WorldWideScience

Sample records for vascular flow measurements

  1. Blood flow measurements during hemodialysis vascular access interventions - Catheter-based thermodilution or Doppler ultrasound?

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Hansen, Marc A; Schroeder, Torben V

    2012-01-01

    Purpose: To test the clinical performance of catheter-based thermodilution and Doppler ultrasound of the feeding brachial artery for blood flow measurements during hemodialysis vascular access interventions.Methods: Thirty patients with arteriovenous fistulas who underwent 46 interventions had...... access blood flow measured before and after every procedure. Two methods, catheter-based thermodilution and Doppler ultrasound, were compared to the reference method of ultrasound dilution. Catheter-based thermodilution and Doppler ultrasound were performed during the endovascular procedures while flow...

  2. Systemic vascular function, measured with forearm flow mediated dilatation, in acute and stable cerebrovascular disease: a case-control study

    Directory of Open Access Journals (Sweden)

    Blacker David

    2010-10-01

    Full Text Available Abstract Background Acute ischaemic stroke is associated with alteration in systemic markers of vascular function. We measured forearm vascular function (using forearm flow mediated dilatation to clarify whether recent acute ischaemic stroke/TIA is associated with impaired systemic vascular function. Methods Prospective case control study enrolling 17 patients with recent acute ischaemic stroke/TIA and 17 sex matched controls with stroke more than two years previously. Forearm vascular function was measured using flow medicated dilatation (FMD. Results Flow mediated dilatation was 6.0 ± 1.1% in acute stroke/TIA patients and 4.7 ± 1.0% among control subjects (p = 0.18. The mean paired difference in FMD between subjects with recent acute stroke and controls was 1.25% (95% CI -0.65, 3.14; p = 0.18. Endothelium independent dilatation was measured in six pairs of participants and was similar in acute stroke/TIA patients (22.6 ± 4.3% and control subjects (19.1 ± 2.6%; p = 0.43. Conclusions Despite the small size of this study, these data indicate that recent acute stroke is not necessarily associated with a clinically important reduction in FMD.

  3. The Quantitative Measurements of Vascular Density and Flow Areas of Macula Using Optical Coherence Tomography Angiography in Normal Volunteers.

    Science.gov (United States)

    Ghassemi, Fariba; Fadakar, Kaveh; Bazvand, Fatemeh; Mirshahi, Reza; Mohebbi, Masoumeh; Sabour, Siamak

    2017-06-01

    The quantification of the density of macular vascular networks and blood flow areas in the foveal and parafoveal area in healthy subjects using optical coherence tomography angiography (OCTA). Cross-sectional, prospective study in an institutional setting at the Retina Services of Farabi Eye Hospital. One hundred twelve normal volunteers with no known ocular or systemic disease were included, including patient numbers (one or both eyes), selection procedures, inclusion/exclusion criteria, randomization procedure, and masking. En face angiogram OCTA was performed on a 3 mm × 3 mm region centered on the macula. Automated thresholding and measuring algorithm method for foveal and parafoveal blood flow and vascular density (VD) were used. The density of macular vascular networks and blood flow area in the foveal and parafoveal area were measured. A total of 224 healthy eyes from 112 subjects with a mean age of 36.4 years ± 11.3 years were included. In the foveal region, the VD of the superficial capillary network (sCN) was significantly higher than that of the deep capillary network (dCN) (31.1% ± 5.5% vs. 28.3% ± 7.2%; P < .001), whereas in the parafoveal area, VD was higher in the dCN (62.24% ± 2.8% vs. 56.5% ± 2.5%; P < .001). Flow area in the 1-mm radius circle in the sCN was less than in the dCN. Superficial foveal avascular zone (sFAZ) size was negatively correlated with the VD of the foveal sCN, but in the deep FAZ (dFAZ) was not correlated with VD or blood flow area of the fovea. There was no difference between measured VD and blood flow surface area in both eyes of the subjects. OCTA could be used as a noninvasive, repeatable, layer-free method in quantitative evaluation of VD and blood flow of macular area. The normal quantities of the vascular plexus density and flow will help in better understanding the pathophysiological basis of the vascular disease of retina. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:478-486.]. Copyright 2017, SLACK

  4. Quantitative measurement of the blood flow in peripheral vascular diseases by a new radionuclide plethysmography

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, K.; Mori, Y.; Mashima, Y.; Shimada, T.; Fukuoka, M.

    1985-05-01

    The purpose of the study is to introduce a new plethysmography using radionuclide (RN) for a quantitative measurement of the blood flow in the extremities following the routine RN angiography. Seventy five patients with various peripheral artery diseases have been examined. RN pletysmography was performed in the supine position 15 min. after the RN angiography using 15 mCi of Tc-99m RBC. The blood flow (F) was calculated by the equation (1) which consists of three parameters, the initial slope of the time-activity curve (dc/dt*t=0) after the venous occlusion on the thigh, changes of radio-activity (C-Co) before and after avascularization by inflation of cuff with 200 mmHg pressure at calf, and the blood volume per unit tissue volume (..beta..=Vb/V,ml/100g tissue). F (ml/min/100g) = ..beta.. (dc/dt*t=0)/C-Co. The blood flow measured simultaneously by RN plethysmography and admittance plethysmography was significantly correlated (r = 0.906,n = 16). The blood flow in 67 normal subjects was 2.78 +- 0.75 ml/min/100g. In the patients with intermittent claudication the blood flow was decreased (1.89 +- 0.75 ml/min/100g,n = 75). In the cases with poorly developed colateral circulation the blood flow markedly decreased (1.62 +- 0.29 ml/min/100g,n = 10). Increases of blood flow after exercise was small in the cases with stenosis, even in patients with collaterals. This method is very useful to evaluate quantitatively the peripheral hemodynamics following the routine RN angiographic examination.

  5. Coagulation-induced resistance to fluid flow in small-diameter vascular grafts and graft mimics measured by purging pressure.

    Science.gov (United States)

    Nichols, Michael D; Choudhary, Rewa; Kodali, Santhisri; Reichert, William M

    2013-11-01

    In this study, the coagulation-induced resistance to flow in small-diameter nonpermeable Tygon tubes and permeable expanded polytetrafluoroethylene (ePTFE) vascular grafts was characterized by measuring the upstream pressure needed to purge the coagulum from the tube lumen. This purging pressure was monitored using a closed system that compressed the contents of the tubes at a constant rate. The pressure system was validated using a glycerin series with well-defined viscosities and precisely controlled reductions in cross-sectional area available for flow. This system was then used to systematically probe the upstream pressure buildup as fibrin glue, platelet-rich plasma (PRP) or whole blood coagulated in small-diameter Tygon tubing and or ePTFE grafts. The maximum purging pressures rose with increased clot maturity for fibrin glue, PRP, and whole blood in both Tygon and ePTFE tubes. Although the rapidly coagulating fibrin glue in nonpermeable Tygon tubing yielded highly consistent purging curves, the significantly longer and more variable clotting times of PRP and whole blood, and the porosity of ePTFE grafts, significantly diminished the consistency of the purging curves. Copyright © 2013 Wiley Periodicals, Inc.

  6. Blood flow restricted exercise and vascular function.

    Science.gov (United States)

    Horiuchi, Masahiro; Okita, Koichi

    2012-01-01

    It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR) leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  7. Blood Flow Restricted Exercise and Vascular Function

    Directory of Open Access Journals (Sweden)

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  8. [High flow vascular malformations in children].

    Science.gov (United States)

    López Gutiérrez, J C; Ros, Z; Martínez, L; Díaz, M; Leal, N; Rivas, S; Hernández, F

    2002-10-01

    Unlike hemangiomas and low-flow vascular malformations which are very common in children, arterial anomalies have small incidence. Differential diagnosis is difficult, and needs a physician familiarized with vascular anomalies. Appropriate treatment must be planned by multidisciplinary team considering the patient's age, and anatomical location. Twenty-eight children with high flow vascular malformations have been treated since 1990 at La Paz Children's Hospital Vascular Anomalies Program. We excluded of the study group patients with central nervous system lesions. 85% of the patients had malformation in stage I or II (according the ISSVA accepted Schöbinger stating) and most of them were erroneously diagnosed as hemangioms with a variety of inappropriate treatments previously performed. Doppler Ultrasound and Magnetic Resonance confirmed malformation flow and extension. Angiography and selective embolization was only considered as therapeutic approach in candidates to surgical resection. 16 patients underwent complete resection of the malformation including one foot and two fingers amputation and five more incomplete resection of the ulcerate area. In conclusion, we did not find age at onset, sex and symptoms relationship. Laser, radiotherapy, surgical ligation or partial resection must be considered inappropriate therapies which may stimulate AVM exacerbation. Only radical surgical procedure after selective endovascular embolization will be successful but then reconstructive surgery should be performed to achieve good aesthetic and functional results.

  9. Surveillance of hemodialysis vascular access with ultrasound vector flow imaging

    Science.gov (United States)

    Brandt, Andreas H.; Olesen, Jacob B.; Hansen, Kristoffer L.; Rix, Marianne; Jensen, Jørgen A.; Nielsen, Michael B.

    2015-03-01

    The aim of this study was prospectively to monitor the volume flow in patients with arteriovenous fistula (AVF) with the angle independent ultrasound technique Vector Flow Imaging (VFI). Volume flow values were compared with Ultrasound dilution technique (UDT). Hemodialysis patients need a well-functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has proven to be more precise, when performing single repeated instantaneous measurements. Three patients with AVF were monitored with UDT and VFI monthly for five months. A commercial ultrasound scanner with a 9 MHz linear array transducer with integrated VFI was used to obtain data. UDT values were obtained with Transonic HD03 Flow-QC Hemodialysis Monitor. Three independent measurements at each scan session were obtained with UDT and VFI each month. Average deviation of volume flow between UDT and VFI was 25.7 % (Cl: 16.7% to 34.7%) (p= 0.73). The standard deviation for all patients, calculated from the mean variance of each individual scan sessions, was 199.8 ml/min for UDT and 47.6 ml/min for VFI (p = 0.002). VFI volume flow values were not significantly different from the corresponding estimates obtained using UDT, and VFI measurements were more precise than UDT. The study indicates that VFI can be used for surveillance of volume flow.

  10. Colour-flow ultrasound in the detection of penetrating vascular ...

    African Journals Online (AJOL)

    Purpose. To determine the sensitivity of colour-flow ultrasound in the detection of penetrating vascular injuries of the neck when compared with conventional angiography. Method. We prospectively imaged the neck arteries of all patients with suspected vascular injuries who were referred for angiography by the vascular ...

  11. colour-flow ultrasound in the detection of penetrating vascular ...

    African Journals Online (AJOL)

    Purpose. To determine the sensitivity of colour-flow ultrasound in the detection of penetrating vascular injuries of the neck when compared with conventional angiography. Method. We prospectively imaged the neck arteries of all patients with suspected vascular injuries who were referred for angiography by the vascular ...

  12. Surveillance of Hemodialysis Vascular Access with Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Olesen, Jacob Bjerring; Lindskov Hansen, Kristoffer

    2015-01-01

    -functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has...

  13. colour-flow ultrasound in the detection of penetrating vascular ...

    African Journals Online (AJOL)

    ultrasound in the detection of penetrating vascular injuries of the neck when compared with conventional ... Colour-flow ultrasound is sensitive in detecting vascular injuries and is suitable as a screening .... that may require endovascular treatment, for example vertebral artery fistulas, or where there is a complex injury that ...

  14. Blood flow and stem cells in vascular disease.

    Science.gov (United States)

    Zhang, Cheng; Zeng, Lingfang; Emanueli, Costanza; Xu, Qingbo

    2013-07-15

    It is well known that the altered blood flow is related to vascular diseases, including atherosclerosis, restenosis, and arteriosclerosis, which preferentially located at areas with the disturbed blood flow, suggesting that altered biomechanical stress may exert their effect on the vascular disease. Recent evidence indicated the presence of abundant stem/progenitor cells in the vessel wall, in which laminar shear stress can stimulate these cells to differentiate towards endothelial lineage, while cyclic strain results in smooth muscle differentiation. In line with this, it was evidenced that altered biomechanical stress in stented vessels may lead to 'wrong' direction of vascular stem cell differentiation resulting in restenosis. However, the underlying mechanisms are not well understood. In this article, we will give an overview of the effect of the local flow pattern on stem/progenitor cell differentiation and the possible mechanism on how the blood flow influences stem cell behaviours in the development of vascular diseases.

  15. Time Course of Flow-Mediated Dilation and Vascular Endothelial Growth Factor following Acute Stroke.

    Science.gov (United States)

    Billinger, Sandra A; Sisante, Jason-Flor V; Whitaker, Alicen A; Abraham, Michael G

    2017-11-30

    People after stroke demonstrate alterations in vascular endothelial function measured by flow-mediated dilation. Limited information is available in the literature on possible protective factors following stroke. The aims of the secondary analysis were (1) to characterize the time course of vascular endothelial function using flow-mediated dilation at 72 hours after stroke and 1 week later during inpatient stroke rehabilitation and (2) to determine whether flow-mediated dilation was related to vascular endothelial growth factor, brain-derived neurotrophic factor, or estimated prestroke peak oxygen uptake. Flow-mediated dilation using Doppler ultrasound was assessed in bilateral brachial arteries at the defined time points. Flow-mediated dilation and blood draws occurred on the same day between 7:30 am and 9:00 am following an overnight fast. Enzyme-linked immunosorbent assay was used to quantify plasma vascular endothelial growth factor and brain-derived neurotrophic factor values. A nonexercise estimate was used to calculate prestroke peak oxygen uptake. We have shown that between-limb differences are evident within 72 hours after stroke and remain 1 week later during inpatient rehabilitation. Higher values for vascular endothelial growth factor were associated with increased flow-mediated dilation at both time points. Higher estimated prestroke peak oxygen uptake was related to flow-mediated dilation. Brain-derived neurotrophic factor was not related to any outcome measures. Unique vascular adaptations start early after stroke in the stroke-affected limb and remain through inpatient stroke rehabilitation. Vascular endothelial growth factor and prestroke physical activity may have a protective role in vascular function following stroke. Future work should focus on mechanistic pathways for preservation of vascular health. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Fluid Flow Mechanotransduction in Vascular Smooth Muscle Cells and Fibroblasts

    Science.gov (United States)

    Shi, Zhong-Dong; Tarbell, John M.

    2011-01-01

    Understanding how vascular wall endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs) sense and transduce the stimuli of hemodynamic forces (shear stress, cyclic strain, and hydrostatic pressure) into intracellular biochemical signals is critical to prevent vascular disease development and progression. ECs lining the vessel lumen directly sense alterations in blood flow shear stress and then communicate with medial SMCs and adventitial FBs to regulate vessel function and disease. Shear stress mechanotransduction in ECs has been extensively studied and reviewed. In the case of endothelial damage, blood flow shear stress may directly act on the superficial layer of SMCs and transmural interstitial flow may be elevated on medial SMCs and adventitial FBs. Therefore, it is also important to investigate direct shear effects on vascular SMCs as well as FBs. The work published in the last two decades has shown that shear stress and interstitial flow have significant influences on vascular SMCs and FBs. This review summarizes work that considered direct shear effects on SMCs and FBs and provides the first comprehensive overview of the underlying mechanisms that modulate SMC secretion, alignment, contraction, proliferation, apoptosis, differentiation, and migration in response to 2-dimensional (2D) laminar, pulsatile, and oscillating flow shear stresses and 3D interstitial flow. A mechanistic model of flow sensing by SMCs is also provided to elucidate possible mechanotransduction pathways through surface glycocalyx, integrins, membrane receptors, ion channels, and primary cilia. Understanding flow-mediated mechanotransduction in SMCs and FBs and the interplay with ECs should be helpful in exploring strategies to prevent flow-initiated atherosclerosis and neointima formation and has implications in vascular tissue engineering. PMID:21479754

  17. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo

    Science.gov (United States)

    Ashina, Kohei; Tsubosaka, Yoshiki; Nakamura, Tatsuro; Omori, Keisuke; Kobayashi, Koji; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2015-01-01

    Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast cells by antigen-stimulation or histamine treatment induced vascular hyperpermeability and tissue swelling in mouse ears. These were abolished by histamine H1 receptor antagonism. Intravital imaging showed that histamine dilated vasculature, increased blood flow, while it induced hyperpermeability in venula. Whole-mount staining showed that histamine disrupted endothelial barrier formation of venula indicated by changes in vascular endothelial cadherin (VE-cadherin) localization at endothelial cell junction. Inhibition of nitric oxide synthesis (NOS) by L-NAME or vasoconstriction by phenylephrine strongly inhibited the histamine-induced blood flow increase and hyperpermeability without changing the VE-cadherin localization. In vitro, measurements of trans-endothelial electrical resistance of human dermal microvascular endothelial cells (HDMECs) showed that histamine disrupted endothelial barrier. Inhibition of protein kinase C (PKC) or Rho-associated protein kinase (ROCK), NOS attenuated the histamine-induced barrier disruption. These observations suggested that histamine increases vascular permeability mainly by nitric oxide (NO)-dependent vascular dilation and subsequent blood flow increase and maybe partially by PKC/ROCK/NO-dependent endothelial barrier disruption. PMID:26158531

  18. Tomographic multiphase flow measurement.

    Science.gov (United States)

    Sætre, C; Johansen, G A; Tjugum, S A

    2012-07-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (Corneliussen et al., 2005). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100 ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Structural power flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  20. Correlation between penile cavernosal artery blood flow and retinal vascular findings in arteriogenic erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Ahmed M Emarah

    2010-09-01

    Full Text Available Ahmed M Emarah1, Shawky M El-Haggar2, Ihab A Osman2, Abdel Wahab S Khafagy21Departments of Ophthalmology, 2Andrology and Sexology, Cairo University Hospital, EgyptObjectives: Arteriogenic erectile dysfunction (ED is a target organ disease of atherosclerosis, and therefore might be a predictor of systemic atherosclerosis. Being systemic, it might be possible to evaluate the extent of atherosclerosis from retinal vascular findings. We investigated the possible correlation between penile cavernosal artery blood flow and retinal vascular findings in patients with arteriogenic ED.Patients and methods: Sixty patients with ED were divided according to the peak systolic velocity (PSV in their penile cavernosal arteries into two groups; Group A included 30 patients with PSV less than 25 cm/sec, and Group B included 30 patients with PSV more than 35 cm/sec. Blood flow in the penile cavernosal artery was measured with color Doppler ultrasonography. All patients were assessed by ocular fundus examination under amydriatic conditions to evaluate retinal vascular atherosclerotic changes using Hyman’s classification.Results: Evidence of retinal vascular atherosclerotic changes was found in 19 patients (63.3% in Group A and in 10 patients (33.3% in Group B.Conclusions: Our study confirms the possibility of predicting penile arterial vascular status in patients with ED from their retinal vascular findings by using amydriatic simple, practical funduscopy.Keywords: erectile dysfunction, atherosclerosis, retinal vascular atherosclerosis

  1. Digital thermal monitoring (DTM) of vascular reactivity closely correlates with Doppler flow velocity.

    Science.gov (United States)

    McQuilkin, Gary L; Panthagani, David; Metcalfe, Ralph W; Hassan, Haider; Yen, Albert A; Naghavi, Morteza; Hartley, Craig J

    2009-01-01

    The noninvasive measurement of peripheral vascular reactivity, as an indicator of vascular function, provides a valuable tool for cardiovascular screening of at-risk populations. Practical and economical considerations demand that such a test be low-cost and simple to use. To this end, it is advantageous to substitute digital thermal monitoring (DTM) for the more costly and complex Doppler system commonly used for this measurement. A signal processing model was developed to establish the basis for the relationship between finger temperature reactivity and blood flow reactivity following a transient brachial artery occlusion and reperfusion protocol (reactive hyperemia). Flow velocity signals were acquired from the radial artery of human subjects via an 8 MHz Doppler probe while simultaneous DTM signals were acquired from a distal fingertip via DTM sensors. The model transforms the DTM temperature signals into normalized flow signals via a deconvolution method which employs an exponential impulse function. The DTM normalized flow signals were compared to simultaneous, low-frequency, normalized flow signals computed from Doppler sensors. The normalized flow signals, derived from DTM and Doppler sensors, were found to yield similar reactivity responses during reperfusion. The reactivity areas derived from DTM and Doppler sensors, indicative of hyperemic volumes, were found to be within +/- 15%. In conclusion, this signal processing model provides a means to measure vascular reactivity using DTM sensors, that is equivalent to that obtained by more complex Doppler systems.

  2. New continuous-flow total artificial heart and vascular permeability.

    Science.gov (United States)

    Feng, Jun; Cohn, William E; Parnis, Steven M; Sodha, Neel R; Clements, Richard T; Sellke, Nicholas; Frazier, O Howard; Sellke, Frank W

    2015-12-01

    We tested the short-term effects of completely nonpulsatile versus pulsatile circulation after ventricular excision and replacement with total implantable pumps in an animal model on peripheral vascular permeability. Ten calves underwent cardiac replacement with two HeartMate III continuous-flow rotary pumps. In five calves, the pump speed was rapidly modulated to impart a low-frequency pulse pressure in the physiologic range (10-25 mm Hg) at a rate of 40 pulses per minute (PP). The remaining five calves were supported with a pulseless systemic circulation and no modulation of pump speed (NP). Skeletal muscle biopsies were obtained before cardiac replacement (baseline) and on postoperative days (PODs) 1, 7, and 14. Skeletal muscle-tissue water content was measured, and morphologic alterations of skeletal muscle were assessed. VE-cadherin, phospho-VE-cadherin, and CD31 were analyzed by immunohistochemistry. There were no significant changes in tissue water content and skeletal muscle morphology within group or between groups at baseline, PODs 1, 7, and 14, respectively. There were no significant alterations in the expression and/or distribution of VE-cadherin, phospho-VE-cadherin, and CD31 in skeletal muscle vasculature at baseline, PODs 1, 7, and 14 within each group or between the two groups, respectively. Although continuous-flow total artificial heart (CFTAH) with or without a pulse pressure caused slight increase in tissue water content and histologic damage scores at PODs 7 and 14, it failed to reach statistical significance. There was no significant adherens-junction protein degradation and phosphorylation in calf skeletal muscle microvasculature after CFTAH implantation, suggesting that short term of CFTAH with or without pulse pressure did not cause peripheral endothelial injury and did not increase the peripheral microvascular permeability. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Correlation between penile cavernosal artery blood flow and retinal vascular findings in arteriogenic erectile dysfunction

    Science.gov (United States)

    Emarah, Ahmed M; El-Haggar, Shawky M; Osman, Ihab A; Khafagy, Abdel Wahab S

    2010-01-01

    Objectives: Arteriogenic erectile dysfunction (ED) is a target organ disease of atherosclerosis, and therefore might be a predictor of systemic atherosclerosis. Being systemic, it might be possible to evaluate the extent of atherosclerosis from retinal vascular findings. We investigated the possible correlation between penile cavernosal artery blood flow and retinal vascular findings in patients with arteriogenic ED. Patients and methods: Sixty patients with ED were divided according to the peak systolic velocity (PSV) in their penile cavernosal arteries into two groups; Group A included 30 patients with PSV less than 25 cm/sec, and Group B included 30 patients with PSV more than 35 cm/sec. Blood flow in the penile cavernosal artery was measured with color Doppler ultrasonography. All patients were assessed by ocular fundus examination under amydriatic conditions to evaluate retinal vascular atherosclerotic changes using Hyman’s classification. Results: Evidence of retinal vascular atherosclerotic changes was found in 19 patients (63.3%) in Group A and in 10 patients (33.3%) in Group B. Conclusions: Our study confirms the possibility of predicting penile arterial vascular status in patients with ED from their retinal vascular findings by using amydriatic simple, practical funduscopy. PMID:20922041

  4. Skin Blood Flow and Vascular Endothelium Function in Uremia.

    Science.gov (United States)

    Smogorzewski, Miroslaw J

    2017-11-01

    Prevalence of dermatological disorder in patients with end-stage kidney disease is estimated as 50% to 100% in various studies. Some of the skin lesions are specific for the diseases causing chronic kidney disease (CKD), some are associated with CKD, and still others are the dermatological manifestation of uremia. Microangiopathy was also found in both arterioles and venule in the skin biopsy of "normal looking" skin in patients with end-stage kidney disease. In a cross-sectional study in patients on dialysis, we measured skin blood flow (SBF) using laser Doppler device in a standardized way at various areas of lower extremities at 2 different local skin temperatures: 35°C and 44°C. Local heating increases skin perfusion by mechanisms dependent on nitric oxide (NO). SBF was impaired in CKD patients Stage 5 on HD, particularly in those with diabetes mellitus as a cause of CKD. The reduced response in the SBF to the heat in our patients may be due to decreased generation of NO in uremia. Endothelium-dependent vasodilatation in patients on dialysis and the response of the skin microcirculation to acetylcholine was diminished in hypertensive patients on dialysis. Similarly, patients with diabetes mellitus had decreased SBF during intradermal microdialysis with a NO synthase inhibitor. Multiple uremic toxins have been studied in vitro and show to cause various degree of endothelial cell dysfunction. Unfortunately, no clear benefit has been described in CKD patients to different intervention aimed to reduce uremic toxin effect on endothelium. There are no long-term data on the factors which can modify endothelium function in uremia, but non pharmacologic interventions, diet, and several pharmacologic approaches could be beneficial. Measurement of SBF can be useful in evaluation of vasculopathy in CKD population and can potentially be used for assessment of vascular response during specific clinical intervention. Copyright © 2017. Published by Elsevier Inc.

  5. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    Science.gov (United States)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  6. Effect of laparoscopic ovarian drilling on vascular endothelial growth factor and ovarian stromal blood flow using 3-dimensional power Doppler.

    Science.gov (United States)

    El Behery, Manal M; Diab, Abdalla E; Mowafy, Hala; Ebrahiem, Moustafa A; Shehata, Amal E

    2011-02-01

    To determine, by using 3-dimensional power Doppler ultrasonography, the effect of laparoscopic ovarian drilling (LOD) on the serum level of vascular endothelial growth factor (VEGF) and ovarian stromal blood flow changes in polycystic ovary syndrome (PCOS). A prospective controlled clinical study was conducted on 26 clomiphene-resistant women with PCOS who were scheduled for LOD and a control group of 22 fertile regularly menstruating women. VEGF and 3 ovarian Doppler indices-vascularization index, flow index, and vascularization flow index-were measured and compared between the 2 groups, and before and after LOD in the PCOS group. Serum VEGF and the Doppler indices of ovarian stromal blood flow were significantly higher in the PCOS group than in the control group. Serum VEGF and the ovarian stromal blood flow Doppler indices were significantly reduced in the PCOS group after LOD. Increased vascularity in PCOS demonstrated by Doppler blood flow measurements might be explained by the high level of VEGF. LOD reduced ovarian vascularization and serum VEGF. Copyright © 2010 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Variation in non-invasive measurements of vascular function in healthy volunteers during daytime.

    NARCIS (Netherlands)

    Avest, E. ter; Holewijn, S.; Stalenhoef, A.F.H.; Graaf, J. de

    2005-01-01

    Although it is often recommended to standardize the time of day when performing non-invasive measurements of vascular function, the exact influence of the time of day on the outcome of IMT (intima-media thickness), PWV (pulse wave velocity), AIX (augmentation index) and FMD (flow-mediated

  8. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  9. Percutaneous Sclerotherapy of Congenital Slow-Flow Vascular Malformations of the Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Chiramel, George Koshy, E-mail: gkchiramel@gmail.com; Keshava, Shyamkumar Nidugala, E-mail: aparna-shyam@yahoo.com; Moses, Vinu, E-mail: vinu@cmcvellore.ac.in; Mammen, Suraj, E-mail: surajmammen77@gmail.com [Christian Medical College, Department of Radiology (India); David, Sarada, E-mail: saradadavid@gmail.com [Christian Medical College, Department of Ophthalmology (India); Sen, Sudipta, E-mail: paedsur@cmcvellore.ac.in [Christian Medical College, Department of Pediatric Surgery (India)

    2015-04-15

    PurposeThis manuscript describes the clinical features, imaging findings, treatment details, and short-term outcomes of a series of congenital slow-flow vascular malformations.MethodsThis was a prospective study of congenital slow-flow vascular malformations involving the orbital region treated at a single institution with percutaneous sclerotherapy.ResultsTen patients presented during the study period, comprising eight venous malformations, one lymphatic malformation, and one veno-lymphatic malformation. Nine patients underwent percutaneous sclerotherapy under digital subtraction angiography guidance, of which three developed marked rise in intraocular pressure requiring lateral canthotomy. The treatments were performed in the presence of an ophthalmologist who measured the intraorbital pressure during and after the procedure. On follow-up, some of the patients required repeat sessions of sclerotherapy. All patients had improvement of symptoms on follow up after the procedure.ConclusionCongenital slow-flow vascular malformations of the orbital region are rare lesions that should be treated using a multidisciplinary approach. Monitoring of the intraorbital pressure is required both during and after the procedure to decide about the need for lateral canthotomy to reduce the transiently increased intraorbital pressure.

  10. Compression therapy for congenital low-flow vascular malformations of the extremities: A systematic review

    NARCIS (Netherlands)

    Langbroek, Ginger B.; Horbach, Sophie E. R.; van der Vleuten, Carine J. M.; Ubbink, Dirk T.; van der Horst, Chantal M. A. M.

    2018-01-01

    Introduction Low-flow vascular malformations are congenital abnormalities of the veins, capillaries or lymphatic vessels or a combination of the previous. Compressive garments are frequently used as a first-line treatment option for low-flow vascular malformations of the extremities with the purpose

  11. Retinal vascular caliber and brachial flow-mediated dilation: the Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Nguyen, Thanh T; Islam, F M Amirul; Farouque, H M Omar; Klein, Ronald; Klein, Barbara E K; Cotch, Mary Frances; Herrington, David M; Wong, Tien Yin

    2010-07-01

    Retinal vascular caliber changes have been shown to predict stroke, but the underlying mechanism of this association is unknown. We examined the relationship between retinal vascular caliber with brachial flow-mediated dilation (FMD), a measure of systemic endothelial function. The Multi-Ethnic Study of Atherosclerosis (MESA) is a population-based study of persons 45 to 84 years of age residing in 6 US communities free of clinical cardiovascular disease at baseline. Brachial FMD data were collected at baseline (July 2000 to June 2002), and retinal vascular caliber was measured from digital retinal photographs at the second examination, immediately after the first (August 2002 to January 2004). Data were available for 2851 participants for analysis. The mean brachial FMD was 4.39+/-2.79%. After adjusting for age and gender, brachial FMD was reduced in persons with wider retinal venular caliber (changes in FMD -0.25, 95% CI, -0.36, - 0.13; PhemoglobinA(1C) (-0.18; 95% CI -0.30, - 0.06; P=0.004, per SD increase in venular caliber). Brachial FMD was not associated with retinal arteriolar caliber. Persons with wider retinal venules have reduced brachial FMD, independent of other vascular risk factors. This suggests that retinal venular caliber, previously shown to predict stroke, may be a marker of underlying systemic endothelial dysfunction.

  12. Apparatus for measuring fluid flow

    Science.gov (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  13. Twenty-four hour blood flow in the forefoot after reconstructive vascular surgery

    DEFF Research Database (Denmark)

    Jelnes, R

    1986-01-01

    during day activities. During sleep, however, SBF increased by 80% (p less than 0.001). The relative changes in SBF from day to night at the postoperative examination did not differ from that of the control group, i.e., the normal 24-hour blood flow pattern had been obtained. These changes in SBF......Local blood flow in the forefoot (SBF) was measured continuously during 24 hours by 133xenon clearance technique in 10 patients prior to and at least 1 year after successful reconstructive vascular surgery for severe arterial insufficiency (mean: 18 months, range: 12-36). A group of 10 patients...... that the long-term postreconstructive hyperemia merely is a reflection of the normal 24-hour blood flow pattern....

  14. POSIVA groundwater flow measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Oehberg, A. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland)

    2000-08-01

    Posiva Oy has carried out site characterisation for the final disposal of spent nuclear fuel in Finland since 1987. To meet the demanding needs to measure the hydraulic parameters in bedrock Posiva launched development of new flowmeter techniques including measuring methods and equipment in co-operation with PRG-Tec Oy. The techniques have been tested and used in the ongoing site investigations in Finland, in the underground Hard Rock Laboratory (HRL) at Aespoe in Sweden and in URL in Canada. The new methods are called difference flow and transverse flow methods. The difference flow method includes two modes, normal and detailed flow logging methods. In the normal mode the flow rate measurement is based on thermal pulse and thermal dilution methods, in the detailed logging mode only on thermal dilution method. The measuring ranges for flow rate with thermal pulse and dilution methods are 0.1-10 ml/min and 2-5000 ml/min, respectively. The difference flow method(normal mode) for small flows (0.1-10 ml/min) is based on measuring the pulse transit time and direction of a thermal pulse in the sensor. For high flows (2-5000 ml/min) the method is based on thermal dilution rate of a sensor. Direction is measured with monitoring thermistors. Inflow or outflow in the test interval is created due to natural or by pumping induced differences between heads in the borehole water and groundwater around the borehole. The single point resistance (and the temperature of borehole water) measurement is carried out simultaneously with the difference flow measurements, both in normal and detailed flow logging modes, while the tool is moving. The result is utilised for checking the exact depth of the tool. As the result a continuous log is obtained from which single fractures can be detected. The transverse flowmeter is able to measure the groundwater flow across a borehole. A special packer system guides the flow through the flow sensors. Four inflatable seals between conventional

  15. Blood flow and vascular reactivity during attacks of classic migraine--limitations of the Xe-133 intraarterial technique

    DEFF Research Database (Denmark)

    Skyhøj Olsen, T; Lassen, N A

    1989-01-01

    The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks...

  16. Autonomic response to exercise as measured by cardio- vascular ...

    African Journals Online (AJOL)

    Autonomic response to exercise as measured by cardio- vascular variability. Abstract. Motivation. There is growing interest in the use of cardiovas- cular variability indicators as measures of autonomic activity, even though reported results are not always comparable or as expected. This review aims to determine the ...

  17. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling.

    Science.gov (United States)

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-02-04

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  18. Endoscopic digital holography for measuring flows in opaque vessels

    Science.gov (United States)

    Arévalo, Laura; Palero, Virginia; Lobera, Julia; Arroyo, M. Pilar

    2012-10-01

    In this work a new application of digital holography for the study of cardio vascular diseases is proposed. The simultaneous measurement of the blood flow velocity and the vein wall deformation can be obtained by combining digital holography and endoscopy. Endoscopes are used for the illumination and recording of digital holograms inside a vein model. Two different endoscopes have been used in different vein models in order to test the technique performance. Preliminary results of flow velocity and wall deformation are presented.

  19. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  20. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.

    Science.gov (United States)

    Ene-Iordache, Bogdan; Remuzzi, Andrea

    2017-09-01

    Although our understanding of the failure mechanism of vascular access for hemodialysis has increased substantially, this knowledge has not translated into successful therapies. Despite advances in technology, it is recognized that vascular access is difficult to maintain, due to complications such as intimal hyperplasia. Computational studies have been used to estimate hemodynamic changes induced by vascular access creation. Due to the heterogeneity of patient-specific geometries, and difficulties with obtaining reliable models of access vessels, idealized models were often employed. In this review we analyze the knowledge gained with the use of computational such simplified models. A review of the literature was conducted, considering studies employing a computational fluid dynamics approach to gain insights into the flow field phenotype that develops in idealized models of vascular access. Several important discoveries have originated from idealized model studies, including the detrimental role of disturbed flow and turbulent flow, and the beneficial role of spiral flow in intimal hyperplasia. The general flow phenotype was consistent among studies, but findings were not treated homogeneously since they paralleled achievements in cardiovascular biomechanics which spanned over the last two decades. Computational studies in idealized models are important for studying local blood flow features and evaluating new concepts that may improve the patency of vascular access for hemodialysis. For future studies we strongly recommend numerical modelling targeted at accurately characterizing turbulent flows and multidirectional wall shear disturbances.

  1. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    Science.gov (United States)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  2. Measurement in multiphase reacting flows

    Science.gov (United States)

    Chigier, N. A.

    1979-01-01

    A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.

  3. Effects of pulsatile flow on cultured vascular endothelial cell morphology.

    Science.gov (United States)

    Helmlinger, G; Geiger, R V; Schreck, S; Nerem, R M

    1991-05-01

    Endothelial cells (EC) appear to adapt their morphology and function to the in vivo hemodynamic environment in which they reside. In vitro experiments indicate that similar alterations occur for cultured EC exposed to a laminar steady-state flow-induced shear stress. However, in vivo EC are exposed to a pulsatile flow environment; thus, in this investigation, the influence of pulsatile flow on cell shape and orientation and on actin microfilament localization in confluent bovine aortic endothelial cell (BAEC) monolayers was studied using a 1-Hz nonreversing sinusoidal shear stress of 40 +/- 20 dynes/cm2 (type I), 1-Hz reversing sinusoidal shear stresses of 20 +/- 40 and 10 +/- 15 dynes/cm2 (type II), and 1-Hz oscillatory shear stresses of 0 +/- 20 and 0 +/- 40 dynes/cm2 (type III). The results show that in a type I nonreversing flow, cell shape changed less rapidly, but cells took on a more elongated shape than their steady flow controls long-term. For low-amplitude type II reversing flow, BAECs changed less rapidly in shape and were always less elongated than their steady controls; however, for high amplitude reversal, BAECs did not stay attached for more than 24 hours. For type III oscillatory flows, BAEC cell shape remained polygonal as in static culture and did not exhibit actin stress fibers, such as occurred in all other flows. These results demonstrate that EC can discriminate between different types of pulsatile flow environments.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The effects of vasoactive agents on flow through saphenous vein grafts during lower-extremity peripheral vascular surgery.

    Science.gov (United States)

    Maslow, Andrew D; Bert, Arthur; Slaiby, Jeffrey; Carney, William; Marcaccio, Edward

    2007-06-01

    The purpose of this study was to assess the effects of hemodynamic alterations on vein graft flow during peripheral vascular surgery. It was hypothesized that vasopressors can be administered without compromising flow through the vein grafts. Tertiary care center, university medical center. Randomized placebo-controlled double-blinded study. The effects of phenylephrine, epinephrine, milrinone, intravenous fluid, and placebo on newly constructed peripheral vein grafts were assessed in 60 patients (12 patients in each of 5 groups). Systemic and central hemodynamics were measured by using intra-arterial and pulmonary artery catheters. Vein graft flow was measured by using a transultrasonic flow probe (Transultrasonic Inc, Ithaca, NY). Phenylephrine increased systemic mean blood pressure (mBP) (68.2-94.0 mmHg, p < 0.01), systemic vascular resistance (SVR) (1,091-1,696 dynes x sec x cm(-5), p < 0.001), and vein graft flow (39.5-58.9 mL/min, p < 0.01), whereas cardiac output remained unchanged. Epinephrine resulted in increased cardiac output (4.4-6.9 L/min, p < 0.01) and mBP (72.7-89.1 mmHg, p < 0.01), whereas vein graft flow was reduced in 6 of 12 patients. Intravenous fluid administration resulted in a relatively smaller increase in graft flow (37.6-46.0 mL/min, p < 0.05), an increase in cardiac output, and an insignificant decrease in SVR. Other treatments had either little or no effect on vein graft flow. The study hypothesis was partly supported. Although both phenylephrine and epinephrine increased blood pressure, only the former increased vein graft flow in all patients. In conjunction with increases in graft flow after fluid administration, these data suggest that factors affecting vein graft flow are not just simply related to systemic hemodynamics.

  5. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  6. Circumferential flow reduction during percutaneous embolotherapy of extracranial vascular malformations: the "cookie-cutter" technique.

    Science.gov (United States)

    Duncan, Ian C; Fourie, Pieter A

    2003-08-01

    We describe a simple, inexpensive, and very effective method of achieving circumferential flow reduction during direct percutaneous cyanoacrylate embolization of a high-flow vascular malformation of the scalp. By using a plastic "cookie cutter" placed over the lesion and applying various degrees of pressure, both venous outflow from and arterial inflow into the lesion were limited. This flow reduction technique improved both the efficacy and safety of the procedure.

  7. Quantitative angle-independent flow measurement using relative standard deviation OCT (Conference Presentation)

    Science.gov (United States)

    Zhang, Buyun; Zhu, Jiang; Qi, Li; Gao, Yiwei; Huo, Tiancheng; Zhu, Zhuqing; Chen, Zhongping

    2017-02-01

    Incorporating different data processing methods, Optical coherence tomography (OCT) has the ability for high-resolution micro-angiography and quantitative flow velocity measurement. However, OCT micro-angiography cannot provide quantitative measurement of flow velocity, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which are difficult for whole vascular network. In this study, we report a relative standard deviation OCT (RSD-OCT) for the mapping of the flow velocity in a vascular network without the calculation of Doppler angle. From the theoretical analysis and experimental validation, the RSD-OCT is angle-independent and can quantify the flow velocity conveniently after a calibration.

  8. Effect of vascular burden as measured by vascular indexes upon vascular dementia: a matched case-control study

    OpenAIRE

    Takahashi, Paul Y; Caldwell, Casey R; Targonski, Paul V

    2012-01-01

    Paul Y Takahashi, Casey R Caldwell, Paul V TargonskiPrimary Care Internal Medicine, Mayo Clinic, Rochester MN, USABackground: Vascular dementia (VaD) is a challenging illness that affects the lives of older adults and caregivers. It is unclear how multiple vascular risk factor exposures (polyvascular disease) affect VaD.Purpose: To determine the relationship between multiple vascular risk exposures, as counted on an index in cases with VaD, compared with healthy age-/gender-matched controls.M...

  9. Prostate vascular flow: The effect of the ejaculation on the power doppler ultrasonographic examination.

    Science.gov (United States)

    Alonge, S; Melandri, M; Fanciullo, L; Lacalandra, G M; Aiudi, G

    2018-02-01

    Power Doppler sonography (PD) can accurately depict tissue perfusion, recognize slow flows, and is relatively angle independent. The monitoring of local blood flow by Doppler ultrasonography is helpful in differentiating prostatic physio-pathological conditions, but the recognizing of physiological variables that could affect it is crucial to apply this technique in clinical practice. This study aimed to evaluate if ejaculation affects blood flow to the prostate and to state how long this effect lasts. Serial PD examinations of prostate were performed in 18 dogs (1-5 years, 6-40 kg) immediately before (T0) and after (T1) the ejaculation, and repeated 6 (T2), 18 (T3) and 24 (T4) hours later. For each examination, two representative PD images were chosen and ranked by two independent observers according to the following scoring system: 0 = mild subcapsular (S) vascularization without clear evidence of parenchymal (P) vascularization; 1 = moderate P and S vascularization; 2 = severe S and moderate P vascularization; 3 = severe P and moderate S vascularization; 4 = severe P and S vascularization. Interobserver agreement was assessed using Kappa of Cohen. Ranked data, grouped according to time, were compared by ANOVA and Tukey HSD test (p flow pattern at different times were observed for all dogs. The statistical analysis evidenced a significant difference for T0 vs T1 and vs T2 and vs T3 (p  .05). Interobserver agreement was very good (Kappa of Cohen = 0.86). This study demonstrated a definite increase in vascular flow to the prostate after ejaculation. The present results suggest a minimum of 24 hr sexual rest before the PD examination of the gland. This result should be taken into account whenever Doppler sonography is used to evaluate potential hyperaemia in dogs suspected of having prostate abnormalities. © 2017 Blackwell Verlag GmbH.

  10. Interactive effects of vascular risk burden and advanced age on cerebral blood flow

    Directory of Open Access Journals (Sweden)

    Katherine eBangen

    2014-07-01

    Full Text Available Vascular risk factors and cerebral blood flow (CBF reduction have been linked to increased risk of cognitive impairment and Alzheimer’s disease (AD; however the possible moderating effects of age and vascular risk burden on CBF in late life remain understudied. We examined the relationships among elevated vascular risk burden, age, CBF, and cognition. Seventy-one non-demented older adults completed an arterial spin labeling MR scan, neuropsychological assessment, and medical history interview. Relationships among vascular risk burden, age, and CBF were examined in a priori regions of interest (ROIs previously implicated in aging and AD. Interaction effects indicated that, among older adults with elevated vascular risk burden (i.e., multiple vascular risk factors, advancing age was significantly associated with reduced cortical CBF whereas there was no such relationship for those with low vascular risk burden (i.e., no or one vascular risk factor. This pattern was observed in cortical ROIs including medial temporal (hippocampus, parahippocampal gyrus, uncus, inferior parietal (supramarginal gyrus, inferior parietal lobule, angular gyrus, and frontal (anterior cingulate, middle frontal gyrus, medial frontal gyrus cortices. Furthermore, among those with elevated vascular risk, reduced CBF was associated with poorer cognitive performance. Such findings suggest that older adults with elevated vascular risk burden may be particularly vulnerable to cognitive change as a function of CBF reductions. Findings support the use of CBF as a potential biomarker in preclinical AD and suggest that vascular risk burden and regionally-specific CBF changes may contribute to differential age-related cognitive declines.

