WorldWideScience

Sample records for vascular corrosion casts

  1. Study of vascular pattern in human spleen by corrosion cast method

    Directory of Open Access Journals (Sweden)

    Shashikala R. Londhe

    2013-04-01

    Full Text Available Background: The aim of the present work was to study the parenchymal distribution of the splenic artery and clarify the avascular planes in human spleens. Observation: Splenic vascular pattern was studied in fifty human spleens, Cellulose Acetate Moulding Granules were used as casting media, injected in the splenic trunk .Soft tissue corrosion was done in the concentrated Potassium Hydroxide and the pattern was studied from obtained cast. Number of segments varied from two to five based on the observation of the terminal and polar splenic branches by corrosion cast and taking account of the ideas ,reported in the literature ,proposed that the spleen is divided in arterial segments and sub segments. Primary segments are territories corresponding to primary branches and polar segments corresponding to polar arteries. Result: There were two primary segments in 90% spleens and three primary segments in 10% spleens. Associate to that in 32% spleens there was superior polar segments, in 56% inferior polar segments and in 12.4% both superior and inferior polar segments. Conclusion: Maximum number of spleens were divided into two lobes and less number of spleens were divided into three lobes, along with that additional lobes were also present when additional arteries present.

  2. Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury.

    Science.gov (United States)

    Koyanagi, I; Tator, C H; Lea, P J

    1993-08-01

    The purpose of this study was to investigate the vascular mechanisms involved in the pathophysiology of acute spinal cord injury. Vascular corrosion casts of traumatized rat spinal cords at C7-T1 were inspected by scanning electron microscopy. Nineteen rats were subjected to a 51g acute clip compression at C8-T1 and then underwent transcardial perfusion with polyester resin at 15 minutes, 4 hours, or 24 hours after injury. The injured spinal cord appeared almost avascular at the compression site, although the large vessels on the surface of the spinal cord were all intact. The sulcal arteries at the injury site frequently showed constriction, and the impressions of endothelial nuclei were more slender and less distinct in the constricted arterial casts. Extravasation of the injected resin at the injury site was observed most frequently in the 15-minute group. Poorly filled distal branches of the sulcal arteries were seen at the injury site in every group. Indeed, it was concluded that the disruption and occlusion of the sulcal arteries and their branches accounted for a considerable amount of the posttraumatic ischemia of the cord. Occlusion of the sulcal arteries in the anterior median sulcus at the injury site was more frequently observed in the 24-hour group than in earlier groups. This observation suggests that there was a progressive circulatory disturbance of the damaged sulcal arteries at the injury site. The 4- and 24-hour groups showed avascular areas extending longitudinally from the injury site in the posterior columns, probably the result of hemorrhage and venous obstruction. PMID:8367052

  3. The opisthonephric blood vascular system of the chicken embryo as studied by scanning electron microscopy of microvascular corrosion casts and critical point dried preparations.

    Science.gov (United States)

    Ditrich, H; Splechtna, H

    1989-06-01

    Microvascular corrosion casts of chicken embryos between four and 19 days after fertilization have been prepared. The developing kidney was investigated with scanning electron microscopy (SEM). The injection technique and resin composition were modified in order to facilitate the complete replication of native blood vascular systems of specimens as small as 15 mm body length. The development of the opisthonephros was followed from near the beginning of its function until a vascular development comparable to the adult situation was reached. Critical point dried glomeruli show the differentiation of the glomerular visceral epithelium (podocytes) from initially epithelioid to highly branched forms. The embryonic kidney (cranial part of the opisthonephros-mesonephros) shows a construction-principle resembling amphibians that is entirely different from the definitive excretory organ (caudal part of the opisthonephros-metanephros). PMID:2814402

  4. 肝细胞癌病变肝脏血管铸型标本的制作及意义%Preparation of vascular corrosion casting mould specimen of liver with tumor and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    张文辉; 莫木琼; 聂钊铭; 钟觉民; 罗灿峤

    2015-01-01

    目的 制作有肝细胞癌病变的肝脏血管铸型标本,为科研和教学了解肝细胞癌的生长提供形态学依据.方法 将肝细胞癌患者手术切除的新鲜成人肝组织用10%醋酸生理盐水插管冲洗,彻底去除肝脏血管内的血液,分别用混合红色、蓝色和黄色油画颜料的过氯乙烯-自凝牙托粉材料填充剂依次灌注肝固有动脉、肝门静脉和肝静脉,通过聚合反应塑化成型,经插管→灌注→腐蚀→冲洗→修整→装瓶密封,制成有肝细胞癌病变的肝脏血管铸型标本进行观察. 结果 肝细胞癌病变的肝脏血管铸型标本能清晰显示肝门静脉、肝动脉、肝静脉、肝肿瘤及其周围血管分布. 显示的血管充盈饱满,粗细、疏密合理,色泽鲜艳,立体感强,精致美观. 结论 肝细胞癌病变的肝脏可制成血管铸型标本,制成的标本能直观显示肝细胞癌病变的肝脏内血管、肿瘤区域及其周围血管分布.%Objective To prepare the vascular corrosion casting mould specimen of liver with hepatocellular carcino -ma and to provide reliable morphological evidence for clinical activity , teaching and scientific research of liver tumor . Methods A fresh hepatocellular carcinoma specimen obtained by surgical resection was injected with 10%acetic acid sa-line to thoroughly remove blood within the liver .Then the hepatic artery , hepatic portal vein and hepatic vein were perfused with mixtures of perchlorovinyl resin and polymethyl methacrylate resin with red , blue and yellow coloring agent , respec-tively.Vascular corrosion casting mould specimen of the liver with primary tumor was obtained by intubation , perfusion, corrosion, flushing, trimming and sealing to the container .Results The method could clearly showed the hepatic artery , hepatic portal vein and hepatic venous system and the distribution of blood vessels in and around the tumor area .The ves-sels were full filling, in reasonable size and density

  5. Corrosion cast study of the canine hepatic veins.

    Science.gov (United States)

    Uršič, M; Vrecl, M; Fazarinc, G

    2014-11-01

    This study presents a detailed description of the distribution, diameters and drainage patterns of hepatic veins on the basis of the corrosion cast analysis in 18 dogs. We classified the hepatic veins in three main groups: the right hepatic veins of the caudate process and right lateral liver lobe, the middle hepatic veins of the right medial and quadrate lobes and the left hepatic veins of both left liver lobes and the papillary process. The corrosion cast study showed that the number of the veins in the Nomina Anatomica Veterinaria and most anatomical textbooks is underestimated. The number of various-sized hepatic veins of the right liver division ranged from 3 to 5 and included 1 to 4 veins from the caudate process and 2 to 4 veins from the right lateral liver lobe. Generally, in all corrosion casts, one middle-sized vein from the right part of the right medial lobe, which emptied separately in the caudal vena cava, was established. The other vein was a large-sized vein from the remainder of the central division, which frequently joined the common left hepatic vein from the left liver lobes. The common left hepatic vein was the largest of all the aforementioned hepatic veins.

  6. High Temperature Corrosion of Fe-C-S Cast Irons in Oxidizing and Sulfidizing Atmospheres

    Institute of Scientific and Technical Information of China (English)

    Thuan-Dinh NGUYEN; Dong-Bok LEE

    2008-01-01

    The corrosion behavior of spheroidal graphite and flake graphite cast irons was studied in oxidizing and sulfidizing atmospheres between 600 and 800℃ for 50 h. The corrosion rate in the sulfidizing atmosphere was faster than that in air above 700℃, due to the formation of the Feo.975S sulfide. The corrosion rate of the spheroidal graphite cast iron was similar to that of the flake graphite cast iron.

  7. Comparison of corrosion behavior of ZL104 alloy at as-cast and heat treatment states

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The corrosion behavior of ZL 104 alloy at different states (as-cast and heat treatment) in salt spray corrosion (SSC) was studied. The results show that the sample treated after refinement and modification has the least corrosive resistance compared with the sample bearing as-cast structure at the beginning of the corrosion. As the corrosion process continued, however, the trend reversed itself. After 44 h continuous corrosion, the corrosive rates of all samples tend to be stable. After experiments, the sample bearing as-cast structure had the most corrosive products on the surface whereas the sample being refined and modified had the least products. The Fourier transformation infrared spectroscopy (FTIR)analyses of the corrosion products show that these products are composed of hydroxyl-containing substances.

  8. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  9. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Institute of Scientific and Technical Information of China (English)

    LI Wei; LIU Jun-quan; TU Xiao-hui

    2007-01-01

    A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303 g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  10. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Directory of Open Access Journals (Sweden)

    LI Wei

    2007-02-01

    Full Text Available A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  11. Assessing the effect of copper additions on the corrosion behaviour of grey cast iron

    Directory of Open Access Journals (Sweden)

    Saliu Ojo SEIDU

    2015-05-01

    Full Text Available In this research work, the effect of copper additions on the corrosion behaviour of grey cast iron in 3.5 wt% NaCl, 0.3M H2SO4, and 0.1M NaOH respectively was investigated. Grey cast iron samples containing 3.0%, 2.5%, 2.0%, and 1.5% weight percent of copper were produced. The corrosion behaviour of the grey cast iron samples produced were assessed using mass loss and corrosion rate measurements according to America Society for Testing and Materials standard (ASTM procedures in salt water, basic, and acidic environments. The results reveal that the samples containing 2.0% and 1.5% weight percent of copper show an excellent corrosion resistance while samples containing 3.0% and 2.5% weight percent of copper show good corrosion behaviour all in salt water and basic environments but poorly in acidic environment.

  12. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Science.gov (United States)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  13. Influence of the cooling rate on the corrosion resistance of duplex cast steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2013-01-01

    Full Text Available The results of the influence of the cooling rate of the casting made of the acid-resistant ferritic - austenitic cast steel on the microstructure and corrosion resistance are presented in the paper. Samples cut out from the walls of the casting being cooled at the cooling rate of 3,2 - 0,5 ºC/s were used in the study. Different cooling rates create favorable conditions for the segregation processes lowering properties of castings. It was found, that differences in the polarization curves occur only in the more aggressive corrosive environment. The reason of such behaviour of cast steel is the segregation of elements dissolved in austenite and the difference in the volume fraction of ferrite and austenite in the walls of the different thickness.

  14. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  15. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2015-06-01

    Full Text Available In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl. The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs. Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier.

  16. Corrosion behaviour of investment cast and friction stir processed Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Atapour, M. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Pilchak, A. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, OH 45433 (United States); Universal Technology Corporation, Dayton, OH 45432 (United States); Frankel, G.S., E-mail: frankel@matsceng.ohio-state.ed [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Williams, J.C. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2010-09-15

    The corrosion behaviour of investment cast and friction stir (FS) processed Ti-6Al-4V alloy was studied in HCl solution. FS processing was performed with the peak temperatures both above and below the {beta} transus. All of the samples exhibited active-passive transitions in deaerated 5% HCl at room temperature, but the {beta} FS processed samples exhibited superior corrosion behaviour. The corrosion morphology after immersion in 20% HCl was rationalized on the basis of a difference in partitioning of the alloying elements, which controls the composition of the {alpha} and {beta} phases.

  17. Corrosion of Cast Iron Mill Plates in Wet Grinding

    Directory of Open Access Journals (Sweden)

    Anthony ANDREWS

    2010-12-01

    Full Text Available Corrosion studies were carried out on two different maize grinding plates. Maize was soaked in water for three days and the water decanted and used as electrolyte. Mass loss and pH measurements were carried out every 3 days for 15-day period. Results show that, for each plate, mass loss and pH increased with exposure time. Corrosion rates determined from mass loss data was found to be strongly dependent on pH. The observed behaviour may be explained in terms of the chemical composition and/or microstructures of the plates. Results are briefly discussed in terms of the contribution of corrosion to wear.

  18. Study on the hot corrosion behavior of a cast Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Guo, J.T.; Zhang, J.; Yuan, C.; Zhou, L.Z.; Hu, Z.Q. [Chinese Academy of Sciences, Shenyang (China). Inst. of Metal Research

    2010-07-01

    Hot corrosion behavior of Nickel-base cast superalloy K447 in 90% Na{sub 2}SO{sub 4} + 10% NaCl melting salt at 850 C and 900 C was studied. The hot corrosion kinetic of the alloy follows parabolic rate law under the experimental conditions. The external layer is mainly Cr{sub 2}O{sub 3} scale which is protective to the alloy, the intermediate layer is the Ti-rich phase, and the internal layer is mainly the international oxides and sulfides. With increased corrosion time and temperature, the oxide scales are gradually dissolved in the molten salt and then precipitate as a thick and non-protective scale. Chlorides cause the formation of volatile species, which makes the oxide scale disintegrate and break off. The corrosion kinetics and morphology examinations tend to support the basic dissolution model for hot corrosion mechanisms. (orig.)

