degradation.

  14. Reimbursement in hospital-based vascular surgery: Physician and practice perspective.

    Science.gov (United States)

    Perri, Jennifer L; Zwolak, Robert M; Goodney, Philip P; Rutherford, Gretchen A; Powell, Richard J

    2017-07-01

    -based settings, where the majority of revenue generated by vascular surgery care is the technical component received by the facility. Appropriate care for patients with vascular disease is increasingly resource intensive, and as a corollary, reimbursement levels must reflect this situation if high-quality care is to be maintained. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  16. Vascular tissue in traps of Australian carnivorous bladderworts (Utricularia) of the subgenus Polypompholyx

    Czech Academy of Sciences Publication Activity Database

    Płachno, B.J.; Kamińska, I.; Adamec, Lubomír; Świątek, P.

    2017-01-01

    Roč. 142, Sep 2017 (2017), s. 25-31 ISSN 0304-3770 Institutional support: RVO:67985939 Keywords : vascular bundles * traps * Lentibulariaceae Subject RIV: EA - Cell Biology OBOR OECD: Plant sciences, botany Impact factor: 1.714, year: 2016

  17. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    Science.gov (United States)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  18. Long-distance signalling in plant defence.

    Science.gov (United States)

    Heil, Martin; Ton, Jurriaan

    2008-06-01

    Plants use inducible defence mechanisms to fend off harmful organisms. Resistance that is induced in response to local attack is often expressed systemically, that is, in organs that are not yet damaged. In the search for translocated defence signals, biochemical studies follow the physical movement of putative signals, and grafting experiments use mutants that are impaired in the production or perception of these signals. Long-distance signals can directly activate defence or can prime for the stronger and faster induction of defence. Historically, research has focused on the vascular transport of signalling metabolites, but volatiles can play a crucial role as well. We compare the advantages and constraints of vascular and airborne signals for the plant, and discuss how they can act in synergy to achieve optimised resistance in distal plant parts.

  19. The maintenance optimization of structural components in nuclear power plants

    International Nuclear Information System (INIS)

    Bryla, P.; Ardorino, F.; Aufort, P.; Jacquot, J.P.; Magne, L.; Pitner, P.; Verite, B.; Villain, B.; Monnier, B.

    1997-10-01

    An optimization process, called 'OMF-Structures', is developed by Electricite de France (EDF) in order to extend the current 'OMF' Reliability Centered Maintenance to piping structural components. The Auxiliary Feedwater System of a 900 MW French nuclear plant has been studied in order to lay the foundations of the method. This paper presents the currently proposed principles of the process. The principles of the OMF-Structures process include 'Risk-Based Inspection' concepts within an RCM process. Two main phases are identified: The purpose of the first phase is to select the risk-significant failure modes and associated elements. This phase consists of two major steps: potential consequences evaluation and reliability performance evaluation. The second phase consists of the definition of preventive maintenance programs for piping elements that are associated with risk-significant failure modes. (author)

  20. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  1. Ftr82 Is Critical for Vascular Patterning during Zebrafish Development

    Directory of Open Access Journals (Sweden)

    Hsueh-Wei Chang

    2017-01-01

    Full Text Available Cellular components and signaling pathways are required for the proper growth of blood vessels. Here, we report for the first time that a teleost-specific gene ftr82 (finTRIM family, member 82 plays a critical role in vasculature during zebrafish development. To date, there has been no description of tripartite motif proteins (TRIM in vascular development, and the role of ftr82 is unknown. In this study, we found that ftr82 mRNA is expressed during the development of vessels, and loss of ftr82 by morpholino (MO knockdown impairs the growth of intersegmental vessels (ISV and caudal vein plexus (CVP, suggesting that ftr82 plays a critical role in promoting ISV and CVP growth. We showed the specificity of ftr82 MO by analyzing ftr82 expression products and expressing ftr82 mRNA to rescue ftr82 morphants. We further showed that the knockdown of ftr82 reduced ISV cell numbers, suggesting that the growth impairment of vessels is likely due to a decrease of cell proliferation and migration, but not cell death. In addition, loss of ftr82 affects the expression of vascular markers, which is consistent with the defect of vascular growth. Finally, we showed that ftr82 likely interacts with vascular endothelial growth factor (VEGF and Notch signaling. Together, we identify teleost-specific ftr82 as a vascular gene that plays an important role for vascular development in zebrafish.