  11. Seeking a blood pressure-independent measure of vascular properties.

    Science.gov (United States)

    Steppan, Jochen; Sikka, Gautam; Hori, Daijiro; Nyhan, Daniel; Berkowitz, Dan E; Gottschalk, Allan; Barodka, Viachaslau

    2016-01-01

    Pulse wave velocity (PWV) and pulse pressure (PP) are blood pressure (BP)-dependent surrogates for vascular stiffness. Considering that there are no clinically useful markers for arterial stiffness that are BP-independent, our objective was to identify novel indices of arterial stiffness and compare them with previously described markers. PWV and PP were measured in young and old male Fisher rats and in young and old male spontaneously hypertensive rats (SHR) over a wide range of BPs. The BP dependence of these and several other indices of vascular stiffness were evaluated. An index incorporating PWV and PP was also constructed. Both PWV and PP increase in a non-linear manner with rising BP for both strains of animals (Fisher and SHRs). Age markedly changes the relationship between PWV or PP and BP. The previously described Ambulatory Arterial Stiffness Index (AASI) was able to differentiate between young and old vasculature, whereas the Cardio-Ankle Vascular Index (CAVI) did not reliably differentiate between the two. The novel Arterial Stiffness Index (ASI) differentiated stiffer from more compliant vasculature. Considering the limitations of the currently available indices of arterial stiffness, we propose a novel index of intrinsic arterial stiffness, the ASI, which is robust over a range of BPs and allows one to distinguish between compliant and stiff vasculature in both Fisher rats and SHRs. Further studies are necessary to validate this index in other settings.

  12. Flow regulation in coronary vascular tree: a model study.

    Directory of Open Access Journals (Sweden)

    Xinzhou Xie

    Full Text Available Coronary blood flow can always be matched to the metabolic demand of the myocardium due to the regulation of vasoactive segments. Myocardial compressive forces play an important role in determining coronary blood flow but its impact on flow regulation is still unknown. The purpose of this study was to develop a coronary specified flow regulation model, which can integrate myocardial compressive forces and other identified regulation factors, to further investigate the coronary blood flow regulation behavior.A theoretical coronary flow regulation model including the myogenic, shear-dependent and metabolic responses was developed. Myocardial compressive forces were included in the modified wall tension model. Shear-dependent response was estimated by using the experimental data from coronary circulation. Capillary density and basal oxygen consumption were specified to corresponding to those in coronary circulation. Zero flow pressure was also modeled by using a simplified capillary model.Pressure-flow relations predicted by the proposed model are consistent with previous experimental data. The predicted diameter changes in small arteries are in good agreement with experiment observations in adenosine infusion and inhibition of NO synthesis conditions. Results demonstrate that the myocardial compressive forces acting on the vessel wall would extend the auto-regulatory range by decreasing the myogenic tone at the given perfusion pressure.Myocardial compressive forces had great impact on coronary auto-regulation effect. The proposed model was proved to be consistent with experiment observations and can be employed to investigate the coronary blood flow regulation effect in physiological and pathophysiological conditions.

  13. [Low-flow synovial vascular malformation of the knee (hemangiolymphangioma) - Case report].

    Science.gov (United States)

    Parra, B Andrea; Valencia, Z Natalia Andrea; Espinal, B David Andrés; Maya, A Isabel Cristina

    2015-01-01

    Low-flow vascular malformation, which usually develops during the first stage of infancy, is a rare cause of recurrent effusion of the knee. History, laboratory and X-rays are usually non-specific. To describe a rare disease in pediatrics, emphasizing the correct classification and suspicion. A case is presented of a two-year-old patient with a history of effusion of the right knee who required multiple hospitalizations and antibiotic treatments. Laboratory work-up was normal. Plain X-rays of the knee revealed no bone changes. MR imaging reported low-flow vascular malformation. Surgical resection was performed, evidencing vascular lesion among the muscle fibers of the vastus lateralis of quadriceps until the capsule of the knee, as well as dissection of the fibers until the vastus lateralis of the right leg. Histology was consistent with low-flow vascular malformation. Due to the benign outcome and favorable evolution, an outpatient management was possible. Although low-flow synovial vascular malformation is a rare disease among the pediatric population, it should be considered in the differential diagnosis of patients with repeated hemarthrosis and no history of either coagulopathy or hemophilia. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  14. Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow.

    Directory of Open Access Journals (Sweden)

    Hojin Ha

    Full Text Available Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn* of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft.

  15. Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow.

    Science.gov (United States)

    Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon

    2014-01-01

    Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft.

  16. The impact of topical mydriatic ophthalmic solutions on retinal vascular reactivity and blood flow.

    Science.gov (United States)

    Tsui, Edmund; Sehi, Mitra; Cheng, Richard W F; Wan, Jennifer; Wong, Tien; Dorner, Stephanie; Fisher, Joseph A; Hudson, Christopher

    2013-07-01

    The impact of mydriatic agents on the standardized provocation of retinal vascular reactivity has not been systematically investigated. Our aim was to investigate the effect of commonly used mydriatic agents on the provoked vascular response of retinal arterioles. One eye was randomly selected for mydriasis from 10 healthy volunteers (age 23.3 ± 4.9 years). A single drop of: 1% tropicamide (T), or a combination of 0.8% tropicamide and 5% phenylephrine (TP), or 1% cyclopentolate (C) were instilled into the volunteers lower fornix at each of three visits. Volunteers underwent a standardized isocapnic hyperoxic provocation. Four retinal hemodynamic measurements were acquired with the Canon Laser Blood Flowmeter at equivalent positions on the superior temporal arteriole (STA) and inferior temporal arteriole (ITA) at baseline, during provocation and after recovery. Statistical analysis was performed using linear mixed-effect models. Pre- and post-dilation measurements indicated that pupil diameter increased with use of T, TP, C (all 0.05). In response to a standardized isocapnic hyperoxic challenge, blood vessel diameter, blood velocity and flow decreased in both the STA and ITA relative to baseline. Comparison between the change elicited by isocapnic hyperoxic gas stimuli with respect to blood vessel diameter, blood velocity, blood flow, were equivalent for each mydriatic agent in the STA (p = 0.66, p = 0.99, p = 0.99, respectively) and the ITA (p = 0.85, p = 0.80, p = 0.66, respectively). Furthermore, comparison between the change in the STA and ITA with respect to the above parameters showed equivalent responses in both vessels for each mydriatic agent: T (p = 0.92, p = 0.99, p = 0.35; respectively), TP (p = 0.89, p = 0.96, p = 0.62; respectively), and C (p = 0.87, p = 0.35, p = 0.56; respectively). The provoked retinal vascular reactivity response to standardized isocapnic hyperoxia was equivalent irrespective of the agent used to

  17. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  18. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  19. Aerobic exercise improves measures of vascular health in diabetic peripheral neuropathy.

    Science.gov (United States)

    Billinger, Sandra A; Sisante, Jason-Flor V; Alqahtani, Abdulfattah S; Pasnoor, Mamatha; Kluding, Patricia M

    2017-01-01

    Aerobic exercise improves vascular endothelial function in people with Type 2 diabetes mellitus (T2DM). There is minimal information available regarding vascular health in people with T2DM and diabetic peripheral neuropathy (DPN). Thus, the primary aim of this secondary analysis was to determine whether a 16-week aerobic exercise intervention could improve vascular health in people with T2DM and DPN. A secondary aim was to explore the relationship between changes in flow-mediated dilation (FMD) and the number of years since diagnosis of DPN. We examined whether a 16-week aerobic exercise intervention would improve vascular health in people with T2DM and DPN. We used Doppler ultrasound to assess brachial artery diameter and peak shear at baseline and post-exercise. Paired t-tests were used to determine whether the outcome measures improved from baseline to post-intervention. Pearson correlation assessed the relationship between DPN (years) and the percent change score (pre- to post-intervention) for FMD. Seventeen individuals were included in the data analysis. After the intervention, peak diameter increased (3.9 (0.5) to 4.0 (0.5) mm; p = 0.07). Time to peak shear occurred at 60.5 (24.6) seconds when compared to baseline at 68.2 (22.7) seconds; p = 0.17. We found that a longer duration (in years) of DPN demonstrated a fair, negative relationship (r = -0.41, p = 0.19) with the percent change in FMD. Aerobic exercise was beneficial for improving measures of vascular health but these were not statistically significant. The magnitude of change may be affected by the duration of DPN.

  20. Effect of vascular burden as measured by vascular indexes upon vascular dementia: a matched case-control study

    Directory of Open Access Journals (Sweden)

    Takahashi PY

    2012-01-01

    Full Text Available Paul Y Takahashi, Casey R Caldwell, Paul V TargonskiPrimary Care Internal Medicine, Mayo Clinic, Rochester MN, USABackground: Vascular dementia (VaD is a challenging illness that affects the lives of older adults and caregivers. It is unclear how multiple vascular risk factor exposures (polyvascular disease affect VaD.Purpose: To determine the relationship between multiple vascular risk exposures, as counted on an index in cases with VaD, compared with healthy age-/gender-matched controls.Methods: This was a matched case-control study of subjects living in Olmsted County, MN with documented VaD. Controls were selected by gender and age within 3 years from those who did not have dementia. The exposures included a total index (eleven exposure factors added together, along with indexes for cerebrovascular disease (two exposures, cardiovascular disease (four exposures, vascular disease (three exposures, and lifestyle (two exposures. Analysis used matched conditional univariable logistic regression for each index.Results: A total of 1736 potential subjects were identified, and 205 subjects were diagnosed with VaD. There was a significant association of the total score index with an odds ratio of 1.45 (95% confidence interval 1.21–1.74. The cerebrovascular index was also associated with VaD with an odds ratio of 12.18 (95% confidence interval 6.29–23.61. The cardiovascular and vascular indexes were also associated with VaD status. The lifestyle index was not associated with VaD.Conclusion: The cumulative role of multiple vascular risk factors or diseases increased the risk of VaD, as noted by the total vascular index. The lifestyle index did not reveal any significant differences. Further work is required for evaluation of these indexes.Keywords: polyvascular disease, elderly, vascular dementia

  1. Gradient changes in porcine renal arterial vascular anatomy and blood flow after cryoablation

    NARCIS (Netherlands)

    Lagerveld, Brunolf W.; van Horssen, Pepijn; Laguna, M. Pilar; van den Wijngaard, Jeroen P. H. M.; Siebes, Maria; Wijkstra, Hessel; de La Rosette, Jean J. M. C. H.; Spaan, Jos A. E.

    2011-01-01

    We quantified temporal changes in vascular structure and blood flow after cryosurgery of the porcine kidney in vivo. We studied 5 groups of 4 kidneys each with a survival time of 20 minutes, 4 hours, 2 days, and 1 and 2 weeks after cryoablation, respectively. Before harvesting the kidneys,

  2. Flow cytometry on the stromal-vascular fraction of white adipose tissue

    Science.gov (United States)

    Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow c...

  3. Pilot study on vascular intervention training based on blood flow effected guidewire simulation.

    Science.gov (United States)

    Jiayin Cai; Hongzhi Xie; Shuyang Zhang; Lixu Gu

    2017-07-01

    A decent guidewire behavior simulation is vital to the virtual vascular intervention training. The influence of blood flow has rarely been taken into consideration in former works of guidewire simulation. This paper addresses the problem by integrating blood flow analysis and proposes a novel guidewire simulation model.The blood flow distribution inside arterial vasculature is computed by separating the vascular model into discrete cylindrical vessels and modeling the flow in each vessel with the Poiseuille Law. The blood flow computation is then integrated into a Kirchhoff rods model. The simulation could be run in real time with hardware acceleration at least 30 fps. To validate the result, an experiment environment with a 3D printed vascular phantom and an electromagnetic tracking(EMT) system was set up with clinical-used guidewire sensors applied in phantom to trace its motion as the standard for comparison. Experiment results reveal that the shown blood flow effected model presents better physical credibility with a lower and more stable root-mean-square(RMS) at 2.14mm ± 1.24mm, better than the Kirchhoff model of 4.81mm±3.80mm.

  4. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone

    Directory of Open Access Journals (Sweden)

    Robert M. Rapoport

    2017-10-01

    Full Text Available Although endothelin (ET-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO. Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1 precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.

  5. Measurement of flow in supercritical flow regime using cutthroat flumes

    Indian Academy of Sciences (India)

    Cutthroat flume is commonly used for measurement of subcritical flow in open channel because of its simplicity and ease of construction. No experimental data is available in literature for measurement of flow in supercritical regime using cutthroat flume. The present paper finds the feasibility of cutthroat flume as a ...

  6. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...

  7. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Kelly; Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Schnell, Susanne; Barker, Alex J.; Garcia, Julio; Chowdhary, Varun; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Lorenz, Ramona [University Medical Center Freiburg, Department of Radiology, Freiburg (Germany); Rose, Michael [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Robinson, Joshua D. [Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Cardiology, Chicago, IL (United States); Rigsby, Cynthia K. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-10-15

    Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9-21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9-100], IVC to LPA: 54% ± 28 [4-98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R{sup 2}=0.50, P=0.02; SVC to LPA: R{sup 2}=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability. (orig.)

  8. Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Fantini, Sergio

    2016-10-01

    We present a quantitative analysis of dynamic diffuse optical measurements to obtain oxygen saturation of hemoglobin in volume oscillating compartments. We used a phasor representation of oscillatory hemodynamics at the heart rate and respiration frequency to separate the oscillations of tissue concentrations of oxyhemoglobin (O) and deoxyhemoglobin (D) into components due to blood volume (subscript V) and blood flow (subscript F): O=OV+OF, D=DV+DF. This is achieved by setting the phase angle Arg(OF)-Arg(O), which can be estimated by a hemodynamic model that we recently developed. We found this angle to be -72 deg for the cardiac pulsation at 1 Hz, and -7 deg for paced breathing at 0.1 Hz. Setting this angle, we can obtain the oxygen saturation of hemoglobin of the volume-oscillating vascular compartment, SV=|OV|/(|OV|+|DV|). We demonstrate this approach with cerebral near-infrared spectroscopy measurements on healthy volunteers at rest (n=4) and during 0.1 Hz paced breathing (n=3) with a 24-channel system. Rest data at the cardiac frequency were used to calculate the arterial saturation, S(a); over all subjects and channels, we found ==0.96±0.02. In the case of paced breathing, we found =0.66±0.14, which reflects venous-dominated hemodynamics at the respiratory frequency.

  9. Fluid flow modulates vascular endothelial cytosolic calcium responses to adenine nucleotides.

    Science.gov (United States)

    Shen, J; Luscinskas, F W; Gimbrone, M A; Dewey, C F

    1994-04-01

    To determine whether fluid flow influences the action of soluble vasoactive agonists on vascular endothelium. Confluent monolayers of bovine aortic endothelial cells (BAEC) were cultured on glass coverslips, prelabeled with the Ca(2+)-sensitive dye fura-2, and placed in a parallel-plate flow chamber designed to generate defined laminar fluid flow. Cytosolic free Ca2+ concentration ([Ca2+]i) in individual BAEC was monitored during perfusion with medium containing adenine nucleotide under defined flow conditions. Continuous perfusion with ATP (0.3-3.0 microM) or ADP (0.1-1.0 microM) evoked repetitive oscillations in [Ca2+]i in individual BAEC. The frequency of the [Ca2+]i oscillations was dependent on both nucleotide concentration and levels of applied shear stress; at constant bulk concentration of nucleotide, the frequency increased with shear stress. Stopping flow in the continuous presence of agonists immediately extinguished the oscillatory response. Elimination of extracellular Ca2+ did not inhibit the [Ca2+]i oscillations. In the presence of nonhydrolyzable nucleotide analog, ATP gamma S or ADP beta S, application of flow resulted in similar shear-dependent [Ca2+]i oscillations, suggesting that flow modulation of the [Ca2+]i response was not simply due to depletion of ATP or ADP in the vicinity of BAEC monolayers as a result of hydrolysis of nucleotides by ectonucleotidases. These findings suggest that local hemodynamic conditions may modulate the action of vasoactive agents on the vascular endothelium in vivo.

  10. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension.

    Science.gov (United States)

    Hunter, Kendall S; Lee, Po-Feng; Lanning, Craig J; Ivy, D Dunbar; Kirby, K Scott; Claussen, Lori R; Chan, K Chen; Shandas, Robin

    2008-01-01

    Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated a method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero harmonic impedance value and PVR and suggested a correlation between higher-harmonic impedance values and pulmonary vascular stiffness. Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and pulmonary vascular stiffness from a single measurement, and that impedance is a better predictor of disease outcomes compared with PVR. Pressure and velocity waveforms within the main pulmonary artery were measured during right heart catheterization of patients with normal pulmonary artery hemodynamics (n = 14) and those with PAH undergoing reactivity evaluation (49 subjects, 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y = 1.095x + 1.381, R2 = 0.9620). In addition, the modulus sum of the first 2 harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (y = 13.39x - 0.8058, R2 = 0.7962). Among a subset of patients with PAH (n = 25), cumulative logistic regression between outcomes to total indexed impedance was better (R(L)2 = 0.4012) than between outcomes and indexed PVR (R(L)2 = 0.3131). Input impedance can be consistently and easily obtained from pulse-wave Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and

  11. Efficient blood flow visualization using flowline extraction and opacity modulation based on vascular structure analysis.

    Science.gov (United States)

    Kwon, Ohjae; Lee, Jeongjin; Kim, Bohyoung; Shin, Juneseuk; Shin, Yeong-Gil

    2017-03-01

    With the recent advances regarding the acquisition and simulation of blood flow data, blood flow visualization has been widely used in medical imaging for the diagnosis and treatment of pathological vessels. In this paper, we present a novel method for the visualization of the blood flow in vascular structures. The vessel inlet or outlet is first identified using the orthogonality metric between the normal vectors of the flow velocity and vessel surface. Then, seed points are generated on the identified inlet or outlet by Poisson disk sampling. Therefore, it is possible to achieve the automatic seeding that leads to a consistent and faster flow depiction by skipping the manual location of a seeding plane for the initiation of the line integration. In addition, the early terminated line integration in the thin curved vessels is resolved through the adaptive application of the tracing direction that is based on the flow direction at each seed point. Based on the observation that blood flow usually follows the vessel track, the representative flowline for each branch is defined by the vessel centerline. Then, the flowlines are rendered through an opacity assignment according to the similarity between their shape and the vessel centerline. Therefore, the flowlines that are similar to the vessel centerline are shown transparently, while the different ones are shown opaquely. Accordingly, the opacity modulation method enables the flowlines with an unusual flow pattern to appear more noticeable, while the visual clutter and line occlusion are minimized. Finally, Hue-Saturation-Value color coding is employed for the simultaneous exhibition of flow attributes such as local speed and residence time. The experiment results show that the proposed technique is suitable for the depiction of the blood flow in vascular structures. The proposed approach is applicable to many kinds of tubular structures with embedded flow information. Copyright © 2017 Elsevier Ltd. All rights

  12. S.E. Mitchell Vascular Anomalies Flow Chart (SEMVAFC): a visual pathway combining clinical and imaging findings for classification of soft-tissue vascular anomalies.

    Science.gov (United States)

    Tekes, A; Koshy, J; Kalayci, T O; Puttgen, K; Cohen, B; Redett, R; Mitchell, S E

    2014-05-01

    Classification of vascular anomalies (VAs) is challenging due to overlapping clinical symptoms, confusing terminology in the literature and unfamiliarity with this complex entity. It is important to recognize that VAs include two distinct entities, vascular tumours (VTs) and vascular malformations (VaMs). In this article, we describe SE Mitchell Vascular Anomalies Flow Chart (SEMVAFC), which arises from a multidisciplinary approach that incorporates clinical symptoms, physical examination and magnetic resonance imaging (MRI) findings to establish International Society for the Study of Vascular Anomalies (ISSVA)-based classification of the VAs. SEMVAFC provides a clear visual pathway for physicians to accurately diagnose Vas, which is important as treatment, management, and prognosis differ between VTs and VaMs. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Improved FPGA controlled artificial vascular system for plethysmographic measurements

    Directory of Open Access Journals (Sweden)

    Laqua Daniel

    2016-09-01

    Full Text Available The fetal oxygen saturation is an important parameter to determine the health status of a fetus, which is until now mostly acquired invasively. The transabdominal, fetal pulse oximetry is a promising approach to measure this non-invasively and continuously. The fetal pulse curve has to be extracted from the mixed signal of mother and fetus to determine its oxygen saturation. For this purpose efficient algorithms are necessary, which have to be evaluated under constant and reproducable test conditions. This paper presents the improved version of a phantom which can generate artificial pulse waves in a synthetic tissue phantom. The tissue phantom consists of several layers that mimic the different optical properties of the fetal and maternal tissue layers. Additionally an artificial vascular system and a dome, which mimics the bending of the belly of a pregnant woman, are incorporated. To obtain data on the pulse waves, several measurement methods are included, to help understand the behavior of the signals gained from the pulse waves. Besides pressure sensors and a transmissive method we integrated a capacitive approach, that makes use of the so called “Pin Oscillator” method. Apart from the enhancements in the tissue phantom and the measurements, we also improved the used blood substitute, which reproduces the different absorption characteristics of fetal and maternal blood. The results show that the phantom can generate pulse waves similar to the natural ones. Furthermore, the phantom represents a reference that can be used to evaluate the algorithms for transabdominal, fetal pulse oximetry.

  14. Effects of hypothyroidism on vascular /sup 125/I-albumin permeation and blood flow in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, R.G.; Pugliese, G.; Chang, K.; Speedy, A.; Province, M.A.; Kilo, C.; Williamson, J.R.

    1989-05-01

    Effects of hypothyroidism on vascular 125I-albumin permeation and on blood flow were assessed in multiple tissues of male Sprague-Dawley rats rendered hypothyroid by dietary supplementation with 0.5% (wt/wt) 2-thiouracil or by thyroidectomy. In both thiouracil-treated and thyroidectomized rats, body weights, kidney weight, arterial blood pressure, and pulse rate were decreased significantly v age-matched controls. After 10 to 12 weeks of thiouracil treatment, 125I-albumin permeation was increased significantly in the kidney, aorta, eye (anterior uvea, choroid, retina), skin, and new granulation tissue, remained unchanged in brain, sciatic nerve, and heart, and was decreased in forelimb skeletal muscle. A similar pattern was observed in thyroidectomized rats, except that increases in 125I-albumin permeation for all tissues were smaller than those observed in thiouracil-treated rats, and 125I-albumin permeation in retina did not differ from controls. In both thiouracil-treated and thyroidectomized rats, changes in blood flow (assessed with 15-microns, 85Sr-labeled microspheres) relative to the decrease in arterial blood pressure were indicative of a decrease in regional vascular resistance except in the choroid and in the kidney, in which vascular resistance was increased significantly. Glomerular filtration rate was decreased, but filtration fraction and urinary excretion of albumin remained unchanged by thiouracil treatment and thyroidectomy. These results indicate that vascular hemodynamics and endothelial cell barrier functional integrity are modulated in many different tissues by the thyroid. In view of the correspondence of hypothyroid- and diabetes-induced vascular permeability changes, these results raise the possibility that altered thyroid function in diabetes may play a role in the pathogenesis of diabetic vascular disease.

  15. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  16. Development of an Open Source Image-Based Flow Modeling Software - SimVascular

    Science.gov (United States)

    Updegrove, Adam; Merkow, Jameson; Schiavazzi, Daniele; Wilson, Nathan; Marsden, Alison; Shadden, Shawn

    2014-11-01

    SimVascular (www.simvascular.org) is currently the only comprehensive software package that provides a complete pipeline from medical image data segmentation to patient specific blood flow simulation. This software and its derivatives have been used in hundreds of conference abstracts and peer-reviewed journal articles, as well as the foundation of medical startups. SimVascular was initially released in August 2007, yet major challenges and deterrents for new adopters were the requirement of licensing three expensive commercial libraries utilized by the software, a complicated build process, and a lack of documentation, support and organized maintenance. In the past year, the SimVascular team has made significant progress to integrate open source alternatives for the linear solver, solid modeling, and mesh generation commercial libraries required by the original public release. In addition, the build system, available distributions, and graphical user interface have been significantly enhanced. Finally, the software has been updated to enable users to directly run simulations using models and boundary condition values, included in the Vascular Model Repository (vascularmodel.org). In this presentation we will briefly overview the capabilities of the new SimVascular 2.0 release. National Science Foundation.

  17. Rationale, scope, and 20-year experience of vascular surgical training with lifelike pulsatile flow models.

    Science.gov (United States)

    Eckstein, Hans-Henning; Schmidli, Jürg; Schumacher, Hardy; Gürke, Lorenz; Klemm, Klaus; Duschek, Nikolaus; Meile, Toni; Assadian, Afshin

    2013-05-01

    Vascular surgical training currently has to cope with various challenges, including restrictions on work hours, significant reduction of open surgical training cases in many countries, an increasing diversity of open and endovascular procedures, and distinct expectations by trainees. Even more important, patients and the public no longer accept a "learning by doing" training philosophy that leaves the learning curve on the patient's side. The Vascular International (VI) Foundation and School aims to overcome these obstacles by training conventional vascular and endovascular techniques before they are applied on patients. To achieve largely realistic training conditions, lifelike pulsatile models with exchangeable synthetic arterial inlays were created to practice carotid endarterectomy and patch plasty, open abdominal aortic aneurysm surgery, and peripheral bypass surgery, as well as for endovascular procedures, including endovascular aneurysm repair, thoracic endovascular aortic repair, peripheral balloon dilatation, and stenting. All models are equipped with a small pressure pump inside to create pulsatile flow conditions with variable peak pressures of ~90 mm Hg. The VI course schedule consists of a series of 2-hour modules teaching different open or endovascular procedures step-by-step in a standardized fashion. Trainees practice in pairs with continuous supervision and intensive advice provided by highly experienced vascular surgical trainers (trainer-to-trainee ratio is 1:4). Several evaluations of these courses show that tutor-assisted training on lifelike models in an educational-centered and motivated environment is associated with a significant increase of general and specific vascular surgical technical competence within a short period of time. Future studies should evaluate whether these benefits positively influence the future learning curve of vascular surgical trainees and clarify to what extent sophisticated models are useful to assess the level of

  18. Measurement of flow in supercritical flow regime using cutthroat flumes

    Indian Academy of Sciences (India)

    [7] Manekar V L, Porey P D and Ingle R N 2007 Discharge rela- tion for cutthroat flume under free flow condition. J. Irrig. Drain Eng. 133(5): 495–499. [8] Thornton C I, Smith Brian A, Abt Steven R and. Robeson Michael D 2009 Supercritical flow measurement using a small parshall flume. J. Irrig. Drain. Eng. 135(5): 683–.

  19. On the Methods to Measure Powder Flow.

    Science.gov (United States)

    Tan, Geoffrey; Morton, David A V; Larson, Ian

    2015-01-01

    The flow of powders can often play a critical role in the manufacturing of pharmaceutical products. Many of these processes require good, consistent and predictable flow of powders to ensure continuous production of pharmaceutical dosages and to ensure their quality. Therefore, the flow of powders is of paramount importance to the pharmaceutical industry and thus the measuring and evaluating of powder flow is of utmost importance. At present, there are numerous methods in which the flow of powders can be measured. However, due to the complex and environment-dependent nature of powders, no one method exists that is capable of providing a complete picture of the behaviour of powders under dynamic conditions. Some of the most commonly applied methods to measure the flow of powders include: density indices, such as the Carr index and Hausner ratio, powder avalanching, the angle of repose (AOR), flow through an orifice, powder rheometry and shear cell testing.

  20. Cerebral blood flow single-photon emission tomography with {sup 123}I-IMP in vascular dementia

    Energy Technology Data Exchange (ETDEWEB)

    Kawahata, Nobuya; Gotoh, Chiharu; Yokoyama, Sakura; Daitoh, Nobuyuki [Narita Memorial Hospital, Toyohashi, Aichi (Japan)

    2001-06-01

    Cerebral blood flow differences between patients with vascular dementia, patients with multiple lacunar infarction without cognitive dysfunction, and age-matched controls were examined. Thirty four patients with vascular dementia (VD) were selected from consecutive referrals to the Memory Clinic at Narita Memorial Hospital. All the patients had routine assessment including history, physical and neurological examinations, neuropsychological assessment, blood tests, EEG, head MRI, and single photon emission computed tomography (SPECT). All of them fulfilled the NINDS-AIREN diagnostic criteria for vascular dementia. Thirty nine patients with multiple lacunar infarction without cognitive dysfunction and 110 age-matched controls were included in this study. Mean cerebral blood flow (mCBF) and regional cerebral blood flow (rCBF) were measured using N-isopropyl-P-{sup 123}I-iodoamphetamine ({sup 123}I-IMP) and SPECT imager. The mCBF in VD was 27.6{+-}5.3 ml/100 g/min, while those in the control group and multiple lacunar infarction without cognitive dysfunction were 36.6{+-}6.1 ml/100 g/min and 32.5{+-}5.5 ml/100 g/min, respectively. The patients with VD demonstrated significantly reduced mCBF and rCBF in twenty regions including both cerebellar hemispheres as compared with those of the control group. Although there was no significant rCBF differences in bilateral inferior occipital regions and the right cerebellar hemisphere between patients with VD and multiple lacunar infarction without cognitive dysfunction, we could find significant lower rCBF in the remaining brain areas. In spite of the severity of VD, the diffuse decrease of cerebral blood flow was recognized in all patients with VD. (author)

  1. Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better than PVR Alone in Pediatric Patients with Pulmonary Hypertension

    Science.gov (United States)

    Hunter, Kendall S.; Lee, Po-Feng; Lanning, Craig J.; Ivy, D. Dunbar; Kirby, K. Scott; Claussen, Lori R.; Chan, K. Chen; Shandas, Robin

    2011-01-01

    Background Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated an method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero-harmonic impedance value and PVR, and suggested a correlation between higher harmonic impedance values and pulmonary vascular stiffness (PVS). Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and PVS from a single measurement, and that impedance is a better predictor of disease outcomes compared to PVR. Methods Pressure and velocity waveforms within the main PA were measured during right-heart catheterization of patients with normal PA hemodynamics (n=14) and those with PAH undergoing reactivity evaluation (49 subjects; 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Results Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y=1.095·x+1.381, R2=0.9620). Additionally, the modulus sum of the first two harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (PP/SV) (y=13.39·x-0.8058, R2=0.7962). Amongst a subset of PAH patients (n=25), cumulative logistic regression between outcomes to total indexed impedance was better (RL2=0.4012) than between outcomes and indexed PVR (RL2=0.3131). Conclusions Input impedance can be consistently and easily obtained from PW Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient

  2. Blood flow-induced physically based guidewire simulation for vascular intervention training.

    Science.gov (United States)

    Cai, Jiayin; Xie, Hongzhi; Zhang, Shuyang; Gu, Lixu

    2017-09-01

    A realistic guidewire behavior simulation is a vital component of a virtual vascular intervention system. Such systems are a safe, low-cost means of establishing a training environment to help inexperienced surgeons develop their intervention skills. Previous attempts to simulate the complex movement of a guidewire inside blood vessels have rarely considered the influence of blood flow. In this paper, we address this problem by integrating blood flow analysis and propose a novel guidewire simulation model. The blood flow distribution inside the arterial vasculature was computed by separating the vascular model into discrete cylindrical vessels and modeling the flow in each vessel according to Poiseuille Law. The blood flow computation was then integrated into a robust Kirchhoff elastic model. With hardware acceleration, the guidewire simulation can be run in real time. To evaluate the simulation, an experimental environment with a 3D-printed vascular phantom and an electromagnetic tracking system was set up, with clinically used guidewire sensors applied to trace its motion as the standard for comparison. The virtual guidewire motion trace was assessed by comparing it to the comparison standard. The root-mean-square (RMS) value of the newly proposed guidewire model was 2.14 mm ± 1.24 mm, lower than the value of 4.81 mm ± 3.80 mm for the previous Kirchhoff model, while maintaining a computation speed of at least 30 fps. The experimental results revealed that the blood flow-induced model exhibits better performance and physical credibility with a lower and more stable RMS error than the previous Kirchhoff model.

  3. Flow measurement at the aortic root

    DEFF Research Database (Denmark)

    Bertelsen, Litten; Svendsen, Jesper Hastrup; Køber, Lars

    2016-01-01

    theoretically be equal to flow measurements, SVV and SVST were compared to SVref. RESULTS: Initially, 152 patients were included. 22 were excluded because of arrhythmias during scans and 9 were excluded for aortic stenosis. Accordingly, data from 121 patients were analysed and of these 63 had visually evident...... measurements. The mean difference between SVref-SVV (6.4 mL) and SVref-SVST (18.2 mL) showed similar variances (SD 7.4 vs. 8.1 respectively) and hence equal accuracy. CONCLUSIONS: Aortic flow measured at valve level corresponded best with volumetric measurements and on average flow measured at the sinotubular...

  4. Uncooled infrared camera for the noninvasive visualization of the vascular flow in an anastomotic vessel during neurological surgery: technical note.

    Science.gov (United States)

    Otani, Naoki; Ishihara, Miya; Nakai, Kanji; Fujita, Masanori; Wada, Kojiro; Mori, Kentaro

    2014-06-17

    We herein present our experience to assess intraoperative confirmation of vascular patency with an uncooled infrared camera in extracranial-intracranial (EC-IC) bypass surgery. This camera had distinguishing characteristics, including its small size, light weight, and adequate temperature resolution (camera to assess the vascular flow of the end-to-side anastomosis model in rats. In addition, we evaluated the vascular flow in continuous clinical series using this infrared camera during EC-IC bypass in 14 patients (17 sides). This infrared camera offers real-time information on the vascular patency of end-to-side anastomosis vessels of all relevant diameters. The spatial resolution and image quality are satisfactory, and the procedure can be safely repeatable. We have shown that the infrared camera could be a new and feasible technology for intraoperative imaging of the vascular flow and is considered to be clinically useful during cerebrovascular surgery.

  5. Retinal blood flow measurements and neuroretinal rim damage in glaucoma

    Science.gov (United States)

    Logan, J F J; Rankin, S J A; Jackson, A J

    2004-01-01

    Aim: To assess retinal blood flow characteristics in subjects with normal tension glaucoma (NTG), primary open angle glaucoma (POAG), and a group of controls using the Heidelberg retina flowmeter (HRF). The vascular parameters were correlated against structural damage of the optic nerve head, assessed using the Heidelberg retina tomograph (HRT). Methods: HRF images were obtained in 76 subjects with NTG, 58 with POAG, and 38 controls. Optic nerve head images, acquired using the HRT, were analysed with Moorfields Regression Analysis software. The HRF variables, measured adjacent to a rim segment identified as “abnormal,” were compared with the vascular parameters of the “normal” rim segments. The HRF parameters of the segments identified as normal in glaucoma subjects were compared with matched control segments. Results: The glaucoma subjects had significantly lower retinal haemodynamics than the control subjects. There were no significant differences in the HRF parameters between the NTG and POAG subjects. The discs that had been identified as having abnormal segments had lower HRF values than those with a corresponding normal segment. The glaucoma subjects with normal rim segments had statistically significant lower velocity, flow, and volume measurements than the controls for each location sampled. Conclusion: This study shows a relation between structural damage of the optic nerve head and the level of retinal blood flow. The changes in the circulation could indicate that it may be an early marker of the pathological process. PMID:15258023

  6. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    L/stroke (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently......Duplex Vector Flow Imaging (VFI) imaging is introduced as a replacement for spectral Doppler, as it automatically can yield fully quantitative flow estimates without angle correction. Continuous VFI data over 9 s for 10 pulse cycles were acquired by a 3 MHz convex probe connected to the SARUS...... scanner for pulsating flow mimicking the femoral artery from a CompuFlow 1000 pump (Shelley Medical). Data were used in four estimators based on directional transverse oscillation for velocity, flow angle, volume flow, and turbulence estimation and their respective precisions. An adaptive lag scheme gave...

  7. Assessment of contrast flow modification in aneurysms treated with closed-cell self-deploying asymmetric vascular stents (SAVS)

    Science.gov (United States)

    Ionita, Ciprian N.; Wang, Weiyuan; Bednarek, Daniel R.; Rudin, Stephen

    2010-03-01

    The Asymmetric Vascular Stent (AVS) for intracranial aneurysm (IA) treatment is an experimental device, specially designed for intra-aneurysmal blood flow diversion and thrombosis promotion. The stent has a low-porous patch to cover only the aneurysm neck while the rest of the stent is very porous to avoid blockage of adjacent branches. The latest AVS design is similar to state-of-art, closed-cell, self-expanding, neurovascular stent. The stents were used to treat sixteen rabbit-elastase aneurysm models. The treatment effect was analyzed using normalized-time-density-curves (NTDC) measured by pixel-value integration over a region-of-interest containing the aneurysm. Normalization constant was the total bolus injection determined angiographically. Based on NTDC measurement, five quantities were derived to describe the contrast flow. Two are related to the amount of contrast entering the aneurysm: NTDC peak and NTDC input slope. The other three are related to contrast presence in the aneurysmal dome: time-to-peak (TTP), wash-out-time (WOT) and mean-transit-time (MTT). Flow modification descriptions using the contrast related quantities were expressed as a pre-/post-stented NTDC parameter ratio, while the time related quantities were expressed as a post-/prestented ratio, so that ratios smaller than one indicate a desired effect. Thirteen aneurysms were treated successfully and achieved significant aneurysm occlusion. For these cases, the resulting average parameters were: peak-ratio=0.17+0.21; input-slope-ratio=0.19+/-0.24, TTP-ratio=0.17+0.21, WOT-ratio=0.58+/-0.73 and MTT-ratio=0.65+/-0.97). All the quantities revealed decreased aneurysmal flow due to blood flow diversion using the new self-expanding asymmetrical vascular stent (SAVS). Treatment outcome results and angiographic analysis indicate that the new self-deploying stent design has great potential for clinical implementation.

  8. North sea flow measurement workshop 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The workshop contains 21 presentations on various aspects of flow measurements. The topics include engineering studies, gas and oil measurements and equipment aspects particularly connection with oil and natural gas activities and flow conditions in pipelines and other installations. The emphasis is on performance and reliability of measurement methods and equipment. Recommended practices and guidance documents for oil and gas measurements are also discussed (tk)

  9. PIV Measurements of Flows in Artificial Heart Valves

    Science.gov (United States)

    Kaminsky, Radoslav; Kallweit, Stephan; Rossi, Massimiliano; Morbiducci, Umberto; Scalise, Lorenzo; Verdonck, Pascal; Tomasini, Enrico Primo

    Through several decades many different models of prosthetic artificial heart valves (PHV) have been designed and optimized in order to enhance hemodynamic properties. These properties are not only material dependent but the major influence results from the mechanical assembly of the particular PHV. For the experimental assessment of the flow through such PHVs particle image velocimetry (PIV) is already an accepted method [1] due to its noninvasive optical approach and accuracy. Here, we present various modifications of PIV in order to explain, compare and realize which method is the most suitable for the quantification of such flows. The choice of the experimental procedure for testing the PHVs is strongly dependent on the optical access of the designed in-vitro testing loops simulating the human heart and vascular system. The hardware demand and its configuration for, e.g., stereoscopic PIV is much more complex than standard 2D PIV, therefore the conditions and design of the testing loop have to be realized to allow the desired flow measurement. The flow in heart valves as an unsteady periodically generated flow, can be obtained by averaged phaselocked or measurements with high temporal. The properties, advantages and drawbacks of specific PIV techniques to visualize the flow behind a PHV will be discussed.

  10. Catheter-based flow measurements in hemodialysis fistulas - Bench testing and clinical performance

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Lönn, Lars; Schroeder, Torben V

    2012-01-01

    Purpose: The purpose of this study was to perform bench and clinical testing of a catheter-based intravascular system capable of measuring blood flow in hemodialysis vascular accesses during endovascular procedures. Methods: We tested the Transonic ReoCath Flow Catheter System which uses...... the thermodilution method. A simulated vascular access model was constructed for the bench test. In total, 1960 measurements were conducted and the results were used to determine the accuracy and precision of the catheters, the effects of external factors (e.g., catheter placement, injection duration), and to test....... Blood flow measurements provide unique information on the hemodynamic status of a vascular access and have the potential to optimize results of interventions....

  11. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.

    Science.gov (United States)

    Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte

    2016-08-01

    The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. Flow rate measurements by means of tracers

    Energy Technology Data Exchange (ETDEWEB)

    Mosetti, F. (Trieste Univ. (Italy). Istituto di Geodesia e Geofisica)

    The application of some sources of diffusion for the flow rate measurement of water or other fluids is here presented. The laminar instantaneous source, obtained in practice with easy devices, is very useful in river or channel measurements. The analysis of the measurements could supply the flow rate and the presence of water losses or recharges. The section of the channel can also be determined by such a method.

  13. Large-Eddy Simulation of Flows Through a Novel Vascular Access Device for Hemodialysis Access

    Science.gov (United States)

    Obabko, Aleksandr; Tsyrulnykov, Eduard; Rainsberger, Robert; Torreira, Alvaro V.; Nagib, Hassan; Agarwal, Anil; Fischer, Paul F.

    2017-11-01

    The preferred vascular access in patients on hemodialysis (HD) is an arteriovenous (AV) fistula or graft. The majority of the HD patients in the US are dialyzed with an AV fistula where two needles are used for cannulation in most cases. However, this approach can be painfully invasive, extremely difficult to gain access in patients with challenging geometry of vascular access, and is often inadequate to provide optimal blood flow. This work attempts to address the shortcomings of the above procedure and introduces a novel cannulation device that allows less painful easy single access to difficult vessel geometries, and have a potential of improvement of overall increase in efficacy of HD and enhanced patient experience. We present the preliminary Nek5000 large-eddy simulations results of the flows through the device that employs a single 18-gauge needle for cannulation and is able to provide blood flow rates up to 600 ml/min. The range of flow rates and Reynolds numbers up to Re=2,600 are considered and blood recirculation rates are computed. This research used resources of the Argonne Leadership Computing Facility and was supported in part by the U.S. DOE Office of Science under Contract DE-AC02-06CH11357.

  14. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions.

    Science.gov (United States)

    Gerszten, R E; Garcia-Zepeda, E A; Lim, Y C; Yoshida, M; Ding, H A; Gimbrone, M A; Luster, A D; Luscinskas, F W; Rosenzweig, A

    1999-04-22

    Monocytes contribute to the development of atherosclerotic lesions in mouse models. The chemoattractant proteins (chemokines), monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), are found in human atheroma, and mice lacking receptors for these chemokines are less susceptible to atherosclerosis and have fewer monocytes in vascular lesions. Although MCP-1 has a powerful effect on monocytes, IL-8 is thought to act predominantly on neutrophils and it is unclear how it could recruit monocytes. Here we investigate the ability of chemokines to control the interaction of monocytes under flow conditions with vascular endothelium that has been transduced to express specific leukocyte-adherence receptors. We find that MCP-1 and IL-8 can each rapidly cause rolling monocytes to adhere firmly onto monolayers expressing E-selectin, whereas related chemokines do not. These effects do not correlate with either the induction of a calcium transient or chemotaxis. We conclude that chemokines are important modulators of monocyte-endothelial interactions under flow conditions. Moreover, our finding that IL-8 is a powerful trigger for firm adhesion of monocytes to vascular endothelium reveals an unexpected role for this chemokine in monocyte recruitment.

  15. Relationships between measures of fitness, physical activity, body composition and vascular function in children.

    Science.gov (United States)

    Hopkins, N D; Stratton, G; Tinken, T M; McWhannell, N; Ridgers, N D; Graves, L E F; George, K; Cable, N T; Green, D J

    2009-05-01

    The prevalence of obesity and physical inactivity in Western countries has increased rapidly. Both are modifiable risk factors for cardiovascular disease. Atherosclerosis begins in childhood and endothelial dysfunction is its earliest detectable manifestation. We assessed flow-mediated dilation (FMD) in 129 children (75 female; 10.3+0.3 yrs; 54 male; 10.4; 0.3 yrs). FMD was normalised for differences in the eliciting shear rate stimulus between subjects (SR(AUC)). Fitness was assessed as peak oxygen uptake during an incremental treadmill exercise test (V O(2)peak). Body composition was measured using a dual-energy X-ray absorptiometry (DEXA) scan. Physical activity (PA) was assessed using Actigraph accelerometers. The cohort was split into tertiles according to FMD% and also FMD% corrected for SR(AUC) to gain insight into the determinants of vascular function. Across the cohort, significant correlations were observed between FMD%/SR(AUC) and DEXA percentage fat (r=-0.23, p=0.009) and percentage lean mass (r=0.21, p=0.008), and also with PA performed at moderate-to-high intensity (r=0.363, p=0.001). For children in the lowest FMD%/SR(AUC) tertile, a stronger relationship with all PA measures was observed, particularly with high intensity PA (r=0.572, P=0.003). Regression analysis revealed that high intensity PA was the only predictor of impaired FMD%/SR(AUC). These data suggest that traditional risk factors for CHD in adult populations impact upon vascular function in young people. Furthermore, it appears that individuals with impaired FMD may benefit from performing high intensity PA, whereas no relationships exist between FMD and lower intensities of PA or between PA and FMD in those subjects who possess preserved vascular function a priori.

  16. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  17. Ultrasonic rate measurement of multiphase flow

    Science.gov (United States)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  18. Gradient changes in porcine renal arterial vascular anatomy and blood flow after cryoablation.