  19. Atmospheric corrosion rate expressed as a function of time. Effects of atmospheric conditions and alloying elements on corrosion resistance of steels and cast irons

    International Nuclear Information System (INIS)

    On the basis of function describing a change in atmospheric corrosion rate (K) in time (t) the published results of long-standing corrosion tests of a great number of cast irons and steels were statistically processed. The effect of chloride - ions, sulfur dioxide, alloying elements (Cu, Ni, Cr, Mn, Si, V, C) on the rate of initial corrosion on the active surface (K0), passivation properties (α0) of corrosion products and corrosion resistance (α0/K0) of iron-carbonic alloys in different climatic areas was revealed. The data permit further investigation of the mechanism of alloying element effect on atmopsheric corrosion of steels

  20. Corrosion resistance of various bio-films deposited on austenitic cast steel casted by lost-wax process and in gypsum mould

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2010-01-01

    Full Text Available This work is the next of a series concerning the improvement of austenitic cast steel utility predicted for use in implantology for complicated long term implants casted by lost-wax process and in gypsum mould. Austenitic cast steel possess chemical composition of AISI 316L medical steel used for implants. In further part of present work investigated cast steel indicated as AISI 316L medical steel. Below a results of electrochemical corrosion resistance of carbon layer and bi-layer of carbon/HAp deposited on AISI 316L researches are presented. Coatings were manufactured by RF PACVD and PLD methods respectively. Obtained results, unequivocally indicates on the improvement of this type of corrosion resistance by substrate material with as deposited carbon layer. While bi-layer of carbon/HAp are characterized by very low corrosion resistance.

  1. Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM vs. Its Counterpart Gravity Cast Alloy

    Directory of Open Access Journals (Sweden)

    Avi Leon

    2016-06-01

    Full Text Available The attractiveness of additive manufacturing (AM relates to the ability of this technology to rapidly produce very complex components at affordable costs. However, the properties and corrosion behavior, in particular, of products produced by AM technology should at least match the properties obtained by conventional technologies. The present study aims at evaluating the corrosion behavior and corrosion fatigue endurance of AlSi10Mg alloy produced by selective laser melting (SLM in comparison with its conventional counterpart, gravity cast alloy. The results obtained indicate that the corrosion resistance of the printed and cast alloys was relatively similar, with a minor advantage to the printed alloy. The corrosion fatigue endurance of the printed alloy was relatively improved compared to the cast alloy. This was mainly attributed to the significant differences between the microstructure and defect characteristics of those two alloys.

  2. CORROSION RESISTANCE OF PEARLITIC AND BAINITIC CAST IRON IN A SYNTHETIC SOLUTION OF CONDENSED GAS FROM COMBUSTION

    Directory of Open Access Journals (Sweden)

    Sandra Matos Cordeiro Costa

    2015-03-01

    Full Text Available The corrosion of engine components of the combustion chamber is usually related to the formation of acids such as sulfuric and nitric. These acids are generated by the condensation of combustion gases that usually occur in vehicle exhaust systems. However, with the development of new technologies to reduce emissions, condensation is also being promoted in vehicle combustion chambers. This fact is associated with high exhaust gas recirculation rates, known as EGR (English term for Exhaust Gas Recirculation. Consequently, corrosion problems in the engine components are increasing, especially in cylinder liners alloy manufactured using cast iron. In this study, the corrosion resistance of two cast iron alloys, one with a pearlitic microstructure and the other with a bainite microstructure in a solution simulating the composition of the condensate obtained from the combustion gases. It was found that the microstructure of the cast iron is an important factor affecting the corrosion behavior. The results showed that none of the two materials investigated is resistant to corrosion in the test medium, and the small difference observed between the behavior of the two cast iron was related to its microstructure, which are dependent on their chemical compositions. The cast iron with a pearlitic microstructure showed less formation of corrosion products than the bainitic cast iron. This result is related to the presence of steadite phase, highly stable and resistant to corrosion in pearlitic microstructure. This phase (steadite anchors the corrosion products formed on the surface and act as a partial barrier slowing the progress of the corrosion process, that was more pronounced in the bainitic cast iron.

  3. Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose--inhibition of cast iron corrosion.

    Science.gov (United States)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy

    2013-06-01

    Glucose, gellan gum, and hydroxypropyl cellulose were studied against the acid corrosion of cast iron by means of weight loss, potentiodynamic polarization, and AC impedance spectroscopy techniques. The inhibition efficiency was found to increase with increasing concentration of the inhibitors. The effect of immersion time and temperature were also studied. The addition of potassium iodide to the corrosion-inhibition system showed both antagonism and synergism toward inhibition efficiency. Polarization studies revealed the mixed-type inhibiting nature of the carbohydrates. The adsorption of inhibitors on the cast iron surface obeys Langmuir adsorption isotherm model, both in presence and absence of KI. Physical interaction between the inhibitor molecules and the iron surface was suggested by the thermochemical parameters, rather than chemical interaction.

  4. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  5. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  6. Corrosion behavior of as-cast binary Mg-Bi alloys in Hank's solution

    Directory of Open Access Journals (Sweden)

    Wei-li Cheng

    2015-11-01

    Full Text Available Biodegradable Mg-xBi (x = 3, 6 and 9wt.% alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using optical micrograph (OM, X-ray diffraction (XRD, scanning electron microscope (SEM equipped with an energy dispersive X-ray spectrometer (EDS, electrochemical and immersion tests. The results show that the microstructures of the as-cast Mg-Bi alloys mainly consisted of dendritic ?Mg grains and Mg3Bi2 phase in common, with the secondary dendrite arm spacing (SDAS decreasing significantly from 41.2 靘 to 25.4 靘 and the fraction of Mg3Bi2 increasing from 3.1% to 10.7%. Furthermore, the corrosion rate increasing from 1.32 mm昦-1 to 8.07 mm昦-1 as the Bi content was increased from 3wt.% to 9wt.%. The reduced corrosion resistance was mainly ascribed to the increasing fraction of the second phase particles, which bring positive effects on the development of pitting.

  7. The development of high strength corrosion resistant precipitation hardening cast steels

    Science.gov (United States)

    Abrahams, Rachel A.

    Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels

  8. Interfacial morphology and corrosion resistance of Fe-B cast steel containing chromium and nickel in liquid zinc

    International Nuclear Information System (INIS)

    Highlights: → Fe-B steels containing Cr and Ni exhibit the best corrosion resistance in liquid zinc. → Surface layers show gamma-Fe3Zn10, delta-FeZn10, zeta-FeZn13 and eta-Zn. → Cr and Ni can enrich at the interface during the corrosion process. → Corrosion processes include leaching, formation of compounds and spalling of borides. - Abstract: The interfacial morphology and corrosion resistance of low carbon Fe-B cast steels in zinc bath at 520 deg. C were investigated. The results show Fe-B cast steel containing high Cr and Ni exhibits the best corrosion resistance to liquid zinc. The corrosion layers are composed of Γ-Fe3Zn10, δ-FeZn10, ξ-FeZn13 and η-Zn. The corrosion behaviour of Fe-B cast steels includes the following processes: the preferential leach and dissolution of Cr and Ni, the formation of Fe-Zn compounds controlled by zinc atom diffusion, and the spalling of borides without the supporting role of α-(Fe, Cr) matrix corroded by liquid zinc.

  9. Hot Corrosion Behavior of High-Chromium, High-Carbon Cast Irons in NaCl-KCl Molten Salts

    Directory of Open Access Journals (Sweden)

    S. Vuelvas-Rayo

    2012-01-01

    Full Text Available A study on the corrosion behavior of a series of experimental high-chromium (18.53–30.48 wt.%, high-carbon (3.82–5.17% cast irons in NaCl-KCl (1 : 1 M at 670°C has been evaluated by using weight loss technique and compared with a 304-type stainless steel. It was found that all castings had a higher corrosion rate than conventional 304SS and that the addition of Cr increased the degradation rate of the cast irons. Additionally, corrosion rate increased by increasing the C contents up to 4.29%, but it decreased with a further increase in its contents. Results are discussed in terms of consumption of the Cr2O3 layer by the melt.

  10. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, E. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)], E-mail: emmanuel.rocca@lcsm.uhp-nancy.fr; Juers, C.; Steinmetz, J. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)

    2010-06-15

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO{sub 2} or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  11. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  12. Impact of Intermetallic Precipitates on the Tribological and/or Corrosion Performance of Cast Aluminium Alloys: a Short Review

    OpenAIRE

    Culliton, David; Betts, Tony; Kennedy, David

    2013-01-01

    The role of various intermetallic precipitates (IMP), or secondary phase particles, in governing the wear and corrosion performance characteristics of cast aluminium alloys is outlined in this brief review. Such alloys are especially important in transport applications where their low weight, low cost and recyclability make them very attractive. However alloy wear and/or corrosion behaviour often limit their industrial application and more work needs to done to extend their use into other are...

  13. Effect of T4 and T6 treatment on corrosion of die cast AZ91D magnesium alloys in 3.5% NaCl

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wan-qiu; SHAN Da-yong; HAN En-hou; KE Wei

    2006-01-01

    The effect of heat treatment on microstructure and corrosion behavior of die-cast AZ91D magnesium alloys in 3.5% NaCl solution was investigated by SEM, EDX, XRD and electrochemical technique. It is found that the distribution of β phase influences the corrosion morphology. Corrosion occurs preferentially in primary α phase and presents pitting corrosion feature in die-cast AZ91D. After homogenization of T4 treatment, β phase dissolves in α phase and forms a single phase with α matrix, and the corrosion form turns to localized corrosion. The attack initiates at local site, expands towards deep direction and produces "digging effect". After artificial aging of T6 treatment, β phase is produced in abundance and provides a great deal of effective micro-cathode for anodic dissolution, and the corrosion form exhibits in general corrosion.

  14. Corrosion behavior of as-cast Mg_(68)Zn_(28)Y_4 alloy with I-phase

    Institute of Scientific and Technical Information of China (English)

    SHI Fei; YU Yuan-chun; GUO Xue-feng; ZHANG Zhong-ming; LI Ying-ying

    2009-01-01

    Mg_(68)Zn_(28)Y_4 alloys with stable icosahedral quasicrystals (Zn_(60)Mg_(30)Y_(10)) were prepared by cast method. By simulating the environment of ocean, the alloy was eroded in 3.5% (mass fraction) NaCl for 2, 4 and 30 h. The microstructures of the samples and eroded alloys were analyzed by OM and SEM. The compositions and the quasiperiodic structures were identified respectively by EDS and TEM. And the corrosion potential and corrosion current density before and after immersion were measured by potentiodynamic polarization measurements in 3.5% NaCl. The results show that I-phases grow in the mode of conglomeration, piling and transfixion. The Mg_7Zn_3 matrix and ((Mg) solid solution are eroded badly, while W-phase is eroded partially. At the same time, the I-phases exhibit excellent corrosion resistance property. The resistance to corrosion of Mg_(68)Zn_(28)Y_4 alloy is improved by increasing exposed I-phases. With adding element Y to Mg68Zn32 alloy, the corrosion current is decreased by one order of magnitude. And after the immersion of as-cast Mg_(68)Zn_(28)Y_4 alloy for 30 h, the corrosion current density is reduced by two orders of magnitude compared with that of uneroded Mg_(68)Zn_(32) alloy.

  15. Eddy current measurement system evaluation for corrosion depth determination on cast aluminum aircraft structure

    Science.gov (United States)

    Singh, Surendra; Greving, Dan; Kinney, Andy; Vensel, Fred; Ohm, Jim; Peeler, Mike

    2013-01-01

    An eddy current (EC) technique was developed to determine the corrosion depth on a bare flange face of a cast aluminum A356-T6 aircraft engine structure. The EC response and the corrosion depths determined through metallurgical cross sections were used to develop an empirical relation between EC response and depth. The EC technique and depth determination are used to inspect the engine structures during overhaul to determine if they are fit for continued service. An accurate and reliable Non-Destructive Inspection is required to ensure that structures returned to service are safe for continued operation. NDE system reliability demonstrations of the eddy current technique are traditionally reported in terms of Probability of Detection (POD) data using MIL-HDBK-1823A. However, the calculation of POD data is based on a simple linear predictive model that is valid only if certain criteria are met. These are: 1) NDE system response is measurable (i.e. continuous data), 2) Flaw size is known and measurable (i.e. continuous data), 3) relationship between the NDE system response and flaw size is linear (or linear on a log scale), 4) variation in measured responseresponse around a predicted response for a given flaw size is normally distributed, 5) the variation around the predicted response is constant (i.e. variation does not change with flaw size), and 6) inherent variability in the NDE system is known and fully understood. In this work, a Measurement System Evaluation (MSE) of the Eddy Current System was used to address some of these concerns. This work was completed on two aircraft structures having varying corrosion depths. The data were acquired in a random manner at fifty regions of interests (ROIs). Three operators participated in this study, and each operator measured Eddy Current response three times in each ROI. In total, there were four hundred and fifty data points collected. Following this, the two structures were sectioned for measuring corrosion depth. The

  16. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.

  17. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  18. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Velayutham [Department of Chemistry, Periyar University, Salem 636011 (India); Kesavan, Devarayan [Department of Chemistry, Dhirajlal Gandhi College of Technology, Salem 636309 (India); Gopiraman, Mayakrishnan [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Viswanathamurthi, Periasamy, E-mail: viswanathamurthi72@gmail.com [Department of Chemistry, Periyar University, Salem 636011 (India); Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan [Department of Bio-Chemistry, Periyar University, Salem 636011 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E{sub a} and ΔH{sup *} point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods.

  19. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    Science.gov (United States)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-09-01

    The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV-vis, Wide-angle X-ray diffraction and SEM methods.