  2. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    Directory of Open Access Journals (Sweden)

    Srećko Jelenić

    2003-01-01

    Full Text Available Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosphotransferase II gene (nptII, which confers resistance to the antibiotics kanamycin and neomycin. The nptII gene is present in GM crops as a marker gene to select transformed plant cells during the first steps of the transformation process. The use of antibiotic-resistance genes is subject to controversy and intense debate, because of the likelihood that clinical therapy could be compromised due to inactivation of the oral dose of the antibiotic from consumption of food derived from the transgenic plant, and because of the risk of gene transfer from plants to gut and soil microorganisms or to consumer’s cells. The present article discusses these possibilities in the light of current scientific knowledge.

  3. Vascular flora of the Penobscot Experimental Forest, with provisional lists of lichens and bryophytes

    Science.gov (United States)

    Alison C. Dibble

    2014-01-01

    A compilation of plant lists from all available sources since the 1950s represents the flora of the Penobscot Experimental Forest (PEF), Bradley, Maine. More than 300 taxa of vascular plants in 71 families and 186 genera are included. Approximately 85 percent of the taxa are native to Maine. Ten of 45 nonnative species are considered invasive. Infraspecific taxa have...

  4. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  5. Effectiveness of several dosage formula of oil and nano emulsion of citronella against vascular streak dieback (VSD) disease on cocoa

    Science.gov (United States)

    Noveriza, R.; Trisno, J.; Rahma, H.; Yuliani, S.; Reflin; Martinius

    2018-02-01

    The disease of Vascular streak dieback (VSD) is a deadly disease of cocoa plants, because it attacks the vascular tissue of cocoa at growing point of the plant. In West Sumatra the disease was first reported in 2015 with an incidence of disease range 58.82% - 100% and an intensity of disease range 24.29% - 44.7%. The purpose of this study was to examine the effectiveness of dosage application of oil formula and nano emulsion of citronella formula against Vascular streak dieback (VSD) disease on cocoa plants in West Sumatra (in Padang Pariaman District and Limapuluh Kota District). The results showed that the percentage of VSD disease attacks in both testing sites was 100%. The oil and nano emulsion of citronella formulas can reduce the intensity of VSD disease on cocoa plants in West Sumatra, particularly in Padang Pariaman District and Limapuluh Kota District. The reduction of VSD intensity in Padang Pariaman district ranged from 8.32 to 21.13%; while in Limapuluh Kota district ranged from 4.33 to 11.80%. The nano emulsion of citronella formulation is effective to suppress the intensity of VSD disease on cocoa plants at doses 0.1% (≥ 30% of effectiveness level).

  6. GERB viscous dampers in application for pipelines and other components in nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Podrouzek, J.; Zach, J.

    1993-01-01

    VISCODAMPERS from GERB, Germany, are now widely used as reliable shock restraints against earthquake and other shock effects for the most important safety-related pipelines and components in several Czech and Slovak nuclear power plants. Having many technical advantages they are, at the same time, relatively inexpensive in comparison to conventionally used snubbers. Their properties are briefly described and several practical applications are explained in this paper. (author)

  7. Vascular access surveillance: case study of a false paradigm.

    Science.gov (United States)

    Paulson, William D; Moist, Louise; Lok, Charmaine E

    2013-01-01

    The hemodialysis vascular access surveillance controversy provides a case study of how enthusiasm for a new test or treatment can lead to adoption of a false paradigm. Paradigms are the beliefs and assumptions shared by those in a field of knowledge, and are commonly included in clinical practice guidelines. The guidelines of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative recommend that arteriovenous vascular accesses undergo routine surveillance for detection and correction of stenosis. This recommendation is based on the paradigm that surveillance of access blood flow or dialysis venous pressure combined with correction of stenosis improves access outcomes. However, the quality of evidence that supports this paradigm has been widely criticized. We tested the validity of the surveillance paradigm by applying World Health Organization (WHO) criteria for evaluating screening tests to a literature review of published vascular access studies. These criteria include four components: undesired condition, screening test, intervention, and desired outcome. The WHO criteria show that surveillance as currently practiced fails all four components and provides little or no significant benefit, suggesting that surveillance is a false paradigm. Once a paradigm is established, however, challenges to its validity are usually resisted even as new evidence indicates the paradigm is not valid. Thus, it is paramount to apply rigorous criteria when developing guidelines. Regulators may help promote needed changes in paradigms when cost and safety considerations coincide. © 2013 Wiley Periodicals, Inc.