    Science.gov (United States)

    Lagerveld, Brunolf W; van Horssen, Pepijn; Laguna, M Pilar; van den Wijngaard, Jeroen P H M; Siebes, Maria; Wijkstra, Hessel; de la Rosette, Jean J M C H; Spaan, Jos A E

    2011-08-01

    We quantified temporal changes in vascular structure and blood flow after cryosurgery of the porcine kidney in vivo. We studied 5 groups of 4 kidneys each with a survival time of 20 minutes, 4 hours, 2 days, and 1 and 2 weeks after cryoablation, respectively. Before harvesting the kidneys, fluorescently labeled microspheres were administrated in the descending aorta. After harvest the kidney and its vasculature were casted with fluorescently dyed elastomer, frozen and processed in an imaging cryomicrotome to reveal the 3-dimensional arterial branching structure and microsphere distribution. In regions of interest vessels were segmented by image analysis software and histograms were constructed to reveal the total summed vessel length as a function of diameter. A characteristic diameter of the ablated area was measured. The 20-minute survival group histograms showed a significant shift of the peak to larger diameters (p<0.002), indicating that smaller vessels were destroyed. Microsphere density was decreased to 2% in the ablated region but not in the nonablated border zone, depending on the remaining crater crossing larger vessels. After 2 weeks neither vessels nor microspheres were left in the ablated area, which had shrunk by about 40% in diameter. Study limitations are the lack of histological confirmation and the use of normal rather than cancerous tissue. Larger vessels remain patent just after ablation and transport blood to the border of the ablation crater but perfusion within the crater is halted instantly. Characteristic crater diameter increases initially but decreases thereafter. Destruction of vessels and tissue is complete 2 weeks after cryoablation. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis.

    Science.gov (United States)

    Machin, Daniel R; Clifton, Heather L; Garten, Ryan S; Gifford, Jayson R; Richardson, Russell S; Wray, D Walter; Frech, Tracy M; Donato, Anthony J

    2016-12-01

    Systemic sclerosis (SSc) is a rare autoimmune disease characterized by debilitating fibrosis and vascular dysfunction; however, little is known about the circulatory response to exercise in this population. Therefore, we examined the peripheral hemodynamic and vasodilatory responses to handgrip exercise in 10 patients with SSc (61 ± 4 yr) and 15 age-matched healthy controls (56 ± 5 yr). Brachial artery diameter, blood flow, and mean arterial pressure (MAP) were determined at rest and during progressive static-intermittent handgrip exercise. Patients with SSc and controls were similar in body stature, handgrip strength, and MAP; however, brachial artery blood flow at rest was nearly twofold lower in patients with SSc compared with controls (22 ± 4 vs. 42 ± 5 ml/min, respectively; P exercise, there were no differences in MAP between the groups, exercise-induced hyperemia and therefore vascular conductance were ∼35% lower at all exercise workloads in patients with SSc (P exercise-induced brachial artery blood flow and conduit arterial vasodilatory dysfunction during handgrip exercise in SSc and suggest that elevated oxidative stress may play a role.

  20. Elliptic flow measurement at ALICE

    CERN Document Server

    Simili, Emanuele Lorenzo

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio.

  1. Dynamic measurements in non-uniform flows

    Science.gov (United States)

    Ershov, A. P.

    2017-12-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  2. Spectroscopic Measurement Techniques for Aerospace Flows

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  3. Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms

    Science.gov (United States)

    O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  4. High-Flow Vascular Malformation in the Sigmoid Mesentery Successfully Treated with a Combination of Transarterial and Transvenous Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, Minobu, E-mail: kamomino@luke.ac.jp; Yagihashi, Kunihiro [St. Luke’s International Hospital, Department of Radiology (Japan); Okamoto, Takeshi; Nakamura, Kenji; Fujita, Yoshiyuki [St. Luke’s International Hospital, Department of Gastroenterology (Japan); Kurihara, Yasuyuki [St. Luke’s International Hospital, Department of Radiology (Japan)

    2016-12-15

    Mesenteric high-flow vascular malformation can cause various clinical symptoms and demand specific therapeutic interventions owing to its peculiar hemodynamics. We report a case of high-flow vascular malformation in the sigmoid mesentery which presented with ischemic colitis. The main trunk of the inferior mesenteric vein was occluded. After partially effective transarterial embolization, transvenous embolization was performed using a microballoon catheter advanced to the venous component of the lesion via the marginal vein. Complete occlusion of the lesion was achieved. Combination of transarterial and transvenous embolization may allow us to apply endovascular treatment to a wider variety of high-flow lesions in the area and possibly avoid the bowel resection.

  5. Migration Flows: Measurement, Analysis and Modeling

    NARCIS (Netherlands)

    Willekens, F.J.; White, Michael J.

    2016-01-01

    This chapter is an introduction to the study of migration flows. It starts with a review of major definition and measurement issues. Comparative studies of migration are particularly difficult because different countries define migration differently and measurement methods are not harmonized.

  6. Flow measurements in the major visceral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.; Gerhardt, P.; Terwey, B.; Krastel, A.

    1982-02-01

    Arterial flow was measured by the spill-over technique in 202 coeliac arteries and 158 superior mesenteric arteries during the course of visceral angiography in 250 patients. In the coeliac artery a mean value of 15.8 +- 4.3 ml/sec was obtained, flow in the super mesenteric artery was significantly less at 12.1 +- 3.4 ml/sec. The wide variation from 4 to 26 ml/sec in the coeliac artery was remarkable, as well as flows from six to 20 ml/sec in the superior mesenteric artery.

  7. Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice.

    Science.gov (United States)

    Xiao, Lamei; Yan, Kai; Yang, Yan; Chen, Ni; Li, Yongjie; Deng, Xin; Wang, Liqun; Liu, Yan; Mu, Lin; Li, Rong; Luo, Mao; Ren, Meiping; Wu, Jianbo

    2016-05-01

    Diabetes mellitus (DM) leads to the development of microvascular diseases and is associated with impaired angiogenesis. The presence of vascular endothelial growth factor (VEGF) can block PDGF-BB dependent regulation of neovascularization and vessel normalization. We tested the hypothesis that the inhibition of VEGF improves blood flow in a mouse hindlimb ischemia model produced by femoral artery ligation. In this study, we examined the effect of bevacizumab, a humanized monoclonal antibody against VEGF-A, on blood perfusion and angiogenesis after hindlimb ischemia. We showed that bevacizumab induces functional blood flow in high fat chow (HFC)-fed diabetic mice. Treatment with bevacizumab increased the expression of platelet derived growth factor-BB (PDGF-BB) in ischemic muscle, and led to vascular normalization. It also blocked vascular leakage by improving the recruitment of pericytes associated with nascent blood vessels, but it did not affect capillary formation. Furthermore, treatment with an anti-PDGF drug significantly inhibited blood flow perfusion in diabetic mice treated with bevacizumab. These results indicate that bevacizumab improves blood flow recovery through the induction of PDGF-BB in a diabetic mouse hindlimb ischemia model, and that vessel normalization may represent a useful strategy for the prevention and treatment of diabetic peripheral arterial disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Flowing dusty plasma experiments: Generation of flow and measurement techniques

    CERN Document Server

    Jaiswal, S; Sen, A

    2016-01-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a $\\Pi-$shaped Dusty Plasma Experimental (DPEx) device with micron size kaolin/Melamine Formaldehyde (MF) particles embedded in a background of Argon plasma created by a direct current (DC) glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super Particle Identification (sPIT) code, Particle Image Velocimetry (PIV) analysis and the excitation of Dust Acoustic Waves (DAWs). The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral dr...

  9. Collective flow measurements at RHIC energies

    Directory of Open Access Journals (Sweden)

    Esumi Shinichi

    2017-01-01

    Full Text Available Recent experimental results on collective flow measurements from relativistic heavy-ion collider (RHIC are presented and discussed to study high-temperature and high-density quark-nuclear matter, Quark Gluon Plasma (QGP especially focusing on bulk properties, such as freeze-out parameters, temperature, chemical potential, collective expansion, azimuthal event anisotropy measurements. Their relations to the various correlation and fluctuation studies are also discussed, including initial geometrical and E- and B-field conditions as well as possible collective flow evolution that could even be developed in small systems. Current results and understandings from the beam energy scan program (BES and future plans are discussed and reviewed.

  10. Quantitative Fluorescence Measurements with Multicolor Flow Cytometry.

    Science.gov (United States)

    Wang, Lili; Gaigalas, Adolfas K; Wood, James

    2018-01-01

    Multicolor flow cytometer assays are routinely used in clinical laboratories for immunophenotyping, monitoring disease and treatment, and determining prognostic factors. However, existing methods for quantitative measurements have not yet produced satisfactory results independent of flow cytometers used. This chapter details a procedure for quantifying surface and intracellular protein biomarkers by calibrating the output of a multicolor flow cytometer in units of antibodies bound per cell (ABC). The procedure includes the following critical steps: (a) quality control (QC) and performance characterization of the multicolor flow cytometer, (b) fluorescence calibration using hard dyed microspheres assigned with fluorescence intensity values in equivalent number of reference fluorophores (ERF), (c) compensation for correction of fluorescence spillover, and (d) application of a biological reference standard for translating the ERF scale to the ABC scale. The chapter also points out current efforts for implementing quantification of biomarkers in a manner which is independent of instrument platforms and reagent differences.

  11. [Preliminary reports of noninvasive accurate method to measure pulmonary vascular capacity in normal volunteers].

    Science.gov (United States)

    Sun, Xing-guo; Mao, Song-shou; Budoff, M J; Stringer, W W; Cheng, Xian-sheng

    2015-07-01

    Because the traditional loop of breathing control and regulation effect on blood circulation, there was rare study of pulmonary vein capacity. We need a noninvasive and accurate pulmonary vascular capacity measurement and analysis method. Twelve normal volunteers were performed a total lung CT scan, image data analysis processing by computer software, the whole lungs from the apex to the base of lung with 40-50 layers by hand-cut, the connection between adjacent layers automatically by a computer simulation, the full pulmonary vascular (≥ 0.6 mm) were treated by high-accuracy three-dimensional imaging technology after removing the interference, and then calculate the whole lung and pulmonary vascular. The whole lung of the 12 normal volunteers from the apex to the base of lung CT scan image layers was 530 ± 98 (range, 431-841). The total capacity of lung and pulmonary vascular blood was 3705 ± 857 (range, 2398-5383) ml, and the total volume of the pulmonary vascular blood was 125 ± 32 (range, 94-201) ml. The pulmonary vein vascular blood volume was 63 ± 16 (range, 47-100) ml. The method of measuring the three-dimensional imaging of pulmonary vascular capacity by analyzing lung CT scan data is available and accurate.

  12. Forearm blood flow measurements using computerized R-wave triggered strain-gauge venous occlusion plethysmography: unilateral vs. bilateral measurements.

    Science.gov (United States)

    Kamper, A M; de Craen, A J; Blauw, G J

    2001-09-01

    The human forearm is a well established model to study local vascular reactivity in humans in vivo, using strain-gauge venous occlusion plethysmography to measure blood flow and changes in blood flow in the forearm. To reduce the intra-individual variability of the forearm blood flow (FBF), it has been advocated that simultaneous measurements of contralateral forearm blood flow is obligatory. Therefore, the use of the calculated forearm ratio (FR) is recommended instead of using the actual FBF. In the present study we compared the intra-individual variability of forearm blood flow measurements and the forearm ratio, by using computerized R-wave triggered strain-gauge venous occlusion plethysmography, to test if bilateral expression of measurements is better than unilateral. Results were obtained in eight volunteers. Intra-arterial infused sodium nitroprusside induced a dose dependent increase in forearm blood flow and a dose dependent increase in the calculated forearm ratio. Intra-arterial infused norepinephrine induced a dose dependent decrease in forearm blood flow and a dose dependent decrease in the calculated forearm ratio. The differences between the variation coefficients of the forearm blood flow measurements and the calculated forearm ratio were different. These results support our hypothesis that by using a computerized, R-wave triggered system for unilateral forearm blood flow measurement is a more reliable outcome than the calculated forearm ratio derived from bilateral measurements.

  13. Flow field measurement around vortex cavitation

    NARCIS (Netherlands)

    Pennings, P.C.; Westerweel, J.; Van Terwisga, T.J.C.

    2015-01-01

    Models for the center frequency of cavitating-vortex induced pressure-fluctuations, in a flow around propellers, require knowledge of the vortex strength and vapor cavity size. For this purpose, stereoscopic particle image velocimetry (PIV) measurements were taken downstream of a fixed half-wing

  14. Flow measurement at the aortic root

    DEFF Research Database (Denmark)

    Bertelsen, Litten; Svendsen, Jesper Hastrup; Køber, Lars

    2016-01-01

    mitral regurgitation on cine images. On average, stroke volumes measured with flow at the sinotubular junction was 13-16 % lower than when measured at valve level (70.0 mL ±13.8 vs. 81.8 mL ±15.5). This was in excess of the expected difference caused by the outflow to the coronary arteries. In the 58...

  15. Review of air flow measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  16. Hyperbolic contraction measuring systems for extensional flow

    Science.gov (United States)

    Nyström, M.; Tamaddon Jahromi, H. R.; Stading, M.; Webster, M. F.

    2017-08-01

    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for

  17. Three-Dimensional Power Doppler Evaluation of Cerebral Vascular Blood Flow: A Novel Tool in the Assessment of Fetal Growth Restriction.

    Science.gov (United States)

    Goetzinger, Katherine R; Cahill, Alison G; Odibo, Linda; Macones, George A; Odibo, Anthony O

    2018-01-01

    To determine whether fetuses with fetal growth restriction (FGR) are more likely to have abnormal cerebral vascular flow patterns compared to fetuses who are appropriate for gestational age (AGA) when quantified by using 3-dimensional (3D) power Doppler ultrasound. We conducted a prospective cohort study of singleton gestations presenting for growth ultrasound examination between 24 and 36 weeks' gestation. Patients with FGR (estimated fetal weight power Doppler image of the middle cerebral artery territory was obtained from each patient. The vascularization index (VI), flow index (FI), and vascularization-flow index (VFI) were calculated by the Virtual Organ computer-aided analysis technique (GE Healthcare, Milwaukee, WI). These indices were compared between FGR and AGA fetuses and correlated with 2-dimensional Doppler parameters. Neonatal outcomes were also compared with respect to the 3D parameters. Of 306 patients, there were 151 cases of FGR. There was no difference in the VI (6.0 versus 5.7; P = .65) or VFI (2.0 versus 1.8; P = .31) between the groups; however, the FI was significantly higher in FGR fetuses compared to AGA controls (33.9 versus 32.3; P = .009). There was a weak, but significant, negative correlation between the FI and both the middle cerebral artery pulsatility index (r = -0.34; P power Doppler measurement of cerebral blood flow, but not the vascularization pattern, is significantly altered in FGR. This measurement may play a future role in distinguishing pathologic FGR from constitutionally small growth. © 2017 by the American Institute of Ultrasound in Medicine.

  18. Distinguishing high-flow from low-flow vascular malformations using maximum intensity projection images in dynamic magnetic resonance angiography - comparison to other MR-based techniques.

    Science.gov (United States)

    Kociemba, Anna; Karmelita-Katulska, Katarzyna; Stajgis, Marek; Oszkinis, Grzegorz; Pyda, Małgorzata

    2016-05-01

    In addition to ultrasound, magnetic resonance imaging (MRI) is considered a suitable, non-invasive technique to assess the type and extent of vascular malformations. The distinction between low- and high-flow lesions is crucial because it determines appropriate patient treatment. To distinguish high-flow from low-flow lesions on the basis of the enhancement pattern on MIP images acquired from dynamic time-resolved MR angiography (MRA) and compare it with previously described MR-based methods. We examined 25 consecutive patients with previously diagnosed vascular malformations. Next, each malformation was classified as "high-flow" or "low-flow" using the following criteria: (i) findings on T1-weighted (T1W) and T2-weighted (T2W) imaging (signal voids, signal intensity); (ii) the time interval between the start of arterial enhancement and the onset of lesion enhancement (artery-lesion time); (iii) the time of maximum lesion enhancement; and (iv) analysis of the slope of the enhancement curve. Of the 25 patients, seven had high-flow and 18 had low-flow malformations. Signal voids on spin-echo T1W images were observed only in four of seven high-flow malformations and in two of 18 low-flow malformations. Analysis of signal intensity on T2W images showed increased signal intensity in 17 of 18 low-flow malformations, and in two of seven high-flow lesions. Calculation of the artery-lesion time, maximum enhancement time, and slope revealed significant differences between the high- and low-flow groups. In conclusion, the slope of the enhancement curve appears to be useful in distinguishing between high- and low-flow vascular malformations. Standardization of MR image evaluation criteria is essential. © The Foundation Acta Radiologica 2015.

  19. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  20. Optical measurements in evolving dispersed pipe flows

    Science.gov (United States)

    Voulgaropoulos, Victor; Angeli, Panagiota

    2017-12-01

    Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.

  1. Report of the Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) Consensus Workshop on Establishing a Core Outcome Measure for Hemodialysis Vascular Access.

    Science.gov (United States)

    Viecelli, Andrea K; Tong, Allison; O'Lone, Emma; Ju, Angela; Hanson, Camilla S; Sautenet, Benedicte; Craig, Jonathan C; Manns, Braden; Howell, Martin; Chemla, Eric; Hooi, Lai-Seong; Johnson, David W; Lee, Timmy; Lok, Charmaine E; Polkinghorne, Kevan R; Quinn, Robert R; Vachharajani, Tushar; Vanholder, Raymond; Zuo, Li; Hawley, Carmel M

    2018-02-22

    Vascular access outcomes in hemodialysis are critically important for patients and clinicians, but frequently are neither patient relevant nor measured consistently in randomized trials. A Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) consensus workshop was convened to discuss the development of a core outcome measure for vascular access. 13 patients/caregivers and 46 professionals (clinicians, policy makers, industry representatives, and researchers) attended. Participants advocated for vascular access function to be a core outcome based on the broad applicability of function regardless of access type, involvement of a multidisciplinary team in achieving a functioning access, and the impact of access function on quality of life, survival, and other access-related outcomes. A core outcome measure for vascular access required demonstrable feasibility for implementation across different clinical and trial settings. Participants advocated for a practical and flexible outcome measure with a simple actionable definition. Integrating patients' values and preferences was warranted to enhance the relevance of the measure. Proposed outcome measures for function included "uninterrupted use of the access without the need for interventions" and "ability to receive prescribed dialysis," but not "access blood flow," which was deemed too expensive and unreliable. These recommendations will inform the definition and implementation of a core outcome measure for vascular access function in hemodialysis trials. Copyright © 2018 National Kidney Foundation, Inc. All rights reserved.

  2. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  3. VASCULAR INFLAMMATION AND ABNORMAL AORTIC HISTOMORPHOMETRY IN PATIENTS FOLLOWING PULSATILE AND CONTINUOUS FLOW LEFT VENTRICULAR ASSIST DEVICE PLACEMENT

    Science.gov (United States)

    Lee, Mike; Akashi, Hirokazu; Kato, Tomoko S.; Takayama, Hiroo; Wu, Christina; Xu, Katherine; Collado, Elias; Weber, Matthew P.; Kennel, Peter J.; Brunjes, Danielle L; Ji, Ruiping; Naka, Yoshifumi; George, Isaac; Mancini, Donna; Farr, Maryjane; Schulze, P. Christian

    2017-01-01

    Objective Left ventricular assist devices are increasingly used in patients with advanced heart failure as both destination therapy and bridge-to-transplantation. We aimed to analyze histomorphometric, structural and inflammatory changes following pulsatile and continuous flow left ventricular assist device placement. Method Clinical and echocardiographic data were collected from medical records. Aortic wall diameter, cellularity and inflammation were assessed by immunohistochemistry on aortic tissue collected at left ventricular assist device placement and at explantation during heart transplantation. Expression of adhesion molecules was quantified by western blot. Results Decellularization of the aortic tunica media was observed in patients receiving continuous flow support. Both device types showed an increased inflammatory response following left ventricular assist device placement with variable T cell and macrophage accumulations and increased expression of vascular E-selectin, ICAM and VCAM in the aortic wall. Conclusion Left ventricular assist device implantation is associated with distinct vascular derangements with development of vascular inflammation. These changes are pronounced in patients on continuous flow left ventricular assist and associated with aortic media decellularization. These findings help to explain the progressive aortic root dilation and vascular dysfunction in patients following continuous flow device placement. PMID:26899764

  4. Regional cerebral blood flow before and after vascular surgery in patients with transient ischemic attacks with 133-xenon inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Hemmingsen, Ralf; Lindewald, H

    1982-01-01

    with no abnormality on the CT-scan. The abnormal blood flow pattern was found to be unchanged after clinically successful reconstructive vascular surgery. This suggests the presence of irreversible ischemic tissue damage without gross emollition (incomplete infarction). It is concluded, that TIAs are often harmful...

  5. Vascular flow reserve as a link between long-term blood pressure level and physical performance capacity in mammals

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Damkjær, Mads; Hald, Bjørn O

    2016-01-01

    function producing a high precapillary resistance and thus a high vascular flow reserve is associated with an increase in network inlet pressure. Assuming that network properties are independent of body mass, and that inlet pressure of the microvascular network is a proxy for arterial pressure, the study...

  6. Endothelin-1 Regulation of exercise-induced changes in flow: Dynamic regulation of vascular tone

    NARCIS (Netherlands)

    Rapoport, R.M. (Robert M.); D. Merkus (Daphne)

    2017-01-01

    textabstractAlthough endothelin (ET)-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at

  7. The Usefulness of Surgical Treatment in Slow-Flow Vascular Malformation Patients

    Directory of Open Access Journals (Sweden)

    Gyu Bin Kang

    2017-07-01

    Full Text Available Background Many difficulties exist in establishing a treatment plan for slow-flow vascular malformation (SFVM. In particular, little research has been conducted on the surgical treatment of SFVMs. Thus, we investigated what proportion of SFVM patients were candidates for surgical treatment in clinical practice and how useful surgical treatment was in those patients. Methods This study included 109 SFVM patients who received care at the authors’ clinic from 2007 to 2015. We classified the patients as operable or non-operable, and analyzed whether the operability and the extent of the excision varied according to the subtype and location of the SFVM. Additionally, we investigated complications and self-assessed satisfaction scores. Results Of the 109 SFVM patients, 59 (54% were operable, while 50 (46% were nonoperable. Total excision could be performed in 44% of the operable SFVM patients. Lymphatic malformations were frequently non-operable, while capillary malformations were relatively operable (P=0.042. Total excision of venous malformations could generally be performed, while lymphatic malformations and combined vascular malformations generally could only undergo partial excision (P=0.048. Complications occurred in 11% of the SFVM patients who underwent surgery; these were minor complications, except for 1 case. The average overall satisfaction score was 4.19 out of 5. Conclusions Based on many years of experience, we found that approximately half (54% of SFVM patients were able to undergo surgery, and around half (44% of those patients were able to fully recover after a total excision. Among the patients who underwent surgical treatment, high satisfaction was found overall and relatively few complications were reported.

  8. Measurements of drag and flow over biofilm

    Science.gov (United States)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  9. Renal blood flow and metabolism after cold ischaemia: peroperative measurements in patients with calculi

    DEFF Research Database (Denmark)

    Petersen, H K; Henriksen, Jens Henrik Sahl

    1984-01-01

    .01) immediately after re-established perfusion and 36% (P less than 0.02) 30 min later. In one additional patient, who had a short warm ischaemia (8 min), the flow pattern was the same. As arterial pressure remained constant, the reduced RBF signifies an increased renal vascular resistance. Renal O2-uptake......Peroperative measurements of renal blood flow (RBF), renal O2-uptake, and renal venous lactate/pyruvate (L/P) ratio were performed before and after a period of 30-71 min of hypothermic (10-15 degrees C) renal ischaemia in nine patients, undergoing surgery for renal calculi. Before ischaemia, RBF...... and renal venous L/P ratio were almost constant, indicating no significant anaerobic processes being involved in the flow response. None of the patients showed any signs of reactive hyperaemia. It is concluded that hypothermic renal ischaemia may be followed by an increased renal vascular resistance even...

  10. 40 CFR 92.107 - Fuel flow measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section... measurement. (a) Fuel flow measurement for locomotive and engine testing. The rate of fuel consumption by the engine must be measured with equipment conforming to the following: (1) The fuel flow rate measurement...

  11. Intraoperative vascular anatomy, arterial blood flow velocity, and microcirculation in unilateral and bilateral cleft lip repair

    NARCIS (Netherlands)

    Mueller, A.A.; Schumann, D.; Reddy, R.R.; Schwenzer-Zimmerer, K.; Mueller-Gerbl, M.; Zeilhofer, H.F.; Sailer, H.F.; Reddy, S.G.

    2012-01-01

    BACKGROUND: Cleft lip repair aims to normalize the disturbed anatomy and function. The authors determined whether normalization of blood circulation is achieved. METHODS: The authors measured the microcirculatory flow, oxygen saturation, and hemoglobin level in the lip and nose of controls (n = 22)

  12. Restricted Blood Flow Exercise in Sedentary, Overweight African-American Females May Increase Muscle Strength and Decrease Endothelial Function and Vascular Autoregulation

    Directory of Open Access Journals (Sweden)

    Vernon Bond

    2017-03-01

    Full Text Available Objectives: Exercise with partially restricted blood flow is a low-load, low-intensity resistance training regimen which may have the potential to increase muscle strength in the obese, elderly and frail who are unable to do high-load training. Restricted blood flow exercise has also been shown to affect blood vessel function variably and can, therefore, contribute to blood vessel dysfunction. This pilot study tests the hypothesis that unilateral resistance training of the leg extensors with partially restricted blood flow increases muscle strength and decreases vascular autoregulation. Methods: The subjects were nine normotensive, overweight, young adult African-Americans with low cardiorespiratory fitness who underwent unilateral training of the quadriceps’ femoris muscles with partially restricted blood flow at 30% of the 1-repetition maximum (1-RM load for 3 weeks. The 1-RM load and post-occlusion blood flow to the lower leg (calf were measured during reactive hyperemia. Results: The 1-RM load increased in the trained legs from 77 ± 3 to 84 ± 4 kg (P 0.1. Post-occlusion blood flow decreased significantly in the trained legs from 19 ± 2 to 13 ± 2 mL· min-1· dL-1 (P < 0.05 and marginally in the contralateral untrained legs from 18 ± 2 to 16 ± 1 mL· min-1· dL-1 (P = 0.09. Changes in post-occlusion blood flow to the skin overlying the trained and the contralateral untrained muscles were not significant. Conclusion: These results demonstrate that restricted blood flow exercise, which results in significant gains in muscle strength, may produce decrements in endothelial dysfunction and vascular autoregulation. Future studies should determine whether pharmacopuncture plays a role in treatments for such blood vessel dysfunction.

  13. The role of endometrial and subendometrial vascularity measured by three-dimensional power Doppler ultrasound in the prediction of pregnancy during frozen-thawed embryo transfer cycles.

    Science.gov (United States)

    Ng, Ernest Hung Yu; Chan, Carina Chi Wai; Tang, Oi Shan; Yeung, William Shu Biu; Ho, Pak Chung

    2006-06-01

    A good blood supply to the endometrium is usually considered as an essential requirement for implantation. The aim of this study was to evaluate the role of endometrial and subendometrial vascularity in the prediction of pregnancy during frozen-thawed embryo transfer (FET) cycles. Women undergoing FET in natural or clomiphene-induced cycles after the first stimulated IVF treatment were recruited. A three-dimensional (3D) ultrasound examination with power Doppler was performed 1 day after the LH surge to determine endometrial thickness, endometrial pattern, pulsatility index (PI) and resistance index (RI) of uterine vessels, endometrial volume, vascularization index, flow index and vascularization flow index of endometrial and subendometrial regions. Women in the pregnant group were significantly younger and used less gonadotrophins in their stimulated cycle. Endometrial thickness, endometrial volume, endometrial pattern, uterine PI, uterine RI, endometrial and subendometrial 3D power Doppler flow indices were similar between the nonpregnant and the pregnant groups. The age of women was the only predictive factor for pregnancy. Receiver operating characteristic curve analysis revealed that the area under the curve was around 0.5 for all ultrasound parameters for endometrial receptivity. Vascularity of endometrial and subendometrial layers measured by 3D power Doppler ultrasound is not a good predictor of pregnancy in FET cycles if measured at one time point only.

  14. Improved FPGA controlled artificial vascular system for plethysmographic measurements

    OpenAIRE

    Laqua Daniel; Brieskorn Carina; Koch Jan Hannes; Rothmayer Markus; Zeiske Steve; Böttrich Marcel; Husar Peter

    2016-01-01

    The fetal oxygen saturation is an important parameter to determine the health status of a fetus, which is until now mostly acquired invasively. The transabdominal, fetal pulse oximetry is a promising approach to measure this non-invasively and continuously. The fetal pulse curve has to be extracted from the mixed signal of mother and fetus to determine its oxygen saturation. For this purpose efficient algorithms are necessary, which have to be evaluated under constant and reproducable test co...

  15. Vascular conductance and muscle blood flow during exercise are altered by inspired oxygen fraction and arterial perfusion pressure.

    Science.gov (United States)

    Villar, Rodrigo; Hughson, Richard L

    2017-03-01

    We tested the hypothesis during the combined challenges of altered inspired O2 fraction (FIO2) and posture changes at lower power output regardless of body position that the vascular conductance (VC) recruitment to the exercising muscle would not limit muscle perfusion and estimated O2 delivery (DO2est ). However, in head-down tilt at the higher power output exercise in hypoxia, the recruitment of VC would have a functional limitation which would restrict muscle blood flow (MBF) leading to a limitation in DO2est with consequent increases in metabolic stress. Ten healthy volunteers repeated plantar flexion contractions at 20% (low power output = LPO) and 30% (higher power output = HPO) of their maximal voluntary contraction in horizontal (HOR), 35° head-down-tilt (HDT) and 45° head-up-tilt (HUT). Popliteal diameter and muscle blood flow velocity were measured by ultrasound determining MBF. VC was estimated by dividing MBF flow by MPP, and DO2est was estimated by MBF times saturation. LPO HUT in hypoxia was associated with no changes in VC and MBF leading to reduced DO2est In LPO HDT under hypoxia, despite no apparent functional limitation in the VC recruitment, rise in MBF to maintain DO2est was associated with marked increase in muscle electromyographic activity, indicating greater metabolic stress. In HPO HDT under hypoxia, a functional limitation for the recruitment of VC constrained MBF and DO2est Elevated muscle electromyographic signal in HPO HDT under hypoxia was consistent with challenged aerobic metabolisms which contributed to a greater increase in the relative stress of the exercise challenge and advance the onset of muscle fatigue. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Measuring bubbles in a bubbly wake flow

    Science.gov (United States)

    Lee, Seung-Jae; Kawakami, Ellison; Arndt, Roger E. A.

    2012-11-01

    This paper presents measurements of the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). A narrow depth-of-field (DoF) is required for imaging a 2-dimensional plane within a flow volume. Shadows of the bubbles were collected by a high-speed camera. Once a reference image, taken when no bubbles were present in the flow, was subtracted from the images, the image was segmented using an edge detection technique. The Canny algorithm was determined to be best suited for this application. A curvature profile method was employed to distinguish individual bubbles within a cluster of highly overlapping bubbles. The utilized algorithm was made to detect partly overlapping bubbles and reconstruct the missing parts. The movement of recognized individual bubbles was tracked on a two dimensional plane within a flow volume. In order to obtain quantitative results, the wake of a ventilated hydrofoil was investigated by applying the shadowgraphy technique and the described bubble detection algorithm. These experiments were carried out in the high speed cavitation tunnel at Saint Anthony Falls Laboratory (SAFL) of the University of Minnesota. This research is jointly sponsored by the Office of Naval Re- search, Dr. Ron Joslin, program manager, and the Department of Energy, Golden Field Office.

  17. Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture.

    Science.gov (United States)

    Tillman, Bryan W; Yazdani, Saami K; Neff, Lucas P; Corriere, Matthew A; Christ, George J; Soker, Shay; Atala, Anthony; Geary, Randolph L; Yoo, James J

    2012-09-01

    were created within a clinically relevant time frame and demonstrated stable wall geometry despite high flow and repeated puncture. Cellular ingrowth and puncture site healing may improve wall durability, but venous outflow stenosis remains the primary mode of TEBV graft failure in the ovine model. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  18. Test-retest reliability of pulse amplitude tonometry measures of vascular endothelial function: implications for clinical trial design.

    Science.gov (United States)

    McCrea, Cindy E; Skulas-Ray, Ann C; Chow, Mosuk; West, Sheila G

    2012-02-01

    Endothelial dysfunction is an important outcome for assessing vascular health in intervention studies. However, reliability of the standard non-invasive method (flow-mediated dilation) is a significant challenge for clinical applications and multicenter trials. We evaluated the repeatability of pulse amplitude tonometry (PAT) to measure change in pulse wave amplitude during reactive hyperemia (Itamar Medical Ltd, Caesarea, Israel). Twenty healthy adults completed two PAT tests (mean interval = 19.5 days) under standardized conditions. PAT-derived measures of endothelial function (reactive hyperemia index, RHI) and arterial stiffness (augmentation index, AI) showed strong repeatability (intra-class correlations = 0.74 and 0.83, respectively). To guide future research, we also analyzed sample size requirements for a range of effect sizes. A crossover design powered at 0.90 requires 28 participants to detect a 15% change in RHI. Our study is the first to show that PAT measurements are repeatable in adults over an interval greater than 1 week.

  19. Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography

    NARCIS (Netherlands)

    van der Meer, Freek J.; Faber, Dirk J.; Cilesiz, Inci; van Gemert, Martin J. C.; van Leeuwen, Ton G.

    2006-01-01

    Optical properties of tissues and tissue components are important parameters in biomedical optics. We report measurements of tissue refractive index n and the attenuation coefficient mu(t) using optical coherence tomography (OCT) of individual vascular wall layers and plaque components. Moreover,

  20. Meteorological insights from planetary heat flow measurements

    Science.gov (United States)

    Lorenz, Ralph D.

    2015-04-01

    Planetary heat flow measurements are made with a series of high-precision temperature sensors deployed in a column of regolith to determine the geothermal gradient. Such sensors may, however, be susceptible to other influences, especially on worlds with atmospheres. First, pressure fluctuations at the surface may pump air in and out of pore space leading to observable, and otherwise unexpected, temperature fluctuations at depth. Such pumping is important in subsurface radon and methane transport on Earth: evidence of such pumping may inform understanding of methane or water vapor transport on Mars. Second, the subsurface profile contains a muted record of surface temperature history, and such measurements on other worlds may help constrain the extent to which Earth's Little Ice Age was directly solar-forced, versus volcanic-driven and/or amplified by climate feedbacks.

  1. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling.

    Science.gov (United States)

    Stone, Oliver A; Carter, James G; Lin, P Charles; Paleolog, Ewa; Machado, Maria J C; Bates, David O

    2017-03-01

    Combining nitric oxide (NO)-mediated increased blood flow with angiopoietin-1-Tie2 receptor signalling induces arteriolargenesis - the formation of arterioles from capillaries - in a model of physiological angiogenesis. This NO-Tie-mediated arteriolargenesis requires endogenous vascular endothelial growth factor (VEGF) signalling. Inhibition of VEGF signalling increases pericyte coverage in microvessels. Together these findings indicate that generation of functional neovasculature requires close titration of NO-Tie2 signalling and localized VEGF induction, suggesting that the use of exogenous VEGF expression as a therapeutic for neovascularization may not be successful. Signalling through vascular endothelial growth factor (VEGF) receptors and the tyrosine kinase with IgG and EGF domains-2 (Tie2) receptor by angiopoietins is required in combination with blood flow for the formation of a functional vascular network. We tested the hypothesis that VEGF and angiopoietin-1 (Ang1) contribute differentially to neovascularization induced by nitric oxide (NO)-mediated vasodilatation, by comparing the phenotype of new microvessels in the mesentery during induction of vascular remodelling by over-expression of endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms-like tyrosine kinase receptor-1 (sFlt1). We found that NO-mediated angiogenesis was blocked by inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%) and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin-1 was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited VSMC recruitment (both 0%), and VEGF inhibition increased pericyte recruitment to newly formed vessels (from 27 ± 2 to

  2. [Regulatory role of calcium activated chloride channel in pulmonary vascular structural remodeling in rats with pulmonary arterial hypertension induced by high pulmonary blood flow].

    Science.gov (United States)

    Wang, K; Pang, Y S; Su, D Y; Ye, B B; Qin, S Y; Liu, D L; Han, Y L

    2016-09-01

    To explore the regulatory role of calcium activated chloride channel (CaCC) in vascular structural remodeling in pathogenesis of pulmonary arterial hypertension (PAH) induced by high pulmonary blood flow. An abdominal aorta and inferior vena cava shunting operation was used to induce high pulmonary blood flow and establish a PAH rat model.Seventy-five SD rats were randomly divided into normal, sham, shunt, niflumic acid (NFA) 1(0.2 mg/(kg·d))and NFA 2 (0.4 mg/(kg·d)) groups. There were 15 rats in each group. Pulmonary artery pressure and vascular structural remodeling were measured, arteriole contraction ratio among these groups were compared using vascular tone analysis system, and the electrophysiology of pulmonary artery smooth muscle cell (PASMC) was recorded using patch clamp technology. Differences between multiple groups were compared through variance analysis and that between groups with q test. Compared with normal ((14.4±1.3 ) mmHg, 1 mmHg=0.133 kPa)and sham groups ((13.5±2.3 ) mmHg), mean pulmonary artery pressure in shunt group ((27.4±2.4 ) mmHg) increased significantly (Ppulmonary artery pressure in NFA 1 group ((21.2±2.0) mmHg) and NFA 2 group ((22.3±2.0) mmHg) decreased significantly (PPulmonary vascular structural remodeling including pulmonary artery stenosis presented in shunt group. Compared with normal ((114.3±1.2)%) and sham ((115.5±1.1)%) groups, arteriole contraction ratio to 10(-5) mol/L phenylephrine in shunt group ((132.6±1.4)%) increased significantly (Ppulmonary vascular structural remodeling alleviated in NFA 1 and NFA 2 groups. Arteriole contraction ratio in NFA 1 group ((126.4±1.3)%) and NFA 2 group ((124.6±1.0)%) decreased significantly compared with shunt group (Ppulmonary arterial hypertension induced by high pulmonary blood flow through regulating membrane potential. NFA attenuate pulmonary vascular structural remodeling and pulmonary pressure through decreasing CaCC current density of PASMC membrane.

  3. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn [Imperial College London, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Gilbert, Fiona J. [University of Cambridge, Radiology Department, Cambridge (United Kingdom); Fleming, Ian N. [University of Aberdeen, NCRI PET Research Network, Aberdeen Bioimaging Centre, Aberdeen (United Kingdom); Beer, Ambros J. [Technische Universitaet Munchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Cunningham, Vincent J. [University of Aberdeen, Institute of Medical Sciences, Aberdeen (United Kingdom); Marsden, Paul K. [St. Thomas' Hospital, Division of Imaging Sciences, PET Imaging Centre, London (United Kingdom); Visvikis, Dimitris [INSERM National Institute of Health and Clinical Sciences LaTIM, CHU Morvan, Brest (France); Gee, Antony D. [St. Thomas' Hospital, Division of Imaging Sciences, The Rayne Institute, London (United Kingdom); Groves, Ashley M. [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Cook, Gary J. [St. Thomas' Hospital, KCL Division of Imaging, Sciences and Biomedical Engineering, PET Imaging Centre, London (United Kingdom); Kinahan, Paul E. [University of Washington, 222 Old Fisheries Center (FIS), Box 357987, Seattle, WA (United States); Clarke, Larry [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States)

    2012-07-15

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [{sup 15}O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  4. Measuring Gravity in International Trade Flows

    Directory of Open Access Journals (Sweden)

    E. Young Song

    2004-12-01

    Full Text Available The purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of income levels of countries, and in trade of most manThe purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of

  5. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.

    Science.gov (United States)

    Ta, Hang T; Truong, Nghia P; Whittaker, Andrew K; Davis, Thomas P; Peter, Karlheinz

    2018-01-01

    Vascular-targeted drug delivery is a promising approach for the treatment of atherosclerosis, due to the vast involvement of endothelium in the initiation and growth of plaque, a characteristic of atherosclerosis. One of the major challenges in carrier design for targeting cardiovascular diseases (CVD) is that carriers must be able to navigate the circulation system and efficiently marginate to the endothelium in order to interact with the target receptors. Areas covered: This review draws on studies that have focused on the role of particle size, shape, and density (along with flow hemodynamics and hemorheology) on the localization of the particles to activated endothelial cell surfaces and vascular walls under different flow conditions, especially those relevant to atherosclerosis. Expert opinion: Generally, the size, shape, and density of a particle affect its adhesion to vascular walls synergistically, and these three factors should be considered simultaneously when designing an optimal carrier for targeting CVD. Available preliminary data should encourage more studies to be conducted to investigate the use of nano-constructs, characterized by a sub-micrometer size, a non-spherical shape, and a high material density to maximize vascular wall margination and minimize capillary entrapment, as carriers for targeting CVD.

  6. Wall-Less Flow Phantoms With Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model Fabrication Example.

    Science.gov (United States)

    Ho, Chung Kit; Chee, Adrian J Y; Yiu, Billy Y S; Tsang, Anderson C O; Chow, Kwok Wing; Yu, Alfred C H

    2017-01-01

    Flow phantoms with anatomically realistic geometry and high acoustic compatibility are valuable investigative tools in vascular ultrasound studies. Here, we present a new framework to fabricate ultrasound-compatible flow phantoms to replicate human vasculature that is tortuous, nonplanar, and branching in nature. This framework is based upon the integration of rapid prototyping and investment casting principles. A pedagogical walkthrough of our engineering protocol is presented in this paper using a patient-specific cerebral aneurysm model as an exemplar demonstration. The procedure for constructing the flow circuit component of the phantoms is also presented, including the design of a programmable flow pump system, the fabrication of blood mimicking fluid, and flow rate calibration. Using polyvinyl alcohol cryogel as the tissue mimicking material, phantoms developed with the presented protocol exhibited physiologically relevant acoustic properties [attenuation coefficient: 0.229±0.032 dB/( [Formula: see text]) and acoustic speed: 1535±2.4 m/s], and their pulsatile flow dynamics closely resembled the flow profile input. As a first application of our developed phantoms, the flow pattern of the patient-specific aneurysm model was visualized by performing high-frame-rate color-encoded speckle imaging over multiple time-synchronized scan planes. Persistent recirculation was observed, and the vortex center was found to shift in position over a cardiac cycle, indicating the 3-D nature of flow recirculation inside an aneurysm. These findings suggest that phantoms produced from our reported protocol can serve well as acoustically compatible test beds for vascular ultrasound studies, including 3-D flow imaging.

  7. Bodies in flowing plasmas - Spacecraft measurements

    Science.gov (United States)

    Samir, U.

    1981-01-01

    Results are reviewed from in-situ measurements relevant to the interaction of bodies in flowing plasmas. A brief discussion is given of the interaction in the general context of space plasma physics, including possible applications to solar-system plasmas. Attention is given to the mode of experimentation in the Shuttle/Spacelab era. It is noted that the majority of in-situ investigations during the past decade were limited to the very near surface of ionospheric satellites. It is expected that experiments to be carried out on board the Spacelab/Orbiter will make possible well-planned controlled experiments in the area of body-plasma interactions in its widest sense.

  8. Eddy Current Flow Measurements in the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Deborah L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Polzin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makenas, Bruce J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuable information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.

  9. Color Doppler imaging and measurements of intraovarian and intrauterine vascularization on basal ultrasound examination in spontaneous ovulatory and anovulatory cycles

    Directory of Open Access Journals (Sweden)

    Kutlešić Ranko

    2008-01-01

    Full Text Available Background/Aim. Any organs functioning directly depends on vascularization. It applies also to the uterus and ovary which go through changes of vascularization during a menstruation cycle. The aim of this investigation was to determine differences in intrauterine and ovarian stromal arterioral blood flow on basal ultrasound examination (day 2-4 between spontaneous ovulatory and anovulatory cycles. Methods. This prospective clinical investigation included 205 patients divided into two groups: with ovulatory and with anovulatory cycles. Results. Resistance to ovarian arterioral stromal blood flow was significantly lower in the patients with ovulatory cycles (pulsatile index - PI 0.97 ± 0.4 vs 1.93 ± 1.37; p = 0.001737; and (resistance index - RI 0.55 ± 0.12 vs 0.68 ± 0.14; p = 0.040033. There were no statistically significant differences in arcuate arterioral blood flow in the pateints with ovulatory and anovulatory cycles (PI 1.21 ± 0.34 vs 61 ± 0,61 p = 0.136161 and RI 0.64 ± 0.11 vs 0.74 ± 0.07; p = 0.136649. The patients with ovulatory cycles had lower uterine radial arterioral blood flow than the patients with anovulatory cycles (PI 1.001 ± 0.22 vs 1.61 ± 0.23 p = 0.007501 and RI 0.55 ± 0.08 vs 0.71 ± 0.12; p = 0,0460113. The patients with ovulatory cycles had lower subendometrial arterioral blood flow resistance (PI 0.69 ± 0.19 vs 1.385±0.09; p = 0.00622 and RI 0.44 ± 0.09 vs 0.65 ± 0.02; p = 0.027458. Conclusion. Color Doppler ultrasuond imaging and measurements of intrauterine and ovarian stromal arterioral blood flow on basal ultrasound examination (day 2-4, showed lower resistance to blood flow in ovulatory than in anovulatory cycles.

  10. Vascular function assessed by passive leg movement and flow-mediated dilation: initial evidence of construct validity.