  20. Corrosion behaviour of some cast stainless steels and high alloy white irons in scrubber solutions of flue gas desulfurization plants

    International Nuclear Information System (INIS)

    Weight loss and electrochemical measurements have been used to determine the ranges of applicability of cast austenitic stainless steel Werkstoff No. 1.4408, of two special cast ferritic-austenitic stainless steels NORIDUR 9.4460 and NORICLOR NC 246 and of two high alloy Cr and CrMo white irons in scrubber solutions of Flue Gas Desulfurization (FGD) plants. Whereas the Werkstoff No. 1.4408 cannot be used due to its insufficient resistance to general and localized corrosion, NORIDUR 9.4460 can be used in scrubber solutions with pH > 2.5 and chloride concentrations up to 80 g/l, NORICLOR NC 246 with 5% Mo even in liquids with pH > 1.5 and chlorides up to 100 g/l. At lower pH-values both duplex stainless steels show active corrosion of either the austenite or the ferrite depending on the contents of hydrochloric acid in the solution. At higher chloride concentrations pitting occurs on the passive materials. The CrMo white iron NORILOY NL 252 with 25% Cr and 2% Mo can be used in scrubber liquids with pH > 3.5. As the ferritic matrix is cathodically protected by the precipitated carbides, there is no sensitivity of this alloy to chlorides. In liquids with pH < 3.5 there is selective corrosion of the ferritic matrix. For practical application of all these cast alloys the limits for purely corrosive attack have to be modified to assure resistance to a superposition of corrosion, erosion/abrasion and cavitation on parts exposed to real flow conditions in FGD scrubbers. (orig.)

  1. Blood microvascular organization of the nasal-associated lymphoid tissue of the guinea pig: a scanning electron microscopic study of corrosion casts.

    Directory of Open Access Journals (Sweden)

    Okada,Satoko

    1995-08-01

    Full Text Available It has previously been confirmed that the guinea pig has aggregations of 10-20 lymphoid follicles at the junction of the nasal cavity and the nasopharyngeal duct. The vascular architecture of this nasal-associated lymphoid tissue (NALT was studied by the corrosion cast/scanning electron microscope method. The NALT was supplied by branches of the inferior nasal artery. These afferent arterial branches gave off arterioles to the follicles and the interfollicular regions, where the arterioles ramified into capillaries. Some of these arterioles reached the subepithelial region to form a single-layer dense capillary network. The subepithelial capillaries gathered into short collecting venules, which in turn drained into high endothelial venules (HEV in the interfollicular region. The HEV, which also receives tributaries from the follicular and interfollicular capillary plexuses, descended in the interfollicular regions and finally flowed into the efferent veins at the bottom of the NALT. Indentations impressed by high endothelial cells (HEC were prominent on the surface of the HEV casts, and their frequency was larger in the upper course or segments than in the lower. This suggests that the incidence of HEC in the upper segments is higher than in the lower segments, and these findings are consistent with the hypothesis that some substances which are taken up into the subepithelial capillaries and transported to the venules induce differentiation and maintain of HEVs.

  2. Maximizing Modern Distribution of Complex Anatomical Spatial Information: 3D Reconstruction and Rapid Prototype Production of Anatomical Corrosion Casts of Human Specimens

    Science.gov (United States)

    Li, Jianyi; Nie, Lanying; Li, Zeyu; Lin, Lijun; Tang, Lei; Ouyang, Jun

    2012-01-01

    Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical…

  3. Progress of Vascular Cast Technique%人体血管铸型技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    潘雪梅; 周军

    2012-01-01

    Objective:To explore the preparation of vascular cast and its application in anatomy and clinical medicine. Methods:' Vascular, cast, anatomy, vein and artery' were searched as key words by CNKI and PubMed series full - text database retrieval systems from Jan. 1991 to Dec. 2011. Total 2 046 Chinese papers and 197 English papers of literatures were obtained. Reading related literature,summaring progress of vascular cast technique. Results: Vascular cast is an established method of anatomical preparation which has built models showed artery and vein vascular network for diverseness organs. It shows the three - dimensional morphological of vessel. It provides a basis on the surgery preserving artery and the treatment of intervention in vascular. Conclusions:Vascular cast has been proven to be an excellent method for the examination of vessel. With effort for about 30 years, it has been matured. It has revived recently with the development of anatomy and clin-cical medicine.%目的:探讨血管铸型的制作及其在解剖学、临床等学科的应用进展.方法:登录CNKI及PubMed期刊全文数据库检索系统,以“血管、铸型、静脉、动脉”等为关键词,检索1991年1月~2011年12月的相关文献,共检索到中文文献2 046条,英文文献197条;阅读相关文献,并总结血管铸型技术及其应用进展.结果:血管铸型技术为解剖标本制作已确定的方法,已构建出全身多个器官的动脉、静脉血管网铸型标本.铸型标本可显示脉管系统的三维立体结构,可为临床各种保留血管的术式、血管内介入治疗等提供依据.结论:血管铸型是研究微血管系统的可靠手段,经过如多年的发展已日趋成熟.随着解剖学、临床等学科的发展,近年来有复兴的趋势.

  4. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels

    Science.gov (United States)

    Son, Jinil; Kim, Sangshik; Lee, Jehyun; Choi, Byunghak

    2003-08-01

    The effect of N addition on the microstructure, tensile, and corrosion behaviors of CD4MCU (Fe-25Cr-5Ni-2.8Cu-2Mo) cast duplex stainless steel was examined in the present study. The slow strain rate tests were also conducted at a nominal strain rate of 1 × 10-6/s in air and 3.5 pct NaCl+5 pct H2SO4 solution for studying the stress corrosion cracking (SCC) behavior. It was observed that the volume fraction of austenitic phase in CD4MCU alloy varied from 38 to 59 pct with increasing nitrogen content from 0 to 0.27 wt. pct. The tensile behavior of CD4MCU cast duplex stainless steels, which tended to vary significantly with different N contents, appeared to be strongly related to the volume changes in ferritic and austenitic phases, rather than the intrinsic N effect. The improvement in the resistance to general corrosion in 3.5 pct NaCl+5 pct H2SO4 aqueous solution was notable with 0.13 pct N addition. The further improvement was not significant with further N addition. The resistance to SCC of CD4MCU cast duplex stainless steels in 3.5 pct NaCl+5 pct H2SO4 aqueous solution, however, increased continuously with increasing N content. The enhancement in the SCC resistance was believed to be related to the volume fraction of globular austenitic colonies, which tended to act as barriers for the development of initial pitting cracks in the ferritic phase into the sharp ones.

  5. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  6. Effect of the Solution Annealing and Chemical Passivation Followed by Aging on the Corrosion of Shell Mold Cast CF8 Stainless Steel

    Science.gov (United States)

    Kim, Kuk-Jin; Ju, Heongkyu; Moon, Young-Dae; Hong, Jun Ho; Pak, Sung Joon

    2016-10-01

    The effects of solution annealing and passivation of shell mold cast CF8 stainless steels on Elbow pipe fittings with 2-month room temperature aging have been studied using a corrosion technique. The resistance of corrosion increased with 2-month room temperature aging combined with solid solution annealing and chemical passivation. The mode of corrosion was deeply related to the δ-ferrite content, permeability, and passivation. The corrosion probability decreased as both the δ-ferrite content and the permeability decreased. Therefore, it is considered that δ-ferrite content and passive film of Cr2O3 play an important role in corrosion resistance of CF8 Elbow pipe fittings due to the long-term aging with solid solution annealing and chemical passivation. This result shows that the corrosion resistance of CF8 fittings can be enhanced by the solid solution annealing and chemical passivation. Decreased ferrite phases and permeability improve IGC resistance in CF8 steel.

  7. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  8. Effects of Ce addition on microstructure, mechanical properties and corrosion resistance of as-cast AZ80 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2014-05-01

    Full Text Available In this study, Ce was introduced into the AZ80 alloy and the effects of Ce addition on the microstructure, mechanical properties and corrosion resistance of the as-cast AZ80 magnesium alloy were investigated. The results show that the addition of Ce into the AZ80 alloy can not only refine the microstructure, but also result in the formation of the needle-like Al4Ce phase. These tiny Al4Ce phases are homogeneously distributed at grain boundaries and within grains. An appropriate Ce addition can also change the β-Mg17Al12 phase at the grain boundaries from continuous network to small island-like. At the same time, with the increase of Ce content from 0 to 2.0wt.%, the macro-hardness of the as-cast alloy is enhanced linearly, while impact toughness, tensile strength and elongation all firstly increase and then decrease. The AZ80 alloy containing 1.0wt.% Ce exhibits the optimal properties. Its macro-hardness, impact toughness, tensile strength and elongation are 61.90 HB, 15.50 J·cm-2, 171.80 MPa and 3.35%, increase by 9.95%, 63%, 13.3% and 36.7%, respectively compared with the base alloy. In addition, Ce can enhance the corrosion resistance of the AZ80 magnesium alloy.

  9. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Truhan, Jr., John J [ORNL; Kenik, Edward A [ORNL

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  10. Comparative analysis of the behavior to corrosion of forged and cast austenitic stainless steel when used in a surgical prosthesis

    International Nuclear Information System (INIS)

    The selection of a material to be used in implants involves tests that cover aspects relative to its resistance to corrosion and its bio-compatibility. Testing the material implanted in the human body is a very difficult process or it is impossible via direct electrochemistry. Because of this laboratory tests have been developed that simulate the natural setting of the material in the organism using saline solutions that are kept at 37oC and pH 7.4. The material that is to be used should be resistant to corrosion in the body so that ions are not released into the organism and the device should maintain its integrity in service and not to suffer degradation. This work compares the behavior to corrosion of samples of a cast prosthesis (lower tibia, made of stainless steel ACI CF 3M) and a forged prosthesis (femorals, made of stainless steel ASTM F 621) with laminated bars of the same quality (stainless steel ASTM F 138). The samples were characterized with physical and electrochemical tests under three different thermal conditions: solubilized, annealed and forged or cast. The test pieces were submitted to electrochemical direct current tests during their immersion in a 0.9% deoxygenated NaCl solution and thermostatisized at 37oC. The Cr and Fe content in solution at the end of the electrochemical test was evaluated together with the micro hardness of the material and the characterization of the final stage of the material was carried out by optic microscopy and sweep electronics (CW)

  11. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  12. Corrosion behaviour of water waste on the gray cast iron sanitary pipelines

    International Nuclear Information System (INIS)

    The works of Plato (427-347 B.C.) contained the written description of corrosion. Plato defined rust as the earthy component separating out of the metal. (Georgius Agrico La) held to the same opinion some 2000 years later in his great mineralogical work De Natura Fossilium Iron rust (rat. Ferrug or Rubigo) is, so to speak, assertion of metallic iron. Iron can be protected against this defect by various wrapping, such as red lead, white lead, gypsum, bitumen or tar. Gaius Secundus Pliny also mentioned bitumen, pitch, white lead, and gypsum as protecting iron and bronze against corrosion. He reported that Alexander the Great had constructed Ponton Bridge at Zeugmar on the Euphrates with the aid of an iron chain. Link's that were inserted later suffered rust attacks, While the original ones remained immune. The opinion, sometimes expressed today, that modern iron inferior and more corrosion than old iron, was thus current even in ancient times. The concept of the corrosion process derived from the latin corrodere ( to eat away, to destroy ), first appeared in the philosophical transaction in 1667. It was discussed in German from the Frensh on the manufacture of white lead in 1785 and was mentioned in 1836 in the translation of an English paper by Savy on the cathodic protection of iron in sea water. However, almost unit the present day, the term was indiscriminately for corrosion reaction effects, and corrosion damage

  13. The Comparison of the Microstructure and Corrosion Resistance of Sand Cast Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Dobkowska A.

    2016-03-01

    Full Text Available The influence of different types of precipitation on the corrosion behavior was investigated in three aluminum-siliconmagnesium alloys. The microstructures of the alloys were studied through optical (OM and scanning electron microscopy (SEM. The structures consisted of an α-Al solid solution matrix, Si eutectic crystals, secondary phases AlFeSi and AlMgFeSi (Chinese script, as well as Mg2Si. The corrosion behavior was examined with the use of a potentiodynamic polarization test followed by a SEM surface analysis. The results indicate that all the analyzed samples were in the passive state and AlSi10Mg was less reactive in the corrosive environment.

  14. Vascularization of the Pineal Gland in the Crow

    OpenAIRE

    Nasu, Tetsuo; Nakai, Masaaki; Murakami, Noboru

    1994-01-01

    The blood vascularization in the pineal gland of the crow was investigated in detail using a vascular corrosion cast technique and by scanning electron microscopy. The pineal gland received two afferent arteries on either side, each artery arising from the A. Cerebra{is Caudalis (CC) which supplied its branches to the hemisphere. The pineal gland of the crow was so highly vascularized as to be suggestive of its high metabolic and endocrine activities. The efferent veins drained into the Sinus...

  15. High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures

    OpenAIRE

    Xu, Nan; Monceau, Daniel; Young, David; Furtado, Jader

    2008-01-01

    Two commercial variants of the cast heat resistant grade HP40Nb (Fe–25Cr–35Ni, Nb modified) were exposed to CO/CO2 gases at 982 and 1080 C in order to simulate exposure to the carbon and oxygen potentials realised in steam reformers under normal and overheated conditions. Both alloys developed external chromium-rich oxide scales, intradendritic silica precipitates and interdendritic oxide protrusions where primary, interdendritic carbides were oxidised in situ. Surprisingly, the lower silicon...