  8. Procedure for the qualification of a manufacturer of ingot iron pieces for application in nuclear power plant components

    International Nuclear Information System (INIS)

    Rahn, K.M.M.; Jusevicius, E.; Michael, H.

    1981-01-01

    The process for the qualification of 'Sao Caetano do Sul (Acos Villares S/A)' Plant as manufacturers of ingot iron pieces for application in components of Angra 2 and Angra 3 Nuclear Power Plants, is presented. The qualification was executed by IBQN - Instituto Brasileiro de Qualidade Nuclear - the organ officially in charge of the execution of qualification of suppliers of materials for the nuclear industry. (E.G.) [pt

  9. Pediatric vascular access

    International Nuclear Information System (INIS)

    Donaldson, James S.

    2006-01-01

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  10. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    International Nuclear Information System (INIS)

    De Almeida, Valmor F.

    2011-01-01

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  11. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-08-15

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  12. Ultrastructural characteristics of the vascular wall components of ruptured atherosclerotic abdominal aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Tanasković Irena

    2013-01-01

    Full Text Available The aim of this study was to determine the ultrastructural characteristics of cell populations and extracellular matrix components in the wall of ruptured atherosclerotic abdominal aortic aneurysm (AAA. We analyzed 20 samples of ruptured AAA. For orientation to the light microscopy, we used routine histochemical techniques by standard procedures. For ultrastructural analysis, we applied transmission electron microscopy (TEM. Our results have shown that ruptured AAA is characterized by the remains of an advanced atherosclerotic lesion in the intima followed by a complete absence of endothelial cells, the disruption of basal membrane and disruption of internal elastic lamina. On plaque margins as well as in the inner media we observed smooth muscle cells (SMCs that posses a euchromatic nucleus, a well-developed granulated endoplasmic reticulum around the nucleus and reduced myofilaments. The remains of the ruptured lipid core were acellular in all samples; however, on the lateral sides of ruptured plaque we observed a presence of two types of foam cells (FCs, spindle- and star-shaped. Fusiform FCs possess a well-differentiated basal lamina, caveolae and electron dense bodies, followed by a small number of lipid droplets in the cytoplasm. Star-shaped FCs contain a large number of lipid droplets and do not possess basal lamina. On the inner margins of the plaque, we observed a large number of cells undergoing apoptosis and necrosis, extracellular lipid droplets as well as a large number of lymphocytes. The media was thinned out with disorganized elastic lamellas, while the adventitia exhibited leukocyte infiltration. The presented results suggest that atherosclerotic plaque in ruptured AAA contains vascular SMC synthetic phenotype and two different types of FCs: some were derived from monocyte/macrophage lineage, while others were derived from SMCs of synthetic phenotype. The striking plaque hypocellularity was the result of apoptosis and necrosis

  13. Florabank1: a grid-based database on vascular plant distribution in the northern part of Belgium (Flanders and the Brussels Capital region

    Directory of Open Access Journals (Sweden)