    Science.gov (United States)

    Rossman, Matthew J; Groot, H Jonathan; Garten, Ryan S; Witman, Melissa A H; Richardson, Russell S

    2016-11-01

    The vasodilatory response to passive leg movement (PLM) appears to provide a novel, noninvasive assessment of vascular function. However, PLM has yet to be compared with the established noninvasive assessment of vascular health, flow-mediated dilation (FMD). Therefore, as an initial evaluation of the construct validity of PLM and upright seated and supine PLM as well as brachial (BA) and superficial femoral (SFA) artery FMDs were performed in 10 young (22 ± 1) and 30 old (73 ± 2) subjects. During upright seated PLM, the peak change in leg blood flow (ΔLBF) and leg vascular conductance (ΔLVC) was significantly correlated with BA (r = 0.57 and r = 0.66) and SFA (r = 0.44 and r = 0.41, ΔLBF and ΔLVC, respectively) FMD. Furthermore, although the relationships were not as strong, the supine PLM response was also significantly correlated with BA (r = 0.38 and r = 0.35) and SFA (r = 0.39 and r = 0.35, ΔLBF and ΔLVC, respectively) FMD. Examination of the young and old separately, however, revealed that significant relationships persisted in both groups only for the upright seated PLM response and BA FMD (young: r = 0.73 and r = 0.77; old: r = 0.35 and r = 0.45, ΔLBF and ΔLVC, respectively). Normalizing FMD for shear rate during PLM abrogated all significant relationships between the PLM and FMD response, suggesting a role for nitric oxide (NO) in these associations. Collectively, these data indicate that PLM, particularly upright seated PLM, likely provides an index of vascular health analogous to the traditional FMD test. Given the relative ease of PLM implementation, these data have important positive implications for PLM as a clinical vascular health assessment.

  11. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    Science.gov (United States)

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Escleroterapia con bleomicina en malformaciones vasculares de bajo flujo: Experiencia y revisión del tema Bleomycin sclerotherapy for low-flow vascular malformations: our experience and literature review

    Directory of Open Access Journals (Sweden)

    F. Lobo Bailón

    2012-12-01

    Full Text Available Las anomalías vasculares son lesiones típicas de los pacientes pediátricos y se dividen en dos categorías: tumores vasculares y malformaciones vasculares de alto y bajo flujo. Estas últimas pueden tratarse de diversos modos: laserterapia, drenaje, aspiración, cirugía o escleroterapia, dependiendo del tipo de lesión y de su localización. Entre los agentes esclerosantes utilizados, la bleomicina ha demostrado tener buenos resultados en el tratamiento de estas lesiones. En este artículo presentamos nuestra experiencia en el tratamiento de las malformaciones vasculares de bajo flujo mediante escleroterapia con bleomicina intralesional. Desarrollamos un estudio descriptivo retrospectivo sobre 30 pacientes que presentaban malformación vascular de bajo flujo y fueron tratados con bleomicina intralesional. Los resultados fueron buenos o excelentes en 22 pacientes y regulares o malos en los 8 restantes. De acuerdo a nuestra casuística y a la literatura revisada, la escleroterapia con bleomicina es una alternativa terapéutica eficaz y segura en el tratamiento de las malformaciones vasculares de bajo flujo.Vascular anomalies are common in children and can be divided into two categories, vascular tumours and vascular malformations: high-flow or low-flow. The latter can be treated in different ways such as lasertherapy, drainage, aspiration, surgery or sclerotherapy depending on the type and location of the lesion. Among the accepted sclerosing agents, bleomycin has proven good results in the treatment of this condition. Herein we present our experience in the treatment of low-flow vascular malformations with intralesional bleomycin injection. This is a retrospective, descriptive study with 30 patients presenting a low-flow vascular malformation treated with intralesional bleomycin injection. Our results are good or excellent in 22 patients and poor in the other 8. According to our case series and the consulted literature, sclerotherapy with

  13. Influence of crimping textile polyester vascular prostheses on the fluid flow kinetics. Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire.

    Science.gov (United States)

    Abdessalem, S B; Chakfe, N; Le Magnen, J F; Beaufigeau, M; Adolphe, D; Geny, B; Akesbi, S; Riepe, G; Kretz, J G; Durand, B

    1999-11-01

    to characterise the impact of the crimping of polyester prostheses on the fluid flow kinetics. an experimental in vitro study. we investigated four models of polyester vascular prostheses in a continuous laminar flow circuit. The flow velocity was 80 ml/s for all experiments. We studied two fluids of different viscosity within the circuit. The speed of the particles was measured by a laser Doppler anemometer 2 to 52 mm from the prosthetic interface. We first established a calibrated flow-velocity profile corresponding to the study of the support inside the circuit without any prosthesis. We measured the velocity profiles for each prosthesis corresponding to four crimp densities obtained by stretching the grafts. the crimping of PET textile prostheses led to a decrease of flow velocity especially closer to the prosthetic surface. The decrease of flow velocity was dependent on the model of prosthesis. This decrease of flow velocity is described by the following negative exponential law: DeltaV=a times b(-x)where (a) is the crimp density and (b) the fluid viscosity. flow velocity near a prosthetic surface is influenced by the morphology of the crimping. The impact of crimping on the flow velocity in a vascular prosthesis can be predicted by computer simulation models. This may provide the optimal shape of crimping for each prosthesis. Copyright 1999 Harcourt Publishers Ltd.

  14. A liquid-independent volume flow measurement principle

    NARCIS (Netherlands)

    Geers, L.F.G.; Volker, A.W.F.; Hunter, T.P.M.

    2010-01-01

    A novel flow measurement principle is presented enabling non-intrusive volume flow measurements of liquids in the ml/min range. It is based on an opto-acoustical time-of-flight principle, where the time interval is recorded in which a thermal label travels a known distance through a flow channel.

  15. INDIVIDUAL-TYPOLOGICAL FEATURES OF BLOOD FLOW AND VASCULAR REACTIVITY IN FEMALE STUDENTS

    Directory of Open Access Journals (Sweden)

    Horban D. D.

    2014-12-01

    Full Text Available The study of functional state of the microcirculation in the female body by laser Doppler flux-metry (LDF, which allows evaluating the state of the tissue blood flow and detecting signs of microcirculation changes under the influence of various factors were done. Studying individual typological features of blood circulation during recording LDF-grams in girl’s students, most of them recorded mainly of high LDF-grams with severe vasomotor waves of the second order. Parameter of microcirculation (PM of each blood flow ranged from 3.4 to 27.4 perf. ed.; on average it was 19,0 ± 0,43 perf. units. The level of tissue blood flow oscillations – SCR ranged from 0.57 to 3.23 perf. units., accounting for an average of 2,06 ± 0,05 perf. units. The coefficient of variation on average was 13,2 ± 0,51. We identified three types of LDF-grams, corresponding to different types of blood. We also determined the relationship of the thermal hyperemia with the phases of the menstrual cycle and daily dynamics of changes of microcirculation blood. Data on the peculiarities of microcirculation in female students have important theoretical and practical significance for understanding the mechanisms of regulation of tissue blood flow. The normative indicators of blood microcirculation of female students would much easier identify the functional changes in human body by using of non-invasive methods. The data on blood circulation in females can be used as standard rates of LDF measuring the study of pathological processes in medicine.

  16. Measurement of Soluble Biomarkers by Flow Cytometry.

    Science.gov (United States)

    Antal-Szalmás, Péter; Nagy, Béla; Debreceni, Ildikó Beke; Kappelmayer, János

    2013-01-01

    Microparticle based flow cytometric assays for determination of the level of soluble biomarkers are widely used in several research applications and in some diagnostic setups. The major advantages of these multiplex systems are that they can measure a large number of analytes (up to 500) at the same time reducing assay time, costs and sample volume. Most of these assays are based on antigen-antibody interactions and work as traditional immunoassays, but nucleic acid alterations - by using special hybridization probes -, enzyme- substrate or receptor-ligand interactions can be also studied with them. The applied beads are nowadays provided by the manufacturers, but cheaper biological microbeads can be prepared by any user. One part of the systems can be used on any research or clinical cytometers, but some companies provide dedicated analyzers for their multiplex bead arrays. Due to the high standardization of the bead production and the preparation of the assay components the analytical properties of these assays are quite reliable with a wide range of available applications. Cytokines, intracellular fusion proteins, activated/phosphorylated components of different signaling pathways, transcription factors and nuclear receptors can be identified and quantitated. The assays may serve the diagnostics of autoimmune disorders, different viral and bacterial infections, as well as genetic alterations such as single nucleotide polymorphisms, small deletions/insertions or even nucleotide triplet expansions can be also identified. The most important principles, technical details and applications of these systems are discussed in this short review.

  17. Measurement and Assessment of Flow Quality in Wind Tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New wind tunnel flow quality test and analysis procedures have been developed and will be used to establish standardized turbulent flow quality measurement...

  18. Accurate Blood Flow Measurements : Are Artificial Tracers Necessary?

    NARCIS (Netherlands)

    Poelma, C.; Kloosterman, A.; Hierck, B.P.; Westerweel, J.

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies

  19. System for measuring multiphase flow using multiple pressure differentials

    Science.gov (United States)

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  20. The use of gamma radiation in fluid flow measurements

    CERN Document Server

    Tjugum, S A; Holstad, M B

    2001-01-01

    Different measurement techniques involving the use of gamma radiation in flow measurement are discussed. In the Dual Modality Densitometry project at the University of Bergen, salinity-independent gas volume fraction measurements are obtained by combining scattered and transmitted radiation.

  1. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  2. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion.

    Directory of Open Access Journals (Sweden)

    Chris B Schaffer

    2006-02-01

    Full Text Available A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA, the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology.

  3. Flow Measurement. Training Module 3.315.2.77.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the principles of liquid flow and the methods of measuring open channel and fuel pipe flow rates. Included are objectives, instructor guides, student handouts, and transparency masters. The module addresses the basic flow formula, and…

  4. Reconstruction of the lateral malleolus using a reverse-flow vascularized fibular head: a case report.

    Science.gov (United States)

    Rajacic, N; Dashti, H

    1996-01-01

    We report a case of a 7-year-old girl in whom a vascularized fibular head with preserved epiphyseal and metaphyseal blood supply was used to reconstruct the missing lateral malleolus. Two-year follow-up showed good bony stability and growth potential of the transplanted epiphyseal plate.

  5. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  6. Measurements of Magnetic Field Convection in Spherical Liquid Sodium Flows

    Science.gov (United States)

    Luh, W. J.; Reighard, A. B.; Trucksess, C. D.; Brown, M. R.

    1998-11-01

    We have performed magnetic field measurements both inside and outside a 0.15 m diameter sphere of flowing liquid sodium. Experiments have been conducted in both smooth (laminar flow) and corrugated (turbulent flow) Pyrex spheres. A teflon stirrer generates a non-axisymmetric MHD flow with a magnetic Reynold's number boxcar averager with pick-up loops are used to measure magnetic fields in the flow. Preliminary results indicate evidence of both toroidal and poloidal convection of the magnetic field (internally and externally); total magnetic flux remains approximately fixed. Results will be compared with TRIM MHD computer simulations.

  7. Impedance Sensors for Fast Multiphase Flow Measurement and Imaging

    OpenAIRE

    Da Silva, Marco Jose

    2008-01-01

    Multiphase flow denotes the simultaneous flow of two or more physically distinct and immiscible substances and it can be widely found in several engineering applications, for instance, power generation, chemical engineering and crude oil extraction and processing. In many of those applications, multiphase flows determine safety and efficiency aspects of processes and plants where they occur. Therefore, the measurement and imaging of multiphase flows has received much attention in recent years...

  8. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.

    Science.gov (United States)

    Gojova, Andrea; Barakat, Abdul I

    2005-06-01

    Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC (BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either "high" (19 dyn/cm(2)) or "low" (3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.

  9. The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow.

    Science.gov (United States)

    Zhang, Yun-Peng; Huang, Yi-Tao; Huang, Tse-Shun; Pang, Wei; Zhu, Juan-Juan; Liu, Yue-Feng; Tang, Run-Ze; Zhao, Chuan-Rong; Yao, Wei-Juan; Li, Yi-Shuan; Chien, Shu; Zhou, Jing

    2017-11-08

    The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo. Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.

  10. Drop-box Weir for Measuring Flow Rates Under Extreme Flow Conditions

    Science.gov (United States)

    Sediment and large rocks often are transported in runoff during extreme events. The sediment can deposit in a runoff-measuring structure and give erroneous readings. The drop-box weir (DBW) is one of only a few flow-measuring devices capable of measuring sediment-laden flows. Recent studies have ...

  11. Measurements of fluid flow in weld pools

    NARCIS (Netherlands)

    Zhao, C.

    2011-01-01

    Understanding the fluid flow in weld pools contributes significantly toward controlling the heat distribution in the base material and the mass distribution of molten base and additive materials. Currently, most investigations focus primarily on numerical models, due to the experimental difficulties

  12. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G.H.; Wang, Q; Hu,Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  14. Photoacoustic Doppler flow measurement in optically scattering media

    OpenAIRE

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-01-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microc...

  15. Evaluation of MR angiography and blood flow measurement in abdominal and peripheral arterial occlusive disease

    Energy Technology Data Exchange (ETDEWEB)

    Tabuchi, Kenji [Dokkyo Univ. School of Medicine, Mibu, Tochigi (Japan)

    2000-03-01

    To assess the characteristics of blood flow measurement with MR Angiography (MRA) to evaluate the status of vascular stenoses, two or three dimensional time-of-flight MRA and velocity-encoded cine MR were performed in the 230 segments of 35 patients, with abdominal and peripheral arterial occlusive diseases. In 11 of these 35 patients digital subtraction angiography was additionally underwent, and the stenotic findings was compared with MRA. There were 17 segments in which the velocity could not be measured, because the blood flow exceeded the upper limit of peak-encoded velocity (VENC) which was set at 120 cm/sec. Therefore, it is necessary to set the upper limit of VENC at higher than 120 cm/sec. There were 11 stenotic findings in DSA and 20 stenotic findings in MRA. Pulsatility Index (PI=(max velocity-min. velocity)/average velocity) were used for evaluating the blood flow waveform, and there were significant difference between the 11 stenotic findings of DSA and the others'. In summery, MRA was considered as useful examination to assess the degree of the vascular stenoses in abdominal and peripheral arterial occlusive disease. (author)

  16. WEEE flow and mitigating measures in China.

    Science.gov (United States)

    Yang, Jianxin; Lu, Bin; Xu, Cheng

    2008-01-01

    The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids. The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management. Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.

  17. Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography.

    Science.gov (United States)

    van der Meer, Freek J; Faber, Dirk J; Cilesiz, Inci; van Gemert, Martin J C; van Leeuwen, Ton G

    2006-01-01

    Optical properties of tissues and tissue components are important parameters in biomedical optics. We report measurements of tissue refractive index n and the attenuation coefficient mu(t) using optical coherence tomography (OCT) of individual vascular wall layers and plaque components. Moreover, since the temperature dependence of optical properties is widely known, we compare measurements at room and body temperatures. A decrease of n and mu(t) is observed in all samples, with the most profound effect on samples with high lipid content. The sample temperature is of influence on the quantitative measurements within OCT images. For extrapolation of ex-vivo experimental results, especially for structures with high lipid content, this effect should be taken into account.

  18. Blood pressure and vascular dysfunction underlie elevated cerebral blood flow in systemic lupus erythematosus.

    Science.gov (United States)

    Gasparovic, Charles; Qualls, Clifford; Greene, Ernest R; Sibbitt, Wilmer L; Roldan, Carlos A

    2012-04-01

    In previous studies cerebral blood flow (CBF) was found to be altered in patients with systemic lupus erythematosus (SLE) compared to controls. We investigated the relationships between CBF and clinical data from subjects with SLE with the aim of determining the pathologic factors underlying altered CBF in SLE. A total of 42 SLE subjects and 19 age- and sex-matched healthy control subjects were studied. Dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) was used to measure CBF. Patients and controls underwent complete clinical and laboratory evaluations in close proximity with their MRI studies. A higher CBF was present in the SLE group and was independently associated in statistical models with higher systolic blood pressure (SBP; p blood pressure, diastolic blood pressure, or blood levels of tissue plasminogen activator in the SLE group was significantly blunted relative to the control group. These findings are consistent with an underlying cerebral hyperperfusion in SLE induced by elevated but nonhypertensive levels of SBP. The factors underlying this relationship may be functional and/or structural (atherosclerotic, thrombotic, thromboembolic, or vasculitic) cerebrovascular disease.

  19. Vascular Function and Regulation of Blood Flow in Resting and Contracting Skeletal Muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin

    The precise matching of blood flow, oxygen delivery and metabolism is essential as it ensures that any increase in muscle work is precisely matched by increases in oxygen delivery. Therefore, understanding the control mechanisms of skeletal muscle blood flow regulation is of great biological impo...

  20. What is happening in the world of vascular access? Research and innovations are flowing through.

    Science.gov (United States)

    Chemla, Eric S

    2012-01-01

    Vascular access perfectly reproduces myointimal hyperplasia that can be found in coronary or peripheral arteries and has a major advantage that these other sites cannot match: it is quite superficial and not close to a major vital organ and also affects a population that will attend the hospital for dialysis on a very regular basis. It therefore appears obvious to try and develop a tool that will mitigate myointimal hyperplasia and that could later be tested on coronary or peripheral arteries. Over the past few years several trials have been organized and we are now at a stage where some results have become available.

  1. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuations...... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....

  2. In vivo vascular flow profiling combined with optical tweezers based blood routing

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  3. Exchange Flow Rate Measurement Technique in Density Different Gases

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2012-04-01

    Full Text Available Buoyancy-driven exchange flows of helium-air through inclined a narrow tube was investigated. Exchange flows may occur following the opening of a window for ventilation, as well as when a pipe ruptures in a high temperature gas-cooled reactor. The experiment in this paper was carried out in a test chamber filled with helium and the flow was visualized using the smoke wire method. A high-speed camera recorded the flow behavior. The image of the flow was transferred to digital data, and the slow flow velocity, i.e. micro flow rate was measured by PIV software. Numerical simulation was carried out by the code of moving particle method with Lagrange method.

  4. Brain blood-flow changes during motion sickness. [thalamus vascular changes in dogs during swing tests

    Science.gov (United States)

    Johnson, W. H.; Hsuen, J.

    1973-01-01

    The possibility of diminished blood flow in the brain is studied as one of the factors resulting from an increase in skeletal muscle blood volume concomitant with other characteristics of motion sickness. Thermistors are implanted in the thalamus of dogs and blood flow changes are recorded while they are subjected to sinusoidal movement on a two pole swing. Results of these initial steps in a proposed long term exploration of different areas of the brain are presented.

  5. Objective measurement of inhaler inhalation flow profile using acoustic methods

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, H.; Taylor, T.E.; Marco, S.; Reilly, R.B.

    2016-07-01

    Patients with asthma and chronic obstructive pulmonary diseases (COPD) are mostly treated with inhalers that deliver medication directly to their airways. Drug delivery from dry powder inhalers (DPIs) is very much reliant on the inhalation manoeuvre, specifically the peak inspiratory flow rate (PIFR), inspiratory capacity (IC) and inhalation rise time (IRT) of the inhalation. It has been widely reported that patients may not follow correct inhalation technique while using their inhaler. In this study, a novel acoustic method is proposed to accurately estimate inhalation flow profile using only one inhalation recording for calibration. An Ellipta DPI was placed inside an airtight container with a spirometer connected in order to measure inhalation flow parameters. An acoustic recording device (Inhaler Compliance Assessment (INCA)) was also attached to the DPI. Inhalation audio and flow signals were recorded simultaneously. The data were collected from 20 healthy subjects while performing inhaler inhalations at a range of inspiratory flow rates. A power law regression model was computed to obtain the relationship between the acoustic envelope of the inhalation and flow profile of each recording. Each model was tested on the remaining audio signals to estimate flow profile. The average estimation error was found to be 10.5±0.3% for estimating flow profile from audio signals. Inhalation flow profile parameters (PIFR, IC and IRT) could then be measured from the estimated flow profile with high accuracy giving information on user inhalation technique. This method may assist in improving patient inhaler adherence and overall disease control. (Author)

  6. Serial measurement of regional cerebral blood flow in patients with SAH using 133Xe inhalation and emission computerized tomography

    DEFF Research Database (Denmark)

    Mickey, B; Vorstrup, S; Voldby, Bo

    1984-01-01

    defined regional flow decrease in the vascular territories of the anterior or middle cerebral arteries. Severe vasospasm was noted in three of these patients in whom arteriography was performed in the 2nd week post SAH. Diffuse bihemispheric CBF decreases were noted later in the course of delayed......A noninvasive three-dimensional method for measuring cerebral blood flow (CBF), xenon-133 inhalation and emission computerized tomography, was used to investigate the CBF changes accompanying delayed neurological deterioration following subarachnoid hemorrhage (SAH). A total of 67 measurements were...

  7. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    Science.gov (United States)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  8. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  9. Análise do efeito imediato do jato de CO2 sobre o endotélio vascular de caprinos Analyses of the immediate effect of CO2 flow on vascular endothelium in goats

    Directory of Open Access Journals (Sweden)

    Eucário Leite Monteiro Alves

    2006-09-01

    : Thirty-six male goats were submitted to a surgical procedure. Histological analysis was carried out using the immunoperoxidase reaction to mark the endothelium through the detection of VIII Coagulation Factor. Measurement was made by Quantimet following the Ip scale for vascular injury. RESULTS: Within control groups, with and without humidification, both for AIVA and LITA, there was no endothelial injury. The flow rate of 5 L/min provoked moderately significant endothelial injury of the AIVA without humidification, whereas with humidification the endothelial injury was seen but without statistical significance. The flow rate of 5 L/min, with or without humidification, provoked insignificant endothelial injury at LITA. With a flow rate of 10 L/min, there was highly significant endothelial injury, both for the LITA and AIVA and whether humidified or not. CONCLUSION: In conclusion endothelial injury is flow-dependent with greater injury when using CO2 at a flow rate of 10 L/min and less at 5 L/min. The arteries involved in anastomosis (LITA and AIVA are both affected, but there is a greater effect on the AIVA.

  10. Integration of indocyanine green videoangiography with operative microscope: augmented reality for interactive assessment of vascular structures and blood flow.

    Science.gov (United States)

    Martirosyan, Nikolay L; Skoch, Jesse; Watson, Jeffrey R; Lemole, G Michael; Romanowski, Marek; Anton, Rein

    2015-06-01

    Preservation of adequate blood flow and exclusion of flow from lesions are key concepts of vascular neurosurgery. Indocyanine green (ICG) fluorescence videoangiography is now widely used for the intraoperative assessment of vessel patency. Here, we present a proof-of-concept investigation of fluorescence angiography with augmented microscopy enhancement: real-time overlay of fluorescence videoangiography within the white light field of view of conventional operative microscopy. The femoral artery was exposed in 7 anesthetized rats. The dissection microscope was augmented to integrate real-time electronically processed near-infrared filtered images with conventional white light images seen through the standard oculars. This was accomplished by using an integrated organic light-emitting diode display to yield superimposition of white light and processed near-infrared images. ICG solution was injected into the jugular vein, and fluorescent femoral artery flow was observed. Fluorescence angiography with augmented microscopy enhancement was able to detect ICG fluorescence in a small artery of interest. Fluorescence appeared as a bright-green signal in the ocular overlaid with the anatomic image and limited to the anatomic borders of the femoral artery and its branches. Surrounding anatomic structures were clearly visualized. Observation of ICG within the vessel lumens permitted visualization of the blood flow. Recorded video loops could be reviewed in an offline mode for more detailed assessment of the vasculature. The overlay of fluorescence videoangiography within the field of view of the white light operative microscope allows real-time assessment of the blood flow within vessels during simultaneous surgical manipulation. This technique could improve intraoperative decision making during complex neurovascular procedures.

  11. Occult CSF flow disturbance of patients with Alzheimer type dementia and vascular dementia; Results from Iotrolan CT-cisternography

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Kazuhiko; Sugita, Yasuko; Funaki, Chiaki (Nagoya Univ. (Japan). Faculty of Medicine) (and others)

    1994-04-01

    We report results of Iotrolan CT-cisternography on 41 demented patients (13 males and 28 females) to find 'occult normal pressure hydrocephalus'. These patients were suspected to have CSF flow disturbance from clinical symptoms and simple brain CT scan findings. Their average age, duration of dementia, and score of Hasegawa's dementia scale (HDS) were 76.2 years, 5.9 years, 9.5/32.5,respectively. Before performing CT-cisternography, clinical diagnosis for their dementia were vascular dementia in 18 patients. Alzheimer type dementia in 12, suspect of NPH in 5, and other diagnoses in 6. From the results of cisternography, we found 13 patients with CSF flow disturbance (contrast material remained in the ventricle more than 48 hours after injection), and 17 patients with normal CSF flow. The former showed lower scores of HDS, higher urinary incontinence scores and smaller areas of the interhemispheric fissure on CT scan than the latter. But the former showed no significant difference from the latter in the average age, duration of dementia and width of the ventricles. (author).

  12. Flow among Musicians: Measuring Peak Experiences of Student Performers

    Science.gov (United States)

    Sinnamon, Sarah; Moran, Aidan; O'Connell, Michael

    2012-01-01

    "Flow" is a highly coveted yet elusive state of mind that is characterized by complete absorption in the task at hand as well as by enhanced skilled performance. Unfortunately, because most measures of this construct have been developed in physical activity and sport settings, little is known about the applicability of flow scales to the…

  13. Improved flow velocity estmates from oving-boat ADCO measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Sassi, M.G.; Hoitink, A.J.F.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  14. Methods for measurement of cerebral blood flow in man

    DEFF Research Database (Denmark)

    Lassen, N A

    1976-01-01

    A survey of the currently available methods for the measurement of cerebral blood flow in man is given. Many of the clinically important brain diseases such as tumors, stroke, brain trauma or epilepsy entail focal or regional flow alterations. Therefore a special emphasis is placed on methods all...

  15. Improved flow velocity estimates from moving-boat ADCP measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  16. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... A simple technique had been demonstrated for measuring flow-induced fluctuations in the single longitudinal mode (SLM) pulsed dye laser. Two prominent frequency components of 10.74 Hz and 48.83 Hz were present in the output of the Nd:YAG-pumped SLM dye laser. The flow-induced frequency ...

  17. Equol increases cerebral blood flow in rats via activation of large-conductance Ca(2+)-activated K(+) channels in vascular smooth muscle cells.

    Science.gov (United States)

    Yu, Wei; Wang, Yan; Song, Zheng; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2016-05-01

    The present study was designed to investigate the effect of equol on cerebral blood flow and the underlying molecular mechanisms. The regional cerebral blood flow in parietal lobe of rats was measured by using a laser Doppler flowmetry. Isolated cerebral basilar artery and mesenteric artery rings from rats were used for vascular reactivity measurement with a multi wire myography system. Outward K(+) current in smooth muscle cells of cerebral basilar artery, large-conductance Ca(2+)-activated K(+) (BK) channel current in BK-HEK 293 cells stably expressing both human α (hSlo)- and β1-subunits, and hSlo channel current in hSlo-HEK 293 cells expressing only the α-subunit of BK channels were recorded with whole cell patch-clamp technique. The results showed that equol significantly increased regional cerebral blood flow in rats, and produced a concentration-dependent but endothelium-independent relaxation in rat cerebral basilar arteries. Both paxilline and iberiotoxin, two selective BK channel blockers, significantly inhibited equol-induced vasodilation in cerebral arteries. Outward K(+) currents in smooth muscle cells of cerebral basilar artery were increased by equol and fully reversed by washout or blockade of BK channels with iberiotoxin. Equol remarkably enhanced human BK current in BK-HEK 293 cells, but not hSlo current in hSlo-HEK 293 cells, and the increase was completely abolished by co-application of paxilline. Our findings provide the first information that equol selectively stimulates BK channel current by acting on its β1 subunit, which may in turn contribute to the equol-mediated vasodilation and cerebral blood flow increase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Adaptive flow-field measurements using digital holography

    Science.gov (United States)

    Czarske, Jürgen W.; Koukourakis, Nektarios; Fregin, Bob; König, Jörg; Büttner, Lars

    2017-02-01

    Variations of the optical detection path-length in image correlation based flow-field measurements result in strong errors in position allocation and thus lead to a strong enhancement of the measurement uncertainty of the velocity. In this contribution we use digital holography to measure the wavefront distortion induced by fluctuating phase boundary, employing spatially extended guide stars. The measured phase information is used to correct the influence of the phase boundary in the detection path employing a spatial light modulator. We analyze the potential of guide stars that are reflected by the phase boundary, i.e. the Fresnel reflex, and transmitted. Our results show, that the usage of wavefront shaping enables to strongly reduce the measurement uncertainty and to strongly improve the quality of image correlation based flow-field measurements. The approaches presented here are not limited to application in flow measurement, but could be useful for a variety of applications.

  19. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  20. Effects of equipment and technique on peak flow measurements

    Directory of Open Access Journals (Sweden)

    O'Driscoll B Ronan

    2006-06-01

    Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.

  1. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders.

    Directory of Open Access Journals (Sweden)

    Johanna M Walz

    Full Text Available Vascular endothelial growth factor-A (VEGF-A is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements.Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD, cannula (butterfly vs. neonatal, type of centrifuge (swing-out vs. fixed-angle, time before and after centrifugation, filling level (completely filled vs. half-filled tubes and analyzing method (ELISA vs. multiplex bead array. Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model.The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes.VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.

  2. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease.

    Science.gov (United States)

    Cho, Sang-Geon; Park, Ki Seong; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Kim, Ju Han; Cho, Jae Yeong; Hong, Young Joon; Jabin, Zeenat; Park, Hee Jeong; Jeong, Geum-Cheol; Kwon, Seong Young; Paeng, Jin Chul; Kim, Hyeon Sik; Min, Jung-Joon; Garcia, Ernest V; Bom, Henry Hee-Seung

    2017-02-01

    We evaluated the relationships between coronary flow reserve (CFR) and relative flow reserve (RFR) measured by N-13 ammonia positron emission tomography (PET) for characterization of epicardial coronary artery disease (CAD). Sixty-nine consecutive stable angina patients underwent N-13 ammonia PET, coronary computed tomography angiography (CCTA), and if necessary, invasive coronary angiography (CAG) within 2 weeks. Myocardial blood flow (MBF), CFR, RFR, and coronary vascular resistance of the reference arterial territory (CVR ref ) were measured by N-13 ammonia PET. The presence of significant stenosis (SS) and diffuse atherosclerosis (DA) was evaluated on CCTA and CAG. Functional parameters measured by PET were compared among arteries with and without SS and DA. Arteries with SS and those with DA showed significantly lower stress MBF, as compared to those without. RFR was significantly lower in arteries with SS as compared to those without, while CFR was not. CFR was significantly lower in arteries with DA as compared to those without, while RFR was not. Among arteries without SS, CFR was significantly lower in those with DA as compared to those without. However, among arteries with SS, CFR was similar between those with and without DA. In contrast, RFR was significantly lower in arteries with SS, regardless of the presence of DA. CFR and RFR showed a weak positive correlation (r = 0.269) with discordance in 24 cases (35%). Among the arteries with CFR-RFR discordance, the prevalence of DA was significantly higher in those with low CFR but preserved RFR, as compared to those with preserved CFR but low RFR (75 vs 25%, p = 0.028). CVR ref was significantly higher in arteries with DA, implicating a correlation of DA with underlying microvascular disease. CFR and RFR measured by myocardial perfusion PET could provide a comprehensive information for characterization of epicardial CAD.

  3. Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers

    Science.gov (United States)

    Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.

    2017-03-01

    The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.

  4. PIV measurements of hydrodynamic interactions between biofilms and flow

    Science.gov (United States)

    Christensen, Kenneth T.; Kazemifar, Farzan; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard J.; Best, Jim L.; Sambrook Smith, Greg H.

    2015-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the interface of fluids and solid such as riverbeds or bridge columns. They are also utilized in bioreactors for bioremediation and water treatment purposes. They are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. We have attempted to address these challenges using the PIV technique and fluorescence imaging to investigate the flow field around cylinders covered with biofilms at different growth stages. These measurements are meant to uncover the coupled dynamics of turbulence and the biofilm development. Preliminary results of PIV measurements of flow-biofilm interactions in channel flow will be presented.

  5. Vascular wall flow-induced forces in a progressively enlarged aneurysm model.

    Science.gov (United States)

    Neofytou, Panagiotis; Tsangaris, Sokrates; Kyriakidis, Michalis

    2008-12-01

    The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.

  6. Effect of spinal cord compression on local vascular blood flow and perfusion capacity.

    Directory of Open Access Journals (Sweden)

    Mohammed Alshareef

    Full Text Available Spinal cord injury (SCI can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.

  7. Morph or Move? How Distinct Endothelial Cell Responses to Blood Flow Shape Vascular Networks.

    Science.gov (United States)

    Franco, Claudio A; Gerhardt, Holger

    2017-06-19

    Blood vessel shape is malleable and dynamically regulated. In two recent papers in Nature Cell Biology, Jin et al. (2017) and Sugden et al. (2017) show that endoglin alters endothelial cell shape or behavior in response to blood flow, thus regulating vessel structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Accuracy of portable devices in measuring peak cough flow.

    Science.gov (United States)

    Kulnik, Stefan Tino; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis; Kalra, Lalit

    2015-02-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini-Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min(-1) when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min(-1). The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable.

  9. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  10. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    1555–1566. c Indian Academy of Sciences. A novel concept of measuring mass flow rates using flow induced stresses. P I JAGAD1,∗, B P PURANIK2 and A W DATE2. 1Department of Mechanical Engineering, Sinhgad College of Engineering,. Vadgaon (Bk), Pune 411 041, India. 2Department of Mechanical Engineering, ...

  11. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients

    Science.gov (United States)

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-01-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance. PMID:20410558

  12. Characterizing Methods of Measuring Flow-Mediated Dilation in the Brachial Artery

    Science.gov (United States)

    Callender, Ariane R.

    2010-01-01

    Regulation of vascular tone is one of the many important functions of the vascular endothelium. Endothelial dysfunction is a critical early event in the pathogenesis of atherosclerosis and occurs in the absence of angiographic disease. Flow-Mediated Dilation (FMD) is a noninvasive technique commonly used to evaluate endothelium-dependent vasodilation in humans and gauge the health of the cardiovascular system. Reductions in brachial artery FMD have been strongly correlated with disease progression and are predictive of future cardiac events. The flow stimulus for brachial artery FMD occurs as a result of the increased shear stress following deflation of an occlusion cuff around the upper arm. Using 2-dimensional ultrasound, changes in arterial diameter up to 5-minutes following cuff deflation are calculated from baseline image measurements. Along with pulsed Doppler measures of flow velocity through the artery, flow-mediated, endothelium-dependent vasodilation can be assessed. There is debate among investigators, however, about the proper positioning of the occlusion cuff during FMD testing. It is thought that placement of the cuff around the upper arm may not accurately reflect the impact of nitric oxide, a critically important molecule released as a result of the increased shear stress created by the FMD technique. Data suggest that the production of other endogenous metabolites may also contribute to FMD-related changes when positioning the cuff around the upper arm. To overcome the potential influence of such molecules, researchers now suggest that the occlusion cuff be placed below the elbow allowing a more precise estimate of nitric oxide mediated dilation. The purpose of this study is to compare the differences in FMD between the two methodologies of occlusion cuff placement. In addition, this study will determine the method that is easier for ultrasound technicians to perform and will produce a low coefficient of variance between technicians. Ultimately

  13. Optical measurement of a micro coriolis mass flow sensor

    OpenAIRE

    Kristiansen, L.; Mehendale, A.; Brouwer, Dannis Michel; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale range. We demonstrate a down-scalable and low-cost optical sensor system that measures the movement of the micro Coriolis mass flow tube with a high resolution. The noise level is measured to be 6 m...

  14. Correlation of carotid blood flow and corrected carotid flow time with invasive cardiac output measurements.

    Science.gov (United States)

    Ma, Irene W Y; Caplin, Joshua D; Azad, Aftab; Wilson, Christina; Fifer, Michael A; Bagchi, Aranya; Liteplo, Andrew S; Noble, Vicki E

    2017-12-01

    Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter)2/4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.

  15. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  16. New Indices of Endothelial Function Measured by Digital Thermal Monitoring of Vascular Reactivity: Data from 6084 Patients Registry

    Directory of Open Access Journals (Sweden)

    Morteza Naghavi

    2016-01-01

    Full Text Available Background. Endothelial function is viewed as a barometer of cardiovascular health and plays a central role in vascular reactivity. Several studies showed digital thermal monitoring (DTM as a simple noninvasive method to measure vascular reactivity that is correlated with atherosclerosis risk factors and coronary artery disease. Objectives. To further evaluate the relations between patient characteristics and DTM indices in a large patient registry. Methods. DTM measures were correlated with age, sex, heart rate, and systolic and diastolic blood pressure in 6084 patients from 18 clinics. Results. DTM vascular reactivity index (VRI was normally distributed and inversely correlated with age (r=-0.21, p<0.0001. Thirteen percent of VRI tests were categorized as poor vascular reactivity (VRI < 1.0, 70 percent as intermediate (1.0 ≤ VRI < 2.0, and 17 percent as good (VRI ≥ 2.0. Poor VRI (<1.0 was noted in 6% of <50 y, 10% of 50–70 y, and 18% of ≥70 y. In multiple linear regression analyses, age, sex, and diastolic blood pressure were significant but weak predictors of VRI. Conclusions. As the largest database of finger-based vascular reactivity measurement, this report adds to prior findings that VRI is a meaningful physiological marker and reflects a high level of residual risk found in patients currently under care.

  17. A novel multicolor flow-cytometry application for quantitative detection of receptors on vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Radziwon-Balicka, Aneta; Degn, Matilda; Johansson, Sara E

    2017-01-01

    There is a need to develop new techniques for quantitative measurement of receptors expression on particular vasculature cells types. Here, we describe and demonstrate a novel method to measure quantitatively and simultaneously the expression of endothelin B receptor (ETB) on vascular smooth muscle...... a quantitative measurement of ETB receptor expression on VSMC and we identified two subpopulations of VSMC based on their expression of smooth muscle cells marker SM22α. The results obtained from pial vessels are statistically significant (38.4% ± 4% vs 9.8% ± 3.32%) between the two subpopulations of VSMC...... cells (VSMC). We isolated cells from male rat tissues such as: brain pial, brain intraparenchymal and retina vessels. To analyze solid tissues, a single-cell suspension was prepared by a combined mechanic and enzymatic process. The cells were stained with Fixable Viability Dye, followed by fixation...

  18. Experimental measurements of the cavitating flow after horizontal water entry

    Science.gov (United States)

    Tat Nguyen, Thang; Hai, Duong Ngoc; Quang Thai, Nguyen; Phuong, Truong Thi

    2017-10-01

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles.

  19. A new method of measuring the thermal flow

    Directory of Open Access Journals (Sweden)

    Grexová Slávka

    2001-03-01

    Full Text Available The subject of this article is the measurement of thermal flow under laboratory conditions. We can define thermal flow as the amount of heat transmitted through the surface of rock over a certain period of time.According to the Atlas of Geothermal Energy the thermal flow ranges from 40 to 120 mW/m2; it is not possible to measure directly on the surface of the rock. The conventional method of measurement is the use of “separation bar” thermic conduction measurement system or to measure the temperature of the rock in two different places at selected underground depth intervals.The method of measurement suggested by us combines these two techniques. The measurement is based on a sample of processed store from the Slovak Academy of Science. This sample represents the rock massiv:The complex model includes:- a heating system to imitate the thermal flow,- an isolation box to maintain stable conditions,- temperature stabilizing components (thermostat, bulbs, electric conductors,- a heat accumulator including a temperature sensor.A special computer program to measure the thermal flow was created using the Borland Delphi 3.0 programming language. The role of the program is to process extensive data quickly. The results of the measured temperatures and modelled thermal flow are displayed graphically in this article. As seen from the graph, the course of measurement thermal flow is linear. In our geographical location this value is cca 120 m W.m-2. This value proves, that at the projection physical model we are approximating to the reality in areas of sensitive elements. Another fact is that Joule heat which rose into a heater system of transformer straps under muster would thermal flow 2,25 W.m-2. From the present results that by follow the sensitivity measurement scanners it is needed to measure a minimum threefold during a longer time or to improve the sensitivity measurement chains.These measurements and analyses are not sufficient to make a final

  20. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  1. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Mikihiro; Schmelzer, J.D.; Poduslo, J.F.; Curran, G.L.; Nickander, K.K.; Low, P.A. (Mayo Foundation, Rochester, MN (United States))

    1991-07-15

    Since advanced glycosylation end products have been suggested to mediate hyperglycemia-induced microvascular atherogenesis and because aminoguanidine (AG) prevents their generation, the authors examined whether AG could prevent or ameliorate the physiologic and biochemical indices of streptozotocin (STZ)-induced experimental diabetic neuropathy. Four groups of adult Sprague-Dawley rats were studied: group I received STZ plus AG, group II received STZ plus AG, group III received STZ alone, and group IV was a control. They monitored conduction and action potential amplitudes serially in sciatic-tibial and caudal nerves, nerve blood flow, oxygen free radical activity (conjugated dienes and hydroperoxides), and the product of the permeability coefficient and surface area to {sup 125}I-labeled albumin. STZ-induced diabetes (group III) caused a 57% reduction in nerve blood flow and in abnormal nerve conduction and amplitudes and a 60% increase in conjugated dienes. Nerve blood flow was normalized by 8 weeks with AG (groups I and II) and conduction was significantly improved, in a dose-dependent manner, by 16 and 24 weeks in sciatic-tibial and caudal nerves, respectively. The permeability coefficient was not impaired, suggesting a normal blood-nerve barrier function for albumin, and the oxygen free-radical indices were not ameliorated by AG. They suggest that AG reverses nerve ischemia and more gradually improves their electrophysiology by an action on nerve microvessels. AG may have potential in the treatment of diabetic neuropathy.

  2. Precision electron flow measurements in a disk transmission line.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Waylon T.; Pelock, Michael D.; Martin, Jeremy Paul; Jackson, Daniel Peter Jr.; Savage, Mark Edward; Stoltzfus, Brian Scott; Mendel, Clifford Will, Jr.; Pointon, Timothy David

    2008-01-01

    An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.

  3. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation.

    Science.gov (United States)

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-03-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a "Confined Pitot Tube," is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method.

  4. X-ray-based flow visualization and measurement: application in multiphase flows.

    Science.gov (United States)

    Seeger, Axel; Affeld, Klaus; Goubergrits, Leonid; Kertzscher, Ulrich; Wellnhofer, Ernst; Delfos, Rene

    2002-10-01

    Information concerning continuous or discreet phase flow in multiphase systems is desired for various practical and analytical applications. The potential of X-ray-based flow visualization and measurement of multiphase flow is demonstrated here by two non-intrusive methods: (1) Measurement of the three-dimensional (3D) velocity field of the continuous liquid phase in a bubble column by X-ray-based particle tracking velocimetry (PTV) of seeded particles. (2) Liquid flow visualization in a bubble column by injecting an X-ray absorbing liquid into the bubble column. X-rays have the advantage that they are not affected by the various refraction indices of the multiphase system and penetrate the multiphase flow in undistorted straight lines. Hence, in contrast to optical methods, both of these X-ray-based methods are independent of the void fraction and are applicable to opaque liquids.

  5. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    Science.gov (United States)

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  6. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  7. Measuring Surface Tension of a Flowing Soap Film

    Science.gov (United States)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  8. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  9. Neuro and Fuzzy Computing Approach for the Flow Sensorless Measurement

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2009-10-01

    Full Text Available An attempt to use differential pressure induced by control valve for flow measurement has been proposed. The flow rate obtained by NFM model is closer to the actual value with the maximum error being ± 3.28 %. In NNM model, the error is 92.2% in the lower flow and 4.39 % in the higher flow rate. The air flow increases more linearly in NFM than NNM with valve position and pressure drops. ARM 7 processor used in this work is a high speed and low power consuming processor and this can be integrated with field bus, CAN bus and internet based system, which is being standardized internationally.

  10. Regional cerebral and extracranial blood flow measurements in acutely and chronically implanted cats: hydrogen clearance technique.

    Science.gov (United States)

    Lamar, J C; Carati, P; Van Delft, A M

    1981-05-01

    A technique is described for measuring regional blood flow concomitantly in the brain and in extracranial tissues of the cat. Hydrogen clearance using the tissue polarographic electrode appears to be a useful technique for intermittent measurements of cerebral blood flow (CBF) in relatively small areas. H2 was administered by inhalation for 10 min. Both chronic and acutely implanted electrodes were placed at different depths in the cat brain, on the surface of the cortex, and in extracranial tissues. Clearance rates in gray matter of 75 to 119 ml/min/100 g tissue have been obtained and of 11 to 14 ml/min/100 g tissue in white matter. Clearance curves have invariably been monoexponential in character in white matter and biexponential in gray matter. Successful recordings of H2 clearance curves were obtained from both chronically (up to 5 months) and acutely implanted electrodes. A new type of electrode is described. The "paperclip" electrode is placed at the surface of the cortex, has a reactive surface much greater than that of needle electrodes, thus limiting the possible variations due to vascularization differences from one local area to the next, and induces no damage to the brain tissue. To test the reliability of the technique, blood flow was measured during hypercapnia and progressive exsanguination. All electrodes indicated increased rCBF following 5-7% CO2 inhalation. A marked decrease in blood flow was seen with peripheral electrodes during exsanguination, whereas it was necessary to lower arterial blood pressure by more than 60% of the baseline value to record decreased flow in brain tissues. The constancy of response from electrodes and the lack of obvious tissue damage on dissection of the brain renders the method an adequate one. It provides highly focal recording of both CBF and extracranial flow in chronically implanted animals.

  11. Advanced Instrumentation for Molten Salt Flow Measurements at NEXT

    Science.gov (United States)

    Tuyishimire, Olive

    2017-09-01

    The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.