  16. MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution.

    Science.gov (United States)

    Li, Hui-Zhe; Zhao, Xu; Xu, Jian

    2015-11-01

    Using revised simulated body fluid (r-SBF), the electrochemical corrosion behavior of an Nb-60Ta-2Zr alloy for MRI compatible vascular stents was characterized in vitro. As indicated by XPS analysis, the surface passive oxide film of approximately 1.3nm thickness was identified as a mixture of Nb2O5, Ta2O5 and ZrO2 after immersion in the r-SBF. The Nb-60Ta-2Zr alloy manifests a low corrosion rate and high polarization resistance similar to pure Nb and Ta, as shown by the potentiodynamic polarization curves and EIS. Unlike 316L stainless steel and the L605 Co-Cr alloy, no localized corrosion has been detected. Semiconducting property of passive film on the Nb-60Ta-2Zr alloy was identified as the n-type, with growth mechanism of high-field controlled growth. The excellent corrosion resistance in simulated human blood enviroment renders the Nb-60Ta-2Zr alloy promising as stent candidate material.

  17. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    Science.gov (United States)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  18. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    Science.gov (United States)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  19. Effect of Heat Treatments on the Microstructure, Hardness and Corrosion Behavior of Nondendritic AlSi9Cu3(Fe Cast Alloy

    Directory of Open Access Journals (Sweden)

    Nacer ZAZI

    2013-09-01

    Full Text Available In this paper we studied the influence of heat treatments on properties of AlSi9Cu3(Fe nondendritic cast alloy. Solution heat treatment, six hours at 520 °C, while making the grains more spherical modifies corrosion morphology into intergranular corrosion and corrosion surrounding spherical particles in 3 % NaCl solution. Past solution treatment, quenching at 520 °C after one hour with two weeks of natural aging transform the shape of grains into equiaxes form. Two weeks of natural aging and 30 minutes of aging at 150, 200, 250 °C after solution treatment and quenching give birth to the "Chinese script" form of the Al15(MnFe3Si intermetallic particles. The prolongation of the duration period of aging to one hour at 200 °C is sufficient to transform the morphology of corrosion into located corrosion by pitting, and a longer aging cancels the "Chinese script" form. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1397

  20. Corrosion behaviour of ductile cast irons partially modified with silicon in 0.03 M NaCl; Comportamiento frente a la corrosion de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, M. A.; Niklas, A.; Conde, A.; Mendez, S.; Sertucha, J.; Damborenea, J. J. de

    2014-07-01

    NaCl. The increasing demand of ductile cast irons with extensive technological applications leads to enlarge the corrosion resistance of this group of metallic materials. In this sense, the use of different chemical compositions on such cast irons becomes one of the most interesting aspects among the different ways to improve their behaviour against corrosion due to the extra opportunity for increasing the mechanical properties. Additionally such improvements have to be made without any increase of processing costs to keep the interesting competitiveness of developed cast irons. In the present work the preliminary results obtained from corrosion tests made on a group of cast irons with different chemical compositions are presented. Among ductile cast irons, silicon content has been varied in order to investigate the effect of this element on corrosion resistance of the alloys. The obtained results show a slight improvement of this property for the alloys with high silicon content with respect to the conventional ones though such effect was found in the first time period of the corrosion tests. Interestingly this improvement was found for alloys that exhibit better tensile properties than the conventional ductile irons. Thus an important way for developing new ductile cast irons with improved corrosion properties by alloying has been opened. (Author)

  1. Effects Of T6 Heat Treatment With Double Solution Treatment On Microstructure, Hardness And Corrosion Resistance Of Cast Al-Si-Cu Alloy

    OpenAIRE

    Wiengmoon A.; Sukchot P.; Tareelap N.; Pearce J.T.H.; Chairuangsri T.

    2015-01-01

    Effects of T6 heat treatment with double solution treatment on microstructure, hardness and corrosion resistance of a cast A319 (Al-4.93wt%Si-3.47wt%Cu) alloy were investigated. The T6 heat treatment comprised of the first solution treatment at 500±5°C for 8 h, the second solution treatment in the temperature range of 510 to 530±5°C for 2 h followed by water quenching (80°C), and artificial aging at 170°C for 24 h followed by water quenching (80°C). Microstructure of the alloy was studied by ...

  2. 宝钢耐候钢连铸实践%CONTINUOUS CASTING OF ATMOSPHERIC CORROSION-RESISTING STEEL AT BAOSTEEL

    Institute of Scientific and Technical Information of China (English)

    阮晓明

    2001-01-01

    Based on the practice of continuous casting of atmospheric corrosion-resisting steel at Baosteel,some problems in the production were analyzed,and corresponding countermeasures have been put forward.And it has been proved that the measures are effective to improve the slab quality.%根据宝钢耐候钢连铸生产实践,分析了生产中存在的问题,并提出了相应改进措施,取得了较好的效果。

  3. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline NbN Coatings in Corrosion Protective Die Casting Molds.

    Science.gov (United States)

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 200 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single NbN phased coatings with nano-grain sized (hardness of each coating were evaluated from potentiostat and nanoindentator. Superior corrosion protective coatings in excess of 13.9 GPa were deposited with assistance of ICP plasma during sputtering.

  4. Effects Of T6 Heat Treatment With Double Solution Treatment On Microstructure, Hardness And Corrosion Resistance Of Cast Al-Si-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Wiengmoon A.

    2015-06-01

    Full Text Available Effects of T6 heat treatment with double solution treatment on microstructure, hardness and corrosion resistance of a cast A319 (Al-4.93wt%Si-3.47wt%Cu alloy were investigated. The T6 heat treatment comprised of the first solution treatment at 500±5°C for 8 h, the second solution treatment in the temperature range of 510 to 530±5°C for 2 h followed by water quenching (80°C, and artificial aging at 170°C for 24 h followed by water quenching (80°C. Microstructure of the alloy was studied by optical microscopy and electron microscopy, Rockwell hardness was measured, and corrosion resistance in 0.1 M NaCl aqueous solution was determined by a potentiodynamic technique. The results revealed that the T6 heat treatment with double solution treatment led to an improvement in corrosion resistance and comparable macrohardness as compared to those obtained from the case of single solution treatment. The second solution treatment at 520°C is the optimum leading to relatively low corrosion current density without substantial drawbacks on breakdown potential or the width of passive range.

  5. A galvanic corrosion study of brass/stainless steel and brass/cast iron couples; Estudio de corrosion galvanica en pares laton/acero inoxidable y laton/fundicion de hierro

    Energy Technology Data Exchange (ETDEWEB)

    Ohanian, M.; Diaz, V.; Corengia, M.; Zinola, C. F.

    2011-07-01

    Corrosion attack in heat exchanger systems is a topic of main interest for the maintenance in each industrial plant. These are multi galvanic systems with particular geometric and fluidodynamic complexity. Corrosive damages include zinc selective dealeation in copper alloys. In order to explain zinc dealeation attack, this paper deals with laboratory scale testing, characterization and interactions between two copper and zinc alloys (Yellow brass UNS C268 and Admiralty brass UNS C443) compared to AISI 316 stainless steel and cast iron. The tests were performed at 20 degree centigrade in 1.5 % NaCl and 1.5 % Na{sub 2}SO{sub 4} solutions, pH 8 and each material was characterized by potentiodynamic sweeps. The couples are analyzed by studying transient galvanic currents. We conclude about the cause of the analyzed pathology, brass protection potential ranges and its coupling compatibility with other metals. (Author) 33 refs.

  6. Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework

    International Nuclear Information System (INIS)

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities. The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which physical conditions of normal reactor operations, as well as accident environments, are explicitly modeled subject to uncertainty characterization. RELAP 7 (R7) is the platform being developed at Idaho National Laboratory to model these physical conditions. Adverse effects of aging systems could be particularly significant in those SSCs for which management options are limited; that is, components for which replacement, refurbishment, or other means of rejuvenation are least practical. These include various passive SSCs, such as piping components. Pacific Northwest National Laboratory is developing passive component reliability models intended to be compatible with the R7 framework. In the R7 paradigm, component reliability must be characterized in the context of the physical environments that R7 predicts. So, while conventional reliability models are parametric, relying on the statistical analysis of service data, RISMC reliability models must be physics-based and driven by the physical boundary conditions that R7 provides, thus allowing full integration of passives into the R7 multi-physics environment. The model must also be cast in a form compatible with the cumulative damage framework that R7

  7. Effect of heat treatment on the wear and corrosion behaviors of a gray cast iron coated with a COLMONOY 88 alloy deposited by high velocity oxygen fuel (HVOF) thermal spray

    OpenAIRE

    ÖZ, A.; R. Samur; Mindivan, H.; Demir, A.; S. Sagiroglu; A. K. Yakut

    2013-01-01

    The present work has been conducted in order to determine the influence of heat treatment on the wear and corrosion behaviours of a gray cast iron substrate coated with a Ni base coating deposited by HVOF thermal spray. The wear resistance of the coatings was obtained using a reciprocating wear tester by rubbing a 10 mm diameter steel ball on the coatings at normal atmospheric conditions. Corrosion tests were performed using potentiodynamic polarization measurements in a 3,5 % NaCl solution. ...

  8. Effect of Chloride on the Atmospheric Corrosion of Cast Iron in Sulphur or Nitrogen-Bearing Pollutant Environment%氯离子在含硫氮污染物的环境中对模拟铁器文物的大气腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    曹霞; 许淳淳

    2005-01-01

    The effect of chloride on the atmospheric corrosion of cast iron in sulphur or nitrogen-bearing pollutant was investigated by using periodic wet-dry test, electrochemical experiment and surface tension test. Scanning electron microscopy coupled with energy dispersive atomic (EDAX) and stereoscopic microscopy was used to identify the corrosion processes and products. Cl- and NO-3 were shown accelerating effects during the whole corrosion process but depression effects were observed in Cl- and HSO-3 bearing pollutant at the initial corrosion stage.However, with the corrosion going on, the depression effects was less obviously and the initial corrosion process was investigated from the viewpoint of surface activity. At the initial corrosion stage, the corrosion rate was proportional to the adsorptivity of anions, but as corrosion went on, the penetration effect of anions and different characteristics of the corrosion products began to dominate the corrosion process, which led to changes on the corrosion rate.

  9. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Science.gov (United States)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  10. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murillo-Gutiérrez, N.V., E-mail: murillo@chimie.ups-tlse.fr [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Ansart, F.; Bonino, J-P. [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Kunst, S.R.; Malfatti, C.F. [Universidade Federal do Rio grande do Sul, Laboratory of Corrosion Research (LAPEC), Porto Alegre (Brazil)

    2014-08-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  11. Effect of heat treatment on the wear and corrosion behaviors of a gray cast iron coated with a COLMONOY 88 alloy deposited by high velocity oxygen fuel (HVOF thermal spray

    Directory of Open Access Journals (Sweden)

    A. Öz

    2013-07-01

    Full Text Available The present work has been conducted in order to determine the influence of heat treatment on the wear and corrosion behaviours of a gray cast iron substrate coated with a Ni base coating deposited by HVOF thermal spray. The wear resistance of the coatings was obtained using a reciprocating wear tester by rubbing a 10 mm diameter steel ball on the coatings at normal atmospheric conditions. Corrosion tests were performed using potentiodynamic polarization measurements in a 3,5 % NaCl solution. It was observed that the corrosion and wear resistance of the coatings increased along with the reduction of porosity and roughness by the heat treatment.

  12. Effect of samarium on microstructure and corrosion resistance of aged as-cast AZ92 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    吴道高; 颜世宏; 王志强; 张志琦; 苗睿瑛; 张小伟; 陈德宏

    2014-01-01

    The effects of samarium (Sm) on microstructure and corrosion resistance of AZ92 magnesium alloy were characterized and analyzed by scanning electronic microscopy, X-ray diffraction, mass loss test, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy and potentio-dynamic polarization test. The results showed that the added Sm could promote continuous precipitation ofβ-Mg17Al12 phase in grains, and meanwhile restrain discontinuous precipitation of the same phase along the grain boundaries. Thus, the precipitations distributed more uniformly in the aged AZ92 magnesium alloys. When the content of Sm was 0.5 wt.%, the corrosion resistance of aged AZ92 alloy tended to be the best, which was due to theβ-phase distributes more homogeneous reducing the galvanic corrosion. The corrosion product film had more integrality and compactness than AZ92 alloys without Sm. However, it resulted in worse corrosion resistance of AZ92 alloy because of the formation of mass cathodic Al2Sm phase coming from excess Sm in AZ92 alloy.