    Wouter Van Landuyt

    2012-05-01

    Full Text Available Florabank1 is a database that contains distributional data on the wild flora (indigenous species, archeophytes and naturalised aliens of Flanders and the Brussels Capital Region. It holds about 3 million records of vascular plants, dating from 1800 till present. Furthermore, it includes ecological data on vascular plant species, redlist category information, Ellenberg values, legal status, global distribution, seed bank etc. The database is an initiative of “Flo.Wer” (www.plantenwerkgroep.be, the Research Institute for Nature and Forest (INBO: www.inbo.be and the National Botanic Garden of Belgium (www.br.fgov.be. Florabank aims at centralizing botanical distribution data gathered by both professional and amateur botanists and to make these data available to the benefit of nature conservation, policy and scientific research.The occurrence data contained in Florabank1 are extracted from checklists, literature and herbarium specimen information. Of survey lists, the locality name (verbatimLocality, species name, observation date and IFBL square code, the grid system used for plant mapping in Belgium (Van Rompaey 1943, is recorded. For records dating from the period 1972–2004 all pertinent botanical journals dealing with Belgian flora were systematically screened. Analysis of herbarium specimens in the collection of the National Botanic Garden of Belgium, the University of Ghent and the University of Liège provided interesting distribution knowledge concerning rare species, this information is also included in Florabank1. The data recorded before 1972 is available through the Belgian GBIF node (http://data.gbif.org/datasets/resource/10969/, not through FLORABANK1, to avoid duplication of information. A dedicated portal providing access to all published Belgian IFBL records at this moment is available at: http://projects.biodiversity.be/ifblAll data in Florabank1 is georeferenced. Every record holds the decimal centroid coordinates of the

  14. Component protection based automatic control

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1992-01-01

    Control and safety systems as well as operation procedures are designed on the basis of critical process parameters limits. The expectation is that short and long term mechanical damage and process failures will be avoided by operating the plant within the specified constraints envelopes. In this paper, one of the Advanced Liquid Metal Reactor (ALMR) design duty cycles events is discussed to corroborate that the time has come to explicitly make component protection part of the control system. Component stress assessment and aging data should be an integral part of the control system. Then transient trajectory planning and operating limits could be aimed at minimizing component specific and overall plant component damage cost functions. The impact of transients on critical components could then be managed according to plant lifetime design goals. The need for developing methodologies for online transient trajectory planning and assessment of operating limits in order to facilitate the explicit incorporation of damage assessment capabilities to the plant control and protection systems is discussed. 12 refs

  15. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke

    Science.gov (United States)

    Hu, Xiaoming; De Silva, T. Michael; Chen, Jun; Faraci, Frank M.

    2017-01-01

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury following ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier (BBB) is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in BBB integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. PMID:28154097

  16. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    Science.gov (United States)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  17. Future needs for inelastic analysis in design of high-temperature nuclear plant components

    International Nuclear Information System (INIS)

    Corum, J.M.

    1980-01-01

    The role that inelastic analyses play in the design of high-temperature nuclear plant components is described. The design methodology, which explicitly accounts for nonlinear material deformation and time-dependent failure modes, requires a significant level of realism in the prediction of structural response. Thus, material deformation and failure modeling are, along with computational procedures, key parts of the methodology. Each of these is briefly discussed along with validation by comparisons with benchmark structural tests, and problem areas and needs are discussed for each

  18. GENETIC RELATIONSHIP BETWEEN PLANT GROWTH, SHOOT ...

    African Journals Online (AJOL)

    AISA

    2Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA. ABSTRACT. Maize (Zea mays L.) ear vascular tissue transports nutrients that contribute to grain yield. To assess kernel heritabilities that govern ear development and plant growth, field studies were conducted to determine the combining ...

  19. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sayo Koike

    2016-09-01

    Full Text Available Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD. To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs stimulated calcium deposition in vascular smooth muscle cells (VSMCs through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5 was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA. Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(PH oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(PH oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.

  20. Age-dependent risk-based methodology and its application to prioritization of nuclear power plant components and to maintenance for managing aging using PRAs

    International Nuclear Information System (INIS)

    Levy, I.S.; Vesely, W.E.

    1990-01-01

    This paper is based on a study to demonstrate several important ways that the age-dependent risk-based methodology developed by the Nuclear Plant Aging Research (NPAR) Program may be applied to resolving important issues related to the aging of nuclear power plant systems, structures, and components (SSCs). The study was sponsored by the NPAR Program of the Division of Engineering, Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). Initiated on the basis of a Users Need Request, the age-dependent risk-based methodology has been under development by the NPAR Program for several years. In this methodology, the time-dependent change in a component's risk contribution is the product of two factors: (1) the risk importance of the component (e.g., the change in its risk contribution when it is assumed to be totally unavailable to perform its intended safety function) and (2) the change in its unavailability with time. This change in the component's unavailability with time is a function of the component's aging rate and plant inspection and maintenance practices. The methodology permits evaluations of the age-dependent risk contributions from both single- and multiple-components. Principal results and conclusions generated by the methodology demonstrations are discussed