  12. Volumetric velocity measurements on flows through heart valves

    Science.gov (United States)

    Troolin, Daniel; Amatya, Devesh; Longmire, Ellen

    2009-11-01

    Volumetric velocity fields inside two types of artificial heart valves were obtained experimentally through the use of volumetric 3-component velocimetry (V3V). Index matching was used to mitigate the effects of optical distortions due to interfaces between the fluid and curved walls. The steady flow downstream of a mechanical valve was measured and the results matched well with previously obtained 2D PIV results, such as those of Shipkowitz et al. (2002). Measurements upstream and downstream of a deformable silicone valve in a pulsatile flow were obtained and reveal significant three-dimensional features of the flow. Plots and movies will be shown, and a detailed discussion of the flow and various experimental considerations will be included. Reference: Shipkowitz, T, Ambrus J, Kurk J, Wickramasinghe K (2002) Evaluation technique for bileaflet mechanical valves. J. Heart Valve Disease. 11(2) pp. 275-282.

  13. FLAIR vascular hyperintensities and dynamic 4D angiograms for the estimation of collateral blood flow in posterior circulation occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Alex; Wenz, Holger; Kerl, Hans Ulrich; Al-Zghloul, Mansour; Habich, Sonia; Groden, Christoph [University of Heidelberg, Department of Neuroradiology, Universitaetsmedizin Mannheim, Mannheim (Germany)

    2014-09-15

    The objectives of this paper are to assess collateral blood flow in posterior circulation occlusion by MRI-based approaches (fluid-attenuated inversion recovery (FLAIR) vascular hyperintensities (FVHs), collateralization on dynamic 4D angiograms) and investigate its relation to ischemic lesion size and growth. In 28 patients with posterior cerebral artery (PCA) and 10 patients with basilar artery (BA) occlusion, MRI findings were analyzed, with emphasis on distal FVH and collateralization on dynamic 4D angiograms. In PCA occlusion, distal FVH was observed in 18/29 (62.1 %), in BA occlusion, in 8/10 (80 %) cases. Collateralization on dynamic 4D angiograms was graded 1 in 8 (27.6 %) patients, 2 in 1 (3.4 %) patient, 3 in 12 (41.4 %) patients, and 4 in 8 (27.6 %) patients with PCA occlusion and 0 in 1 (10 %) patient, 2 in 3 (30 %) patients, 3 in 1 (10 %) patient, and 4 in 5 (50 %) patients with BA occlusion. FVH grade showed neither correlation with initial or follow-up diffusion-weighted image (DWI) lesion size nor DWI-perfusion-weighted imaging (PWI) mismatch ratio. Collateralization on dynamic 4D angiograms correlated inversely with initial DWI lesion size and moderately with the DWI-(PWI) mismatch ratio. The combination of distal FVH and collateralization grade on dynamic 4D angiograms correlated inversely with initial as well as follow-up DWI lesion size and highly with the DWI-PWI mismatch ratio. In posterior circulation occlusion, FVH is a frequent finding, but its prognostic value is limited. Dynamic 4D angiograms are advantageous to examine and graduate collateral blood flow. The combination of both parameters results in an improved characterization of collateral blood flow and might have prognostic relevance. (orig.)

  14. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  15. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, Dannis Michel; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale

  16. Assessment of salivary flow rate: biologic variation and measure error.

    NARCIS (Netherlands)

    Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.

    2004-01-01

    OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated

  17. Freezing adversely affects measurement of vascular endothelial growth factor levels in human aqueous samples

    Directory of Open Access Journals (Sweden)

    Sankarathi Balaiya

    2011-01-01

    Full Text Available Sankarathi Balaiya Sandeep Grover Ravi K Murthy Kakarla V ChalamDepartment of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USAPurpose: Aqueous levels of vascular endothelial growth factor (VEGF can be a surrogate marker of intraocular VEGF activity and a measure of efficacy of anti-VEGF treatment in a variety of vasoproliferative retinal disorders, including diabetic retinopathy, age-related macular degeneration, and central retinal vein occlusion. Measurement of the VEGF level may be adversely affected by premeasurement variables, such as freezing and delay, in sample analysis. We aim to evaluate the effect of storage and delayed measurement of human aqueous VEGF levels in these conditions.Methods: Aqueous samples collected from patients receiving intravitreal injection of bevacizumab for various retinal diseases were divided into two groups. In Group 1, the VEGF levels were analyzed on the same day; in Group 2, the VEGF levels were analyzed after 21 days of freezer storage (-80°C using immunobead assay. Statistical comparison using a paired t-test was performed between the two groups.Results: Thirty-one aqueous humor samples were collected, and the VEGF concentration for fresh samples was 7.8 ± 5.9 pg/mL (mean ± SD compared to 6.5 ± 6.0 pg/mL in frozen samples, resulting in a statistically significant difference (P = 0.03.Conclusions: Accurate measurement of the VEGF level is a vital component of clinical decision-making. Delayed analysis of VEGF levels in aqueous samples may result in significant sample degradation and lower levels of measured VEGF.Keywords: VEGF level, aqueous humor, immunobead assay, VEGF storage

  18. Device for Measuring Low Flow Speed in a Duct

    Science.gov (United States)

    Quinn, Frank; Magee, Kevin

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  19. Advanced material distribution measurement in multiphase flows: A case study

    Energy Technology Data Exchange (ETDEWEB)

    George, D.L.; Ceccio, S.L. [Univ. of Michigan, Ann Arbor, MI (United States); O`Hern, T.J.; Shollenberger, K.A.; Torczynski, J.R. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center

    1998-08-01

    A variety of tomographic techniques that have been applied to multiphase flows are described. The methods discussed include electrical impedance tomography (EIT), magnetic resonance imaging (MRI), positron emission tomography (PET), gamma-densitometry tomography (GDT), radiative particle tracking (RDT), X-ray imaging, and acoustic tomography. Also presented is a case study in which measurements were made with EIT and GDT in two-phase flows. Both solid-liquid and gas-liquid flows were examined. EIT and GDT were applied independently to predict mean and spatially resolved phase volume fractions. The results from the two systems compared well.

  20. Turbulence damping as a measure of the flow dimensionality

    CERN Document Server

    Shats, M; Xia, H

    2010-01-01

    The dimensionality of turbulence in fluid layers determines their properties. We study electromagnetically driven flows in finite depth fluid layers and show that eddy viscosity, which appears as a result of three-dimensional motions, leads to increased bottom damping. The anomaly coefficient, which characterizes the deviation of damping from the one derived using a quasi-two-dimensional model, can be used as a measure of the flow dimensionality. Experiments in turbulent layers show that when the anomaly coefficient becomes high, the turbulent inverse energy cascade is suppressed. In the opposite limit turbulence can self-organize into a coherent flow.

  1. Flow Measurements Using Particle Image Velocimetry in the Ultracompact Combustor

    Directory of Open Access Journals (Sweden)

    Levi M. Thomas

    2012-01-01

    circumferential configuration. Turbulence intensity is expected to be a major contributing factor, specifically since measured at 15% and 21% in the main channel for the straight and curved configurations, respectively. The results also show how the radial vane cavity (RVC created strong vorticity throughout the main flow supporting a recirculation zone for mixing. Peak vorticity occurred farthest from the cavity vane suggesting the angle of the radial vane cavity is effective in generating increasing flow rotation.

  2. Ultrasonic measurements of the bulk flow field in foams

    Science.gov (United States)

    Nauber, Richard; Büttner, Lars; Eckert, Kerstin; Fröhlich, Jochen; Czarske, Jürgen; Heitkam, Sascha

    2018-01-01

    The flow field of moving foams is relevant for basic research and for the optimization of industrial processes such as froth flotation. However, no adequate measurement technique exists for the local velocity distribution inside the foam bulk. We have investigated the ultrasound Doppler velocimetry (UDV), providing the first two-dimensional, non-invasive velocity measurement technique with an adequate spatial (10 mm ) and temporal resolution (2.5 Hz ) that is applicable to medium scale foam flows. The measurement object is dry aqueous foam flowing upward in a rectangular channel. An array of ultrasound transducers is mounted within the channel, sending pulses along the main flow axis, and receiving echoes from the foam bulk. This results in a temporally and spatially resolved, planar velocity field up to a measurement depth of 200 mm , which is approximately one order of magnitude larger than those of optical techniques. A comparison with optical reference measurements of the surface velocity of the foam allows to validate the UDV results. At 2.5 Hz frame rate an uncertainty below 15 percent and an axial spatial resolution better than 10 mm is found. Therefore, UDV is a suitable tool for monitoring of industrial processes as well as the scientific investigation of three-dimensional foam flows on medium scales.

  3. Laboratory and field trials of Coriolis mass flow metering for three-phase flow measurement

    Science.gov (United States)

    Zhou, Feibiao; Henry, Manus; Tombs, Michael

    2014-04-01

    A new three-phase flow metering technology is discussed in this paper, which combines Coriolis mass flow and water cut readings and without applying any phase separation [1]. The system has undergone formal laboratory trials at TUV NEL (National Engineering Laboratory), UK and at VNIIR (National Flow Laboratory), Kazan, Russia; a number of field trials have taken place in Russia. Laboratory trial results from the TUV NEL will be described in detail. For the 50mm (2") metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil + water) liquid mass flow error should fall within ± 2.5%, and the gas mass flow error within ± 5.0%. The oil mass flow error limit is ± 6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ± 15.0%. These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.

  4. Age does not affect uterine resistance to vascular flow in patients undergoing oocyte donation.

    Science.gov (United States)

    Guanes, P P; Remohí, J; Gallardo, E; Valbuena, D; Simón, C; Pellicer, A

    1996-08-01

    To determine whether uterine vasculature is affected by age using oocyte donation as an in vivo model. Prospective longitudinal study in which recipients were grouped according to age. They underwent a successful oocyte donation cycle, and single pregnancies were followed during the first trimester by color Doppler ultrasound in uterine arteries. Oocyte donation and IVF program at the Instituto Valenciano de Infertilidad. Serum E2, P, and hCG levels in single ovum donation pregnancies; pulsatility and resistance indexes in uterine arteries during initial pregnancy. Similar serum levels of E2, P, and hCG in both groups of patients were observed. There was no difference between groups regarding the flow indexes analyzed. The increased incidence of early pregnancy losses observed in patients > 40 years cannot be attributed to defective response of uterine vasculature to exogenous hormone replacement. Thus, uterine aging does not appear to be a factor influencing the poor reproductive performance of women with advancing age.

  5. Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI.

    Directory of Open Access Journals (Sweden)

    Guangliang Ding

    Full Text Available Treatment of stroke with bone marrow stromal cells (BMSC significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM. T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg of streptozotocin. These rats were then subjected to 2h of middle cerebral artery occlusion (MCAo. T2DM rats received BMSC (5x106, n = 8 or an equal volume of phosphate-buffered saline (PBS (n = 8 via tail-vein injection at 3 days after MCAo. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Compared with vehicle treated control T2DM rats, BMSC treatment of stroke in T2DM rats significantly (p<0.05 decreased blood-brain barrier disruption starting at 1 week post stroke measured using contrast enhanced T1-weighted imaging with gadopentetate, and reduced cerebral hemorrhagic spots starting at 3 weeks post stroke measured using susceptibility weighted imaging, although BMSC treatment did not reduce the ischemic lesion volumes as demarcated by T2 maps. These MRI measurements were consistent with histological data. Thus, BMSC treatment of stroke in T2DM rats initiated at 3 days after stroke significantly reduced ischemic vascular damage, although BMSC treatment did not change infarction volume in T2DM rats, measured by MRI.

  6. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, Anders

    2012-07-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  7. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  8. Can the measurement of brachial artery flow-mediated dilation be applied to the acute exercise model?

    Directory of Open Access Journals (Sweden)

    Harris Ryan A

    2007-11-01

    Full Text Available Abstract The measurement of flow-mediated dilation using high-resolution ultrasound has been utilized extensively in interventional trials evaluating the salutary effect of drugs and lifestyle modifications (i.e. diet or exercise training on endothelial function; however, until recently researchers have not used flow-mediated dilation to examine the role of a single bout of exercise on vascular function. Utilizing the acute exercise model can be advantageous as it allows for an efficient manipulation of exercise variables (i.e. mode, intensity, duration, etc. and permits greater experimental control of confounding variables. Given that the application of flow-mediated dilation in the acute exercise paradigm is expanding, the purpose of this review is to discuss methodological and physiological factors pertinent to flow-mediated dilation in the context of acute exercise. Although the scientific rationale for evaluating endothelial function in response to acute exercise is sound, few concerns warrant attention when interpreting flow-mediated dilation data following acute exercise. The following questions will be addressed in the present review: Does the measurement of flow-mediated dilation influence subsequent serial measures of flow-mediated dilation? Do we need to account for diurnal variation? Is there an optimal time to measure post-exercise flow-mediated dilation? Is the post-exercise flow-mediated dilation reproducible? How is flow-mediated dilation interpreted considering the hemodynamic and sympathetic changes associated with acute exercise? Can the measurement of endothelial-independent dilation affect the exercise? Evidence exists to support the methodological appropriateness for employing flow-mediated dilation in the acute exercise model; however, further research is warranted to clarify its interpretation following acute exercise.

  9. Laser imaging measurements of flow dynamics and mixing in gel-phase flows

    Science.gov (United States)

    Su, Lester K.; Leggett, Jason P.; Coil, Millicent A.

    2010-11-01

    Gelled hypergolic propellants are interesting in rocket propulsion applications, in combining the stability of solid propellants and the controllability of liquid propellants. To exploit these advantages fully, we require an improved understanding of the flow and mixing properties of gel-phase fluids. In this work, we apply planar laser-induced fluorescence (PLIF) to investigate gel mixing in a mixing layer geometry, and particle image velocimetry (PIV) to measure flow velocities in and around two impinging gel streams. We consider both water-based gels (Ultrez 10) and mineral-oil based gels (Kraton G1650) of varying compositions (strengths). For the PLIF, these gels are doped with disodium fluorescein dye. We will discuss some of the issues attendant to the application of these laser diagnostic methods in the gel phase, and we will illustrate how these gel-phase flows differ from flows of Newtonian fluids in similar flow geometries.

  10. Photoacoustic Doppler measurement of flow using tone burst excitation.

    Science.gov (United States)

    Sheinfeld, Adi; Gilead, Sharon; Eyal, Avishay

    2010-03-01

    In this paper a novel technique for flow measurement which is based on the photoacoustic (PA) Doppler effect is described. A significant feature of the proposed approach is that it can be implemented using tone burst optical excitation thus enabling simultaneous measurement of both velocity and position. The technique, which is based on external modulation and heterodyne detection, was experimentally demonstrated by measurement of the flow of a suspension of carbon particles in a silicon tube and successfully determined the particles mean velocity up to values of 130 mm/sec, which is about 10 times higher than previously reported PA Doppler set-ups. In the theoretical part a rigorous derivation of the PA response of a flowing medium is described and some important simplifying approximations are highlighted.

  11. Development of a simple device enabling percutaneous flow regulation for a small vascular graft for a Blalock-Taussig shunt capable of flow regulation: complete translation of a review article originally published in Pediatric Cardiology and Cardiac Surgery (154-159, 2016: vol. 32).

    Science.gov (United States)

    Motohashi, Yoshikazu; Shimada, Ryo; Sasaki, Tomoyasu; Katsumata, Takahiro; Dan, Kazunori; Tsutsui, Yasuhiro; Nemoto, Shintaro

    2017-11-09

    The Blalock-Taussig shunt (BTS) operation is a cornerstone as initial palliative surgery for congenital heart disease with severely reduced pulmonary blood flow (PBF). The ideal PBF provided by BTS is crucial for an uneventful postoperative course, since excess PBF results in acute distress of the systemic circulation and insufficient PBF requires another BTS surgery. Therefore, the goal of this study was to develop a simple device to control the shunt graft flow percutaneously using a constrictor balloon connected to a subcutaneous port. The device consists of a cylindrical balloon and an anti-bending structure extension connected to the balloon center. A PTFE vascular graft wrapped by the device was connected to a simulated closed circuit to measure the relationship between pressure and blood flow while changing the inner volume of the balloon. In a beagle model of replacement of the right carotid artery, blood flow velocity was measured in the carotid artery after saline injection into the balloon. The blood flow velocity before and after balloon inflation was compared immediately after implantation of the device and at 3 months after implantation. The device provided good flow control by inflating and deflating the balloon ex vivo and in vivo for up to 3 months in a canine model with a small graft wrapped with the device. The simple device developed in this study may enable regulation of PBF through a small vascular graft and help to prevent severe morbidity and mortality in the clinical setting of BTS.

  12. Cerebral blood flow alterations as assessed by 3D ASL in cognitive impairment in patients with subcortical vascular cognitive impairment: A marker for disease severity

    Directory of Open Access Journals (Sweden)

    Yawen Sun

    2016-08-01

    Full Text Available Abnormal reductions in cortical cerebral blood flow (CBF have been identified in subcortical vascular cognitive impairment (SVCI. However, little is known about the pattern of CBF reduction in relation with degree of cognitive impairment. CBF measured with 3D Arterial Spin Labeling (ASL perfusion MRI helps detect functional changes in subjects with SVCI. We aimed to compare CBF maps in subcortical ischemic vascular disease (SIVD subjects with and without cognitive impairment and to detect the relationship of the regions of CBF reduction in the brain with the degree of cognitive impairment according to the z-score. A total of 53 subjects with SVCI and 23 matched SIVD subjects without cognitive impairment (controls underwent a whole-brain 3D ASL MRI in the resting state. Regional CBF (rCBF was compared voxel wise by using an analysis of variance design in a statistical parametric mapping program, with patient age and sex as covariates. Correlations were calculated between the rCBF value in the whole brain and the z-score in the 53 subjects with SVCI. Compared with the control subjects, SVCI group demonstrated diffuse decreased CBF in the brain. Significant positive correlations were determined in the rCBF values in the left hippocampus, left superior temporal pole gyrus, right superior frontal orbital lobe, right medial frontal orbital lobe, right middle temporal lobe, left thalamus, and right insula with the z-scores in SVCI group. The noninvasively quantified resting CBF demonstrated altered CBF distributions in the SVCI brain. The deficit brain perfusions in the temporal and frontal lobe, hippocampus, thalamus, and insula was related to the degree of cognitive impairment. Its relationship to cognition indicates the clinical relevance of this functional marker. Thus, our results provide further evidence for the mechanism underlying the cognitive deficit in patients with SVCI.

  13. Quantitative flow measurement after placing a flow diverter for a distal internal carotid artery aneurysm.

    Science.gov (United States)

    Chen, Chien-Wei; Wong, Ho-Fai; Ye, Yu-Ling; Chen, Yao-Liang; Chen, Wei-Liang; Ou, Chang-Hsien; Tsai, Yuan-Hsiung

    2017-12-01

    To evaluate the differences in arterial flow after flow diverter placement using quantitative flow measurements based on digital subtraction angiography (DSA). Between November 2013 and November 2015, all patients who had flow diverters placed for distal internal carotid artery (ICA) aneurysms were reviewed. Patients in whom the stent was placed across the ostia of the ophthalmic artery (OphA) and anterior choroidal artery (AChA) were enrolled. Five regions of interest were selected: the proximal ICA (as a reference), terminal ICA, middle cerebral artery (MCA), anterior cerebral artery (ACA), OphA, and AChA. The values of the peak, time-to-peak (TTP), and area under the curve (AUC) were analyzed using a quantitative DSA technique. The study enrolled 13 patients. The quantitative flow analysis showed improved flow in the terminal ICA (peak and AUC, p=0.036 and p=0.04, respectively), MCA (AUC, p=0.023), and ACA (AUC, p=0.006), and decreased flow in the OphA (peak and AUC, p=0.013 and p=0.005, respectively) and AChA (peak and subtracted TTP, p=0.023 and p=0.050, respectively) after flow diverter placement. Larger aneurysm volume was significantly correlated with decreased OphA flow after the procedure (peak and AUC, p=0.049 and p=0.037, respectively). Larger aneurysm volume also had a marginal correlation with increased distal ICA flow after the procedure, but this did not reach significance (peak and AUC, p=0.195 and p=0.060, respectively). Without using extra contrast medium or radiation dosages, color-coded DSA enables quantitative monitoring of the cerebral circulation after flow-diverting treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Science.gov (United States)

    2010-01-01

    We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1) PMID:20672045

  15. On the measurement of lateral velocity derivatives in turbulent flows

    Science.gov (United States)

    Antonia, R. A.; Zhu, Y.; Kim, J.

    1993-01-01

    Direct numerical simulation data for the lateral velocity derivative delta(u)/delta(y) at the centerline of a fully developed turbulent channel flow provide reasonable support for Wyngaard's analysis of the error involved in measuring this quantity using parallel hot wires. Numerical data in the wall region of the channel flow also provide a useful indication of how to select the separation between the wires. Justification for this choice is obtained by comparing several measured statistics of delta(u)/delta(y) with the corresponding numerical data.

  16. Computer model for selective flow measuring structures in open channels

    Science.gov (United States)

    Hickey, M. J.

    1980-02-01

    Quantifying various pollutants in natural waterways has received increased emphasis with more stringent regulations issued by the Environmental Protection Agency (E.P.A.). Measuring natural stream flows presents a magnitude of problems, the most significant is the type of structure needed to measure the flows at the desired level of accuracy. A computer model designed to select a structure to best fit the engineer's needs is under development. This model, given the pertinent boundary conditions, will pinpoint the structure most suitable, if one exists. This selection process greatly facilitates the old selection process of trial and error.

  17. Syndromes associated with vascular tumors and malformations: a pictorial review.

    Science.gov (United States)

    Nozaki, Taiki; Nosaka, Shunsuke; Miyazaki, Osamu; Makidono, Akari; Yamamoto, Asako; Niwa, Tetsu; Tsutsumi, Yoshiyuki; Aida, Noriko; Masaki, Hidekazu; Saida, Yukihisa

    2013-01-01

    Use of the International Society for the Study of Vascular Anomalies (ISSVA) classification system has been strongly recommended in recent years because of the need for separate therapeutic measures for patients with vascular tumors and malformations. In the ISSVA classification system, vascular tumors, which are neoplastic, are distinguished from vascular malformations, which are caused by vascular structural anomalies and are not neoplastic, on the basis of the presence or absence of neoplastic proliferation of vascular endothelial cells. It is important that radiologists be familiar with the development, diagnosis, and treatment of vascular tumors and malformations, especially the imaging features of low- and high-flow vascular malformations. Some vascular tumors and malformations develop in isolation, whereas others develop within the phenotype of a syndrome. Syndromes that are associated with vascular tumors include PHACE syndrome. Syndromes that are associated with vascular malformations include Sturge-Weber, Klippel-Trénaunay, Proteus, blue rubber bleb nevus, Maffucci, and Gorham-Stout syndromes, all of which demonstrate low flow, and Rendu-Osler-Weber, Cobb, Wyburn-Mason, and Parkes Weber syndromes, all of which demonstrate high flow. Because imaging findings may help identify such syndromes as systemic, it is important that radiologists familiarize themselves with these conditions.

  18. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability.

    Science.gov (United States)

    Nieuwdorp, Max; Meuwese, Marijn C; Mooij, Hans L; Ince, Can; Broekhuizen, Lysette N; Kastelein, John J P; Stroes, Erik S G; Vink, Hans

    2008-03-01

    The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap (r = 0.63). Measurements in humans were reproducible (0.58 +/- 0.16 and 0.53 +/- 0.15 microm, coefficient of variance 15 +/- 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume (r = 0.45), fasting plasma glucose (r = 0.43), and high-density lipoprotein-cholesterol (r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol (r = -0.41) as well as body mass index (r = -0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.

  19. Vascular blood flow reconstruction from tomographic projections with the adjoint method and receding optimal control strategy

    Science.gov (United States)

    Sixou, B.; Boissel, L.; Sigovan, M.

    2017-10-01

    In this work, we study the measurement of blood velocity with contrast enhanced computed tomography. The inverse problem is formulated as an optimal control problem with the transport equation as constraint. The velocity field is reconstructed with a receding optimal control strategy and the adjoint method. The convergence of the method is fast.

  20. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  1. Enhancement of flow measurements using fluid-dynamic constraints

    Science.gov (United States)

    Egger, H.; Seitz, T.; Tropea, C.

    2017-09-01

    Novel experimental modalities acquire spatially resolved velocity measurements for steady state and transient flows which are of interest for engineering and biological applications. One of the drawbacks of such high resolution velocity data is their susceptibility to measurement errors. In this paper, we propose a novel filtering strategy that allows enhancement of the noisy measurements to obtain reconstruction of smooth divergence free velocity and corresponding pressure fields which together approximately comply to a prescribed flow model. The main step in our approach consists of the appropriate use of the velocity measurements in the design of a linearized flow model which can be shown to be well-posed and consistent with the true velocity and pressure fields up to measurement and modeling errors. The reconstruction procedure is then formulated as an optimal control problem for this linearized flow model. The resulting filter has analyzable smoothing and approximation properties. We briefly discuss the discretization of the approach by finite element methods and comment on the efficient solution by iterative methods. The capability of the proposed filter to significantly reduce data noise is demonstrated by numerical tests including the application to experimental data. In addition, we compare with other methods like smoothing and solenoidal filtering.

  2. Rarefied gas flows through meshes and implications for atmospheric measurements

    Directory of Open Access Journals (Sweden)

    J. Gumbel

    Full Text Available Meshes are commonly used as part of instruments for in situ atmospheric measurements. This study analyses the aerodynamic effect of meshes by means of wind tunnel experiments and numerical simulations. Based on the Direct Simulation Monte Carlo method, a simple mesh parameterisation is described and applied to a number of representative flow conditions. For open meshes freely exposed to the flow, substantial compression effects are found both upstream and downstream of the mesh. Meshes attached to close instrument structures, on the other hand, cause only minor flow disturbances. In an accompanying paper, the approach developed here is applied to the quantitative analysis of rocket-borne density measurements in the middle atmosphere.

    Key words. Atmospheric composition and structure (instruments and techniques; middle atmosphere – composition and chemistry

  3. Flow cytometry measurements of human chromosome kinetochore labeling

    Energy Technology Data Exchange (ETDEWEB)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-03-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results.

  4. Measurement of atropisomer racemization kinetics using segmented flow technology.

    Science.gov (United States)

    Davoren, Jennifer E; Bundesmann, Mark W; Yan, Qi T; Collantes, Elizabeth M; Mente, Scot; Nason, Deane M; Gray, David L

    2012-05-10

    When stable atropisomers are encountered by drug discovery teams, they can have important implications due to potential differences in their biological activity, pharmacokinetics, and toxicity. Knowledge of an atropisomer's activation parameters for interconversion is required to facilitate informed decisions on how to proceed. Herein, we communicate the development of a new method for the rapid measurement of atropisomer racemization kinetics utilizing segmented flow technology. This method leverages the speed, accuracy, low sample requirement, safety, and semiautomated nature of flow instrumentation to facilitate the acquisition of kinetics data required for experimentally probing atropisomer activation parameters. Measured kinetics data obtained for the atropo isomerization of AMPA antagonist CP-465021 using segmented flow and traditional thermal methods were compared to validate the method.

  5. Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2011-03-01

    The feasibility of making spatially resolved measurements of blood flow using pulsed photoacoustic Doppler techniques has been explored. Doppler time shifts were quantified via cross-correlation of pairs of photoacoustic waveforms generated within a blood-simulating phantom using pairs of laser light pulses. The photoacoustic waves were detected using a focussed or planar PZT ultrasound transducer. For each flow measurement, a series of 100 waveform pairs was collected. Previous data processing methods involved rejection of poorly correlated waveform pairs; the modal velocity value and standard deviation were then extracted from the selected distribution of velocity measurements. However, the data selection criteria used in this approach is to some extent arbitrary. A new data analysis protocol, which involves averaging the 100 cross-correlation functions and thus uses all of the measured data, has been designed in order to prevent exclusion of outliers. This more rigorous approach has proved effective for quantifying the linear motion of micron-scale absorbers imprinted on an acetate sheet moving with velocities in the range 0.14 to 1.25 ms-1. Experimental parameters, such as the time separation between the laser pulses and the transducer frequency response, were evaluated in terms of their effect on the accuracy, resolution and range of measurable velocities. The technique was subsequently applied to fluid phantoms flowing at rates less than 5 mms-1 along an optically transparent tube. Preliminary results are described for three different suspensions of phenolic resin microspheres, and also for whole blood. Velocity information was obtained even under non-optimal conditions using a low frequency transducer and a low pulse repetition frequency. The distinguishing advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made. This offers the prospect of mapping flow within the microcirculation and thus

  6. A Multiphase Flow Measurement System Comprising an Impedance Cross Correlation (ICC) Device and an Imaging Electromagnetic Flow Meter (IEF).

    OpenAIRE

    Meng, Yiqing; Lucas, Gary

    2012-01-01

    Flow measurements are playing increasingly important roles in many different application areas, such as manufacturing processes and the oil & gas industry. Multiphase flow measurement in particular is becoming increasingly important to the oil industry. This project concerns the design and implementation of a two-phase flow measurement system which integrates an impedance cross correlation (ICC) flow meter - which can be utilized for measuring the local dispersed phase volume fraction distrib...

  7. Micromachined structures for thermal measurements of fluid and flow parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    In this paper thermal sensor-actuator structures are proposed that can be used to measure various fluid parameters such as thermal conductivity, flow velocity, heat capacity, kinematic viscosity and pressure. All structures are designed in such a way that they can be realized in the same fabrication

  8. National policy measures. Right approach to foreign direct investment flows

    Directory of Open Access Journals (Sweden)

    Cătălin-Emilian HUIDUMAC-PETRESCU

    2013-02-01

    Full Text Available 2011 was a difficult year for all the countries, developed and emerging ones. For overcoming the negative effects of the financial crisis, many economies have established as purpose to adopt new economic policies regarding the foreign direct investment flows (FDI, even to stimulate the flows or to reduce it (protectionism measures. So, there can be identified two categories of national policies: measures for the FDI flows stimulation and measures whose aim was the weighting of FDI developing, through restriction and regulation. In the first category we could include the liberalization measures and promotional and faciletation policies. In this study we evidenced that the fundament of the second category of policies is the belief that the FDI outward lead to job exports, to a raise of unemployment and a weakness of the industrial base.Many reports on FDI flows, here we talk about those made by UNCTAD, show that the regulation and restriction policies are seen as a possible protectionism, especially in the agricultural and extractive industries, where there have been required nationalization processes and divestments. Even more, the economies which adopted this kind of policies have been less interested in investing abroad, the outward of FDI being affected and globally the total outward decreased.

  9. A flow cytometric assay for simultaneously measuring the ...

    African Journals Online (AJOL)

    This research objective was to exploit a novel method for measuring the proliferation, cytotoxicity of cytokine-induced killer (CIK) cells using carboxyfluorescein succinimidyl ester/proliferation index (CFSE/PI) and flow cytometric assay. As cells divide, CFSE is apportioned equally between the two daughter cells, leading to a ...

  10. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel...... engine and visualisation of gas flow behaviour in cylinder....

  11. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  12. Measurements of flow past a bileaflet mechanical heart valve

    Science.gov (United States)

    Haya, Laura; Tavoularis, Stavros

    2013-11-01

    A bileaflet mechanical heart valve has been inserted in an axisymmetric model of the aorta within a mock circulation apparatus with physiological pressure and flow variations. The velocity field behind the valve has been measured with laser Doppler velocimetry and particle image velocimetry. The results closely match those reported by similar studies. A triple jet emanated from the valve's orifices and regions of reverse flow formed in the sinus region. Velocity fluctuations were greatest in the shear layers of the jets. The average r.m.s. streamwise velocity fluctuation over the turbulent period was 0.22 m/s; its maximum value was 0.53 m/s and occurred at the onset of deceleration. Measurements with the valve inserted in an anatomical model of the aorta are planned for the near future. The present and future measurements will be compared to determine the effects of the aorta anatomy on the characteristics of flow through bileaflet valves. In particular, measurements of the viscous and turbulent shear stresses will be analyzed to identify possible locations of blood element damage, and regions of recirculation and stagnation will be identified as locations favourable to thrombus growth. The effects of flows in branching arteries and valve orientation will also be investigated. Supported by NSERC.

  13. Repeatability of Doppler ultrasonographic measurement of equine digital blood flow.

    Science.gov (United States)

    Menzies-Gow, Nicola J; Marr, Celia M

    2007-01-01

    The repeatability and sensitivity of Doppler ultrasonographic measurement of lateral digital arterial and venous blood flow has not been previously determined. Doppler ultrasonography was used to measure blood flow within the forelimb lateral digital vessels in one normal adult Thoroughbred horse on six occasions and in six normal adult Thoroughbred horses on three occasions, each occasion being at least 1 h apart, to determine the within- and between-horse variation. The values obtained from the right and left lateral digital vessels did not differ significantly. The within-horse coefficients of variation (CV) for arterial and venous measurements were all acceptable ( or = 0.71) for all parameters except venous diameter; the between-horse ICC demonstrated good to excellent repeatability (> or = 0.67) for all parameters except TaVb. Doppler ultrasonography can detect differences of 0.005 and 0.01 ml/ min in digital arterial and venous flow, respectively, using measurements from six horses on three occasions (80% power; P < 0.05). Thus, the technique is sufficiently repeatable and sensitive to be able to detect changes in flow during different physiological or pathological states or following pharmacologic intervention.

  14. Abel Inversion of Deflectometric Measurements in Dynamic Flows

    Science.gov (United States)

    Agrawal, Ajay K.; Albers, Burt W.; Griffin, DeVon W.

    1999-01-01

    We present an Abel-inversion algorithm to reconstruct mean and rms refractive-index profiles from spatially resolved statistical measurements of the beam-deflection angle in time-dependent, axisymmetric flows. An oscillating gas-jet diffusion flame was investigated as a test case for applying the algorithm. Experimental data were obtained across the whole field by a rainbow schlieren apparatus. Results show that simultaneous multipoint measurements are necessary to reconstruct the rms refractive index accurately.

  15. Velocity field measurements of electrokinetic flow past a conductive cylinder

    Science.gov (United States)

    Canpolat, Cetin; Beskok, Ali

    2011-11-01

    Using the micro particle-image-velocimetry technique, electrokinetic (EK) flow past a conductive circular cylinder (D=0.67 mm) is measured in a rectangular cross-section PDMS/glass microchannel (H=0.1 mm, W=1.0 mm and L=5.3 mm). EK transport in such a system experiences electrophoresis (EP) of the PIV particles, electroosmotic flow (EOF) due to the channel walls, and induced charge electroosmotic (ICEO) flow due to the conductive cylinder. Experiments are conducted using 1xPBS buffer diluted in DI water, and the buffer pH is fixed at 2.05 using HCl solution. This pH value is shown to nearly eliminate the electrophoresis of 0.5 micron carboxylate modified spherical micro-particles used in the PIV studies. Suppression of EP enabled direct measurements of local ICEO flow and its interaction with the global EOF in the channel. By systematically varying the applied electric field from 5 V to 40 V, changes in the velocity field are recorded and correlated with the theoretical trends of EOF and ICEO flow. C.C. acknowledges the support of TUBITAK for this study.

  16. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    Science.gov (United States)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  17. A case series of flow-through free anterolateral thigh flap to augment the vascularity of ischaemic limbs with soft tissue defect

    Directory of Open Access Journals (Sweden)

    Aditya Aggarwal

    2016-01-01

    Full Text Available Introduction: In a world of fast moving vehicles, heavy machinery and industries crush injury to limbs with vascular compromise and soft tissue defect is common. The traditional treatment is a 2 step one dealing with vascular repair and soft tissue cover separately, in the same operation. We report a series of single step vascular repair and soft tissue cover with flow through anterolateral thigh flap (ALT flap for limb salvage. Materials and Methods: Ten patients with soft tissue defect and vascular injury were included in this study. A two team approach was used to minimise operative time, team one prepared the vessels and team 2 harvested the flap. Observations and Results: Of the ten patients operated (8 males, eight flaps were done for upper limb and two for lower limb salvage. Six anastomosis were done with ulnar vessels, two with radial and two with posterior tibial vessels. Nine extremities could be salvaged while one patient developed progressive thrombosis leading to amputation. Conclusion: The ALT flow-through flap is a versatile single step procedure that can be used to salvage an ischemic limb with soft tissue loss avoiding the need for interpositional vein graft.

  18. Closure of digital arteries in high vascular tone states as demonstrated by measurement of systolic blood pressure in the fingers

    DEFF Research Database (Denmark)

    Krähenbühl, B; Nielsen, S L; Lassen, N A

    1977-01-01

    with vasospastic arterial disease. It implies an underestimation of palmar arch systolic pressure measured indirectly on the fingers. FSP measured under these circumstances may be taken as an estimate of the vascular tone, and can be employed in diagnosis and quantification of vasospastic disorders.......Finger systolic blood pressure (FSP) was measured indirectly in normal subjects and patients with primary Raynaud phenomenon by applying a thin-walled plastic cuff around the finger and a strain gauge more distally to detect volume changes. Inducing a high vascular tone in one or more fingers...... by direct cooling or intra-arterial noradrenaline infusion caused a marked drop in FSP in the exposed fingers, but not in the non-exposed fingers of the same hand. The fact that the non-exposed fingers retained the normal (arm systolic) pressure level is taken to indicate that palmar arch blood pressure...

  19. Microreactortechnology: Real-Time Flow Measurements in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Pieter J. Nieuwland

    2012-03-01

    Full Text Available With the commercial availability of integrated microreactor systems, the numbers of chemical processes that are performed nowadays in a continuous flow is growing rapidly. The control over mixing efficiency and homogeneous heating in these reactors allows industrial scale production that was often hampered by the use of large amounts of hazardous chemicals. Accurate actuation and in line measurements of the flows, to have a better control over the chemical reaction, is of added value for increasing reproducibility and a safe production.

  20. Design optimization for accurate flow simulations in 3D printed vascular phantoms derived from computed tomography angiography

    Science.gov (United States)

    Sommer, Kelsey; Izzo, Rick L.; Shepard, Lauren; Podgorsak, Alexander R.; Rudin, Stephen; Siddiqui, Adnan H.; Wilson, Michael F.; Angel, Erin; Said, Zaid; Springer, Michael; Ionita, Ciprian N.

    2017-03-01

    3D printing has been used to create complex arterial phantoms to advance device testing and physiological condition evaluation. Stereolithographic (STL) files of patient-specific cardiovascular anatomy are acquired to build cardiac vasculature through advanced mesh-manipulation techniques. Management of distal branches in the arterial tree is important to make such phantoms practicable. We investigated methods to manage the distal arterial flow resistance and pressure thus creating physiologically and geometrically accurate phantoms that can be used for simulations of image-guided interventional procedures with new devices. Patient specific CT data were imported into a Vital Imaging workstation, segmented, and exported as STL files. Using a mesh-manipulation program (Meshmixer) we created flow models of the coronary tree. Distal arteries were connected to a compliance chamber. The phantom was then printed using a Stratasys Connex3 multimaterial printer: the vessel in TangoPlus and the fluid flow simulation chamber in Vero. The model was connected to a programmable pump and pressure sensors measured flow characteristics through the phantoms. Physiological flow simulations for patient-specific vasculature were done for six cardiac models (three different vasculatures comparing two new designs). For the coronary phantom we obtained physiologically relevant waves which oscillated between 80 and 120 mmHg and a flow rate of 125 ml/min, within the literature reported values. The pressure wave was similar with those acquired in human patients. Thus we demonstrated that 3D printed phantoms can be used not only to reproduce the correct patient anatomy for device testing in image-guided interventions, but also for physiological simulations. This has great potential to advance treatment assessment and diagnosis.

  1. Endometrial volume and vascularity measurements by transvaginal three-dimensional ultrasonography and power Doppler angiography in stimulated and tumoral endometria: intraobserver reproducibility.

    Science.gov (United States)

    Mercé, Luis T; Alcázar, Juan L; Engels, Virginia; Troyano, Juan; Bau, Santiago; Bajo, José M

    2006-03-01

    To assess intraobserver reproducibility of the endometrial volume (EV) and 3D power Doppler indices (vascularization index, VI; flow index, FI; and vascularization flow index, VFI) of the endometrium and subendometrial area using three-dimensional power Doppler angiography (3D-PDA). Twenty-five women on the hCG day after controlled ovarian stimulation and 15 patients presenting with uterine bleeding and suspicious endometrial thickening (10 endometrial cancers and 5 endometrial hyperplasias) were scanned. Eighty volume data sets were analyzed using the VOCAL imaging program. EV and VI, FI and VFI of the endometrium and subendometrium (5 mm shell) were manually calculated in the longitudinal and coronal planes with 15 degrees and 9 degrees rotation steps. Intraclass correlation coefficient (ICC) and 95% confidence intervals were used to assess reliability. RESULTS.: EV measurements were highly reproducible (ICC > or = 0.97) without significant differences between planes and rotation steps. Endometrial and subendometrial VI, FI, and VFI presented ICCs above 0.90 with the exception of the subendometrial FI (ICC > or = 0.80). There were no significant differences according to measurement plane and rotation step except for subendometrial VFI. Nevertheless, 3D power Doppler indices calculated in the coronal plane and 9 degrees rotation step obtained the highest ICC. ICCs for 3D-PDA indices from the tumoral endometria were significantly higher than those calculated from the stimulated endometria. Endometrial volume and endometrial and subendometrial 3D power Doppler indices have an acceptable reproducibility, significantly higher in tumoral endometria. The reliability of measurements does not seem to be significantly influenced by the rotation plane and degrees of rotation. These results support that 3D-PDA and VOCAL are reliable methods to evaluate the physiological and pathological changes of the endometrium.

  2. 4. Workshop - Measurement techniques of stationary and transient multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. (ed.)

    2001-05-01

    In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)

  3. Compensated gamma ray densimeter measures slurry densities in flow

    Energy Technology Data Exchange (ETDEWEB)

    Guest, R.J.; Zimmerman, C.W.

    1973-09-01

    A gamma-ray densitometer has been compensated so that the density of flowing oil-field slurries is measured accurately and independent of slurry composition. Accuracies over the range of densities employed in oil-field applications is within +.25 lb/gal of true density. Normal drilling mud densities are measured while flowing through the rig's standpipe at accuracies of +0.1 lb/gal of true density. Until the compensated gamma-ray densitometer was developed, it was necessary to recalibrate densitometers when slurries containing elements of high atomic numbers were present. Most oil-field cementing slurries contain no significant amounts of high atomic number elements. However, some cement slurries and drilling mud contain barite (atomic number 56) which precluded accurate measurements by earlier gamma-ray densitometers without recalibration for changes in slurry composition.

  4. Engineering of Biomimetic Hair-Flow Sensor Arrays Dedicated to High-Resolution Flow Field Measurements

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Bruinink, C.M.; Droogendijk, H.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    This paper addresses the latest developments in biomimetic hair-flow sensors towards sensitive high-density arrays. Improving the electrodes design of the hair sensor, using Silicon-on-Insulator (SOI) wafer technology, has resulted in the ability to measure small capacitance changes as caused by

  5. Measurement of pulsatile turbulent flow downstream of polyurethane heart valve prosthesis using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.K.; Sung, J.Y. [Graduate School, Seoul National University, Seoul (Korea); Chang, J.K.; Min, B.G.; Yoo, J.Y. [Seoul National University, Seoul (Korea)

    1998-11-01

    In-vitro flow characteristics downstream of a polyurethane artificial heart valve under a pulsatile flow condition were investigated using Particle Image Velocimetry (PIV). With a triggering system and a time-delay circuit the velocity field downstream of the valve was evaluated in conjunction with the opening behavior of a flexible valve leaflet during a cardiac cycle.. Reynolds shear stress distribution was calculated from the velocity fields at a peak systolic phase. Direct measurements of the wall shear stress by hot-film anemometry (HFA) were compared with the PIV data. The possibilities of vascular complications, such as the thrombus formation and red blood cell damage, could be estimated from the overall view of the instantaneous velocity and stress fields obtained. A correlation between the flow pattern downstream of the valve and the corresponding opening posture of the polyurethane valve membrane gives useful data necessary for the improved design of the frame structure and leaflet geometry of the valve. (author). 11 refs., 8 figs., 5 tabs.

  6. SAPFLUXNET: towards a global database of sap flow measurements.

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of

  7. Tomographic cerebral blood flow measurement during carotid surgery

    DEFF Research Database (Denmark)

    Rathenborg, Lisbet Knudsen; Vorstrup, Sidsel; Olsen, K S

    1994-01-01

    OBJECTIVES: The aim of the study was to depict regional cerebral blood flow (rCBF) during carotid cross clamping using 99mTechnetium-hexamethylpropylene amine oxime (TcHMPAO). This tracer rapidly passes the blood-brain barrier and is retained for hours in the brain tissue. Injecting TcHMPAO during......, Copenhagen, Denmark. MATERIAL: 15 patients who during a period of 4 months underwent carotid endarterectomy. CHIEF OUTCOME MEASURES: Prior to surgery rCBF was determined using 133Xe and SPECT. Intraoperatively stump pressure was measured and a bolus of TcHMPAO was injected for later SPECT measurement. MAIN...

  8. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...