  13. Erosion-corrosion and surface protection of A356 Al/ZrO{sub 2} composites produced by vortex and squeeze casting

    Energy Technology Data Exchange (ETDEWEB)

    El-Khair, M.T. Abou [Central Metallurgical Research and Development Institute, CMRDI, P.O. 87 Hellwan, Cairo (Egypt); Aal, A. Abdel [Central Metallurgical Research and Development Institute, CMRDI, P.O. 87 Hellwan, Cairo (Egypt)], E-mail: foralsayed@yahoo.com

    2007-04-25

    Erosive-corrosive wear behavior of Al-Si-Mg (A356 Al) alloy and its composite reinforced by ZrO{sub 2} and produced by vortex and squeeze techniques has been studied in water containing 40% sand slurry. The worn surfaces of investigated alloys have been studied and the mechanism of material removal from the specimen surface was examined to be associated with number of subsequent and repetitive stages. The possibility of Ni coating for Al composites by electrochemical deposition is investigated. The surface layer was characterized by microhardness measurements, optical microscope, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) analysis. The electrochemical results obtained from polarization studies for Ni-coated, A356 Al alloy and composites in 3.5% sodium chloride solution indicated higher protection exhibited by Ni coatings due to the nickel properties. The squeezed cast composite is characterized by high corrosion and wear resistance comparing the composite produced by vortex process. This study revealed that the Ni-coated materials provide higher abrasive resistance and therefore a longer service life compared to A356 Al-ZrO{sub 2}.

  14. CORROSION RESISTANCE OF PEARLITIC AND BAINITIC CAST IRON IN A SYNTHETIC SOLUTION OF CONDENSED GAS FROM COMBUSTION

    OpenAIRE

    Sandra Matos Cordeiro Costa; Emerson Igor Reginaldo; Isolda Costa

    2015-01-01

    The corrosion of engine components of the combustion chamber is usually related to the formation of acids such as sulfuric and nitric. These acids are generated by the condensation of combustion gases that usually occur in vehicle exhaust systems. However, with the development of new technologies to reduce emissions, condensation is also being promoted in vehicle combustion chambers. This fact is associated with high exhaust gas recirculation rates, known as EGR (English term for ...

  15. Investigation of the stress corrosion cracking susceptibility of annealed and heat treated alloy 625 castings and forgings in sea water

    OpenAIRE

    Jones, Eric Merwin

    1987-01-01

    The author hereby grants to the United States Navy, Wyman Gordon, and M.I.T. permission to reproduce and distribute copies of this thesis document in Whole or in part. Alloy 625, the nickel based superalloy commonly called Inconel* 625, was investigated for its susceptibility to stress corrosion cracking in sea water using the slow strain rate tensile test method. Four microstructures of the alloy commonly found in end products were investigated. Bimetallic couplings w...

  16. 子痫前期患者胎盘血管铸型研究%A Study on the Placental Vascular Casting of Pre-eclampsia Pregnant Women

    Institute of Scientific and Technical Information of China (English)

    尹格平; 李秀云; 陈铭; 李娟; 武爱芳

    2015-01-01

    Objective To investigate vascular distribution and structure by analyzing placental vascular casting of pre-eclampsia ( PE) pregnant women. Methods A total of 88 pregnant women admitted during October 2007 and Oc-tober 2010 were recruited in this study, including 40 normal pregnant women, 40 PE pregnant women and 8 pregnant women with special placentas. An improved epoxy resin vascular casting technique was used. Placental vascular bed vol-ume was measured using water displacement method. Peripheral artery-to-vein ratios were calculated, and placental vas-cular casting characteristics were observed. Results In normal pregnant women, the placental veins were branched into 5-7 branches from large to small, and distal and rich vessel branches ended the blood sinusoid;numbers of venous tribu-tary in placentas of pregnant women with severe PE were obviously decreased compared with those of normal pregnant women. The values of placental volumes of blood vascular system and classification of umbilical veins of pregnant women with severe PE were less than those of normal pregnant women, while the peripheral artery-to-vein ratio of pregnant women with severe PE was higher than that of normal pregnant women. The grade 1-3 internal diameters of umbilical veins were significantly small than those of same grades of normal pregnant women, and the grade 2 or 3 internal diame-ters of umbilical arteries of pregnant women with severe PE were significantly small than those of same grades of normal pregnant women (P<0. 05, P<0. 01). Conclusion The placental vascular casting may help to directly study the pla-cental veins structures of pregnant women. The decreased placental vascular bed volume, small diameter of grade 3 vas-cular branch and increased peripheral artery-to-vein ratio of pregnant women with severe PE may be the cause of placenta insufficiency.%目的:通过对子痫前期( PE)胎盘血管的结构铸型,探讨其血管分布结构。方法选择2007年10月—2010年10

  17. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steel (second report). Consideration on fractography after slow strain rate technique

    International Nuclear Information System (INIS)

    In order to evaluate the stress corrosion cracking (SCC) susceptibility of cast duplex stainless steel which is used for the main coolant pipe of pressurized water reactors (PWRs), the slow strain rate technique (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The cast duplex stainless steel contains ferrite phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this unaged and aged stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The brittle fracture of the unaged specimens after SSRT mainly consists of quasi-cleavage fracture in austenitic phase. After aging, it changes to a mixture of quasi-cleavage fracture in both austenitic and ferritic phases. Microcracks were observed on the unaged specimen surfaces and aged ones for 10,000 hours at 400degC after about 10,000 hours of the CLT under the load condition of 1.2∼2.0 times of yield strength. The crack initiation sites of CLT specimens are similar to SSRT fracture surfaces. The SCC susceptibility of this 23% ferrite material increases with aging time at 400degC. The SCC susceptibility of 15% and 23% ferrite materials are higher than that of 8% ferrite material with aging condition for 30,000h at 400degC. (author)

  18. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy

    Directory of Open Access Journals (Sweden)

    Tatjana Puskar

    2014-09-01

    Full Text Available Dental alloys for direct metal laser sintering (DMLS are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS. The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments.

  19. Effect of micro segregation on pitting corrosion of SCS 14 austenitic stainless steel castings in sea water environments; SCS 14 osutenaitokei sutenresuchuko no kaisuichu deno koshoku kyodo ni oyobosu mikuro henseki no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tomoya. [Hitachi Ltd., Tokyo (Japan). Hitachi Research Laboratory; Yokosuka, Tsunenobu. [Hitachi Kyowa Engineering Ltd., Ibaraki (Japan); Honda, Takashi. [Hitachi Nuclear Engineering Ltd., Ibaraki (Japan)

    1999-06-15

    Austenitic stainless steel castings, such as SCS 13, SCS 14, which consists of {delta}/{gamma} duplex phase, are extensively used as structural material in seawater environments. It is known that SCS 14 involving 2wt% Mo is more resistant to pitting corrosion than SCS 13. In this paper, effects of Mo on the pitting corrosion are discussed in terms of microstructure of the material. The corrosion behavior of the materials with different {delta} ferrite contents and cleanlinesses have been evaluated by seawater exposure testing, electrochemical polarization, and TEM-EDX analysis. The results indicate that pits mainly nucleate at nonmetallic inclusions such as MnS and {delta}/{gamma} boundaries, and materials containing {delta} ferrite above 7vol% have high pitting corrosion resistance. The nucleation at {delta}/{gamma} boundaries is assumed to be due to the segregation of P. It is considered that because of segregation of Mo along {delta}/{gamma} boundaries, SCS 14 is much resistant to pitting corrosion than SCS 13. (author)

  20. 改良铸造铝硅合金常温耐腐蚀性能的研究%Study of the Corrosion Resistance of Modified Casting Al-Si Alloy at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    范应光; 陈汝霞; 杨启杰; 苏广才; 黄思娟

    2013-01-01

    在传统ZL101铸造铝硅合金的基础上,通过添加Cu、Ni、Mn、V、RE等合金元素,研制了改良铸造铝硅合金,并对该改良合金常温(25℃)下在酸、碱、盐腐蚀介质中的耐腐蚀性能进行了研究.研究结果表明,常温下在酸、碱、盐腐蚀介质中,改良铸造铝硅合金耐腐蚀性能均优于ZL101合金.%On the basis of traditional ZL101 casting aluminum-silicon alloy, by adding alloying elements such as Cu, Ni, Mn, V, RE, a modified casting Al-Si alloy was developed, and the corrosion resistance of the improved alloy at room temperature (25 ℃) under acid, alkali and salt solutions were studied. The results show that the corrosion resistance of the improved casting aluminum-silicon alloy at room temperature under acid, alkali and salt solutions is superior to ZL101 alloy.

  1. 烧碱浓度及冲刷对合金铸铁耐碱腐蚀性能的影响%Effect of Dentist and Scouring on Soda Corrosion Resistance of RE-Ni-Cu Alloy Cast Iron

    Institute of Scientific and Technical Information of China (English)

    张毅; 董俊慧

    2011-01-01

    采用失重法测定稀土镍铜合金铸铁在不同浓度烧碱液中以及静、动态下的腐蚀速度.结果表明,随着浓度的升高,稀土镍铜合金铸铁的腐蚀速度加快,而适量的稀土含量可降低合金铸铁对浓度的敏感性.碱液的冲刷会加剧稀土镍铜合金铸铁的腐蚀.%The corrosion rate of RE-Ni-Cu alloy cast irons was tested in soda solution at different dentist and static and dynamic condition. Experimental results show that the corrosion rate is accelerated as dentist raising. However, the proper content of RE can reduce the sensitivity on dentist. The soda solution scouring aggravates the corrosion of the alloy cast iron.

  2. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  3. 人工神经网络在合金铸铁腐蚀深度预测中的应用研究%Application of artificial neural network in corrosion depth prediction of alloy cast iron

    Institute of Scientific and Technical Information of China (English)

    王玉荣; 乌日根

    2012-01-01

    The sample data of BP neural network were measured by the dynamic and static condition hydrometer method. The BP neural network model for dynamic and static depth prediction was established by the toolbox function of MATLAB, and the prediction error of two corrosion test methods is comparatively studied. The results show that 5x8xl0xlBP neural network can be used for dynamic and static corrosion depth prediction of alloy cast iron in caustic soda solution, and the more accurate the sample data of corrosion test, the smaller the prediction error of 5x8xl0xlBP neural network.%通过动态和静态质量损失法腐蚀试验获取BP神经网络的样本数据,利用MATLAB的工具箱函数建立用于预测动态和静态腐蚀深度的BP神经网络模型,并对两种腐蚀试验方法的预测误差进行比较研究.结果表明,5×8×10×1BP神经网络可用于合金铸铁在烧碱液中的动态和静态腐蚀深度的预测,且腐蚀试验的样本数据越精确,5×8×10×1BP网络对腐蚀深度的预测误差则越小.

  4. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  5. Preferential dissolution behaviour in Ni–Cr dental cast alloy

    Indian Academy of Sciences (India)

    Viswanathan S Saji; Han Cheol Choe

    2010-08-01

    A Ni–Cr–Mo dental alloy was fabricated by three different casting methods, viz. centrifugal casting, high frequency induction casting and vacuum pressure casting. The dependence of cast microstructure on the electrochemical corrosion behaviour was investigated using potentiodynamic cyclic and potentiostatic polarization techniques, impedance spectroscopy and scanning electron microscopy. The experimental results were compared and discussed with those obtained for a Co–Cr–Mo counterpart. The results of the study showed that the variation in casting morphologies with casting methods has only marginal influence in the overall corrosion resistance of Ni–Cr and Co–Cr dental alloys. There was severe preferential dissolution of Ni rich, Cr and Mo depleted zones from the Ni–Cr–Mo alloy. The overall corrosion resistance property of the Co–Cr base alloy was better than that of the Ni–Cr base alloy.

  6. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and compared...

  7. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  8. 烧碱浓度、温度、冲刷对镍铜合金铸铁耐碱腐蚀性能的影响%Effect of Dentist,Temperature and Scouring on the Soda Corrosion Resistance Performance of Ni-Cu Alloy Cast Iron

    Institute of Scientific and Technical Information of China (English)

    张毅; 董俊慧

    2011-01-01

    The corrosion rate of Ni-Cu alloy cast irons was tested in soda solution at the different dentist, temperature and static-dynamic condition. Experimental results showed that the corrosion rate would be accelerated as temperature and dentist raised. However, the content of nickel could reduce the sensitivity on the temperature and dentist. The soda solution scouring could aggravate the corrosion of the alloy cast iron.%采用失重法测定镍铜合金铸铁在不同浓度、温度烧碱液中以及静、动态下的腐蚀速度.结果表明,随着温度、浓度的升高,镍铜合金铸铁的腐蚀速度加快,而合金元素镍可降低合金铸铁对温度、浓度的敏感性.碱液的冲刷套加剧镍铜合金铸铁的腐蚀.

  9. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  10. Influence of Fasciola Hepatica on Serum Biochemical Parameters and Vascular and Biliary System of Sheep Liver

    Directory of Open Access Journals (Sweden)

    A Hodžić

    2013-03-01

    Full Text Available Background: The aim of this study was to evaluate the functional capacity of the liver based on the activity of specific enzymes and bilirubin in serum and also to investigate the influence of mechanical and toxic effects of Fasciola hepatica on the structures of the blood vessels and biliary tract in the sheep liver.Methods: Blood samples and liver of 63 indigenous sheep of Pramenka breed, slaughtered in the period from March to December 2009 were used. Based on parasitological findings in the liver, all animals were divided into two groups: control (n=34 and infected group (n=29. For investigation and description of pathological changes in sheep liver, naturally infected with F. hepatica, corrosion cast technique was used.Results: Biochemical analysis of tested parameters showed a significant elevation (P≤0.05 of serum gamma-glutamyl transferase (GGT, total bilirubin (TBIL and direct bilirubin (DBIL in infected sheep group comparing with the control group. No significant differences were observed for activity of aspartate aminotranferase (AST between groups. Vascular and biliary systems of the liver were found to be affected.Conclusion: Results of biochemical analysis are consistent with pathological findings and measuring of tested parameters could be used in early diagnosis of sheep fasciolosis and to test the effectiveness of anthelmintic therapy. Corrosion cast technique is very useful for investigation of pathological changes and neoangiogenesis of vascular and biliary system in sheep liver, caused by mechanical and toxic effects of F. hepatica.