  9. Volumetric Velocity Measurements of Pulsating Flow through a Model Aneurysm

    Science.gov (United States)

    Troolin, Daniel; Amatya, Devesh; Longmire, Ellen

    2010-11-01

    Volumetric 3-component velocimetry (V3V) was used to examine the flow structure inside of a scaled-up transparent urethane model of a saccular aneurysm. The model was fabricated to match the geometry of an in vivo case. Index matching was used to minimize optical distortions caused by the curved walls of the model. The model and a surrounding visualization box were integrated into a custom-built pulse duplicator system with in-line flow meter and pressure transducers. The pulsing frequency and amplitude were controlled independently to generate two flow conditions each having a non-dimensional peak Reynolds (Re) and Womersley (Wo) Number: Re = 250, Wo = 10.4 and Re = 125, Wo = 7.4. Phase-locked and instantaneous measurements of the pulsatile flow upstream, downstream, and within the aneurysm reveal significant three-dimensional features including zones of separation, recirculation, impingement, and relative inactivity. Plots and movies will be shown, and a detailed discussion of the flow and various experimental considerations will be included.

  10. Laser Doppler velocity measurements of swirling flows with upstream influence

    Science.gov (United States)

    Rloff, K. L.; Bossel, H. H.

    1973-01-01

    Swirling flow in a rotating tube is studied by flow visualization at a moderate Reynolds number, and its velocity field is measured by laser-Doppler anemometry. The tube has constant diameter, and approximately uniform initial rigid rotation of the flow is assured by passing the flow through a rotating plug of porous metal before it enters the test section. At moderate swirl values, an object mounted on the tube centerline causes a closed bubble to form upstream of the obstacle, with a clearly defined stagnation point on the axis, and recirculating flow inside the bubble. The bubble length grows upstream as the swirl is increased, until it breaks up into a Taylor column reaching all the way upstream and downstream at swirl values above a certain critical value. A vortex jump (in the sense of Benjamin) occurs downstream of the obstacle except when the Taylor column is present. Using a laser-Doppler anemometer, axial and swirl velocity profiles are obtained at several stations upstream and downstream of the bubble, and in and around the bubble.

  11. Fluid flow along venous adventitia in rabbits: is it a potential drainage system complementary to vascular circulations?

    Directory of Open Access Journals (Sweden)

    Hong-yi Li

    Full Text Available BACKGROUND: Our previous research and other studies with radiotracers showed evidence of a centripetal drainage pathway, separate from blood or lymphatic vessels, that can be visualized when a small amount of low molecular weight tracer is injected subcutaneously into a given region on skin of humans. In order to further characterize this interesting biological phenomenon, animal experiments are designed to elucidate histological and physiologic characteristics of these visualized pathways. METHODS: Multiple tracers are injected subcutaneously into an acupuncture point of KI3 to visualize centripetal pathways by magnetic resonance imaging or fluorescein photography in 85 healthy rabbits. The pathways are compared with venography and indirect lymphangiography. Fluid flow through the pathways is observed by methods of altering their hydrated state, hydrolyzing by different collagenases, and histology is elucidated by optical, fluorescein and electron microscopy. RESULTS: Histological and magnetic imaging examinations of these visualized pathways show they consist of perivenous loose connective tissues. As evidenced by examinations of tracers' uptake, they appear to function as a draining pathway for free interstitial fluid. Fluorescein sodium from KI3 is found in the pathways of hind limbs and segments of the small intestines, partial pulmonary veins and results in pericardial effusion, suggesting systematical involvement of this perivenous pathway. The hydraulic conductivity of these pathways can be compromised by the collapse of their fiber-rich beds hydrolyzed by either of collagenase type I, III, IV or V. CONCLUSIONS: The identification of pathways comprising perivenous loose connective tissues with a high hydraulic conductivity draining interstitial fluid in hind limbs of a mammal suggests a potential drainage system complementary to vascular circulations. These findings may provide new insights into a systematically distributed collagenous

  12. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    Science.gov (United States)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  13. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  14. Nanofibril Alignment in Flow Focusing: Measurements and Calculations.

    Science.gov (United States)

    Håkansson, Karl M O; Lundell, Fredrik; Prahl-Wittberg, Lisa; Söderberg, L Daniel

    2016-07-14

    Alignment of anisotropic supermolecular building blocks is crucial to control the properties of many novel materials. In this study, the alignment process of cellulose nanofibrils (CNFs) in a flow-focusing channel has been investigated using small-angle X-ray scattering (SAXS) and modeled using the Smoluchowski equation, which requires a known flow field as input. This flow field was investigated experimentally using microparticle-tracking velocimetry and by numerically applying the two-fluid level set method. A semidilute dispersion of CNFs was modeled as a continuous phase, with a higher viscosity as compared to that of water. Furthermore, implementation of the Smoluchowski equation also needed the rotational Brownian diffusion coefficient, which was experimentally determined in a shear viscosity measurement. The order of the nanofibrils was found to increase during extension in the flow-focusing channel, after which rotational diffusion acted on the orientation distribution, driving the orientation of the fibrils toward isotropy. The main features of the alignment and dealignment processes were well predicted by the numerical model, but the model overpredicted the alignment at higher rates of extension. The apparent rotational diffusion coefficient was seen to increase steeply as the degree of alignment increased. Thus, the combination of SAXS measurements and modeling provides the necessary framework for quantified studies of hydrodynamic alignment, followed by relaxation toward isotropy.

  15. First trimester trophoblast and placental bed vascular volume measurements in IVF or IVF/ICSI pregnancies.

    Science.gov (United States)

    Rifouna, M S; Reus, A D; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P; Laven, J S E

    2014-12-01

    Are first trimester trophoblast volume (TV) and placental bed vascular volume (PBVV) different in IVF or IVF/ICSI pregnancies in comparison with spontaneously conceived pregnancies? Any possible abnormal placentation in IVF or IVF/ICSI pregnancies in comparison with spontaneously conceived pregnancies is not detected by a difference in PBVV or TV at an early gestational age (GA). Assisted reproductive technology pregnancies have been associated with an increased risk of placenta-related adverse pregnancy outcomes. It is unclear whether these effects originate from infertility or from the technique itself. We performed a retrospective cohort study in which 154 pregnant patients qualified for participation. Out of 154 pregnant patients, 84 conceived spontaneously and 70 conceived after IVF or IVF/ICSI. We determined the TV at 10 weeks GA by Virtual Organ Computer-aided AnaLysis measuring application and the PBVV at 12 weeks GA by the virtual reality operating system of BARCO I-Space in both subgroups. The investigators were blinded to the mode of conception during the measurements. Analysis was limited to singleton pregnancies with only one sac ever detectable. There were no differences in TV (mean 42.7, SD 15.9 versus mean 41.2, SD 13.9, P = 0.70) and PBVV (mean 27.6, SD 16.9 versus mean 24.8, SD 19.9, P = 0.20) between IVF or IVF/ICSI pregnancies and spontaneously conceived pregnancies. There was a significant correlation between TV and PBVV (rs = 0.283, P = 0.004). The limitations of the present study concern the small size of the study groups. IVF or IVF/ICSI does not seem to be associated with abnormal placentation. This study was financially supported by the Erasmus Trustfonds, the Meindert de Hoop foundation and the Fonds NutsOhra. No competing interests are declared. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Vascular ultrasound measures before pregnancy and pregnancy complications: A prospective cohort study.

    Science.gov (United States)

    Harville, Emily W; Juonala, Markus; Viikari, Jorma S A; Kähönen, Mika; Raitakari, Olli T

    2017-02-01

    To examine the relationship between pre-pregnancy indicators of cardiovascular risk and pregnancy complications and outcomes. Data from 359 female participants in the Cardiovascular Risk in Young Finns Study were linked with the national birth registry. Flow-mediated dilatation (FMD; maximum change in the left brachial artery diameter after rest and hyperemia); carotid intima-media thickness (IMT); Young's elastic modulus (YEM); and carotid artery distensibility (Cdist) at the visit prior to the pregnancy were examined as predictors of hypertensive disorders, birthweight, and gestational age using multivariable linear regression with adjustment for confounders (age, BMI, smoking, and socioeconomic status). No relations were seen between FMD, IMT, or the stiffness indices, and hypertensive disorders. Higher pre-pregnancy FMD was associated with lower gestational age, while increased Cdist was associated with reduced birthweight-for-gestational-age. Some cardiovascular ultrasound measures of pre-pregnancy may predict pregnancy complications, but the association is likely to be small.

  17. Determination of testicular blood flow in camelids using vascular casting and color pulsed-wave Doppler ultrasonography.

    Science.gov (United States)

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography.

  18. Determination of Testicular Blood Flow in Camelids Using Vascular Casting and Color Pulsed-Wave Doppler Ultrasonography

    Directory of Open Access Journals (Sweden)

    Michelle Kutzler

    2011-01-01

    Full Text Available We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV was higher in fertile males compared to infertile males (P=0.0004. In addition, end diastolic velocity (EDV within the supratesticular arteries was higher for fertile males when compared to infertile males (P=0.0325. Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P=0.0104. However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P=0.121. In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P=0.486 and marginal arteries (P=0.144. The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography.

  19. Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension.

    Science.gov (United States)

    van der Feen, Diederik E; Weij, Michel; Smit-van Oosten, Annemieke; Jorna, Lysanne M; Hagdorn, Quint A J; Bartelds, Beatrijs; Berger, Rolf M F

    2017-02-11

    In this protocol, PAH is induced by combining a 60 mg/kg monocrotalin (MCT) injection with increased pulmonary blood flow through an aorto-caval shunt (MCT+Flow). The shunt is created by inserting an 18-G needle from the abdominal aorta into the adjacent caval vein. Increased pulmonary flow has been demonstrated as an essential trigger for a severe form of PAH with distinct phases of disease progression, characterized by early medial hypertrophy followed by neointimal lesions and the progressive occlusion of the small pulmonary vessels. To measure the right heart and pulmonary hemodynamics in this model, right heart catheterization is performed by inserting a rigid cannula containing a flexible ball-tip catheter via the right jugular vein into the right ventricle. The catheter is then advanced into the main and the more distal pulmonary arteries. The histopathology of the pulmonary vasculature is assessed qualitatively, by scoring the pre- and intra-acinar vessels on the degree of muscularization and the presence of a neointima, and quantitatively, by measuring the wall thickness, the wall-lumen ratios, and the occlusion score.

  20. In-vitro measurement and modelling of shear-induced platelet margination and adhesion in channel flows

    Science.gov (United States)

    Qi, Qin M.; Oglesby, Irene; Cowman, Jonathan; Ricco, Antonio J.; Kenny, Dermot; Shaqfeh, Eric S. G.

    2017-11-01

    Blood coagulation is initiated by GPIb and GPIIbIIIa receptors on the platelet surface binding with von Willebrand factors tethered on the vascular wall. This process occurs much faster in the presence of flow shear than in the quiescent fluid. First of all, the near-wall platelet concentration in flowing blood increases significantly. This phenomenon, commonly referred to as platelet margination, is due to shear-induced hydrodynamic interactions between red blood cells and platelets. Flow shear also manifests itself in affecting the reaction kinetics of receptor-ligand binding. The breaking and formation of multiple bonds on the platelet surface result in the translocating motion of platelets rolling close to the vascular wall. To date, a fundamental understanding of how fluid mechanics relate the bond-level kinetics to the platelet-level dynamics is very limited. In this talk, we investigate platelet adhesion under physiological shear rates using both microfluidic experiments and multi-scale modeling. Our model, (based on existing single molecule measurements and hydrodynamics of blood at zero Reynolds number) shows good agreement with experimental results. We discuss the roles of red blood cell volume fraction (hematocrit), shear rate, receptor densities in the dynamics of platelet adhesion. These findings also provide implications for how platelet defects and abnormal flow conditions influence hemostasis and thrombosis.

  1. Measurement of secondary flow vortices on a rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, V.

    1988-02-01

    Secondary flow vortices in infinite rod bundles have been predicted by a number of theoretical analyses. Nevertheless experimental verification was difficult, since the magnitude of the secondary velocities appeared to be less than the accuracy of the experimental techniques used. Only indications of the maximum velocity magnitude have been available but no report on successful direct measurement is known to the author. At ECN, laser Doppler velocimetry is successfully used for measurement of secondary flow vortices in two regular subchannels of a triangularly arranged bare rod bundle with pitch-to-diameter ratio P/D-1.3 under the Reynolds number conditions 60,000 and 175,000. One single secondary vortex, having the average tangential velocity slightly less than 0.1% of the mean bulk velocity, is resolved per minimum symmetry sector of the bundle geometry. Ensemble averages are made to obtain quantitative description of the vortex and to form a data base for comparison with calculations.

  2. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).

    Science.gov (United States)

    Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P

    2014-02-01

    An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid

  3. Retinal vascular lesions in patients of Caucasian and Asian origin with type 2 diabetes - Baseline results from the ADVANCE Retinal Measurements (AdRem) study

    NARCIS (Netherlands)

    Stolk, Ronald P.; van Schooneveld, Mary J.; Cruickshank, J. Kennedy; Hughes, Alun D.; Stanton, Alice; Lu, Juming; Patel, Anushka; Thom, Simon A. McG.; Grobbee, Diederick E.; Vingerling, Johannes R.

    OBJECTIVE - The objective of this study was to describe prevalent vascular retinal lesions among patients with type 2 diabetes enrolled in the ADVANCE Retinal Measurements (AdRem) study, a substudy of the Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation

  4. VASCULAR DEMENTIA

    Directory of Open Access Journals (Sweden)

    Maria Alekseyevna Cherdak

    2010-01-01

    vascular cognitive disorders and vascular dementia (VD. The heterogeneity of vascular cognitive disorders, concurrence of vascular and neurodegenerative diseases are discussed. Data from studies of specific therapy for VD are given.

  5. Intraglomerular microcirculation: measurements of single glomerular loop flow in rats.

    Science.gov (United States)

    Steinhausen, M; Zimmerhackl, B; Thederan, H; Dussel, R; Parekh, N; Esslinger, H U; von Hagens, G; Komitowski, D; Dallenbach, F D

    1981-08-01

    With the use of a new fluorescent microscopic technique, we were able to measure the mean intracapillary velocities and pressures of single capillary loops of renal glomeruli of living rats. The technique involved photographing and recording the flow of fluorescent latex particles through the glomerular loops with a television monitor. In 25 rats the single glomerular loop flow velocity was 781 +/- (SD) 271 micrometers . sec-1. The mean diameter of the capillary loops measured 8.4 +/- 1.4 micrometers; their lengths were 72.3 +/- 37.5 micrometers. From the decrease in velocity of flow along the capillary loop, we were able to evaluate the filtration equivalent for the capillary surface. It was possible to measure intracapillary pressures of single glomerular loops continuously under microscopic control. High intracapillary pressures correlated with high intracapillary velocities. From the data we obtained, we were unable to calculate a filtration equilibrium at the ends of the observed capillary loops. For further correlations, we injected the glomeruli we had studied in the living state and examined them with the scanning electron microscope.

  6. Contactless Impedance Sensors and Their Application to Flow Measurements

    Directory of Open Access Journals (Sweden)

    Karel Štulík

    2013-02-01

    Full Text Available The paper provides a critical discussion of the present state of the theory of high-frequency impedance sensors (now mostly called contactless impedance or conductivity sensors, the principal approaches employed in designing impedance flow-through cells and their operational parameters. In addition to characterization of traditional types of impedance sensors, the article is concerned with the use of less common sensors, such as cells with wire electrodes or planar cells. There is a detailed discussion of the effect of the individual operational parameters (width and shape of the electrodes, detection gap, frequency and amplitude of the input signal on the response of the detector. The most important problems to be resolved in coupling these devices with flow-through measurements in the liquid phase are also discussed. Examples are given of cell designs for continuous flow and flow-injection analyses and of detection systems for miniaturized liquid chromatography and capillary electrophoresis. New directions for the use of these sensors in molecular biology and chemical reactors and some directions for future development are outlined.

  7. Flow speed measurement using two-point collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, N.P

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.

  8. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Torimoto Keiichi

    2013-01-01

    Full Text Available Abstract Background Fluctuations in blood glucose level cause endothelial dysfunction and play a critical role in onset and/or progression of atherosclerosis. We hypothesized that fluctuation in blood glucose levels correlate with vascular endothelial dysfunction and that this relationship can be assessed using common bedside medical devices. Methods Fluctuations in blood glucose levels were measured over 24 hours by continuous glucose monitoring (CGM on admission day 2 in 57 patients with type 2 diabetes mellitus. The reactive hyperemia index (RHI, an index of vascular endothelial function, was measured using peripheral arterial tonometry (EndoPAT on admission day 3. Results The natural logarithmic-scaled RHI (L_RHI correlated with SD (r=−0.504; PPP=0.001 and percentage of time ≥200 mg/dl (r=−0.292; P=0.028. In 12 patients with hypoglycemia, L_RHI also correlated with the percentage of time at hypoglycemia (r=−0.589; P=0.044. L_RHI did not correlate with HbA1c or fasting plasma glucose levels. Furthermore, L_RHI did not correlate with LDL cholesterol, HDL cholesterol, and triglyceride levels or with systolic and diastolic blood pressures. Finally, multivariate analysis identified MAGE as the only significant determinant of L_RHI. Conclusions Fluctuations in blood glucose levels play a significant role in vascular endothelial dysfunction in type 2 diabetes. Trial registration UMIN000007581

  9. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging.

    Science.gov (United States)

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus

    2016-04-01

    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  10. Closure of digital arteries in high vascular tone states as demonstrated by measurement of systolic blood pressure in the fingers

    DEFF Research Database (Denmark)

    Krähenbühl, B; Nielsen, S L; Lassen, N A

    1977-01-01

    Finger systolic blood pressure (FSP) was measured indirectly in normal subjects and patients with primary Raynaud phenomenon by applying a thin-walled plastic cuff around the finger and a strain gauge more distally to detect volume changes. Inducing a high vascular tone in one or more fingers...... by direct cooling or intra-arterial noradrenaline infusion caused a marked drop in FSP in the exposed fingers, but not in the non-exposed fingers of the same hand. The fact that the non-exposed fingers retained the normal (arm systolic) pressure level is taken to indicate that palmar arch blood pressure...... also remained normal. In the high vascular tone state, a large transmural pressure difference must apparently be established before the digital arteries are forced open. The lowered opening pressure constitutes a manifestation of the closure phenomenon of the digital arteries described in patients...

  11. Sap flow measurements to determine the transpiration of facade greenings

    Science.gov (United States)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  12. Toroidal flow measurement in CT injected STOR-M tokamak

    Science.gov (United States)

    Asai, Tomohiko; Morelli, Jordan; Singh, Ajay; Xiao, Chijin; Hirose, Akira; Nagata, Masayoshi; Uyama, Tadao

    2002-11-01

    Compact Torus (CT) injection is a technology being developed for fueling of large tokamak reactors. It has been demonstrated in the STOR-M tokamak that tangential CT injection is capable of inducing an improved confinement mode (H-mode). It has been conjectured that tangential CT injection may enhance the toroidal rotation of the bulk tokamak plasma which is responsible for the H-mode by preventing or reducing microinstabilities[1]. In order to investigate the mechanisms of the L-H transition induced by enhanced toroidal flow (particularly that caused by CT injection), an Ion Doppler Spectroscope (IDS) has been developed. The IDS employs a 0.75 m focal length Czerny-Turner spectrometer with a resolution of 0.1 Åand a 16-channel PMT array. Data of plasma flow measurements will be presented with and without CT injection. Also, the results will be compared with toroidal flow measurement obtained using a 4-sided Mach probe in the plasma edge region. [1] S. Sen et al., Phys. Rev. Lett. 88, 185001 (2002).

  13. An automated flow calorimeter for heat capacity and enthalpy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandarusi, J.A.; Yesavage, V.F.

    1988-11-01

    An automated flow calorimeter has been developed for the measurement of heat capacity and latent enthalpies of fluids at elevated temperatures (300-700 K) and pressure (< 30 MPa) with a design accuracy of 0.1%. The method of measurement is the traditional electrical power input flow calorimeter, utilizing a precision metering pump, which eliminates the need for flow-rate monitoring. The calorimeter cell uses a unique concentric coil design with passive metal radiation shields and active guard heaters to minimize heat leakage, eliminate the traditional constant-temperature bath, and facilitate easy component replacement. An additional feature of the instrument is a complete automation system, greatly simplifying operation of the apparatus. A novel multitasking software scheme allows a single microcomputer simultaneously to control all system temperatures, provide continuous monitoring and updates on system status, and log data. Preliminary results for liquid water mean heat capacities show the equipment to be performing satisfactorily, with data accuracies of better than /plus minus/0.3%. Minor equipment modifications and better thermometry are required to reduce systemic errors and to achieve the designed operational range.

  14. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  15. Surface pressure measurements for CFD code validation in hypersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Aeschliman, D.P.; Henfling, J.F.; Larson, D.E.

    1995-07-01

    Extensive surface pressure measurements were obtained on a hypersonic vehicle configuration at Mach 8. All of the experimental results were obtained in the Sandia National Laboratories Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. The basic vehicle configuration is a spherically blunted 10{degrees} half-angle cone with a slice parallel with the axis of the vehicle. The bluntness ratio of the geometry is 10% and the slice begins at 70% of the length of the vehicle. Surface pressure measurements were obtained for angles of attack from {minus}10 to + 18{degrees}, for various roll angles, at 96 locations on the body surface. A new and innovative uncertainty analysis was devised to estimate the contributors to surface pressure measurement uncertainty. Quantitative estimates were computed for the uncertainty contributions due to the complete instrumentation system, nonuniformity of flow in the test section of the wind tunnel, and variations in the wind tunnel model. This extensive set of high-quality surface pressure measurements is recommended for use in the calibration and validation of computational fluid dynamics codes for hypersonic flow conditions.

  16. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Purpose: In chronic hemodialysis patients, the low flow of vascular access may leads to inadequate dialysis, increased rate of hospitalization, morbidity, and mortality. It was found that surveillance should be performed for native arteriovenous (AV) should not be performed for AV graft in various studies.

  17. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    Purpose: In chronic hemodialysis patients, the low flow of vascular access may leads to inadequate dialysis, increased rate of hospitalization, morbidity, and mortality. It was found that surveillance should be performed for native arteriovenous (AV) should not be performed for AV graft in various studies. However ...

  18. Methodology, Measurement and Analysis of Flow Table Update Characteristics in Hardware OpenFlow Switches

    KAUST Repository

    Kuźniar, Maciej

    2018-02-15

    Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These deployments rely on switches that come from various vendors and differ in terms of performance and available features. Understanding these differences and performance characteristics is essential for ensuring successful and safe deployments.We propose a systematic methodology for SDN switch performance analysis and devise a series of experiments based on this methodology. The methodology relies on sending a stream of rule updates, while relying on both observing the control plane view as reported by the switch and probing the data plane state to determine switch characteristics by comparing these views. We measure, report and explain the performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describing rule update rates can help SDN designers make their controllers efficient. Further, we also highlight differences between the OpenFlow specification and its implementations, that if ignored, pose a serious threat to network security and correctness.

  19. Measuring Dispositional Flow: Validity and reliability of the Dispositional Flow State Scale 2, Italian version.

    Directory of Open Access Journals (Sweden)

    Eleonora F M Riva

    Full Text Available The aim of this study is to evaluate the psychometric properties of the Italian version of the Dispositional Flow Scale-2 (DFS-2, for use with Italian adults, young adults and adolescents.In accordance with the guidelines for test adaptation, the scale has been translated with the method of back translation. The understanding of the item has been checked according to the latest standards on the culturally sensitive translation. The scale thus produced was administered to 843 individuals (of which 60.69% female, between the ages of 15 and 74. The sample is balanced between workers and students. The main activities defined by the subjects allow the sample to be divided into three categories: students, workers, athletes (professionals and semi-professionals.The confirmatory factor analysis, conducted using the Maximum Likelihood Estimator (MLM, showed acceptable fit indexes. Reliability and validity have been verified, and structural invariance has been verified on 6 categories of Flow experience and for 3 subsamples with different with different fields of action. Correlational analysis shows significant high values between the nine dimensions.Our data confirmed the validity and reliability of the Italian DFS-2 in measuring Flow experiences. The scale is reliable for use with Italian adults, young adults and adolescents. The Italian version of the scale is suitable for the evaluation of the subjective tendency to experience Flow trait characteristic in different contest, as sport, study and work.

  20. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    Science.gov (United States)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the

  1. Model based flow measurement using venturi flumes for return flow during drilling

    Directory of Open Access Journals (Sweden)

    Ivan Pirir

    2017-07-01

    Full Text Available In an oil well drilling operation, a proper knowledge of the return fluid flowrate is necessary both for the stabilization of the bottom hole pressure of the well and also as a primary indication of a kick or loss. In practice, the drill fluid flowing through the return line is usually measured with Coriolis meters. However this method is both expensive and has some downsides. For instance there is a risk of blockage due to drill cuttings while measuring the discharge. The presence of gas and cuttings in the drilling fluid will also have a negative effect in the measurement i.e. for multi-phase fluid, the readings from Coriolis meters may not be accurate. A cheaper alternative would be to use an open channel for the measurement of the discharge from the return flowline. In this paper, a venturi rig is used as the open channel and modeled by the Saint Venant equations. Experimental verification of the simulation results show a promising behavior of the model based measurement of the return fluid flow.

  2. PIV measurement of flow around an arbitrarily moving body

    Science.gov (United States)

    Jeon, Young Jin; Sung, Hyung Jin

    2010-11-01

    PIV image processing methods for measuring flow velocities around an arbitrarily moving body are proposed. A contour-texture analysis based on user-defined textons is applied to determine the arbitrarily moving interface in the 2D PIV. After the interface tracking procedure is performed, the particle images near the interface are transformed into Cartesian coordinates that are related to the distance from the interface. This transformed image always has a straight interface, so the interrogation windows can easily be arranged at certain distances from the interface. Accurate measurements near the interface can then be achieved by applying the window deformation algorithm in concert with PIV/IG. For a tomographic 3D PIV, a volume reconstruction technique from four views is applied to obtain a three-dimensional shape of the interface. Particle motion analysis is made by the MTE MART algorithm. Quantitative evaluations of this method are performed to computer-generated images and actual PIV measurements.

  3. Velocity-pressure correlation measurements in complex free shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Naka, Yoshitsugu [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail: y09774@educ.cc.keio.ac.jp; Obi, Shinnosuke [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail: obsn@mech.keio.ac.jp

    2009-06-15

    Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.

  4. Laser speckle analysis of retinal vascular dynamics

    DEFF Research Database (Denmark)

    Neganova, Anastasiia Y.; Postnov, Dmitry D.; Jacobsen, Jens Christian B.

    2016-01-01

    Studies of vascular responses are usually performed on isolated vessels or on single vessels in vivo. This allows for precise measurements of diameter or blood flow. However, dynamical responses of the whole microvascular network are difficult to access experimentally. We suggest to use full......-field laser speckle imaging to evaluate vascular responses of the retinal network. Image segmentation and vessel recognition algorithms together with response mapping allow us to analyze diameter changes and blood flow responses in the intact retinal network upon systemic administration of the vasoconstrictor...

  5. Implications of Pericardial, Visceral and Subcutaneous Adipose Tissue on Vascular Inflammation Measured Using 18FDG-PET/CT.

    Directory of Open Access Journals (Sweden)

    Ho Cheol Hong

    Full Text Available Pericardial adipose tissue (PAT is associated with adverse cardiometabolic risk factors and cardiovascular disease (CVD. However, the relative implications of PAT, abdominal visceral and subcutaneous adipose tissue on vascular inflammation have not been explored.We compared the association of PAT, abdominal visceral fat area (VFA, and subcutaneous fat area (SFA with vascular inflammation, represented as the target-to-background ratio (TBR, the blood-normalized standardized uptake value measured using 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET in 93 men and women without diabetes or CVD. Age- and sex-adjusted correlation analysis showed that PAT, VFA, and SFA were positively associated with most cardiometabolic risk factors, including systolic blood pressure, LDL-cholesterol, triglycerides, glucose, insulin resistance and high sensitive C-reactive proteins (hsCRP, whereas they were negatively associated with HDL-cholesterol. In particular, the maximum TBR (maxTBR values were positively correlated with PAT and VFA (r = 0.48 and r = 0.45, respectively; both P <0.001, whereas SFA showed a relatively weak positive relationship with maxTBR level (r = 0.31, P = 0.003.This study demonstrated that both PAT and VFA are significantly and similarly associated with vascular inflammation and various cardiometabolic risk profiles.

  6. Radionuclide assessment of peripheral hemodynamics: a new technique for measurement of forearm blood volume and flow

    Energy Technology Data Exchange (ETDEWEB)

    Todo, Y.; Tanimoto, M.; Yamamoto, T.; Iwasaki, T.

    1986-02-01

    A new peripheral hemodynamic measurement system using /sup 99m/Tc-labeled red blood cells has been developed. This method was carried out on 22 normal subjects, 29 with coronary artery disease, and two with dilated cardiomyopathy. Peripheral hemodynamic indices obtained from this method included forearm blood volume (FBV), venous capacity (FVC), venous capacity index (VCI), blood flow (FBF), and vascular resistance (FVR), and were compared with the central hemodynamic parameters of left ventricular filling pressure (LVFP), cardiac output (CO), and total systemic vascular resistance (TSVR) obtained with an invasive technique. The normal values were FBV 8.54 +/- 2.04 ml/100 ml; FVC 4.54 +/- 1.23 ml/100 ml; VCI 65.5 +/- 3.8%; FBF 4.26 +/- 0.56 ml/100 ml/min; and FVR 20.9 +/- 4.4 mmHg/ml/100 ml/min. These values were in good agreement with the values reported using conventional plethysmography. The 16 patients with congestive heart failure (NYHA Class II or III) showed significantly lower FBV, FVC, and FBF values and significantly higher VCI and FVR values than the healthy subjects. Capacitance vessel parameters (FBV, FVC, and VCI) and LVFP, FBF and CO, and FVR and TSVR each showed significant correlation; reproducibility was also good. The advantages of this method are (a) the detector does not come in contact with the region being measured; (b) it is possible to ascertain the absolute quantity of blood in the tissue; (c) extravasation of the plasma component can be ignored; and (d) data processing is simple.

  7. Skin friction measurements in high temperature high speed flows

    Science.gov (United States)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  8. Computational fluid dynamics using in vivo ultrasound blood flow measurements

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    This paper presents a model environment for construction of patient-specific computational fluid dynamic (CFD) models for the abdominal aorta (AA). Realistic pulsatile velocity waveforms are employed by using in vivo ultrasound blood flow measurements. Ultrasound is suitable for acquisition....... The estimated and smoothed velocity profiles were quantitatively compared. The energy contained in the velocity profile after smoothing is 65% larger relative to the noise contaminated estimated profiles. In conclusion, a model environment that produces realistic patient-specific CFD simulation models without...

  9. Measurement of flow inside a vacuum cleaner head

    Science.gov (United States)

    Iguchi, Ryotaro; Ban, Hisataka; Sakakibara, Jun

    2017-11-01

    Vacuum cleaner head with rotating brushes is widely used as a home appliance. Although it efficiently collects dusts from the floor, flow field of the air and motion of the dust inside the head have not been fully investigated. In this study, we performed 3D-PIV (particle tracking velocimetry) measurement of velocity field inside the head. Water was used as working fluid, which allows a use of fluorescent particle to reduce unwanted reflection from the brushes and inner surface of the head. Mean velocity field and turbulence statistics in the head with and without the brush will be presented.

  10. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?

    National Research Council Canada - National Science Library

    Jahanian, Hesamoddin; Christen, Thomas; Moseley, Michael E; Pajewski, Nicholas M; Wright, Clinton B; Tamura, Manjula K; Zaharchuk, Greg

    2017-01-01

    Measurement of the ability of blood vessels to dilate and constrict, known as vascular reactivity, is often performed with breath-holding tasks that transiently raise arterial blood carbon dioxide (PaCO2) levels...

  11. Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Lyass, Asya; Larson, Martin G

    2015-01-01

    BACKGROUND: Physical activity is associated with several health benefits, including lower cardiovascular disease risk. The independent influence of physical activity on cardiac and vascular function in the community, however, has been sparsely investigated. MEASURES AND RESULTS: We related...

  12. Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography.

    Science.gov (United States)

    Michaely, Roland; Bachmann, Adrian H; Villiger, Martin L; Blatter, Cédric; Lasser, Theo; Leitgeb, Rainer A

    2007-01-01

    Resonant Doppler Fourier domain optical coherence tomography (FDOCT) is a functional imaging tool for extracting tissue flow. The method is based on the effect of interference fringe blurring in spectrometer-based FDOCT, where the path difference between structure and reference changes during camera integration. If the reference path length is changed in resonance with the Doppler frequency of the sample flow, the signals of resting structures will be suppressed, whereas the signals of blood flow are enhanced. This allows for an easy extraction of vascularization structure. Conventional flow velocity analysis extracts only the axial flow component, which strongly depends on the orientation of the vessel with respect to the incident light. We introduce an algorithm to extract the vessel geometry within the 3-D data volume. The algorithm calculates the angular correction according to the local gradients of the vessel orientations. We apply the algorithm on a measured 3-D resonant Doppler dataset. For validation of the reproducibility, we compare two independently obtained 3-D flow maps of the same volunteer and region.

  13. Effect of Flow Characteristics in the Downstream of Butterfly Valve on the Flow Rate Measurement using Venturi Tube

    Science.gov (United States)

    Yoon, Seok Ho; Lee, Jungho; Yu, Cheong Hwan; Park, San-Jin; Chung, Chang-Hwan

    2010-06-01

    For testing large-capacity pump, the accurate flow rate measurement is needed in the test loop. As a measuring method of flow rate, venturi tube is recommended due to its low pressure loss. However, upstream disturbance of loop component such as valve has an effect upon the accuracy of flow rate measurement. For controlling flow rate in case of high flow rate and large-scale piping system, butterfly-type valve is generally used due to its compactness. However, butterfly valve disturbs downstream flow by generating turbulence, cavities, or abrupt pressure change. In this study, the effect of downstream disturbance of butterfly valve on the flow rate measurement using venturi tube is investigated. Test loop consists of circulation pump, reservoir, butterfly valve, venturi tube, and reference flow meter. The test is conducted with regard to a different valve opening angle of butterfly valve. PIV system is used to visualize and analyze flow in the downstream region of butterfly valve. According to valve opening angle, the flow characteristics and the accuracy of flow rate measurement are investigated.

  14. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    NARCIS (Netherlands)

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  15. En face Doppler total retinal blood flow measurement with 70 kHz spectral optical coherence tomography

    Science.gov (United States)

    Tan, Ou; Liu, Gangjun; Liang, Liu; Gao, Simon S.; Pechauer, Alex D.; Jia, Yali; Huang, David

    2015-01-01

    Abstract. An automated algorithm was developed for total retinal blood flow (TRBF) using 70-kHz spectral optical coherence tomography (OCT). The OCT was calibrated for the transformation from Doppler shift to speed based on a flow phantom. The TRBF scan pattern contained five repeated volume scans (2×2  mm) obtained in 3 s and centered on central retinal vessels in the optic disc. The TRBF was calculated using an en face Doppler technique. For each retinal vein, blood flow was measured at an optimal plane where the calculated flow was maximized. The TRBF was calculated by summing flow in all veins. The algorithm tracked vascular branching so that either root or branch veins are summed, but never both. The TRBF in five repeated volumes were averaged to reduce variation due to cardiac cycle pulsation. Finally, the TRBF was corrected for eye length variation. Twelve healthy eyes and 12 glaucomatous eyes were enrolled to test the algorithm. The TRBF was 45.4±6.7  μl/min for healthy control and 34.7±7.6  μl/min for glaucomatous participants (p-value=0.01). The intravisit repeatability was 8.6% for healthy controls and 8.4% for glaucoma participants. The proposed automated method provided repeatable TRBF measurement. PMID:26062663

  16. Association between maternal vascular murmur and the small-for-gestational-age fetus with abnormal umbilical artery Doppler flow

    DEFF Research Database (Denmark)

    Riknagel, Diana; Farlie, Richard; Hedegaard, Morten

    2017-01-01

    OBJECTIVE: To investigate the association between maternal vascular murmurs (MVMs) and fetal growth restriction (defined as small-for-gestational-age [SGA] fetus) and abnormal Doppler pulsatility index (PI) of the uterine and/or umbilical arteries. METHODS: A cross-sectional study of women aged 18...... participants had MVMs. There was a clear association between MVMs and a composite of SGA and an abnormal PI of the uterine and/or the umbilical artery (PMaternal vascular murmurs are significantly associated with fetal growth restriction...

  17. Atmospheric flow measurements using the PIV and HWA techniques

    Directory of Open Access Journals (Sweden)

    Luciana Bassi Marinho Pires

    2010-08-01

    Full Text Available Alcântara Space Center (ASC is the Brazilian gate to the space where rockets of different sizes are launched. At ASC there is a relative topographical variation, coastal cliff, which modifies the atmospheric boundary layer characteristics and can cause interference for operations of rockets. In the present work, a simplified model (mock-up was studied in a wind tunnel. A scale factor of 1:1000 was used and the atmospheric flow was measured using the hot wire anemometer (HWA and particle image velocimetry (PIV techniques. Using of HWA it was possible to calculate values of average wind speed and fluctuations in a set of points of the section of tests that representing the region of the ASC. Through these measures, other meteorological parameters that represent the atmospheric flow, such as the friction velocity (u*, the roughness length (z0 from the logarithmic profile and the alpha exponent (ɑ of the power law were calculated. With the use of the PIV´s technique, the streamlines and the vorticity fields were obtained and it was noticed that the vorticity generated downwind of the coastal cliff has a strong turbulence (vorticities around 2000 sˉ¹. A rectangular building (simulating the mobile integration tower was inserted at the mock-up and the downwind turbulence was similar to the one generated by the coastal cliff.

  18. Flow mediated endothelium function: advantages of an automatic measuring technique

    Science.gov (United States)

    Maio, Yamila; Casciaro, Mariano E.; José Urcola y, Maria; Craiem, Damian

    2007-11-01

    The objective of this work is to show the advantages of a non invasive automated method for measuring flow mediated dilation (FMD) in the forearm. This dilation takes place in answer to a shear tension generated by the increase of blood flow, sensed by the endothelium, after the liberation of an occlusion sustained in the time. The method consists of three stages: the continuous acquisition of images of the brachial artery using ultrasound techniques, the pulse to pulse measurement of the vessel's diameter by means of a border detection algorithm, and the later analysis of the results. By means of this technique one cannot only obtain the maximum dilation percentage (FMD%), but a continuous diameter curve that allows to evaluate other relevant aspects such as dilation speed, dilation sustain in time and general maneuver performance. The simplicity of this method, robustness of the technique and accessibility of the required elements makes it a viable alternative of great clinical value for diagnosis in the early detection of numerous cardiovascular pathologies.

  19. Closure of digital arteries in high vascular tone states as demonstrated by measurement of systolic blood pressure in the fingers

    DEFF Research Database (Denmark)

    Krähenbühl, B; Nielsen, S L; Lassen, N A

    1977-01-01

    Finger systolic blood pressure (FSP) was measured indirectly in normal subjects and patients with primary Raynaud phenomenon by applying a thin-walled plastic cuff around the finger and a strain gauge more distally to detect volume changes. Inducing a high vascular tone in one or more fingers...... by direct cooling or intra-arterial noradrenaline infusion caused a marked drop in FSP in the exposed fingers, but not in the non-exposed fingers of the same hand. The fact that the non-exposed fingers retained the normal (arm systolic) pressure level is taken to indicate that palmar arch blood pressure...

  20. Debris flow cartography using differential GNSS and Theodolite measurements

    Science.gov (United States)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees

  1. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    Science.gov (United States)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  2. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    Science.gov (United States)

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  3. Residence time measurement of an isothermal combustor flow field

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Liangta; Spencer, Adrian [Loughborough University, Department of Aero and Auto Engineering, Loughborough (United Kingdom)

    2012-03-15

    Residence times of combustors have commonly been used to help understand NO{sub x} emissions and flame blowout. Both the time mean velocity and turbulence fields are important to the residence time, but determining the residence time via analysis of a measured velocity field is difficult due to the inherent unsteadiness and the three-dimensional nature of a high-Re swirling flow. A more direct approach to measure residence time is reported here that examines the dynamic response of fuel concentration to a sudden cutoff in the fuel injection. Residence time measurement was mainly taken using a time-resolved planar laser-induced fluorescence (PLIF) technique, but a second camera for particle image velocimetry (PIV) was added to check that the step change does not alter the velocity field and the spectral content of the coherent structures. Characteristic timescales evaluated from the measurements are referred to as convection and half-life times: The former describes the time delay from a fuel injector exit reference point to a downstream point of interest, and the latter describes the rate of decay once the effect of the reduced scalar concentration at the injection source has been transported to the point of interest. Residence time is often defined as the time taken for a conserved scalar to reduce to half its initial value after injection is stopped: this equivalent to the sum of the convection time and the half-life values. The technique was applied to a high-swirl fuel injector typical of that found in combustor applications. Two test cases have been studied: with central jet (with-jet) and without central jet (no-jet). It was found that the relatively unstable central recirculation zone of the no-jet case resulted in increased transport of fuel into the central region that is dominated by a precessing vortex core, where long half-life times are also found. Based on this, it was inferred that the no-jet case may be more prone to NO{sub x} production. The

  4. Error Analysis for Interferometric SAR Measurements of Ice Sheet Flow

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1999-01-01

    and slope errors in conjunction with a surface parallel flow assumption. The most surprising result is that assuming a stationary flow the east component of the three-dimensional flow derived from ascending and descending orbit data is independent of slope errors and of the vertical flow....

  5. Active Flow Control Strategies Using Surface Pressure Measurements

    Science.gov (United States)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  6. Direct measuring of heat flows from interior part of the Earth in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kutas, R.I.; Bervzyuk, M.I.; Gerashchenko, O.A.; Grishchenko, T.G.

    1977-01-01

    The borehole equipment is described for combined measuring of temperature and heat flow. Temperatures are measured with thermoresistor and heat flow sensor. Results of examinations are presented for several regions of the Ukr.SSR territory.

  7. Uncertainty of Five-Hole Probe Measurements. [of total flow pressure, static pressure, and flow

    Science.gov (United States)

    Reichert, Bruce A.; Wendt, Bruce J.

    1994-01-01

    A new algorithm for five-hole probe calibration and data reduction using a non-nulling technique was developed, verified, and reported earlier (Wendt and Reichert, 1993). The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify the uncertainty of five-hole probe results (e.g., total pressure, static pressure, and flow direction) and to determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance for improving the measurement technique.

  8. Usefulness of measurement of blood flow by RI plethysmography

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji; Ling, Qing Cheng; Mori, Yutaka; Tanaka, Uzuru; Shimada, Takao [Jikei Univ., Tokyo (Japan). School of Medicine

    1997-03-01

    We have developed the RI plethysmography, and have applied it to ordinary clinic diagnosis and the evaluation of treatment. The subjects were 58 cases (39 cases of the obstruction of the peripheral blood circulation: ASO 24 cases, TAO 4 cases and arterial sclerotic change 11 cases; the non-abnormal control was 19 cases). The clinical benefit of this method was evaluated. In the cases with 1 and 2 degrees of Fontaine`s classification and ASO and TAO, the blood flow of legs measured by our method significantly decreased in association with symptoms and angiographic findings. This method is suitable to the determination of angiography and evaluation of the effect of treatment. (author)

  9. Label-free fast 3D coherent imaging reveals pancreatic islet micro-vascularization and dynamic blood flow

    DEFF Research Database (Denmark)

    Berclaz, Corinne; Szlag, Daniel; Nguyen, David

    2016-01-01

    regulation of blood glucose homeostasis and is known to be affected from the early stage of diabetes. The deep localization of these islets inside the pancreas in the abdominal cavity renders their in vivo visualization a challenging task. A fast label-free imaging method with high spatial resolution......In diabetes, pancreatic β-cells play a key role. These cells are clustered within structures called islets of Langerhans inside the pancreas and produce insulin, which is directly secreted into the blood stream. The dense vascularization of islets of Langerhans is critical for maintaining a proper...... is required to study the vascular network of islets of Langerhans. Based on these requirements, we developed a label-free and three-dimensional imaging method for observing islets of Langerhans using extended-focus Fourier domain Optical Coherence Microscopy (xfOCM). In addition to structural imaging...

  10. Measurement of lower limb blood flow in patients with neurogenic claudication using positron emission tomography.

    Science.gov (United States)

    Keenan, G F; Ashcroft, G P; Roditi, G H; Hutchison, J D; Evans, N T; Mikecz, P; Chaloner, F; Dodd, M; Leonard, C; Porter, R W

    1995-02-15

    Ten subjects (seven with neurogenic claudication and three control subjects) underwent examination of lower limb muscle blood flow before and after exercise using positron emission tomography. To investigate the hypothesis that lower limb muscle ischemia was the origin of symptoms in neurogenic claudication. Patients with neurogenic claudication secondary to spinal stenosis experience lower limb discomfort after exercise similar to that of ischemic claudication. However, they do not have clinical evidence of peripheral vascular disease. The authors postulated that the lower limb discomfort in patients with neurogenic claudication may arise from muscle ischemia due to inadequate dilatation of arterioles in response to exercise, this itself arising secondary to sympathetic dysfunction due to spinal stenosis. Using O15-labeled water and positron emission tomography measured thigh and leg muscle blood flow response to exercise bilaterally in seven patients with unilateral neurogenic claudication and three control subjects were measured. The average values obtained for mid-thigh and mid-calf muscle perfusion at rest were 2.57 ml/min/100 g tissue (2.23-3.90) and 2.39 ml/min/100 g tissue (2.03-3.46), respectively. The average values obtained from mid-thigh and mid-calf perfusion after exercise were 4.41 ml/min/100 g tissue (2.8-6.0) and 4.87 ml/min/100 g (2.2-11.7). We found no difference in muscle perfusion between symptomatic and asymptomatic limbs in this group of patients. These studies suggest that muscle ischemia is not the origin of symptoms in most patients with neurogenic claudication.

  11. Phonation threshold flow measurements in normal and pathological phonation.

    Science.gov (United States)

    Zhuang, Peiyun; Sprecher, Alicia J; Hoffman, Matthew R; Zhang, Yi; Fourakis, Marios; Jiang, Jack J; Wei, Chun Sheng

    2009-04-01

    Phonation threshold flow (PTF) may provide a tool to assess laryngeal function and could differentiate between normal and pathological voices. Both polyps and nodules contribute to an increased PTF by creating an incomplete glottal closure and increased vocal fold mass and thickness. Prospective study. The Kay Elemetrics Phonatory Aerodynamic System (PAS) (Kay Elemetrics Corp., Lincoln Park, NJ) was used to collect mean flow rate (MFR) and PTF measurements from 40 normal subjects, 21 patients with vocal fold nodules, and 23 patients with vocal fold polyps. Gender-based differences were assessed using a t test. The effect of vocal pathology on PTF and MFR was determined with an ANOVA. Diagnostic potential was evaluated using a receiver operation characteristics (ROC) analysis. Both PTF (P = .047) and MFR (P = .008) were significantly affected by gender. Using a two-way ANOVA and correcting for gender differences, the influence of pathology on PTF was determined to be significant (P < .001). Post hoc tests found a significant difference between normal and polyp subjects (P < .001) but not normal and nodule subjects (P = .177) or nodule and polyp subjects (P = .246). ROC analysis found that PTF (area under the curve [AUC] = 0.691) and MFR (AUC = 0.684) had a similar diagnostic utility. PTF can be used to differentiate between normal and pathological voices. As a parameter that is experimentally sensitive to the biomechanical parameters providing its theoretical basis, it could be used clinically to analyze laryngeal functionality. Future research could focus on measuring PTF in other pathologies, such as paralysis or scarring, which would also affect the effort required to produce voice.

  12. A flow cytometric assay for simultaneously measuring the ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    proliferation index. (CFSE/PI) and flow ... Key words: Flow cytometry, CFSE, cytokine-induced killer cell, proliferation, cytotoxicity. .... PI-treated target cells, not incubated with effectors, were used to set marker for dead cells (M1).

  13. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve......, corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...... arrest. The mean T2 of non-flowing blood was found to be 105 +/- 31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate...

  14. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  15. Pressure drop measurement for flow-measuring dummy fuel assemblies in HANARO core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Taek; Chung, Heung June [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In order to characterize the flow distribution of HANARO core, flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies) were to be used in the HANARO commissioning. To do this instrumented dummy fuel assemblies were developed and the calibration tests were conducted in the thermal-hydraulic laboratory. Through this experiment the correlations for 6 instrumented dummy fuel assemblies were derived. The measured total pressure drop for the 36-element dummy fuel assembly was 211 kPa, which meets the design requirement, 209 kPa {+-} 5%. The form loss coefficients for the spacers were re-evaluated and the new correlation was obtained. 7 tabs., 13 figs., 2 refs. (Author).

  16. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2008-01-01

    speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present...

  17. Methods for measurement of gas flow velocity, methods for energy conversion using gas flow over solid material, and device therefor

    OpenAIRE

    Sood, Ajay Kumar; Ghosh, Shankar

    2004-01-01

    The present invention relates to a methods for energy conversion by gas flow over solid materials and also to a method for measurement of velocity of a gas flow over solid material such as doped semiconductors, graphite, and the like as a function of the 5 electricity generated in the solid material due to the flow of the gas the surface thereof using a combination of the Seebeck effect and Bernoulli's principle.

  18. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report.

    Science.gov (United States)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-07

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer.Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes.The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%.Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  19. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    Science.gov (United States)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  20. Measurement of retinal blood flow rate in diabetic rats: disparity between techniques due to redistribution of flow.

    Science.gov (United States)

    Leskova, Wendy; Watts, Megan N; Carter, Patsy R; Eshaq, Randa S; Harris, Norman R

    2013-04-26

    Reports of altered retinal blood flow in experimental models of type I diabetes have provided contrasting results, which leads to some confusion as to whether flow is increased or decreased. The purpose of our study was to evaluate early diabetes-induced changes in retinal blood flow in diabetic rats, using two distinctly different methods. Diabetes was induced by injection of streptozotocin (STZ), and retinal blood flow rate was measured under anesthesia by a microsphere infusion technique, or by an index of flow based on the mean circulation time between arterioles and venules. Measurements in STZ rats were compared to age-matched nondiabetic controls. In addition, the retinal distribution of fluorescently-labeled red blood cells (RBCs) was viewed by confocal microscopy in excised flat mounts. Retinal blood flow rate was found to decrease by approximately 33% in the STZ rats compared to controls (P contrast, the mean circulation time through the retina was found to be almost 3× faster in the STZ rats (P < 0.01). This contradiction could be explained by flow redistribution through the superficial vessels of the diabetic retina, with this possibility supported by our observation of significantly fewer RBCs flowing through the deeper capillaries. We conclude that retinal blood flow rate is reduced significantly in the diabetic rat, with a substantial decrease of flow through the capillaries due to shunting of blood through the superficial layer, allowing rapid transit from arterioles to venules.

  1. Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum

    DEFF Research Database (Denmark)

    Rasmussen, Tina

    measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system....... Mathematical arguments as well as hypotheses about the physiological system have been used to construct the models.......Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...

  2. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...... that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein......., corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...

  3. Blood flow measurement in extremity soft tissue sarcoma with technetium-99m hexamethyl-propyleneamineoxime and single photon emission computed tomography.

    Science.gov (United States)

    Hill, S; Heary, T; Flower, M A; Cronin, B; McCready, V R; Thomas, J M

    1994-11-01

    Blood flow measurements were made in 28 patients with soft tissue sarcoma of the extremities to investigate the prognostic significance of tumour vascularity. Four patients with benign tumours also underwent blood flow measurement. Mean and maximum tumour blood flow was calculated from technetium-99m hexamethyl-propyleneamineoxime uptake measured using single photon emission computed tomography (SPECT), tumour volume measured from SPECT transaxial image reconstructions and cardiac output assessed with Doppler ultrasonography. Twenty-seven malignant lesions and one benign tumour showed increased uptake of isotope relative to surrounding tissues. Mean sarcoma blood flow varied between 1 and 33 ml per 100 ml tumour per min, and maximum flow between 5 and 57 ml per 100 ml per min. Fourteen patients developed progressive disease during the first year of follow-up. Eight of 11 patients with a high isotope uptake ratio, eight of 12 with a high mean blood flow and eight of 14 with a high maximum blood flow relative to the respective medians for the series showed disease progression.

  4. Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations

    NARCIS (Netherlands)

    van der A, Dominic A.; O'Donoghue, Tom; Ribberink, Jan S.

    2010-01-01

    Near-bed oscillatory flows with acceleration skewness are characteristic of steep and breaking waves in shallow water. In order to isolate the effects of acceleration skewness on sheet flow sand transport, new experiments are carried out in the Aberdeen Oscillatory Flow Tunnel. The experiments have

  5. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility with a nat...

  6. Analysis and algorithmic generation of hepatic vascular systems.

    Science.gov (United States)

    Schwen, Lars Ole; Preusser, Tobias

    2012-01-01

    A proper geometric model of the vascular systems in the liver is crucial for modeling blood flow, the connection between the organ and the rest of the organism. In vivo imaging does not provide sufficient details, so an algorithmic concept for extending measured vascular tree data is needed such that geometrically realistic structures can be generated. We develop a quantification of similarity in terms of different geometric features. This involves topological Strahler ordering of the vascular trees, statistical testing, and averaging. Invariant features are identified in human clinical in vivo CT scans. Results of the existing "Constrained Constructive Optimization" algorithm are compared to real vascular tree data. To improve bifurcation angles in the algorithmic results, we implement a postprocessing step calibrated to the measured features. This framework is finally applied to generate realistic additional details in a patient-specific hepatic vascular tree data set.

  7. In vivo measurement of blood flow in a micro-scale stenosis model generated by laser photothermal blood coagulation.

    Science.gov (United States)

    Lee, Sang Joon; Ha, Ho Jin

    2013-04-01

    Blood flow in a stenosed vessel is one of the most important issues, because it is closely related to the outbreak of circulatory diseases. To overcome the technological limitations encountered in the haemodynamic studies using in vitro stenosis models, the authors induced a stenosed flow model in the extraembryonic vessels of a chicken embryo. Blood was coagulated by laser irradiation to artificially form a stenosis on the designated spot in a straight blood vessel. Owing to photothermal coagulation of red blood cells (RBCs), the blood is denatured and a stable blood coagulum is induced in the vessel. The blood coagulum adheres firmly and stably on the vessel wall without any size variation. It disturbs the on-coming blood flow significantly. To investigate the haemodynamic characteristics of the blood flow in the stenosed vessel, a micro particle image velocimetry technique was employed using RBCs as tracers to measure the spatial distributions of velocity vectors, streamlines and shear rate. The present simple modelling of in vivo stenosis would be useful for investigating the basic haemodynamic mechanisms underlying circulatory vascular diseases.

  8. Magnetic resonance imaging and measurement of blood flow.

    OpenAIRE

    McDonnell, C H; Herfkens, R J; Norbash, A M; Rubin, G D

    1994-01-01

    Blood flow can be shown as a negative image with magnetic resonance spin-echo techniques or as a positive image with gradient-echo techniques. Phase contrast refers to techniques where structures can be seen because of flow-induced phase shifts. These techniques can show the presence (slow flow) and also the direction of flow. Gradient-echo techniques--including phase-contrast versions--can be used with cardiac synchronization to obtain multiple images during the cardiac cycle. These images c...

  9. Tyrolean tensiometer: a new instrument for easy intraoperative tension measurement before vascular anastomosis.

    Science.gov (United States)

    Schubert, Heinrich M; Hohlrieder, Matthias; Buchegger, Johannes W; Brodbeck, Achim F; Hager, Martina; Zimmermann, Robert F; Moser, Thomas M

    2007-01-01

    In reconstructive surgery microsurgical repair of dissected arteries sometimes has to be done under longitudinal tension. Guidelines to support an objective decision on whether tension associated with direct suture is acceptable or whether grafting is needed, do not exist. All experimental data found concerned the clinical outcome of a certain length defect treated in various animal models. The aim of this study was to show the feasibility of a new instrument for measuring the tension required to adapt arterial stumps, thereby allowing surgical outcome to be assessed before beginning anastomosis. A modified tension spring balance was used to measure the force applied to the arterial stumps before knotting. Twenty-four rat femoral arteries were dissected, segments of up to 9mm were resected, and the tension needed for approximation was measured. These ex-vivo data were combined with clinical outcome data of previous animal trials. The tension measured increased proportionally to the size of the arterial gap created. The correlation between tension and arterial gap was found to be almost linear. The average additional time required for tension measurement using the Tyrolean Tensiometer was 13 (+/-6) s. High anastomotic tension may cause critical or even poor clinical outcome. None of the tension measurement methods described so far allow intraoperative measurement at a time when changes in strategy are still possible. The Tyrolean Tensiometer for the first time allows fast and reliable measurement of the tension acting on the first suture of an anastomosis.

  10. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    Directory of Open Access Journals (Sweden)

    Pengmin Pan

    2016-12-01

    Full Text Available An 8-electrode capacitance tomography (ECT sensor was built and used to measure moisture content (MC and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  11. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography.

    Science.gov (United States)

    Blatter, Cedric; Meijer, Eelco F J; Nam, Ahhyun S; Jones, Dennis; Bouma, Brett E; Padera, Timothy P; Vakoc, Benjamin J

    2016-07-05

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels.

  12. Electrophysiological measurement of information flow during visual search.

    Science.gov (United States)

    Cosman, Joshua D; Arita, Jason T; Ianni, Julianna D; Woodman, Geoffrey F

    2016-04-01

    The temporal relationship between different stages of cognitive processing is long debated. This debate is ongoing, primarily because it is often difficult to measure the time course of multiple cognitive processes simultaneously. We employed a manipulation that allowed us to isolate ERP components related to perceptual processing, working memory, and response preparation, and then examined the temporal relationship between these components while observers performed a visual search task. We found that, when response speed and accuracy were equally stressed, our index of perceptual processing ended before both the transfer of information into working memory and response preparation began. However, when we stressed speed over accuracy, response preparation began before the completion of perceptual processing or transfer of information into working memory on trials with the fastest reaction times. These findings show that individuals can control the flow of information transmission between stages, either waiting for perceptual processing to be completed before preparing a response or configuring these stages to overlap in time. © 2015 Society for Psychophysiological Research.

  13. Use of regadenoson for measurement of fractional flow reserve.

    Science.gov (United States)

    Prasad, Aditya; Zareh, Meena; Doherty, Reece; Gopal, Ambarish; Vora, Hita; Somma, Keith; Mehra, Anilkumar; Clavijo, Leonardo C; Matthews, Ray V; Shavelle, David M

    2014-02-15

    To compare the use of regadenoson to adenosine for measurement of fractional flow reserve (FFR). FFR is an accepted method to assess the functional significance of intermediate coronary artery stenoses and uses adenosine to induce maximal hyperemia. The use of the selective A2a receptor agonist regadenoson for FFR is not established. Fifty-seven patients undergoing clinically indicated FFR assessment of intermediate coronary stenoses were included. For the initial assessment of FFR, hyperemia was achieved by a standard intravenous adenosine infusion (140 mcg/kg/min). After a washout period of 10 min, FFR was reassessed using regadenoson as a single 0.4 mg intravenous bolus. FFR measurements were recorded at baseline and following maximal hyperemia with both agents. Mean age was 57 ± 8 years and 47 were male. Sixty coronary lesions were evaluated and were located in the left anterior descending in 34, the left circumflex in 9, right coronary in 15, and left main coronary artery in 2. Mean ( ± SD) FFR following adenosine and regadenoson was 0.79 ( ± 0.09) and 0.79 (±0.09), respectively, P = NS. Time to FFR nadir was shorter with regadenoson compared to adenosine, 36.6 ± 24 versus 66 ± 0.19 sec, P regadenoson. Regadenoson is a viable alternative to intravenous adenosine for achieving maximal hyperemia during FFR assessment. Compared to adenosine, regadenoson has a similar hemodynamic response, achieves more rapid hyperemia, is easier to use, and has an excellent side-effect profile. Copyright © 2013 Wiley Periodicals, Inc.

  14. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    Science.gov (United States)

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  15. Exercise Training Could Improve Age-Related Changes in Cerebral Blood Flow and Capillary Vascularity through the Upregulation of VEGF and eNOS

    Directory of Open Access Journals (Sweden)

    Sheepsumon Viboolvorakul

    2014-01-01

    Full Text Available This study aimed to investigate the effect of exercise training on age-induced microvascular alterations in the brain. Additionally, the association with the protein levels of vascular endothelial growth factor (VEGF and endothelial nitric oxide synthase (eNOS was also assessed. Male Wistar rats were divided into four groups: sedentary-young (SE-Young, n=5, sedentary aged (SE-Aged, n=8, immersed-aged (IM-Aged, n=5, and exercise trained-aged (ET-Aged, 60 minutes/day and 5 days/week for 8 weeks, n=8 rats. The MAPs of all aged groups, SE-Aged, IM-Aged, and ET-Aged, were significantly higher than that of the SE-Young group. The regional cerebral blood flow (rCBF in the SE-Aged and IM-Aged was significantly decreased as compared to SE-Young groups. However, rCBF of ET-Aged group was significantly higher than that in the IM-Aged group (P<0.05. Moreover, the percentage of capillary vascularity (%CV and the levels of VEGF and eNOS in the ET-Aged group were significantly increased compared to the IM-Aged group (P<0.05. These results imply that exercise training could improve age-induced microvascular changes and hypoperfusion closely associated with the upregulation of VEGF and eNOS.

  16. Measurement of rotating flows using PIV and image derotation

    Energy Technology Data Exchange (ETDEWEB)

    Stickland, M.T.; Scanlon, T.J.; Waddell, P. [University of Strathclyde, Department of Mechanical Engineering, Glasgow, G1 1XJ (United Kingdom); Fernandez-Francos, J.; Blanco, E. [University of Oviedo, Fluid Mechanics Group, Asturias (Spain)

    2003-02-01

    This paper describes the use of a rotating all-mirror image derotator system, high-speed video and particle image velocimetry (PIV) to visualise and quantitatively examine the flow patterns between the blades of a centrifugal impeller. The flow field relative to the moving centrifugal impeller is presented. (orig.)

  17. Measurement of rotating flows using PIV and image derotation

    Science.gov (United States)

    Stickland, M. J.; Scanlon, T. J.; Waddell, P.; Fernandez-Francos, J.; Blanco, E.

    2003-02-01

    This paper describes the use of a rotating all-mirror image derotator system, high-speed video and particle image velocimetry (PIV) to visualise and quantitatively examine the flow patterns between the blades of a centrifugal impeller. The flow field relative to the moving centrifugal impeller is presented.

  18. [Quantification of fluid flow in magnetic resonance tomography: an experimental study of a flow model and liquid flow measurements in the cerebral aqueduct in volunteers].

    Science.gov (United States)

    Brinkmann, G; Harlandt, O; Muhle, C; Brossmann, J; Heller, M

    2000-12-01

    To study the feasibility o MRI for quantification of fluid flow in a tube model and the cerebral aqueduct (CA) in volunteers. All studies were performed on a 1.5 T MR scanner using a head coil and a FLASH 2D phase contrast sequence with a velocity encoding at 20 cm/s. Flow (real value, ml/sec) of a saline fluid was measured in a flexible tube model with different inside diameters: 0.75-3 mm. Three flow velocities were given (normal value). To test the reproducibility, three studies were done using a flow of 0.12 or 0.14 ml/sec and a tube diameter of 0.75 and 2.0 mm. The ratio of normal to real flow value was calculated (ideal ratio = 1). MRI of CA and flow quantification was done in 24 volunteers (28 +/- 4 years). Using tubes with a diameter of 0.75 and 1.5 mm the real flow was sometimes higher than the velocity encoding of the phase contrast sequences. Because of this measurements of the fluid flow and the flow velocities were impossible. There was agreement for fluid flow quantification in the tube of 3.0 mm and high agreement in the tube of 2.0 mm in diameter with reproducible results. The mean diameter of the CA in normal subjects was 2.0 +/- 0.3 mm, the mean cerebral flow was 0.04 +/- 0.02 ml/sec and the peak velocity 3.06 +/- 1.59 cm/sec. Reliable flow quantification with MRI is feasible if the diameter of the lumen is greater than 1.5 mm, and if the flow velocity is lower than the velocity encoding. In cases of smaller diameters and higher flow velocities the velocity encoding has to be changed. Because of this the quantification seems to be inaccurate in cases of aqueductal stenosis with the method we used.

  19. Developing measures for the evaluation of information flow efficiency in supply chains

    Directory of Open Access Journals (Sweden)

    Johanna A. Badenhorst

    2013-05-01

    Full Text Available Member organisations in a supply chain are dependent on each other to provide material, services and information to perform optimally in the supply chain. Efficient, unrestricted information flow is needed in supply chains to function properly. Information flow is thus an element of supply chain management that needs to be managed. Yet, no indication could be found in supply chain management literature of the measurement of information flow efficiency. Hence, the aim of this article is to explore the measurement of information flow efficiency in supply chain management (SCM and exploratively develop possible measures (indicators and associated metrics to measure the efficiency of information flow.In this research the theory of information and related concepts, the basic notions of information systems and the models of business performance measurement were explored. Based on information flow theory and information flow characteristics a research instrument was developed. It was used in a survey to seek inputs from supply chain managers as to the usefulness of characteristics as indicators and metrics for the measurement of information flow efficiency in a supply chain. The main contribution of the study is the development of a conceptual framework of indicators and metrics that may be used to evaluate the efficiency of information flows in supply chains. The results of this study can be used as a basis for further studies to validate the instrument for measuring information flow efficiency and to develop scales to actually measure information flow efficiency.

  20. Investigation of Ultrasound-Measured Flow Velocity, Flow Rate and Wall Shear Rate in Radial and Ulnar Arteries Using Simulation.

    Science.gov (United States)

    Zhou, Xiaowei; Xia, Chunming; Stephen, Gandy; Khan, Faisel; Corner, George A; Hoskins, Peter R; Huang, Zhihong

    2017-05-01

    Parameters of blood flow measured by ultrasound in radial and ulnar arteries, such as flow velocity, flow rate and wall shear rate, are widely used in clinical practice and clinical research. Investigation of these measurements is useful for evaluating accuracy and providing knowledge of error sources. A method for simulating the spectral Doppler ultrasound measurement process was developed with computational fluid dynamics providing flow-field data. Specific scanning factors were adjusted to investigate their influence on estimation of the maximum velocity waveform, and flow rate and wall shear rate were derived using the Womersley equation. The overestimation in maximum velocity increases greatly (peak systolic from about 10% to 30%, time-averaged from about 30% to 50%) when the beam-vessel angle is changed from 30° to 70°. The Womersley equation was able to estimate flow rate in both arteries with less than 3% error, but performed better in the radial artery (2.3% overestimation) than the ulnar artery (15.4% underestimation) in estimating wall shear rate. It is concluded that measurements of flow parameters in the radial and ulnar arteries with clinical ultrasound scanners are prone to clinically significant errors. Copyright © 2017. Published by Elsevier Inc.

  1. Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography

    Science.gov (United States)

    Kowalski, William J.; Teslovich, Nikola C.; Chen, Chia-Yuan; Keller, Bradley B.; Pekkan, Kerem

    2014-03-01

    Experimental and clinical data indicate that hemodynamic forces within the embryo provide critical biomechanical cues for cardiovascular morphogenesis, growth, and remodeling and that perturbed flow is a major etiology of congenital heart disease. However, embryonic flow-growth relationships are largely qualitative and poorly defined. In this work, we provide a quantitative analysis of in vivo flow and growth trends in the chick embryo using optical coherence tomography (OCT) to acquire simultaneous velocity and structural data of the right vitelline artery continuously over a ten hour period beginning at stage 16 (hour 54). We obtained 3D vessel volumes (15 μm lateral, 4.3 μm axial resolutions, 6 μm slice spacing) at 60 minute intervals, taking a B-scan time series totaling one cardiac cycle at each slice. Embryos were maintained at a constant 37°C and 60% humidity during the entire acquisition period through an inhouse built chamber. The 3D vessel lumen geometries were reconstructed manually to assess growth. Blood flow velocity was computed from the central B-scan using red blood cell particle image velocimetry. The use of extended OCT imaging as a non-invasive method for continuous and simultaneous flow and structural data can enhance our understanding of the biomechanical regulation of critical events in morphogenesis. Data acquired will be useful to validate predictive finite-element 3D growth models.

  2. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  3. Comparison of endometrial and subendometrial blood flow measured by three-dimensional power Doppler ultrasound between stimulated and natural cycles in the same patients.

    Science.gov (United States)

    Ng, Ernest Hung Yu; Chan, Carina Chi Wai; Tang, Oi Shan; Yeung, William Shu Biu; Ho, Pak Chung

    2004-10-01

    Low implantation rates in stimulated IVF cycles may be related to suboptimal endometrial perfusion. Endometrial and subendometrial blood flow was compared between stimulated and natural cycles in the same patients undergoing IVF. Three-dimensional (3D) ultrasound examination with power Doppler was performed in stimulated and natural cycles of 67 consecutive patients to measure endometrial thickness, uterine artery pulsatility index/resistance index, endometrial volume, vascularization index (VI)/flow index (FI)/vascularization flow index (VFI) of endometrial and subendometrial regions. Endometrial and subendometrial blood flow was absent in four (6.0%) patients in the stimulated cycle and two (3.0%) patients in the natural cycle. Endometrial and subendometrial VI/FI/VFI were significantly lower in stimulated cycles than those in natural cycles. The median (95% CI) decreases in endometrial VI/FI/VFI were 35.8% (-2.5, 216.8), 5.0% (0.1, 12.3) and 48.4% (2.5, 315.3) respectively whereas the corresponding decreases in the subendometrial region were 66.6% (-0.2, 220.5), 4.3% (0.8, 16.2) and 76.3% (41.0, 303.4) respectively. Endometrial and subendometrial blood flow was significantly lower in the stimulated cycle than that in the natural cycle.

  4. Cerebral vascular effects of non-invasive laserneedles measured by transorbital and transtemporal Doppler sonography.

    Science.gov (United States)

    Litscher, G; Schikora, D

    2002-01-01

    Laserneedles represent a new non-invasive optical stimulation method which is described for the first time in this paper. We investigated 27 healthy volunteers (mean age+/-SD: 25.15+/-4.12 years; range: 21-38 years; 14 female, 13 male) in a randomised cross-over trial to study differences between laserneedle acupuncture and manual needle acupuncture in specific cerebral parameters. Mean blood flow velocity ( v(m)) showed specific and significant increases in the ophthalmic artery during laserneedle stimulation ( p=0.01) and during manual needle stimulation ( p<0.001) at vision-related acupoints. At the same time insignificant alterations in v(m) were found in the middle cerebral artery for both acupuncture methods. The eight laserneedles used in this study were arranged at the end of the optical fibres. Each fibre was connected to a semiconductor laser diode emitting at 685 nm with a primary output power of about 55 mW. Optical stimulation using properly adjusted laserneedles has the advantage that the stimulation can hardly be felt by the patient and the operator may also be unaware of whether the laserneedle system is active, and therefore true double blind studies in acupuncture research can be performed.

  5. Photobleaching measurements of pigmented and vascular skin lesions: results of a clinical trial

    Science.gov (United States)

    Lihachev, Alexey; Rozniece, Kristine; Lesins, Janis; Spigulis, Janis

    2011-07-01

    The autofluorescence photobleaching intensity dynamics of in vivo skin and skin pathologies under continuous 532 nm laser irradiation have been studied. Overall the 141 human skin malformations were investigated by laser induced skin autofluorescence photobleaching analysis. Details of equipment are described along with some measurement results illustrating potentiality of the technology.

  6. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    Science.gov (United States)

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  7. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tiffany J. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Keck School of Medicine of the University of Southern California, Los Angeles, CA (United States); Girard, Erin [Siemens Corporation, Corporate Technology, Princeton, NJ (United States); Shellikeri, Sphoorti; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Setser, Randolph [Siemens Medical Solutions USA, Inc., Hoffman Estates, IL (United States)

    2016-03-15

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. (orig.)

  8. Measurement of the flow past a cactus-inspired cylinder

    Science.gov (United States)

    Oweis, Ghanem F.; El-Makdah, Adnan M.

    2012-11-01

    Desert cacti are tall cylindrical plants characterized by longitudinal u- or v-shaped grooves that run parallel to the plant axis, covering its surface area. We study the wake flow modifications resulting from the introduction of cactus-inspired surface grooves to a circular cylinder. Particle image velocimetry PIV is implemented in a wind tunnel to visualize and quantify the wake flow from a cactus cylinder in cross wind and an equivalent circular cylinder at Re O(1E5). The cactus wake exhibits superior behavior over its circular counterpart as seen from the mean and turbulent velocity profiles. The surface flow within the grooves is also probed to elucidate the origins of the wake alterations. Lastly, we use simple statistical analysis based only on the wake velocity fields, under the assumption of periodicity of the shedding, to recover the time varying flow from the randomly acquired PIV snapshots.

  9. Vascular Cures

    Science.gov (United States)

    ... is the first national program to bring the power of the patient to vascular research and care. ... Our recent national Vascular Research Summit brought together leaders from 31 institutions to generate collaborative projects for ...

  10. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions......, necessary precautions for the application of these experimental techniques are emphasized. Special attention has been carried out to elucidate the consequence of a choice of indicators having a large distribution volume in the tissues....

  11. Measuring and Modelling of the Traffic Flow at Microscopic Level

    Directory of Open Access Journals (Sweden)

    Rudi Čop

    2004-05-01

    Full Text Available The traffic flow theory is dealing with the better understandingof the traffic flow and its improvement. Most often, the researchedsubject was been the road traffic. It is namely thatheavy traffic and traffic jams are the frequent phenomena onthe roads.The traffic flow theory incorporates the different areas ofknowledge necessary to establish a successful traffic-flow simulationmodel. Good correlation between the simulation modelresults and data collected in the open road conditions are notthe only conditions which are necessary to approve the simulationmodel as accurate. The obtained simulation results may beused for the improvement of traffic conditions, only if themodel obeys the classical laws of physics.This paper is dealing with the simple microscopic model fortwo-vehicle-platoon behaviour in the traffic flow. The model isbased on solving of the delay differential equations. The simulationmodel results have been compared with the measurementresults. The comparison has enabled assessment of the selectedsimulation model to check whether it would be goodchoice for further traffic-flow researches at the microscopiclevel.

  12. Development of a low flow meter for measuring gas production in bioreactors

    Science.gov (United States)

    Accurate measurement of gas production from biological processes is important in many laboratory experiments. A gas flow rate measurement system, consisting of an embedded controller operating three gas meters, was developed to measure volumetric flows between 0 and 8 ml min-1 (1 atm, 273.15 K). The...

  13. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    Science.gov (United States)

    2017-08-01

    Katija, K., S. P. Colin, J. H. Costello, and J. O. Dabiri. 2011. “Quantitatively Measuring In - Situ Flows Using a Self-Contained Underwater... Measurements with Acoustic Cameras” ERDC/CHL SR-17-1 ii Abstract Modern science lacks the capability to quantify flow velocity fields in turbid...transparent fluid (so the camera can observe the light reflected by the particles). Acoustic-based flow measurement equipment used in the field (e.g

  14. A new debris flow monitoring barrier to measure debris flow impact/structure/ground interaction in the Gadria torrent

    Science.gov (United States)

    Nagl, Georg; Hübl, Johannes

    2017-04-01

    Debris flow monitoring is a keystone in debris flow research. Based on the lack of investigations of the interaction of rapid mass movement and structural mitigation measures, a new monitoring system has been installed in the well monitored Gadria torrent in South Tyrol. For design of active structural measures, like check dams, the engineering task is to come to an amicable solution of all necessary subjects. Starting with the estimation of parameters of the rapid mass movement itself to the design load and finally to the foundation of the structure. At all stages big uncertainties are given. The basis for accurate design is a comprehensive approach. For this reason, a new monitoring station was built in autumn 2016, to investigate the interaction of a debris flow with the structures and the ground. Two structures unify the new monitoring system. The first, a transversal check dam, flush to channel bed, contain two weighing devices each equipped with a pore pressure sensor. One device is also able to measure the shear force additional in two directions. The second barrier similar to a debris flow breaker but only with one singe wall centered on a foundation plate, is located downstream to the first one. 14 load cells are installed on the upward front of the structure to analyze the spatial force distribution of debris flow impact pressure. Nine earth pressure sensors under the foundation of the structure deliver the earth pressure distribution. The acceleration of the construction can be measured by a 3D accelerometer installed on the top. In case of a movement, two extensometers detect any displacement. Mounted strain gauges give insights of stresses in concrete and reinforcement. Each sensor has a sampling frequency of 2400 Hz. Furthermore it is planned to measure the flow velocity distribution over flow depth too. The new monitoring station should help to acquire data for understanding the debris flow/structure/ground interaction to facilitate the improvement

  15. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    Science.gov (United States)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  16. The history of the microsphere method for measuring blood flows with special reference to myocardial blood flow: a personal memoir.

    Science.gov (United States)

    Hoffman, Julien I E

    2017-04-01

    We use many types of equipment and technologies to make our measurements but give little thought to how they developed. Evolution was once described as a series of recoils from blind alleys, and this is exemplified by the gradual development of the microsphere method of measuring blood flows. The microsphere method is one of the most frequently used methods for measuring blood flow to organs and portions of organs. The method can measure myocardial blood flow with reasonable accuracy (within 10%) down to samples weighing >50 mg but probably will not do so for samples weighing 1-10 mg. Microspheres with diameters from 10 to 15 μm provide the best compromise between accurate flow measurement and retention in tissue. Radioactive labels have been almst entirely replaced by fluorescent labels, but colored microspheres and neutron-activated labels are also used.NEW & NOTEWORTHY The contributions of the various individuals who developed the microsphere method of measuring regional blood flows and how these advances took place are brought to light in this paper. Copyright © 2017 the American Physiological Society.

  17. Função endotelial vascular em pacientes com fluxo coronário lento e os efeitos do nebivolol Vascular endothelial function in patients with coronary slow flow and the effects of nebivolol

    Directory of Open Access Journals (Sweden)

    Yilmaz Gunes

    2011-10-01

    Full Text Available FUNDAMENTO: A função endotelial braquial tem sido associada ao fluxo lento coronário (FLC. O aumento do fluxo sanguíneo para a artéria braquial faz com que o endotélio libere óxido nítrico (ON, com subsequente vasodilatação. Além de sua atividade com betabloqueador, o nebivolol provoca vasodilatação, aumentando a liberação endotelial de ON. OBJETIVO: Avaliar os efeitos do nebivolol na função endotelial vascular em pacientes com FLC. MÉTODOS: 46 pacientes com FLC e 23 indivíduos com artérias coronárias epicárdicas normais foram examinados com ecocardiografia transtorácica e ultrassonografia da artéria braquial. Os pacientes foram reavaliados dois meses após o tratamento com aspirina ou aspirina e nebivolol. RESULTADOS: Os pacientes com FLC apresentaram maior índice de massa corporal (26,5 ± 3,3 vs. 23,8 ± 2,8, p BACKGROUND: Brachial endothelial function has been associated with coronary slow flow (CSF. Increasing blood flow to brachial artery provokes endothelium to release nitric oxide (NO with subsequent vasodilatation. Besides its β1-blocker activity, nebivolol causes vasodilatation by increasing endothelial NO release. OBJECTIVE: To assess the effects of nebivolol on vascular endothelial function in patients with CSF. METHODS: Forty-six patients with CSF and 23 individuals with normal epicardial coronary arteries were examined with transthoracic echocardiography and brachial artery ultrasonography. The patients were reevaluated two months after treatment with aspirin or aspirin plus nebivolol. RESULTS: Patients with CSF had higher body mass index (26.5 ± 3.3 vs. 23.8 ± 2.8, p < 0.001, mitral inflow isovolumetric relaxation time (IVRT (114.9 ± 18.0 vs. 95.0 ± 22.0 msec, p < 0.001 and lower left ventricular ejection fraction (LVEF (63.5 ± 3.1% vs. 65.4 ± 2.2, p = 0.009, HDL-cholesterol (39.4 ± 8.5 vs. 45.8 ± 7.7 mg/dL, p = 0.003 and brachial flow-mediated dilatation (FMD (6.1 ± 3.9% vs. 17.6 ± 4.5%, p < 0

  18. Method and system for measuring multiphase flow using multiple pressure differentials

    Science.gov (United States)

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  19. Liver blood flow measurement in the rat. The electromagnetic versus the microsphere and the clearance methods

    NARCIS (Netherlands)

    Daemen, M. J.; Thijssen, H. H.; van Essen, H.; Vervoort-Peters, H. T.; Prinzen, F. W.; Struyker Boudier, H. A.; Smits, J. F.

    1989-01-01

    This study describes the simultaneous measurement of hepatic arterial and portal venous blood flow in the pentobarbital anesthetized rat by means of electromagnetic flowmeters. Hepatic arterial flow was 0.21 +/- 0.02 mL/min/g liver, and portal venous flow was 1.53 +/- 0.19 mL/min/g liver (n = 20).

  20. Strategies for measuring flows of reactive nitrogen at the landscape scale

    DEFF Research Database (Denmark)

    Theobald, M.R.; Akkal, N.; Bienkowski, J.

    2011-01-01

    .g., hydrological flows) or the interface between two media (e.g., exchange between the soil and the atmosphere). However, the study of flows of Nr at the landscape scale requires a more integrated approach that combines measurement techniques to quantify the flows from one medium to the next. This paper discusses...

  1. Economic method for measuring ultra-low flow rates of fluids

    Science.gov (United States)

    Bogdanovic, J. A.; Keller, W. F.

    1970-01-01

    Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.

  2. a Method of Measuring the Dynamic Flow Resistance and the Acoustic Measurement of the Effective Static Flow Resistance in Stratified Rockwool Samples

    Science.gov (United States)

    Picard, M. A.; Solana, P.; Urchueguía, J. F.

    1998-09-01

    In our work we have analyzed different stratified rockwool samples, with considerable differences regarding density, mean pore diameter, and porosity, by means of a new method for the measurement of the dynamic flow resistance based on the electrical analogy. This method enables us to measure this parameter without the need for placing the sample between two microphones. Our experimental results have been compared to those obtained with a different measurement scheme and, from a theoretical point of view, we have examined the extent to which the capillary pore approximation can be utilized in intermediate flow regimes and Poiseuille flow regimes and in real situations. For this purpose, a static flow resistivity, which was also approximated using an acoustic method and a commonly accepted theoretical approximation, was calculated based on a microscopic study of the samples and the fibre's diameter. Regarding the conclusions obtained, the results show that the new experimental procedure for determining the dynamic flow resistance is of interest in the intermediate and Poiseuille flow regimes in which, within the limitation of our experimental set-up, good results were obtained. The acoustic procedure for measuring a static flow resistivity delivered good results only for a regime close to Poiseuille, which was obtained only with higher density samples.

  3. Flow measurements in dialysis shunts: lack of agreement between conventional Doppler, CVI-Q, and ultrasound dilution

    NARCIS (Netherlands)

    A.L. Zanen; I.M. Toonder; E. Korten (Eunice); C.H. Wittens; P.P.N.M. Diderich (Philip)

    2001-01-01

    textabstractBACKGROUND: Measuring flow in dialysis shunts is recommended to predict imminent thrombosis. Multiple methods for measuring blood flow are in use. Numerous ultrasound protocols exist which determine volume flow using a conventional Doppler (CD) frequency

  4. Comparison of uteroplacental blood flow in normal and pre-eclamptic patients measurement with technetium-99m and a computer-linked gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.H.; Moon, H.; Kim, D.S.; Cho, S.S.

    1985-05-01

    Uteroplacental blood flow studies in preeclampsia are of special interest since the vascular changes reported in this disease might constitute a structural basis for a reduction of blood flow. Evidence has also been given for a decreased uteroplacental blood flow in preeclampsia. Among the various methods to estimate the maternal placental blood flow, the one most frequently reported in the literature during the last years has been the time activity analysis of short lived radiotracer such as technetium-99m or indium-113m injected intravenously. Only few studies with the above mentioned technique comparing normal and preeclampsia cases have been undertaken. In clinical practice we frequently experience difficuly in finding the optimal time to get the delivery in preeclampsia patients. The aim of this study was first to measure uteroplacental blood flow in preeclamptic pregnancies using a computer-linked gamma camera method for the time-activity analysis of technetium-99m and second to discuss the possibility of clinical application of these measurements for determination of fetal well-being and the timing of the delivery in these patients. Uteroplacental blood flow was measured from 13 preeclamptic patients and 19 pregnancies without any complication after 35 completed weeks of gestation from Jan. 1983 to Sep. 1983 at Obstetrics department of Hanyang University Hospital. (Author).

  5. Measurement of Plasma Ion Temperature and Flow Velocity from ...

    Indian Academy of Sciences (India)

    Abstract. The distinction between Doppler broadening and Doppler shift has been analysed, the differences between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. Local ion temperature and flow velocity have been derived from the chord-averaged emission line profile by a ...

  6. Modeling and Measurement of Turbulent Swirling Flows Through Abrupt Expansions.

    Science.gov (United States)

    1987-03-01

    machinable dielectric ( Melamine ) which was placed between the test section’s flange and the plenum. Finally, nylon bolts were used to secure the test...Breakdown," J. of Fluid Mechanics, Vol. 41, pt. 4, 1970, pp. 727-736. 24) Syred, B., and Beer , J.M., "Combustion in Swirling Flows: A Review

  7. Heuristic burst detection method using flow and pressure measurements

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Roer, Van de M.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  8. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... to the worm wheel arrangement. The combined effect of arm length, eccentricity, gear ratio and microstepping results in nanometre movement of the fine table. A schematic of the experimental set-up for SLM grazing incidence grating dye laser is shown in figure 2. The dye flow system consisted of a dye ...

  9. Poiseuille flow to measure the viscosity of particle model fluids.

    NARCIS (Netherlands)

    Backer, J.A.; Lowe, C.P.; Hoefsloot, H.C.J.; Iedema, P.D.

    2005-01-01

    The most important property of a fluid is its viscosity, it determines the flow properties. If one simulates a fluid using a particle model, calculating the viscosity accurately is difficult because it is a collective property. In this article we describe a new method that has a better signal to

  10. Model scale measurements of surface ship radiated flow noise

    NARCIS (Netherlands)

    Jong, C.A.F.; Bosschers, J.; Hasenpflug, H.

    2009-01-01

    Advances in weapon and sensor capabilities are driving an increased interest in the control of underwater signatures of naval platforms. The control of machinery and propeller noise is well understood, but there is a shortfall of knowledge of the mechanisms that govern noise due to the flow around

  11. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some...

  12. Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    This paper demonstrates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The proposed method relies on vector velocity fields acquired from ultrasound data. 2-D flow data are acquired at 18-23 frames/sec using the Transverse Oscillation...... approach. Pressure gradients are calculated from the measured velocity fields using the Navier-Stokes equation. Velocity fields are measured during constant and pulsating flow on a carotid bifurcation phantom and on a common carotid artery in-vivo. Scanning is performed with a 5 MHz BK8670 linear...... transducer using a BK Medical 2202 UltraView Pro Focus scanner. The calculated pressure gradients are validated through a finite element simulation of the constant flow model. The geometry of the flow simulation model is reproduced using MRI data, thereby providing identical flow domains in measurement...

  13. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  14. Time-series of turbulent flow in a pipe measured with PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Westerweel, Jerry

    1999-01-01

    Measurements with particle image velocimetry of the fully developed flow of water in a pipe with a Reynolds number of 5370 are presented. The measurements are taken with a frame rate high enough to capture the same flow structure on 2 or 3 frames. This makes it possible to estimate advection...

  15. A Raman anemometer for component-selective velocity measurements of particles in a flow

    NARCIS (Netherlands)

    Florisson, O.; de Mul, F.F.M.; de Winter, H.G.

    1981-01-01

    An anemometer for the measurement of the velocity of particles of different components in a flow, separate and apart from that of the flow itself, is described. As a component-selective mechanism Raman scattering is used. The velocity is measured by relating the autocorrelated scattering signal to

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  17. Mass flow measurement of granular materials in aerial application. Part 2: Experimental model validation

    NARCIS (Netherlands)

    Grift, T.E.; Walker, J.T.; Hofstee, J.W.

    2001-01-01

    A system was developed to measure the mass flow of granular fertilizer material in aerial spreader ducts. The flow process was regarded as the sequential passage of clusters containing multiple particles with varying diameters. An optical sensor was used to measure the cluster lengths on the fly. In

  18. Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow

    CERN Document Server

    Kinoshita, H; Hino, R; Kaminaga, M

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...

  19. Measuring Cloud Service Health Using NetFlow/IPFIX

    DEFF Research Database (Denmark)

    Drago, Idilio; Hofstede, Rick; Sadre, Ramin

    2015-01-01

    The increasing trend of outsourcing services to cloud providers is changing the way computing power is delivered to enterprises and end users. Although cloud services offer several advantages, they also make cloud consumers strongly dependent on providers. Hence, consumers have a vital interest...... to be immediately informed about any problems in their services. This paper aims at a first step toward a network-based approach to monitor cloud services. We focus on severe problems that affect most services, such as outages or extreme server overload, and propose a method to monitor these problems that relies...... solely on the traffic exchanged between users and cloud providers. Our proposal is entirely based on NetFlow/IPFIX data and, therefore, explicitly targets high-speed networks. By combining a methodology to reassemble and classify flow records with stochastic estimations, our proposal has the distinct...

  20. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  1. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    Science.gov (United States)

    2010-04-01

    inhomogeneity is focused by a lens in the plane of the Foucault knife where the slot image is formed. The so- called Toepler devices based on this principle...substantial constraints. In particular, the use of devices with the Foucault knife is ineffective in hypersonic flows, which are characterized by extremely...visualization transparent (AVT) instead of the Foucault knife [26, 27]. In this case, the transparent is made of a phototropic material (e.g., silica

  2. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  3. Decreased distensibility of a passive vascular bed in diabetes mellitus

    DEFF Research Database (Denmark)

    Faris, I; Agerskov, K; Henrikson, O

    1982-01-01

    in blood flow in the locally relaxed bed was 77%. The results are consistent with the hypothesis that the reduced distensibility seen in the diabetic subjects was related to the presence of microvascular disease and that the behaviour of a vascular bed relaxed by the local injection of papaverine might......This study was undertaken to determine whether the distensibility of a passive vascular bed is reduced in Type 1 (insulin-dependent) diabetic patients with microangiopathy. The change in blood flow induced by 45 degrees head-up tilting was studied in two systems: (a) following maximal ischaemic...... exercise and (b) in a vascular bed locally paralysed by the injection of papaverine. Five normal subjects, six patients with long-standing Type 1 diabetes and six non-diabetic patients with severe atherosclerosis affecting the legs were studied. Blood flow was measured in the anterior tibial muscle...

  4. Dynamic adaption of vascular morphology

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  5. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    Science.gov (United States)

    Vitale, Sarah A; Robbins, Gary A

    2017-07-01

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.