  11. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  12. Vascular Cures

    Science.gov (United States)

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  13. Corrosion property and oxide film of dental casting alloys before and after porcelain firing%三种口腔铸造合金耐蚀性及表面氧化膜的比较

    Institute of Scientific and Technical Information of China (English)

    马骞; 吴凤鸣

    2011-01-01

    目的 探讨3种常用口腔铸造合金模拟烤瓷前后的耐蚀性差异及氧化膜成分,以期为临床合理选择非贵金属合金提供依据.方法 用电感耦合等离子体原子发射光谱法(inductively coupled plasma atomic emission spectroscopy,ICP-AES)检测模拟烤瓷前后3种常用烤瓷非贵金属合金(镍铬合金、钴铬合金、镍钛合金)在达尔伯克改良伊格尔培养液中浸泡30 d后离子析出的种类和含量.同时用X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对模拟烤瓷后合金表面生成的氧化膜进行分析,扫描电镜(SEM)对合金表面腐蚀形态进行观察.结果 模拟烤瓷前3种合金离子总质量浓度由大到小依次为镍铬合金[(2.829±0.694)mg/L]、钴铬合金[(2.120±0.418)mg/L]、镍钛合金[(1.211±0.101)mg/L];镍铬合金组镍的质量浓度[(1.531±0.392)mg/L]>镍钛合金组[(0.830±0.052)mg/L],钴和钼离子质量浓度由大到小为钴铬合金组[钴:(0.048±0.011)mg/L;钼:(1.562±0.333)mg/L]、镍铬合金组[钴:(0.034±0.002)mg/L;钼:(1.264±0.302)mg/L]、镍钛合金组[钴:(0.013±0.006)mg/L;钼:(0.151±0.026)mg/L],差异有统计学意义(P<0.05).模拟烤瓷后3种合金离子析出总量[镍铬合金:(0.861±0.054)mg/L;钴铬合金:(0.695±0.327)mg/L;镍钛合金:(0.892±0.115)mg/L]均比未模拟烤瓷处理的合金离子析出总量少,差异有统计学意义(P<0.05).XPS分析显示,模拟烤瓷后3种合金表面Cr2O3和钼、镍氧化物的含量增加.结论 3种常用烤瓷铸造合金中镍铬合金的离子析出量最大,耐蚀性最差;烤瓷加热处理可促进这3种合金生成连续的Cr2O3氧化膜,使合金的耐蚀性增强.%Objective To evaluate the types and compositions of oxide films formed during porcelain-fused-to-metal( PFM ) firing on three kinds of dental casting alloys, and to investigate the corrosion property of these alloys in Dulbecco's modification of Eagle's medium( DMEM ) cell culture fluid, before and

  14. Extraglandular and intraglandular vascularization of canine prostate.

    Science.gov (United States)

    Stefanov, Miroslav

    2004-03-01

    The literature on the vascularization of the canine prostate is reviewed and the clinical significance of prostate morphology is described. Scanning Electron Microscopy (SEM), combined with improved corrosion casting methods, reveal new morphological details that promise better diagnostics and treatment but also require expansion of clinical nomenclature. A proposal is made for including two previously unnamed veins in Nomina Anatomica Veterinaria (NAV). The canine prostate has two lobes with independent vascularization. Each lobe is supplied through the left and right a. prostatica, respectively. The a. prostatica sprouts three small vessels (cranial, middle, and caudal) towards the prostate gland. A. prostatica is a small-size artery whose wall structure is similar to the arteries of the muscular type. V. prostatica is a small-size valved vein. The canine prostate has capsular, parenchymal, and urethral vascular zones. The surface vessels of the capsule are predominantly veins and the diameter of arterial vessels is larger than that of the veins. The trabecular vessels are of two types: direct and branched. The prostate parenchyma is supplied by branches of the trabecular vessels. The periacinary capillaries are fenestrated and form a net in a circular pattern. The processes of the myoepithelial cells embrace both the acins and the periacinar capillaries. In the prostate ductal system. there are spermatozoa. The prostatic part of the urethra is supplied by an independent branch of a. prostatica. The prostatic urethral part is drained by v. prostatica, the vein of the urethral bulb and the ventral prostate veins. M. urethralis begins as early as the urethral prostatic part. The greater part of the white muscle fibers in m. urethralis suggest an enhanced anaerobic metabolism.

  15. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  16. The UK Casting Industry

    Institute of Scientific and Technical Information of China (English)

    Jincheng Liu

    2006-01-01

    The casting production in the UK in 2004 is presented and analysed. The UK casting industry has played an important role in world casting and manufacturing production. However recent years the rapid development of some developing countries has been shifting the casting production from the western industrialized countries including the UK. The UK casting industry and associated research and technology organizations, universities have been working together very hard to face the serious competition to make the UK casting industry have a sustainable future. The UK casting industry remains strong and plays an important role in world casting and manufacturing production.

  17. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  18. CA Investment Casting Process of Complex Castings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment ...

  19. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    International Nuclear Information System (INIS)

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order to investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth

  20. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Linwen [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Université de Sherbrooke, Quebec (Canada); François, Raoul, E-mail: raoul.francois@insa-toulouse.fr [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Dang, Vu Hiep [Hanoi Architectural University, Faculty of Civil Engineering, Hanoi (Viet Nam); L' Hostis, Valérie [CEA Saclay, CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, Gif-sur-Yvette (France); Gagné, Richard [Université de Sherbrooke, Quebec (Canada)

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order to investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.

  1. Corrosion protection

    International Nuclear Information System (INIS)

    This invention describes a corrosion protection device for long-term storage containers of radioactive matter, in particular of irradiated fuel elements stored in geological formations apt for the purpose. This device prevents corrosion of the containers even if water emerges unexpectedly, or, in any case, inhibits and minimizes corrosion. The device comprehends reactive anodes that are connected to the containers by means of conductive connections. (orig.)

  2. Corrosion protection

    Science.gov (United States)

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  3. [Vascular parkinsonism].

    Science.gov (United States)

    Marxreiter, F; Winkler, J

    2016-07-01

    Parkinsonism may result from cerebral vascular disorders that feature white matter lesions and small vessel pathology. Vascular Parkinsonism typically presents as lower body Parkinsonism with predominant gait impairment. Urinary incontinence and cognitive decline are additional features of the disease. There is a considerable overlap between vascular Parkinsonism and vascular dementia. We review the clinical characteristics of vascular Parkinsonism and discuss the current treatment approaches, as well as the role of brain imaging for the diagnostic workup. . PMID:27299942

  4. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  5. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  6. The ancient Chinese casting techniques

    OpenAIRE

    Tan Derui; Lian Haiping

    2011-01-01

    In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast ir...

  7. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  8. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  9. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  10. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  11. Corrosion of oil-fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-05-01

    Depending on the surface temperature of the flue gas side the corrosion of oil fired domestic boilers proceeds either mainly by acid corrosion or by oxygen corrosion: (1) At surface temperatures of 60/sup 0/C and higher the corrosion mechanism of acid corrosion prevails and the corrosion rates amount to 0.1-0.3 mm/year (values referred to continuous burner operation). The corrosion products consist of soluble iron(II)- and iron(III)sulfates. Higher corrosion rates can be attributed to an appreciable catalytic formation of sulfur trioxide on the corrosion products formed on the convective heating surfaces. (2) At surface temperatures of 40/sup 0/C the mechanism of oxygen corrosion already dominates and the corrosion rates are about ten times higher (1.5-3 mm/year, referred to continuous burner operation). The high portion of iron oxide hydrates, especially goethit (/alpha/-FeOOH), makes the corrosion products difficult to remove. (3) Distinctly reduced service lives are also expected for the so called reduced temperature boilers ('Niedertemperaturkessel') and low temperature boilers ('Tieftemperaturkessel'): According to the manufacturers these boilers may be operated at boiler water temperatures well below 60/sup 0/C, as they are equipped with constructive measures to enhance the surface temperature on the flue gas side. However, these measures are only fully effective under stationary conditions. Some of the results were obtained from weight loss measurements on test specimen made from St 35.8 and gray cast iron, that were exposed to the flue gases of an fired experimental boiler. Other important results come from field measurements of the sulfuric acid content of about 30 boilers that are in practical use. (orig.).

  12. Electrochemical characterization of cast titanium alloys.

    Science.gov (United States)

    Cai, Zhuo; Shafer, Ty; Watanabe, Ikuya; Nunn, Martha E; Okabe, Toru

    2003-01-01

    A reaction layer forms on cast titanium alloy surfaces due to the reaction of the molten metal with the investment. This surface layer may affect the corrosion of the alloy in the oral environment. The objective of this study was to characterize the in vitro corrosion behavior of cast titanium alloys. ASTM Grade 2 CP titanium, Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr alloys were cast into a MgO-based investment. Experiments were performed on castings (N=4) with three surface conditions: (A) as-cast surface after sandblasting, (B) polished surface after removal of the reaction layer, and (C) sandblasted surface after removal of the reaction layer. Open-circuit potential (OCP) measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air+10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was subsequently conducted in the same medium deaerated with N(2)+10% CO(2) gas 2 h before and during the experiment. Polarization resistance (R(P)) and corrosion rate (I(CORR)) were calculated. Numerical results were subjected to nonparametric statistical analysis at alpha=0.05. The OCP stabilized for all the specimens after 6 x 10(4)s. Apparent differences in anodic polarization were observed among the different surfaces for all the metals. A passivation region followed by breakdown and repassivation were seen on specimens with surfaces A and C. An extensive passive region was observed on all the metals with surface B. The Kruskal-Wallis test showed no significant differences in OCP, R(p), I(CORR) or break down potential for each of the three surfaces among all the metals. The Mann-Whitney test showed significantly lower R(P) and higher I(CORR) values for surface C compared to the other surfaces. Results indicate that the surface condition has more effect on corrosion of these alloys than the surface reaction layer. Within the oxidation potential range of the oral cavity, all the metal

  13. EFFECT OF THE HEAT AND SURFACE LASER TREATMENT ON THE CORROSION DEGRADATION OF THE Mg-Al ALLOYS

    OpenAIRE

    Dobrzański, Leszek A.; Tomasz Tański; Szymon Malara

    2011-01-01

    In this paper there is presented the corrosion behavior of the cast magnesium alloys as cast state, after heat and laser treatment. Pitting corrosion resistance of the analyzed alloys was carried out using the potentiodynamic electrochemical method (direct current), based on a anodic polarization curve. On the basis of the achieved anodic polarization curves, using the Tefel extrapolation method near to the corrosion potential, the quantitative data were determined, which describe the electro...

  14. Internal corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, M. [ConocoPhillips, Bartlesville, OK (United States); Anderson, W. [Spectra Energy Transmission, Vancouver, BC (Canada)

    2007-07-01

    Working Group 11 identified internal corrosion issues in both upstream and downstream oil and gas pipelines and suggested ways to address them through integrity management, modeling, and monitoring. Three sessions were held in an effort to provided a better understanding between integrity professionals engaged in different aspects of pipeline management. Opportunities for reducing cost or improving integrity performance of the whole system were also identified. It was determined that management support is needed in order to monitor and mitigate internal corrosion of pipelines. The role of regulations in ensuring pipeline integrity was also discussed along with rules for pigging and batching of inhibitors. In-line inspections have identified under-deposit corrosion and solids/water deposition as two key problems facing pipeline operators. It was noted that an internal corrosion course offered by the National Association of Corrosion Engineers (NACE) is being well attended and is providing worthwhile training. Other issues discussed by this working group were: bacteria with upstream problems; effects of carbon dioxide, hydrogen sulphide and partial pressures on corrosion; and, procedures and guidelines to maintain clean pipelines. tabs., figs.

  15. Effect of pellicle on galvanic corrosion of amalgam.

    Science.gov (United States)

    Holland, R I

    1984-02-01

    Galvanic corrosion of amalgam, induced by contact with a type IV dental casting gold alloy, was determined under simulated oral conditions in an electrochemical cell. The effect of a pellicle layer formed by 1 h exposure to saliva in the oral cavity was determined. Pellicle on the amalgam had no effect on the maximum corrosion rate or the 2 h corrosion charge, whereas pellicle on the gold alloy substantially reduced both these parameters of the conventional low-copper amalgam; the corrosion of the high-copper amalgam was less and was not influenced by pellicle formation.

  16. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function o...... the methods and the results of local corrosion investigations of aluminium alloy microstructure, friction stir welds, spot-welds, cast components and microelectronic devices....... in engineering components, structural heterogeneities of a higher scale could be produced by joining and processing techniques such as welding (eg. heat affected zone and nugget), cutting and machining operations. In all these cases understanding the corrosion properties of an individual microstructural region...