  6. Measuring Cerebral Blood Flow in Moyamoya Angiopathy by Quantitative Magnetic Resonance Angiography Noninvasive Optimal Vessel Analysis.

    Science.gov (United States)

    Khan, Nadia; Lober, Robert M; Ostergren, Lauren; Petralia, Jacob; Bell-Stephens, Teresa; Navarro, Ramon; Feroze, Abdullah; Steinberg, Gary K

    2017-12-01

    Moyamoya disease causes progressive occlusion of the supraclinoidal internal carotid artery, and middle, anterior, and less frequently the posterior cerebral arteries, carrying the risk of stroke. Blood flow is often partially reconstituted by compensatory moyamoya collaterals and sometimes the posterior circulation. Cerebral revascularization can further augment blood flow. These changes to blood flow within the cerebral vessels, however, are not well characterized. To evaluate blood flow changes resulting from the disease process and revascularization surgery using quantitative magnetic resonance angiography with noninvasive optimal vessel analysis (NOVA). We retrospectively analyzed 190 preoperative and postoperative imaging scans in 66 moyamoya patients after revascularization surgery. Images were analyzed for blood flow using NOVA and compared with preoperative angiographic staging and postoperative blood flow. Blood flow rates within superficial temporal artery grafts were compared based on angiographic evidence of patency. Diseased vessels had lower blood flow, correlating with angiographic staging. Flow in posterior cererbal and basilar arteries increased with disease severity, particularly when both the anterior and middle cerebral arteries were occluded. Basilar artery flow and ipsilateral internal carotid artery flow decreased after surgery. Flow rates were different between angiographically robust and poor direct bypass grafts, as well as between robust and patent grafts. Preoperative changes in cerebral vessel flow as measured by NOVA correlated with angiographic disease progression. NOVA demonstrated that preoperative augmentation of the posterior circulation decreased after surgery. This report is the first to quantify the shift in collateral supply from the posterior circulation to the bypass graft.

  7. Experimental measurement of structural power flow on an aircraft fuselage

    Science.gov (United States)

    Cuschieri, J. M.

    1991-01-01

    An experimental technique is used to measure structural intensity through an aircraft fuselage with an excitation load applied near one of the wing attachment locations. The fuselage is a relatively large structure, requiring a large number of measurement locations to analyze the whole of the structure. For the measurement of structural intensity, multiple point measurements are necessary at every location of interest. A tradeoff is therefore required between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, structural intensity vectors are measured at locations distributed throughout the fuselage. To minimize the errors associated with using the four transducer technique, the measurement locations are selected to be away from bulkheads and stiffeners. Furthermore, to eliminate phase errors between the four transducer measurements, two sets of data are collected for each position, with the orientation of the platform with the four transducers rotated by 180 degrees and an average taken between the two sets of data. The results of these measurements together with a discussion of the suitability of the approach for measuring structural intensity on a real structure are presented.

  8. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    DEFF Research Database (Denmark)

    Sönmezoğlu, K; Sperling, B; Henriksen, T

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99mTc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF...... reduction (average 10%) in contralateral hemispheric cortex. In all four cases clinical signs of unilateral cerebellar dysfunction were still present when rescanned 1 to 4 months later and the relative CBF decrease in the contralateral cortex of the forebrain also remained. The basal ganglia contralateral...

  9. Experimental Measurement of the Flow Field of Heavy Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Fred Browand; Charles Radovich

    2005-05-31

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs

  10. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535ÀC. Currently available flow and pressure instrumentation for molten salt is limited to 535ÀC and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice wont be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  11. Feasibility of exhaled nitric oxide measurements at various flow rates in children with asthma.

    Science.gov (United States)

    Robroeks, Charlotte M H H T; van Vliet, Dillys; Hendriks, Han J E; Dompeling, Edward; Jöbsis, Quirijn

    2010-02-01

    Measurement of bronchial and alveolar exhaled nitric oxide (NO) levels could be of clinical importance for the treatment of asthma. To discriminate between alveolar and bronchial NO, measurements need to be assessed at various flow rates. To study the feasibility, linearity, and long-term repeatability of NO measurements at four different exhalation flow rates in children with asthma. Twenty-one children with moderate persistent asthma, aged 6-12 yrs, were included in the study. NO was measured according to the ATS/ERS guidelines, using the NIOX analyzer with flow restrictors of 30, 50, 100, and 200 ml/s. Duration of the measurements ranged from 6-10 s, depending on the flow rate. The tests were repeated 3 and 6 months after the first NO measurement. Feasibility of NO measurements at these four flow rates increased from 67% to 91% and 95% at the first, second and third visit, respectively. A significant learning effect was present. Age and lung function indices did not influence success or failure of the tests. At the first measurements occasions, no problems occurred during the NO analysis at a 100 ml/s flow rate. There was a 75-90% success rate when performing the test using flow rates of 30, 50, and 200 ml/s. However, repeating the tests resulted in a 100% success rate. Measurements were not successful if: (i) children ran out of air; (ii) NO concentration exceeded 200 ppb; (iii) the measured NO flow was unstable; and (iv) the NO plateau was not formed. This study showed good feasibility and linearity of NO measurements in asthmatic children of 6 yrs and over at flow rates between 50-200 ml/s. A significant learning effect was present. The long-term reproducibility of alveolar and bronchial NO values during 6 months was moderate. © 2010 The Authors. Journal compilation © 2010 Blackwell Munksgaard.

  12. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    Directory of Open Access Journals (Sweden)

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  13. Dynamic measurements of total hepatic blood flow with Phase Contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yzet, Thierry [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Yzet.Thierry@chu-amiens.fr; Bouzerar, Roger [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: bouzerar.roger@chu-amiens.fr; Baledent, Olivier [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Olivier.Baledent@chu-amiens.fr; Renard, Cedric [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Renard.Cedric@chu-amiens.fr; Lumbala, Didier Mbayo [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: MbayoLumbala.Didier@chu-amiens.fr; Nguyen-Khac, Eric [Mobile Unit of Alcoology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Nguyen-Khac.Eric@chu-amiens.fr; Regimbeau, Jean-Marc [Department of Visceral and Digestive General Surgery, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: regimbeau.jean-marc@chu-amiens.fr; Deramond, H. [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: deramond.herve@chu-amiens.fr; Meyer, Marc-Etienne [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Meyer.Marc-Etienne@chu-amiens.fr

    2010-01-15

    Background/Aims: To measure total hepatic blood flow including portal and proper hepatic artery flows as well as the temporal evolution of the vessel's section during a cardiac cycle. Methods: Twenty healthy subjects, with a mean age of 26 years, were explored. Magnetic resonance imaging blood flow measurements were carried out in the portal vein and the proper hepatic artery. MR studies were performed using a 1.5T imager (General Electric Medical Systems). Gradient-echo 2D Fast Cine Phase Contrast sequences were used with both cardiac and respiratory gatings. Data analysis was performed using a semi-automatic software built in our laboratory. Results: The total hepatic flow rate measured was 1.35 {+-} 0.18 L/min or 19.7 {+-} 4.6 mL/(min kg). The proper hepatic artery provided 19.1% of the total hepatic blood flow entering the liver. Those measurements were in agreement with earlier studies using direct measurements. Mean and maximum velocities were also assessed and a discrepancy between our values and the literature's Doppler data was found. Measurements of the portal vein area have shown a mean variation, defined as a 'pulsatility' index of 18% over a cardiac cycle. Conclusions: We report here proper hepatic artery blood flow rate measurements using MRI. Associated with portal flow measurements, we have shown the feasibility of total hepatic flowmetry using a non-invasive and harmless technique.

  14. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  15. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions. High......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  16. Calibration of Flow Cytometry for Quantitative Quantum Dot Measurements.

    Science.gov (United States)

    Mittal, Rowena; Bruchez, Marcel P

    2009-07-01

    Observations of quantum dot (QD) labeled cells in biomedical research are mainly qualitative in nature, which limits the ability of researchers to compare results experiment-to-experiment and lab-to-lab to improve the state-of-the-art. Labeled cells are useful in a range of in vitro and in vivo assays where tracking behavior of administered cells is integral for answering research questions in areas such as tissue engineering and stem cell therapy. Before the full potential of QD based toolsets can be realized in the clinic, uptake of QDs by cells must be quantified and standardized. This unit describes a novel, simple method to assess the number of QDs per cell using flow cytometry and commercially available standards. This quick and easy method can be used by all researchers to calibrate their flow cytometry instruments and settings, and quantify QD uptake by cells for in vitro and in vivo experimentation for comparable results across QD conjugate types, cell types, research groups, lots of commercial QDs, and homemade QDs.

  17. Measurement of turbulent flow in a narrow open channel

    Directory of Open Access Journals (Sweden)

    Sarkar Sankar

    2016-09-01

    Full Text Available The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter. The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.

  18. Measuring and Modelling Crowd Flows - Fusing Stationary and Tracking Data

    CERN Document Server

    Treiber, Martin

    2016-01-01

    The two main data categories of vehicular traffic flow, stationary detector data and floating-car data, are also available for many Marathons and other mass-sports events: Loop detectors and other stationary data sources find their counterpart in the RFID tags of the athletes recording the split times at several stations during the race. Additionally, more and more athletes use smart-phone apps generating track data points that are the equivalent of floating-car data. We present a methodology to detect congestions and estimate the location of jam-fronts, the delay times, and the spatio-temporal speed and density distribution of the athlete's crowd flow by fusing these two data sources based on a first-order macroscopic model with triangular fundamental diagram. The method can be used in real-time or for analyzing past events. Using synthetic "ground truth" data generated by simulations with the Intelligent-Driver Model, we show that, in a real-time application, the proposed algorithm is robust and effective w...

  19. Characteristics of Cerebral Blood Flow in Vascular Dementia using SPM Analysis Compared to Normal Control and Alzheimer's Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [College of Medicine, Univ. of Donga, Busan (Korea, Republic of)

    2003-07-01

    Cerebral perfusion pattern of vascular dementia (VD) was not well established and overlap of cerebral perfusion pattern was reported between VD and Alzheimer's dementia (AD). The aim of this study is to assess the specific patterns of SPECT finding in VD compared with normal control subjects and to disclose differences of cerebral blood flow between subjects with VD and AD were investigated using statistic parametric mapping analysis. Thirty-two VD (mean age ; 67.86.4 years, mean CDR ; 0.980.27), 51 AD (mean age ; 71.47.2 years, CDR ; 1.160.47), which were matched for age and severity of dementia, and 30 normal control subjects (mean age ; 60.17.7 years) participated in this study. The Tc-99m HMPAO brain perfusion SPECT data were analyzed by SPM99. The SPECT data of the patients with VD were compared to those of the control subjects and then compared to the patients with AD. SPM analysis of the SPECT image showed significant perfusion deficits in the both frontal (both cingulate gyrus, both inferior frontal gyrus, B no.47, right frontal rectal gyrus, left frontal subcallosal gyrus, B no.25), both temporal (right insula, B no.13, left superior temporal gyrus, left parahippocampal gyrus, B no.35), occipital (occipital lingual gyrus), right corpus callosum and right cerebellar tonsil regions in subjects with VD compared with normal control subjects (uncorrected p<0.01). Comparison of the two dementia groups (uncorrected p<0.01) revealed significant hypoperfusion in both parietal posterior central gyrus, right inferior frontal gyrus (B no.47), left insula, right thalamus (ventral lateral nucleus), right claustrum and right occipital cuneus regions in VD group compared with AD. There were no typical confined regional hypoperfusion areas but scattered multiple perfusion deficits in VD compared AD. These findings may be helpful to reflect the pathophysiological mechanisms of VD and to disclose differences of cerebral blood flow between subjects with VD and AD.

  20. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    Science.gov (United States)

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Application of Amplatzer vascular occluder in hepatic artery closure as a method of treatment of high-flow arterioportal fistula before liver transplantation.

    Science.gov (United States)

    Poncyljusz, Wojciech; Pauli, Wojciech

    2012-10-01

    Arterioportal fistula (APF) is an abnormal, direct connection between hepatic artery or its branch and the portal vein. Fistula can be acquired or, rarely, congenital. One of the acquired causes of fistula is a liver biopsy. Patients with liver cirrhosis are particularly vulnerable to its development due to the large number of performed biopsies. APF increases mortality and morbidity of liver transplantation procedure and may be a contraindication to it. The authors present a patient with liver cirrhosis, in whom percutaneous APF closure facilitated liver transplantation. We describe a case of a 50-year-old patient with liver cirrhosis and APF, probably formed as a result of liver biopsy. Due to the presence of a high-flow fistula, which elevated portal hypertension, patient did not qualify for the liver transplantation. Patient was transferred to the interventional radiology department, where the fistula's vascular supply was endovascularly closed using the Amplatzer occluder. This subsequently enabled the execution of transplantation. Percutaneous closure of APF should be considered a relatively simple and fast-acting tool to facilitate or even enable liver transplant surgery. Currently, there are more and more products available such as e.g. Amplatzer occluder to simplify the procedure and shorten the duration of exposure to ionizing radiation.

  2. Modeling neuro-vascular coupling in rat cerebellum

    DEFF Research Database (Denmark)

    Rasmussen, Tina; Holstein-Rathlou, Niels-Henrik; Lauritzen, Martin

    2009-01-01

    We investigated the quantitative relation between neuronal activity and blood flow by means of a general parametric mathematical model which described the neuro-vascular system as being dynamic, linear, time-invariant, and subjected to additive noise. The model was constructed from measurements b...

  3. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.; Reiman, E.M. [Univ. of Arizona, Tucson, AZ (United States)]|[Good Samaritan Regional Medical Center, Phoenix, AZ (United States). PET Center; Lawson, M.; Yun, L.S.; Bandy, D. [Good Samaritan Regional Medical Center, Phoenix, AZ (United States). PET Center

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  4. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    Science.gov (United States)

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  5. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    2009-01-01

    the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from theWave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them......A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow...... to run-up a ramp and overtop into a reservoir. This water is stored at a higher level than the average sea surface, before being discharged through hydro turbines. The waves, device sea handling and  overtopping flow are measured by pressure transducers ahead of, beneath and in the device. Comparisons...

  6. Comparison of photoacoustically derived hemoglobin and oxygenation measurements with contrast-enhanced ultrasound estimated vascularity and immunohistochemical staining in a breast cancer model.

    Science.gov (United States)

    Eisenbrey, John R; Merton, Daniel A; Marshall, Andrew; Liu, Ji-Bin; Fox, Traci B; Sridharan, Anush; Forsberg, Flemming

    2015-01-01

    In this preliminary study, we compared two noninvasive techniques for imaging intratumoral physiological conditions to immunohistochemical staining in a murine breast cancer model. MDA-MB-231 tumors were implanted in the mammary pad of 11 nude rats. Ultrasound and photoacoustic (PA) scanning were performed using a Vevo 2100 scanner (Visualsonics, Toronto, Canada). Contrast-enhanced ultrasound (CEUS) was used to create maximum intensity projections as a measure of tumor vascularity. PAs were used to determine total hemoglobin signal (HbT), oxygenation levels in detected blood (SO2 Avg), and oxygenation levels over the entire tumor area (SO2 Tot). Tumors were then stained for vascular endothelial growth factor (VEGF), cyclooxygenase-2 (Cox-2), and the platelet endothelial cell adhesion molecule CD31. Correlations between findings were analyzed using Pearson's coefficient. Significant correlation was observed between CEUS-derived vascularity measurements and both PA indicators of blood volume (r = 0.49 for HbT, r = 0.50 for SO2 Tot). Cox-2 showed significant negative correlation with SO2 Avg (r = -0.49, p = 0.020) and SO2 Tot (r = -0.43, p = 0.047), while CD31 showed significant negative correlation with CEUS-derived vascularity (r = -0.47, p = 0.036). However, no significant correlation was observed between VEGF expression and any imaging modality (p > 0.08). Photoacoustically derived HbT and SO2 Tot may be a good indicator of tumor fractional vascularity. While CEUS correlates with CD31 expression, photoacoustically derived SO2 Avg appears to be a better predictor of Cox-2 expression. © The Author(s) 2014.

  7. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    Directory of Open Access Journals (Sweden)

    Świsulski Dariusz

    2017-01-01

    Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  8. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  9. [Vascular dementia

    NARCIS (Netherlands)

    Leeuw, H.F. de; Gijn, J. van

    2004-01-01

    Vascular dementia is one of the most frequently occurring dementia syndromes. Its prevalence is about 5% among subjects above 85 years of age. Elevated blood pressure and atherosclerosis are the most important risk factors. According to international criteria, vascular dementia usually occurs within

  10. Automatic detection and segmentation of vascular structures in dermoscopy images using a novel vesselness measure based on pixel redness and tubularness

    Science.gov (United States)

    Kharazmi, Pegah; Lui, Harvey; Stoecker, William V.; Lee, Tim

    2015-03-01

    Vascular structures are one of the most important features in the diagnosis and assessment of skin disorders. The presence and clinical appearance of vascular structures in skin lesions is a discriminating factor among different skin diseases. In this paper, we address the problem of segmentation of vascular patterns in dermoscopy images. Our proposed method is composed of three parts. First, based on biological properties of human skin, we decompose the skin to melanin and hemoglobin component using independent component analysis of skin color images. The relative quantities and pure color densities of each component were then estimated. Subsequently, we obtain three reference vectors of the mean RGB values for normal skin, pigmented skin and blood vessels from the hemoglobin component by averaging over 100000 pixels of each group outlined by an expert. Based on the Euclidean distance thresholding, we generate a mask image that extracts the red regions of the skin. Finally, Frangi measure was applied to the extracted red areas to segment the tubular structures. Finally, Otsu's thresholding was applied to segment the vascular structures and get a binary vessel mask image. The algorithm was implemented on a set of 50 dermoscopy images. In order to evaluate the performance of our method, we have artificially extended some of the existing vessels in our dermoscopy data set and evaluated the performance of the algorithm to segment the newly added vessel pixels. A sensitivity of 95% and specificity of 87% were achieved.

  11. GPS Ice Flow Measurements, Allan Hills, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes includes high-precision GPS measurements of steel poles within the Allan Hills Main Ice Field, Near Western Ice Field, and extending to the...

  12. Improvement of phase-contrast flow measurements. Opposite directional flow-encoding technique to eliminate the influence of the maxwell term phase errors

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osamu [Hiroshima General Hospital (Japan)

    2001-02-01

    A new method termed the opposite directional flow-encoding (ODFE) technique is proposed to increase the accuracy and the reproducibility of phase-contrast flow measurements by correcting the non-linear background of velocity images induced by concomitant magnetic fields (Maxwell terms). In this technique, the volume flow rate is calculated from the difference of two region of interest (ROI) values derived from two velocity images obtained by reversing the flow-encoding direction. To evaluate the technique, various phantom experiments were carried out and volume blood flow rates of internal carotid arteries (ICAs) were measured in four volunteers. The technique could measure the volume flow rates of the phantom with higher accuracy (mean absolute percentage error =1.04%) and reproducibility (coefficient of variation =1.18%) than conventional methods. Flow measurements with the technique was not significantly affected by ROI size variation, measuring position, and flow obliquity not exceeding 30 deg. The volume flow rates in the ICAs of a volunteer were measured with high reproducibility (coefficient of variation =2.89% on the right, 1.48% on the left), and the flow measurement was not significantly affected by ROI size variation. The ODFE technique can minimize the effect of the non-linear background due to Maxwell terms. The technique allows use of ROIs of approximate size including the flow signal and provides accurate and objective phase-contrast flow measurements. (author)

  13. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    Science.gov (United States)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  14. LDA/PIV measurements of gas flow in a 4-stroke motored engine

    Energy Technology Data Exchange (ETDEWEB)

    Obokata, T.; Kato, M.; Ishima, T. [Gunma Univ., Tenjin, Kiryu (Japan). Graduate School of Mechanical Engineering; Kaneko, M. [Fuji Heavy Industries Ltd., Tokyo (Japan)

    2009-07-01

    The key technology for improving the internal combustion engine involves understanding and controlling the gas flows in the cylinder. However, it is not easy to understand the turbulence characteristics of gas flows because they are intermittent, highly turbulent, and three-dimensional complex flows. Numerical simulations of gas flow and combustion are important and powerful tools to understand the gas flows in the cylinder. It is important to verify the numerical simulation results by the reliable and detailed experimental data obtained at the same engine. This presentation discussed an investigation on the turbulent characteristics of in-cylinder flows at the same engine by laser doppler anemometry (LDA) and particulate image velocimetry for verifying the numerical results. Turbulent characteristics of gas flow in the internal combustion engine were also experimentally analysed under various operating conditions. The experimental setup was illustrated and the specifications of LDA and the test engine were identified. The prototype tumble generation valve was also illustrated and the results of the measurement of flow velocity through an intake valve and measurement of in-cylinder flow velocity were offered. Animations of the flow velocity through a valve were also presented. It was concluded that the effect of the turbulence generating valve (TGV) was clarified by the experimental data. The effect of the TGV was remarkable in the upper side of the cylinder. tabs., figs.

  15. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  16. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  17. Measurement of pulmonary flow reserve and pulmonary index of microcirculatory resistance for detection of pulmonary microvascular obstruction.

    Directory of Open Access Journals (Sweden)

    Rahn Ilsar

    Full Text Available BACKGROUND: The pulmonary microcirculation is the chief regulatory site for resistance in the pulmonary circuit. Despite pulmonary microvascular dysfunction being implicated in the pathogenesis of several pulmonary vascular conditions, there are currently no techniques for the specific assessment of pulmonary microvascular integrity in humans. Peak hyperemic flow assessment using thermodilution-derived mean transit-time (T(mn facilitate accurate coronary microcirculatory evaluation, but remain unvalidated in the lung circulation. Using a high primate model, we aimed to explore the use of T(mn as a surrogate of pulmonary blood flow for the purpose of measuring the novel indices Pulmonary Flow Reserve [PFR = (maximum hyperemic/(basal flow] and Pulmonary Index of Microcirculatory Resistance [PIMR = (maximum hyperemic distal pulmonary artery pressurex(maximum hyperemic T(mn]. Ultimately, we aimed to investigate the effect of progressive pulmonary microvascular obstruction on PFR and PIMR. METHODS AND RESULTS: Temperature- and pressure-sensor guidewires (TPSG were placed in segmental pulmonary arteries (SPA of 13 baboons and intravascular temperature measured. T(mn and hemodynamics were recorded at rest and following intra-SPA administration of the vasodilator agents adenosine (10-400 microg/kg/min and papaverine (3-24 mg. Temperature did not vary with intra-SPA sensor position (0.010+/-0.009 v 0.010+/-0.009 degrees C; distal v proximal; p = 0.1, supporting T(mn use in lung for the purpose of hemodynamic indices derivation. Adenosine (to 200 microg/kg/min & papaverine (to 24 mg induced dose-dependent flow augmentations (40+/-7% & 35+/-13% T(mn reductions v baseline, respectively; p<0.0001. PFR and PIMR were then calculated before and after progressive administration of ceramic microspheres into the SPA. Cumulative microsphere doses progressively reduced PFR (1.41+/-0.06, 1.26+/-0.19, 1.17+/-0.07 & 1.01+/-0.03; for 0, 10(4, 10(5 & 10(6 microspheres; p

  18. Simulation for the development of the continuous groundwater flow measurement technology

    Science.gov (United States)

    Kobayashi, Kaoru; Kumagai, Koki; Fujima, Ritsuko; Chikahisa, Hiroshi

    The flow of groundwater varies with time due to rainfall, atmospheric pressure change, tidal change, melting of snow during seasonal change, underground construction works etc. Therefore, to increase the precision of assessing in-situ groundwater flow characteristics, it is important to measure continuously the direction and velocity of the flow, in addition to obtaining accurate data for the afore mentioned environmental changes. The first part of this paper describes the development of a new device for measuring the direction and velocity of groundwater flow. The device was composed of a unique floating sensor with a hinge end at the bottom, which enabled continuous measurement of groundwater flow based on image data processing technique. In the second part, discussion is focused on clarifying the optimum cross-section shape and the behavior of the float sensor in saltwater and freshwater using numerical analysis.

  19. A New Method to Measure Portal Venous and Hepatic Arterial Blood Flow Patients Intraoperatively

    Science.gov (United States)

    Jakab, F.; Ráth, Z.; Schmal, F.; Nagy, P.; Faller, J.

    1996-01-01

    The intraoperative measurement of the afferent circulation of the liver, namely the hepatic artery flow and portal venous flow was carried out upon 14 anesthetized patients having carcinoma in the splanchnic area, mainly in the head of the pancreas by means of transit time ultrasonic volume flowmeter. The hepatic artery flow, portal venous flow and total hepatic flow were 0.377±0.10; 0.614±0.21; 0.992±0.276 l/min respectively. The ratio of hepatic arterical flow to portal venous flow was 0.66±0.259 There was a sharp, significant increase in hepatic arterial flow (29.8±6.1%, p<0,01) after the temporary occlusion of the portal vein, while the temporary occlusion of hepatic artery did not have any significant effect on portal venous circulation. The interaction between hepatic arterial flow and portal venous flow is a much disputed question, but according to the presented data here, it is unquestionable, that the decrease of portal venous flow immediately results a significant increase in hepatic artery circulation. PMID:8809586

  20. Optimization of dry - season sap flow measurements in an oak semi - arid open woodland in Spain

    NARCIS (Netherlands)

    Reyes-Acosta, J.L.; Lubczynski, M.

    2014-01-01

    In sap flow studies, there is no method complying with high efficiency and versatility of sap flow measurements. To improve that, we propose combining two methods: (1) thermal dissipation probe (TDP) known to be efficient and cost effective and (2) heat field deformation (HFD) known to be versatile.

  1. Multi parameter flow meter for on-line measurement of gas mixture composition

    NARCIS (Netherlands)

    van der Wouden, E.J.; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2015-01-01

    In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat

  2. High-Performance data flows using analytical models and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [ORNL; Towlsey, D. [University of Massachusetts; Vardoyan, G. [University of Massachusetts; Kettimuthu, R. [Argonne National Laboratory (ANL); Foster, I. [Argonne National Laboratory (ANL); Settlemyer, Bradley [Los Alamos National Laboratory (LANL)

    2016-01-01

    The combination of analytical models and measurements provide practical configurations and parameters to achieve high data transport rates: (a) buffer sizes and number of parallel streams for improved memory and file transfer rates, (b) Hamilton and Scalable TCP congestion control modules for memory transfers in place of default CUBIC, and (c) direct IO mode for Lustre file systems for wide-area transfers. Conventional parameter selection using full sweeps is impractical in many cases since it takes months. By exploiting the unimodality of throughput profiles, we developed the d-w method that significantly reduces the number of measurements needed for parameter identification. This heuristic method was effective in practice in reducing the measurements by about 90% for Lustre and XFS file transfers.

  3. Erythrocyte filtrability measurement by the initial flow rate method.

    Science.gov (United States)

    Hanss, M

    1983-01-01

    A new filtration technique, based on the initial filtration rate of a diluted RBC suspension through 5 mu Nucleopore filter is described. As only a few hundreds RBCs traverse each pore and as the measurement are made in a few seconds, the method is by large insensitive to filter plugging and to sedimentation effects. The results are given as a filtration index IF which is, as a first order approximation, independent of the filter conductance and of the suspending medium viscosity. The filtration times are measured electronically. The filters are re-used many times. The influence on the results reproducibility of RBC washing, of the anticoagulant, of the blood sample and the suspension storage times are considered. With our technical procedure, the relative incertitude on the measurement of I.F. is about +/- 10%. The filtration index is shown to be an intrinsic RBC filterability property.

  4. Physical Activity Measured by Accelerometry and its Associations With Cardiac Structure and Vascular Function in Young and Middle‐Aged Adults

    Science.gov (United States)

    Andersson, Charlotte; Lyass, Asya; Larson, Martin G.; Spartano, Nicole L.; Vita, Joseph A.; Benjamin, Emelia J.; Murabito, Joanne M.; Esliger, Dale W.; Blease, Susan J.; Hamburg, Naomi M.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2015-01-01

    Background Physical activity is associated with several health benefits, including lower cardiovascular disease risk. The independent influence of physical activity on cardiac and vascular function in the community, however, has been sparsely investigated. Measures and Results We related objective measures of moderate‐ to vigorous‐intensity physical activity (MVPA, assessed by accelerometry) to cardiac and vascular indices in 2376 participants of the Framingham Heart Study third generation cohort (54% women, mean age 47 years). Using multivariable regression models, we related MVPA to the following echocardiographic and vascular measures: left ventricular mass, left atrial and aortic root sizes, carotid–femoral pulse wave velocity, augmentation index, and forward pressure wave. Men and women engaged in MVPA 29.9±21.4 and 25.5±19.4 min/day, respectively. Higher values of MVPA (per 10‐minute increment) were associated with lower carotid–femoral pulse wave velocity (estimate −0.53 ms/m; P=0.006) and lower forward pressure wave (estimate −0.23 mm Hg; P=0.03) but were not associated with augmentation index (estimate 0.13%; P=0.25). MVPA was associated positively with loge left ventricular mass (estimate 0.006 loge [g/m2]; P=0.0003), left ventricular wall thickness (estimate 0.07 mm; P=0.0001), and left atrial dimension (estimate 0.10 mm; P=0.01). MVPA also tended to be positively associated with aortic root dimension (estimate 0.05 mm; P=0.052). Associations of MVPA with cardiovascular measures were similar, in general, for bouts lasting physical activity was associated with lower vascular stiffness but with higher echocardiographic left ventricular mass and left atrial size. These findings suggest complex relations of usual levels of physical activity and cardiovascular remodeling. PMID:25792127

  5. Laser velocimetry measurements of oscillating airfoil dynamic stall flow field

    Science.gov (United States)

    Chandrasekhara, M. S.; Ahmed, S.

    1991-01-01

    Ensemble-averaged two-component velocity measurements over an airfoil experiencing oscillatory dynamic stall under compressibility conditions were obtained. The measurements show the formation of a separation bubble over the airfoil that persists till angles of attack close to when the dynamic stall vortex forms and convects. The fluid attains mean velocities as large as 1.6 times the free stream velocity with instantaneous values of 1.8 times the free stream velocity. The airfoil motion induces these large velocities in regions that are far removed from the surface.

  6. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.

    Science.gov (United States)

    Serrat, Maria A; Efaw, Morgan L; Williams, Rebecca M

    2014-02-15

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.

  7. Thyroid hormone effect on human mitochondria measured by flow cytometry

    DEFF Research Database (Denmark)

    Kvetny, Jan; Bomholt, Tobias; Pedersen, Palle

    2009-01-01

    BACKGROUND: Mitochondrial function may be impaired in a number of diseases including metabolic syndrome, cardiovascular disease and endocrine disorders. Therefore it is important to be able to measure mitochondrial function in human cells. PURPOSE: The aim of the present study was to evaluate a m...

  8. Estimating Bandwidth Requirements using Flow-level Measurements

    NARCIS (Netherlands)

    Bruyère, P.; de Oliveira Schmidt, R.; Sperotto, Anna; Sadre, R.; Pras, Aiko

    Bandwidth provisioning is an important task of network management and it is done aiming to meet desired levels of quality of service. Current practices of provisioning are mostly based on rules-of-thumb and use coarse traffic measurements that may lead to problems of under and over dimensioning of

  9. The methodology of Doppler-derived central blood flow measurements in newborn infants.

    Science.gov (United States)

    de Waal, Koert A

    2012-01-01

    Central blood flow (CBF) measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO) and/or as cardiac input measured at the superior vena cava (SVC flow). Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use.

  10. Advancement of an Interferometric Flow Velocity Measurement Technique by Adaptive Optics

    Science.gov (United States)

    Büttner, Lars; Leithold, Christoph; Czarske, Jürgen

    2014-01-01

    Flow measurements often take place under difficult conditions. Optical flow measurement techniques are affected by variations of the refractive index, caused e.g., by temperature, concentration, or pressure gradients. This will give rise to an increased measurement uncertainty or cause the measurement to fail. To overcome these limitations, we propose the employment of adaptive optics. In this contribution we present interferometric flow velocity measurements through a fluctuating air-water interface by the use of adaptive optics. Using the adaptive optics, the rate of valid measurement signals can be improved from 28% to 83%. The results are promising to enable measurements in difficult environments affected by refractive index variations which were not accessible so far.

  11. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    Science.gov (United States)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-04-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of  art 3D whole-field flow measurement techniques.

  12. Study on electrodynamic sensor of multi-modality system for multiphase flow measurement.

    Science.gov (United States)

    Deng, Xiang; Chen, Dixiang; Yang, Wuqiang

    2011-12-01

    Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.

  13. A Pilot Study of Laparoscopic Doppler Ultrasound Probe to Map Arterial Vascular Flow within the Neurovascular Bundle during Robot-Assisted Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Ketan K. Badani

    2013-01-01

    Full Text Available Purpose. To report on the feasibility of a new Laparoscopic Doppler ultrasound (LDU technology to aid in identifying and preserving arterial blood flow within the neurovascular bundle (NVB during robotic prostatectomy (RARP. Materials and Methods. Nine patients with normal preoperative potency and scheduled for a bilateral nerve-sparing procedure were prospectively enrolled. LDU was used to measure arterial flow at 6 anatomic locations alongside the prostate, and signal intensity was evaluated by 4 independent reviewers. Measurements were made before and after NVB dissection. Modifications in nerve-sparing procedure due to LDU use were recorded. Postoperative erectile function was assessed. Fleiss Kappa statistic was used to evaluate inter-rater agreement for each of the 12 measurements. Results. Analysis of Doppler signal intensity showed maintenance of flow in 80% of points assessed, a decrease in 16%, and an increase in 4%. Plane of NVB dissection was altered in 5 patients (56% on the left and in 4 patients (44% on the right. There was good inter-rater reliability for the 4 reviewers. Use of the probe did not significantly increase operative time or result in any complications. Seven (78% patients had recovery of erections at time of the 8-month follow-up visit. Conclusions. LDU is a safe, easy to use, and effective method to identify local vasculature and anatomic landmarks during RARP, and can potentially be used to achieve greater nerve preservation.

  14. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California

    Science.gov (United States)

    Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ± 60, 99 ± 14, 889 ± 419 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  15. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan [Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States)

    2009-11-15

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  16. Novel Methods for Measuring Depth of Anesthesia by Quantifying Dominant Information Flow in Multichannel EEGs

    Directory of Open Access Journals (Sweden)

    Kab-Mun Cha

    2017-01-01

    Full Text Available In this paper, we propose novel methods for measuring depth of anesthesia (DOA by quantifying dominant information flow in multichannel EEGs. Conventional methods mainly use few EEG channels independently and most of multichannel EEG based studies are limited to specific regions of the brain. Therefore the function of the cerebral cortex over wide brain regions is hardly reflected in DOA measurement. Here, DOA is measured by the quantification of dominant information flow obtained from principle bipartition. Three bipartitioning methods are used to detect the dominant information flow in entire EEG channels and the dominant information flow is quantified by calculating information entropy. High correlation between the proposed measures and the plasma concentration of propofol is confirmed from the experimental results of clinical data in 39 subjects. To illustrate the performance of the proposed methods more easily we present the results for multichannel EEG on a two-dimensional (2D brain map.

  17. Use of the heat dissipation method for sap flow measurement in citrus nursery trees1

    Directory of Open Access Journals (Sweden)

    Eduardo Augusto Girardi

    2010-12-01

    Full Text Available Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L. Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.

  18. Miscellaneous flow discharge measurements collected downstream of Brandon Road Lock and Dam

    Data.gov (United States)

    Department of the Interior — Flow discharges were measured in the Des Plaines River from approximately river mile 286 to river mile 284 on October 19–21, 2015 using Teledyne Rio Grande 1200 kHz...

  19. Measurements of compressible secondary flow in a circular S-duct

    Science.gov (United States)

    Vakili, A.; Wu, J. M.; Liver, P.; Bhat, M. K.

    1983-01-01

    This paper presents the results of an experimental study of secondary flow in a circular cross section 30 deg - 30 deg S-duct with entrance Mach number of 0.6. Local flow velocity vectors have been measured along the length of the duct at six stations. These measurements have been made using a five-port cone probe. Static and total pressure profiles in the transverse planes are obtained from the cone probe measurements. Wall static pressure measurements along three azimuth angles of 0 deg, 90 deg, and 180 deg along the duct are also made. Contour plots presenting the three dimensional velocity field as well as the total- and static-pressure fields are obtained. Surface oil flow visualization technique has been used to provide details of the flow on the S-duct boundaries. The experimental observations have been compared with typical computational results.

  20. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  1. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  2. Detection of Right Atrium Movement in Thrombi Flow Measurement

    Science.gov (United States)

    Aoki, M.; Yamaguchi, T.; Hachiya, H.

    In the medical field, a method that measures the amount of thrombi in the blood is desired. In our earlier research, we reported about a tool for measuring the ratio of thrombi in the blood at the right atrium of the heart by using transesophageal echocardiography (TEE) movies. However, it is difficult to track the motion of the contour of the atrium wall from a TEE image sequence using the previous extraction method. In this research, we propose a new method for improving the previous extraction method by adding correlation processing. The position of the processing points of each image is related mutually in serial frames in the processed TEE image sequence. We are able to continuously understand the movement of the atrium wall and accurately assess the amount of the thrombi with this improvement.

  3. Spectroscopy Measurements on Ablation Testing in High Enthalpy Plasma Flows

    Science.gov (United States)

    2010-11-01

    two-colour Raytek Marathon MR1S-C pyrometer (0.75 − 1.1μm), with a temperature range from 1000°C to 3000°C. It measures the infrared radiation of a...18 3.5.2 PYROMETER ...might undergo additional chemical reactions, creating highly radiating species which can increase the radiative heat flux. Figure 1-2: Process of

  4. Dynamic PIV measurement of a compressible flow issuing from an airbag inflator nozzle

    Science.gov (United States)

    Lee, Sang Joon; Jang, Young Gil; Kim, Seok; Kim, Chang Soo

    2006-12-01

    Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms.

  5. Vascular ring

    DEFF Research Database (Denmark)

    Schmidt, Anne Mette S; Larsen, Signe H; Hjortdal, Vibeke E

    2018-01-01

    BACKGROUND: Vascular ring is a rare cause of recurrent respiratory infections, dysphagia and stridor. Surgical repair is considered safe but the long-term outcomes are unclear. The purpose of this study was to investigate the mortality and morbidity following vascular ring surgery in a single...... age of 1.4 years (range 0.008-64 years) were operated for vascular ring. Median follow-up was 6.8 years (range 2.4-34 years). Presenting symptoms were stridor (52%), dysphagia or vomiting (52%) and recurrent respiratory infections (48%). There were no early or late deaths. Three months postoperatively...

  6. Cystatin C, vascular biomarkers and measured glomerular filtration rate in patients with unresponsive hypertensive phenotype: a pilot study.

    Science.gov (United States)

    Čabarkapa, Velibor; Ilinčić, Branislava; Đerić, Mirjana; Vučaj Ćirilović, Viktorija; Kresoja, Milena; Žeravica, Radmila; Sakač, Vladimir

    2017-11-01

    Biomarkers are commonly used to estimate the presence of subclinical cardiovascular disease (CVD) in patients with essential arterial hypertension (HT). In addition to known association between cystatin C and glomerular filtration rate (GFR), elucidating the association between cystatin C and vascular biomarkers (intima-media thickness of common carotid arteries (CCIMT), carotid plaque and renal artery resistance index (RRI)) in patients with unresponsive hypertensive phenotype could be of significant clinical interest. Participants (n = 200, median age 58 (52-64) years, 49% female) under treatment with antihypertensive drugs were stratified into two subgroups based on their blood pressure level as having responsive hypertension (RHT - compliant and responsive to treatment, n = 100), or nonresponsive (URHT - compliant but nonresponsive to treatment, n = 100). GFR was measured by isotopic (slope-intercept) method (99m Tc diethylene triamine penta-acetic acid - mGFR). The URHT group had significantly higher median cystatin C serum concentration (p = 0.02) and CCIMT (p = 0.00) compared to the RHT group, with no significant difference in RRI (p = 0.51) and mGFR among subgroups [69.9 ± 28.2 vs 76.74 ± 23.61 ml/min/1.73m(2), p = 0.27]. In the URHT group, cystatin C was found to be associated with CCIMT (p = 0.02), hsCRP (p = 0.01) and duration of HT (p = 0.02), independently of mGFR and age. Independent predictors of URHT phenotype were CCIMT (p= 0.02) and hsCRP (p= 0.04). In addition to GFR, cystatin C serum concentration is positively and independently associated with CCIMT in patient with URHT phenotype and subclinical CVD. Prospective larger studies should further investigate the clinical importance of this relationship.

  7. Measurement of Flow Velocity and Inference of Liquid Viscosity in a Microfluidic Channel by Fluorescence Photobleaching

    DEFF Research Database (Denmark)

    Carroll, Nick J.; Jensen, Kaare Hartvig; Parsa, Shima

    2014-01-01

    We present a simple, noninvasive method for simultaneous measurement of flow velocity and inference of liquid viscosity in a microfluidic channel. We track the dynamics of a sharp front of photobleached fluorescent dye using a confocal microscope and measure the intensity at a single point...... theological properties of the liquid. This technique provides a simple method for simultaneous elucidation of flow velocity and liquid viscosity in microchannels....

  8. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  9. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  10. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local

  11. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  12. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  13. Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research

    Science.gov (United States)

    Roach, Michael; Cohen, Wesley M.

    2013-01-01

    This paper assesses the validity and accuracy of firms’ backward patent citations as a measure of knowledge flows from public research by employing a newly constructed dataset that matches patents to survey data at the level of the R&D lab. Using survey-based measures of the dimensions of knowledge flows, we identify sources of systematic measurement error associated with backward citations to both patent and nonpatent references. We find that patent citations reflect the codified knowledge flows from public research, but they appear to miss knowledge flows that are more private and contract-based in nature, as well as those used in firm basic research. We also find that firms’ patenting and citing strategies affect patent citations, making citations less indicative of knowledge flows. In addition, an illustrative analysis examining the magnitude and direction of measurement error bias suggests that measuring knowledge flows with patent citations can lead to substantial underestimation of the effect of public research on firms’ innovative performance. Throughout our analyses we find that nonpatent references (e.g., journals, conferences, etc.), not the more commonly used patent references, are a better measure of knowledge originating from public research. PMID:24470690

  14. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  15. Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research.

    Science.gov (United States)

    Roach, Michael; Cohen, Wesley M

    2013-02-01

    This paper assesses the validity and accuracy of firms' backward patent citations as a measure of knowledge flows from public research by employing a newly constructed dataset that matches patents to survey data at the level of the R&D lab. Using survey-based measures of the dimensions of knowledge flows, we identify sources of systematic measurement error associated with backward citations to both patent and nonpatent references. We find that patent citations reflect the codified knowledge flows from public research, but they appear to miss knowledge flows that are more private and contract-based in nature, as well as those used in firm basic research. We also find that firms' patenting and citing strategies affect patent citations, making citations less indicative of knowledge flows. In addition, an illustrative analysis examining the magnitude and direction of measurement error bias suggests that measuring knowledge flows with patent citations can lead to substantial underestimation of the effect of public research on firms' innovative performance. Throughout our analyses we find that nonpatent references (e.g., journals, conferences, etc.), not the more commonly used patent references, are a better measure of knowledge originating from public research.

  16. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function

    DEFF Research Database (Denmark)

    Cortsen, M; Petersen, L.J.; Stahlberg, F

    1996-01-01

    . MR velocity mapping was performed in both renal arteries using an ECG-triggered gradient echo pulse sequence previously validated in normal volunteers. Effective renal plasma flow was calculated from the clearance rate of PAH during constant infusion and the split of renal function was evaluated......Renal blood flow (RBF) was measured in 9 patients with chronic impaired kidney function using MR velocity mapping and compared to PAH clearance and 99mTc-DTPA scintigraphy. An image plane suitable for flow measurement perpendicular to the renal arteries was chosen from 2-dimensional MR angiography...

  17. Study on gas permeability coefficient measurement of coal seam by radial flow method

    Science.gov (United States)

    Zhang, Shuchuan

    2017-08-01

    For the accurate measurement of the coal seam permeability coefficient, the application range of the coal seam permeability coefficient was studied under various gas flow conditions with the guidance of the coal seam gas flow theory. Adopting the radial flow method, the measurement and calculation of the permeability coefficient of the coal seam C13-1 in Xinji No.1 Coal Mine shows that the permeability coefficient of the original coal seam C13-1 is less than 0.1, and the coal seam is difficult to extract.

  18. A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events.

    Directory of Open Access Journals (Sweden)

    Solenna Blanchard

    Full Text Available Developing a clear understanding of the relationship between cerebral blood flow (CBF response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler… recordings. However, the important number of intermediate (non-observable variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in

  19. ESRD QIP - Vascular Access - Payment Year 2018

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes facility details, performance rates, vascular access topic measure score, and the state and national average measure scores for the vascular...

  20. Vascular anomalies

    Directory of Open Access Journals (Sweden)

    Murthy Jyotsna

    2005-01-01

    Full Text Available Management of vascular anomalies is an emerging multidisciplinary, super-specialisation field involving several surgical, medical and radiological specialties. Over the years, development in this field has been limited because of complex nomenclature and lack of consensus on the best practice for treatment of some of the more complex vascular anomalies. It was only in 1996 that the International Society of the Study of Vascular Anomalies defined nomenclature for the anomalies and gave clear guidelines on management, allowing for improved clinical practices. As in all fields of clinical medicine, the correct diagnosis of the vascular anomalies is essential to choose the appropriate treatment. This paper gives clear guidelines for diagnosis, understanding of the anomalies and discusses their management.