  17. In Vitro Corrosion Study of Friction Stir Processed WE43 Magnesium Alloy in a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Genghua Cao

    2016-07-01

    Full Text Available Corrosion behavior of friction stir processing (FSP WE43 alloy in a simulated body fluid (SBF was investigated. Micro-galvanic corrosion was the dominated corrosion behavior, and the corrosion resistance of FSP WE43 alloy was improved compared to the cast counterpart. Furthermore, due to the fine-grained and homogeneous microstructure, uniform corrosion morphology was observed on FSP WE43 alloy. According to the tensile properties of specimens with different immersion time intervals, FSP WE43 alloy shows better performance to maintain the mechanical integrity in SBF as compared to the as-cast alloy.

  18. Grain refinement of bronze alloy by equal-channel angular pressing (ECAP and its effect on corrosion behaviour

    Directory of Open Access Journals (Sweden)

    M.M. Sadawy

    2016-08-01

    Full Text Available The corrosion behaviour of bronze alloy prepared by equal channel angular pressing (ECAP was investigated in 3.5 wt. % NaCl solution. Immersion corrosion tests and different electrochemical techniques were carried out. The results showed that ECAPed bronze samples exhibited higher corrosion resistance compared with the as-cast alloy and the passive current density decreased with increasing number of passes. Moreover, the morphology of alloys indicated that the corrosion damage on the surface of ECAPed bronze was smooth and uniform while the as-cast alloy suffered from selective corrosion.

  19. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  20. A novel in vivo vascular imaging approach for hierarchical quantification of vasculature using contrast enhanced micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Laura Nebuloni

    Full Text Available The vasculature of body tissues is continuously subject to remodeling processes originating at the micro-vascular level. The formation of new blood vessels (angiogenesis is essential for a number of physiological and pathophysiological processes such as tissue regeneration, tumor development and the integration of artificial tissues. There are currently no time-lapsed in vivo imaging techniques providing information on the vascular network at the capillary level in a non-destructive, three-dimensional and high-resolution fashion. This paper presents a novel imaging framework based on contrast enhanced micro-computed tomography (micro-CT for hierarchical in vivo quantification of blood vessels in mice, ranging from largest to smallest structures. The framework combines for the first time a standard morphometric approach with densitometric analysis. Validation tests showed that the method is precise and robust. Furthermore, the framework is sensitive in detecting different perfusion levels after the implementation of a murine ischemia-reperfusion model. Correlation with both histological data and micro-CT analysis of vascular corrosion casts confirmed accuracy of the method. The newly developed time-lapsed imaging approach shows high potential for in vivo monitoring of a number of different physiological and pathological conditions in angiogenesis and vascular development.

  1. LLNL casting technology

    Science.gov (United States)

    Shapiro, A. B.; Comfort, W. J., III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US competiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  2. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  3. CORROSION IN AIRFRAMES

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  4. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  5. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    Science.gov (United States)

    Erlbacher, K. M. T.; Minnich, B.

    2015-10-01

    The present study focuses on the effects of Δ9-tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ9-THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ9-tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ9-THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry.

  6. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Rita Mehra; Aditi Soni

    2002-02-01

    The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts towards corrosion has also been studied, which is found to be different from previous studies. The total immersion test parameters viz. weight loss, corrosion rate as well as potentiostatic parameters, open circuit potential, corr, Tafel slopes, corrosion rate, have been calculated by standard methods. Besides these the relative increase in corrosion rate with time as well as the percentage to which corrosion rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions. For the reliability of results the data has been statistically analysed.

  7. Fatigue - corrosion of endoprosthesis titanium alloys.

    Science.gov (United States)

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  8. Corrosion amalgams

    International Nuclear Information System (INIS)

    The release of copper, mercury, silver, tin or zinc from conventional, dispersed phase and spherical high copper content amalgams immersed in artificial saliva solutions for periods up to 30 d has been measured using nuclear tracer techniques. During initial corrosion, i.e. within a few hours, substantial amounts of mercury were found to be present in particulate matter in the three types of amalgams. The release of particulate matter was pronounced for the dispersed phase type of amalgam. After about 30 d electrochemical corrosion was found to be the predominant process for release of various corrosion products. Zinc was demonstrated to be the major corrosion product released to the artificial saliva solutions from conventional as well as dispersed phase amalgams. Due to low radioactivity levels silver and tin could not be quantitatively asayed. However, the upper limits of release of silver and tin in the artificial saliva solutions referring to exposure periods up to 30 d were estimated to 0.1 μg and 25 μg respectively. The chemical state of the various corrosion products has been evaluated. The deposition of CuCl2 . 3 Cu(OH)2 on the surfaces of copper rich amalgams was observed according to X-ray diffraction analysis. (author)

  9. EFFECT OF CHLORIDE ON THE ATMOSPHERIC CORROSION OF SIMULATED ARTIFACT IRON IN NO3-BEARING POLLUTANT ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    X. Cao; C.C. Xu

    2006-01-01

    The effect of chloride in nitrogen-bearing pollutant on the atmospheric corrosion of cast iron was investigated by using periodic wet-dry test, electrochemical experiment and surface tension test.Scanning electron microscopy (SEM) with energy disperse atomic X-ray (EDAX) was used to identify the corrosion processes and products. The results of the weight loss measurement showed that the whole corrosion kinetics can be approximately described by: AW=AtB. With the addition of NaC1, B increases. The result presented that Cl- accelerated the corrosion rate obviously during the whole corrosion process. The initial corrosion process was investigated from the viewpoint of surface tension. At the initial corrosion period, the corrosion rate was proportion to the adsorption of anions contained the solutions. And as corrosion went on, the penetration effect of anions and different characteristics of the corrosion products began to dominant the corrosion process, which led to the accelerated effect.

  10. [Vascular dementia

    NARCIS (Netherlands)

    Leeuw, H.F. de; Gijn, J. van

    2004-01-01

    Vascular dementia is one of the most frequently occurring dementia syndromes. Its prevalence is about 5% among subjects above 85 years of age. Elevated blood pressure and atherosclerosis are the most important risk factors. According to international criteria, vascular dementia usually occurs within

  11. Development of Cast Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-09-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  12. Evaluation of microstructural effects on the corrosion behaviour of AZ91D magnesium alloy

    DEFF Research Database (Denmark)

    Ambat, Rajan; Aung, Naing Naing; Zhou, W.

    2000-01-01

    The effect of microconstituents on the corrosion and electrochemical behaviour of AZ91D alloy prepared by die-casting and ingot casting route has been investigated in 3.5% NaCl solution at pH 7.25. The experimental techniques used include constant immersion technique, in-situ corrosion monitoring......, and potentiodynamic polarisation experiments. Surface examination and analytical studies were carried out using optical and scanning electron microscopy, EDX and XRD. The corrosion behaviour of microconstituents namely primary alpha, eutectic alpha and beta phases was significantly different. Goring...... of aluminum showed influence on corrosion behaviour more significantly in ingot material. Areas with aluminium concentration less than about 8% were found to be prone to corrosion attack compared with either those with higher amount of aluminium or beta phase. Die-cast material with smaller grain...

  13. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  14. Glovebox Advanced Casting System Casting Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses. Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.

  15. Corrosion resistance of Mg-RE-Zr alloys

    OpenAIRE

    A. Kiełbus; J. Michalska; T. Rzychoń

    2007-01-01

    Purpose: Magnesium alloys are widely used in the automotive and aerospace industries. Data concerning corrosion of Mg alloys are numerous, but those concerning Mg-RE alloys are scarce. In this paper, the corrosion behavior of cast magnesium alloys containing rare earth elements (WE54, WE43 and Elektron21) were investigated by immersion test in 3.5% NaCl for times up to 7 days.Design/methodology/approach: The study was conducted on WE54, WE43 and Elektron 21 alloys in the as-cast condition. I...

  16. Grain refinement of bronze alloy by equal-channel angular pressing (ECAP) and its effect on corrosion behaviour

    OpenAIRE

    M.M. Sadawy; Ghanem, M

    2016-01-01

    The corrosion behaviour of bronze alloy prepared by equal channel angular pressing (ECAP) was investigated in 3.5 wt. % NaCl solution. Immersion corrosion tests and different electrochemical techniques were carried out. The results showed that ECAPed bronze samples exhibited higher corrosion resistance compared with the as-cast alloy and the passive current density decreased with increasing number of passes. Moreover, the morphology of alloys indicated that the corrosion damage on the surface...

  17. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  18. Impurity control and corrosion resistance of magnesium-aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. [GM China Lab; Song, GuangLing [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  19. Investigate the optimum formulations and density of contrast agent to perform vascular casting and CT and/or MR reconstruction%适合血管铸型及CT和/或MR扫描重建的填充剂配方浓度的研究

    Institute of Scientific and Technical Information of China (English)

    黄睿; 陈春林; 刘萍; 宋小磊; 李泽宇; 钟世镇

    2013-01-01

    Objective To investigate the density of contrast agent which is suitable of vascular cast-ing and CT and/or MR reconstruction, then provide the basis to consteuction the digitizing human uterine artery vascular network model. Methods CT/MRI was performed using different density of contrast agent:20%, 15%, 10% of vinyl chloride respectively mixed lead oxide (5:100, 8:100, 10:100), Gd-DTPA (1 mmol/L, 2 mmol/L, 5 mmol/L, 10 mmol/L, 15 mmol/L) and glycerol (20%), choose the optimum density. Results Dif-ferent formulations and density of contrast agent in the CT and MR developing differences. Conclusions The optimum formulations and density underwent CT and MR is the CPVC, which joined the lead oxide (8:100), Gd-DTPA (10 mmol/L) and glycerol (20%).%目的:探讨适合血管铸型及CT/MR扫描的填充剂配方浓度,为数字化人子宫动脉血管网模型的构建提供技术基础。方法选择三种浓度的过氯乙烯CPVC(20%、15%、10%),分别与氧化铅(5∶100、8∶100、10∶100)、钆喷酸葡胺Gd-DTPA(1 mmol/L、2 mmol/L、5 mmol/L、10 mmol/L、15 mmol/L)及甘油(20%)进行填充剂的配制,分别经CT/MR扫描并观察其显影效果,以选择最佳显影的填充剂浓度。结果不同配方及浓度的填充剂在CT及MR显影有差异。结论以CPVC作为动脉铸型的填充剂,其中加入氧化铅(8∶100)、Gd-DTPA(10 mmol/L)及甘油(20%)行CT及MR扫描显影效果最好。

  20. Quality control of cast brake discs

    Directory of Open Access Journals (Sweden)

    M. Stawarz

    2008-04-01

    Full Text Available The largest industrial application so far have the gray cast irons which are characterized by low tensile and bending strength, while at the same time they have good ultimate comprehensive strength. Additionally, the fatigue strength of gray cast irons is comparatively low and they are only to some extend sensitive for the surface waters effects. Cast iron is the material, which is comparatively easy to be processed, and for this reason – it is not expensive. Brake discs are exploited in particularly hard conditions. They must be resistant both against the thermal fatigue and abrasion wearing (at dry friction as well as against seizing, corrosion and mechanical load [1-3]. The gray cast iron, better than other materials, fulfills all the requirements necessary for making the material for the casts resistant against such tough conditions. This work reflects the researches aiming to define the quality of cast brake discs (ventilated and non-ventilated ones upon a period of their exploitation in real conditions. The following researches were performed: evaluations of the disc surface condition, measurement of disc thickness, examination of run – out flank and metallographic analysis. In order to more detailed recognition of mechanisms and reasons of brake discs wearing in real conditions, one should conduct additional examinations: computer analysis of the microstructure, chemical composition analysis, etc., as well as study of the technology of their production in foundries, where they are manufactured [4]. By obtaining the full set of the mentioned above data one can draw final conclusions and remove causes of possible defects.

  1. Expandable pattern casting research

    Science.gov (United States)

    1993-09-01

    The Expandable Pattern Casting (EPC) Process is a developing foundry technology that allows designers the opportunity to consolidate parts, reduce machining, and minimize assembly operations. An air gauging system was developed for measuring foam patterns; exact shrinkage depended on type and density of the foam. Compaction studies showed that maximum sand densities in cavities and under overhangs are achieved with vibrational amplitudes 0.001-0.004 in., and that sand moved most freely within a few inches of the top free surface. Key to complete mold filling while minimizing casting defects lies in removing the foam decomposition products. The most precise iron castings were made by EPC in four commercial EPC foundries, with attention paid to molding and compaction. EP cast 60-45-12 ductile iron had yield strengths, ultimate strengths, and elastic modulus similar to conventionally cast ductile iron cast from the same ladle.

  2. High integrity automotive castings

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D. [Eck Industries Inc., St. Manitowoc, WI (United States)

    2007-07-01

    This paper described the High Integrity Magnesium Automotive Casting (HI-MAC) program, which was developed to ensure the widespread adoption of magnesium in structural castings. The program will encourage the use of low pressure permanent molds, squeeze casting, and electromagnetic pumping of magnesium into dies. The HI-MAC program is currently investigating new heat treatment methods, and is in the process of creating improved fluid flow and solidification modelling to produce high volume automotive components. In order to address key technology barriers, the program has been divided into 8 tasks: (1) squeeze casting process development; (2) low pressure casting technology; (3) thermal treatment; (4) microstructure control; (5) computer modelling and properties; (6) controlled molten metal transfer and filling; (7) emerging casting technologies; and (8) technology transfer throughout the automotive value chain. Technical challenges were outlined for each of the tasks. 1 ref., 3 tabs., 5 figs.

  3. Caste and power

    DEFF Research Database (Denmark)

    Roy, Dayabati

    2011-01-01

    This paper explores the institution of caste and its operation in a micro-level village setting of West Bengal, an Indian state, where state politics at grass roots level is vibrant with functioning local self-government and entrenched political parties. This ethnographic study reveals that caste......–ideological field, the concept of caste-hierarchy seems to continue as an influencing factor, even in the operation of leftist politics....

  4. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  5. Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys

    Institute of Scientific and Technical Information of China (English)

    Viswanathan S. SAJI; Han-Cheol CHOE

    2009-01-01

    The cast structures influencing the electrochemical corrosion behavior of Co-Cr and Ni-Cr dental alloys were studied using potentiodynamic polarization and AC impedance in 0.9% (mass fraction) NaCl solution at (37±1) ℃. The phase and microstructure of the alloys that were fabricated using two different casting methods viz. centrifugal casting and high frequency induction casting, were examined using X-ray diffraction analysis, scanning electron microscopy and energy dispersive spectroscopy. The roles of alloying elements and the passive film homogeneity on the corrosion resistance of Co-Cr-Mo and Ni-Cr-Mo dental cast alloys were reviewed. The results of electrochemical study show that the dependence of corrosion resistance on the microstructure associated with the casting methods is marginal. The Co-Cr alloy exhibits more desirable corrosion resistance properties than the Ni-Cr alloy. There is severe preferential dissolution of Ni-rich, Cr and Mo depleted zones in the Ni-Cr alloy.

  6. Cast iron - a predictable material

    OpenAIRE

    Jorg C. Sturm; Guido Busch

    2011-01-01

    High strength compacted graphite iron (CGI) or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process s...

  7. EFFECT OF THE HEAT AND SURFACE LASER TREATMENT ON THE CORROSION DEGRADATION OF THE Mg-Al ALLOYS

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzański

    2011-09-01

    Full Text Available In this paper there is presented the corrosion behavior of the cast magnesium alloys as cast state, after heat and laser treatment. Pitting corrosion resistance of the analyzed alloys was carried out using the potentiodynamic electrochemical method (direct current, based on a anodic polarization curve. On the basis of the achieved anodic polarization curves, using the Tefel extrapolation method near to the corrosion potential, the quantitative data were determined, which describe the electrochemical corrosion process of the investigated alloys: value of the corrosion potential Ecorr (mV, polarization resistance RP (kohm.cm2, corrosion current density icorr (10-6A/cm2, corrosion rate Vcorr (mm/year as well the mass loss Vc (g/m2<.

  8. Corrosion Resistance of Co-Cr-Mo Alloy Used in Dentistry

    OpenAIRE

    Łukaszczyk A.; Augustyn-PieniąŻek J.

    2015-01-01

    The presented paper studies the effect of the casting technology on the corrosion resistance of Co-Cr-Mo alloy. The investigations were conducted on a commercial alloy with the brand name ARGELOY N.P SPECIAL (Co-Cr-Mo) produced by Argen as well as the same alloy melted and cast by the lost wax casting method performed by a dental technician. The corrosion behavior of the dental alloys in an artificial saliva was studied with the use of the following electrochemical techniques: open circuit po...

  9. Expendable Pattern Casting Technology

    Science.gov (United States)

    1990-07-01

    The expendable pattern casting (EPC) process is a potential casting process breakthrough which could dramatically improve the competitiveness of the U.S. foundry industry. Cooperatively supported by U.S. Industry and the Department of Energy and managed by the American Foundrymen's Society, a project was started in May 1989 to develop and optimize expendable pattern casting technology. Four major tasks were conducted in the first phase of the project. Those tasks involved: (1) reviewing published literature to determine the major problems in the EPC process; (2) evaluating factors influencing sand flow and compaction; (3) evaluating and comparing casting precision obtained in the EPC process with that obtained in other processes; and (4) identifying critical parameters that control dimensional precision and defect formation in EP castings.

  10. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  11. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  12. Corrosion behavior of carbon steels under tuff repository environmental conditions

    International Nuclear Information System (INIS)

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 1000C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables

  13. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  14. Vascular emergencies.

    Science.gov (United States)

    Semashko, D C

    1997-01-01

    This article reviews the initial assessment and emergent management of several common as well as uncommon vascular emergencies. Aortic dissection, aneurysms, and arterial occlusive disease are familiar but challenging clinical entities. Less frequently encountered conditions are also discussed including an aortic enteric fistula, mesenteric venous thrombosis, phlegmasia alba dolens, and subclavian vein thrombosis.

  15. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  16. Symptomatic stent cast.

    LENUS (Irish Health Repository)

    Keohane, John

    2012-02-03

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  17. Symptomatic stent cast.

    Science.gov (United States)

    Keohane, John; Moore, Michael; O'Mahony, Seamus; Crosbie, Orla

    2008-02-01

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  18. CENTRIFUGAL CASTING MACHINE

    Science.gov (United States)

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  19. What Is Vascular Disease?

    Science.gov (United States)

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  20. Diabetes and Vascular Disease

    Science.gov (United States)

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  1. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2011-01-01

    White Cast Iron (Ⅰ) White cast iron or ‘white iron' refers to the type of cast iron in which all of the carbon exists as carbide;there is no graphite in the as-cast structure and the fractured surface shows a white colour.White cast iron can be divided in three classes:· Normal white cast iron — this iron contains only C,Si,Mn,P and S,with no other alloying elements.· Low-alloy white cast iron — the total mass fraction of alloying elements is less than 5%.

  2. Fabrication and ageing of cast austenitic steels

    International Nuclear Information System (INIS)

    An investigation has been undertaken to determine the magnitude of any reduction in properties which may occur in cast duplex stainless steels and weldments during long term exposure to reactor operating conditions. Test panels were fabricated in CF3 stainless steel by a manual metal arc (MMA) process using 19.9.L (Type 308L) consumables. The mechanical properties and intergranular corrosion resistance of parent material and weldments were measured following accelerated ageing at 3750 and 4000C for up to 10,000 hours. Both the impact energy and J/sub R/ fracture toughness properties of the cast austenitic/ferritic stainless steel were reduced following aging at 4000C for 10,000 hours, whereas austenitic stainless steel MMA weld metals exhibited a reduction in J/sub R/ fracture toughness but no change in impact energy. Even in the unaged state, MMA weld metals were shown to have a much lower resistance to stable crack growth than the parent cast steel, and, following aging, there is a further reduction in the ductile tearing resistance of such weld metals. Therefore, in any assessment of the structural integrity of the reactor coolant pump bowl for a pressurized water reactor (PWR), the weld metal fracture properties during service are likely to be of considerable importance

  3. (Continuous casting 1985)

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, R.A.

    1985-06-12

    The report covers the Continuous Casting '85 Conference including informal discussions with conference attendees. In general, the papers presented at the conference concerned an overview of continuous steel casting worldwide, state-of-the-art aspects of steel continuous casting technology including caster startup problems, modifications, control system strategies, energy use profiles, quality control aspects, steel chemistry control, refractories, operational aspects of continuous casters, etc. No papers were presented in the development of thin section or thin strip casting of steel. Informal discussions were held with several conference attendees including (1) Bernard Trentini, Executive Director of the Association Technique De La Siderurgie Francaise in Paris, France (similar to the American Iron and Steel Institute); (2) Dr. Wolfgang Reichelt and Dr. Peter Voss-Spilker both of Mannesmann Demag Huttentechnik -a continuous casting and other steel making machine builder in-lieu of meeting at their plant in Duisburg, FRG on May 31; (3) Ewan C. Hewitt of Devote McKee Corp., Sheffield, England; (4) Wilfried Heinemann, head of R D Dept. at Concast Standard AG in Zurich, Switzerland; and (5) Hideo Ueno, engineer of melting section, Mitsubishi Steel Mfg. Co. Ltd, Tokyo Japan. A visit was made to the Teesside Laboratories of British Steel Corp. for discussions of their thin section casting research program in particular and R D program in general.

  4. Skeleton castings dynamic load resistance

    OpenAIRE

    M. Cholewa; J. Szajnar; T. Szuter

    2013-01-01

    Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement.Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of interna...

  5. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  6. Streptococcus mutans attachment on a cast titanium surface

    Directory of Open Access Journals (Sweden)

    Sicknan Soares da Rocha

    2009-03-01

    Full Text Available This study examined by means of scanning electron microscopy (SEM, the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System. The surfaces of each metal were ground and polished with sandpaper (#300-4000 and alumina paste (0.3 µm. The roughness of the surface (Ra was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (10(9 cuf and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 µm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.

  7. Effect of heat treatment on corrosion resistance of WE54 alloy

    Directory of Open Access Journals (Sweden)

    T. Rzychoń

    2007-01-01

    Full Text Available Purpose: Poor corrosion resistance is one of the main causes to prevent magnesium alloys for wide applications.The addition of rare earth elements (RE is an effective way to improve corrosion resistance of magnesiumalloys. Heat treatment condition can also influence the corrosion behavior of magnesium alloys. The purpose ofthe investigation was to study the corrosion resistance of WE54 alloy after heat treatment.Design/methodology/approach: The study was conducted on WE54 alloy in the as-cast condition and after heattreatment at 250-300˚C for periods of time 4 – 96 h. Immersion test was performed using not deaerated 3.5%NaCl solution at room temperature. Specimens were placed in 3.5% NaCl solution for periods of time betweenone and 7 days. The dissolution rates (mg cm-2 day-1 were determined by weight loss measurements. Afterimmersion test, the microstructure and the appearances of the corroded structure were examined by scanningelectron microscopy.Findings: The corrosion rate of WE54 alloy strongly depends on heat treatment condition. WE54 alloy in theas-cast and after solution treated have similar corrosion behavior, different from that of aged specimens. Thecurves of corrosion rate for aged specimens were higher than that for as-cast and solution treated conditions. Itwas also noticed that the longer time of ageing the higher corrosion rates were observed.Research limitations/implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currentlyunder evaluation on many speciality applications where lightweight connected with optimum corrosionresistance are required.Practical implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currently underevaluation on many speciality applications where lightweight connected with optimum corrosion resistance arerequired.Originality/value: This paper includes the effect of heat treatment condition on corrosion resistance of WE54magnesium alloy.

  8. Corrosion resistance of Mg-RE-Zr alloys

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2007-03-01

    Full Text Available Purpose: Magnesium alloys are widely used in the automotive and aerospace industries. Data concerning corrosion of Mg alloys are numerous, but those concerning Mg-RE alloys are scarce. In this paper, the corrosion behavior of cast magnesium alloys containing rare earth elements (WE54, WE43 and Elektron21 were investigated by immersion test in 3.5% NaCl for times up to 7 days.Design/methodology/approach: The study was conducted on WE54, WE43 and Elektron 21 alloys in the as-cast condition. Immersion test was performed using not deaerated 3.5% NaCl solution at room temperature. Several specimens were placed in 3.5% NaCl solution for periods of time between one and 7 days. The dissolution rates (mg/cm-2day-1 were determined by weight loss measurements.Findings: Elektron 21 alloy exhibits the highest corrosion rate during the immersion test, while WE54 and WE43 alloys had a similar corrosion behavior. The corrosion rates of WE54 and Elektron 21 alloys incresed lineally with increasing the exposure time in 3.5% NaCl, and that of WE43 was almost unchanged and finally reached maximum value 0.26 mg/cm-2day-1.Research limitations/implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currently under evaluation on many speciality applications where lightweight connected with optimum corrosion resistance are requiredPractical implications: The comparative results of corrosion behavior of new Mg-RE-Zr alloys leads to optimum choice of alloy for application in automotive, aircraft and aerospace industries.Originality/value: This paper includes the comparative results of corrosion resistance investigations of new Mg-RE–Zr alloys.

  9. An overview of the corrosion aspect of dental implants (titanium and its alloys

    Directory of Open Access Journals (Sweden)

    Chaturvedi T

    2009-01-01

    Full Text Available Titanium and its alloys are used in dentistry for implants because of its unique combination of chemical, physical, and biological properties. They are used in dentistry in cast and wrought form. The long term presence of corrosion reaction products and ongoing corrosion lead to fractures of the alloy-abutment interface, abutment, or implant body. The combination of stress, corrosion, and bacteria contribute to implant failure. This article highlights a review of the various aspects of corrosion and biocompatibility of dental titanium implants as well as suprastructures. This knowledge will also be helpful in exploring possible research strategies for probing the biological properties of materials.

  10. Microstructure, Bio-corrosion Behavior, and Corrosion Residual Strength of High Strain Rate Rolled Mg-4Zn Alloy Sheet

    Science.gov (United States)

    Zou, Zhengyang; Chen, Jihua; Yan, Hongge; Su, Bin; Gong, Xiaole

    2016-05-01

    Microstructure, bio-corrosion behavior, and corrosion residual strength in 0.9 wt.% NaCl solution of the fine-grained Mg-4Zn alloy sheet prepared by high strain rate rolling are systematically investigated. The as-rolled alloy has fine homogenous dynamic recrystallization grains with the average grain size of 4.5 μm. It has different bio-corrosion behavior from the as-cast and is the most corrosion resistant except for pure Mg. Its in vitro strength loss is about 19% after 7 days immersion (the as-cast, 62%), and corrosion residual strength after 15 days immersion is 205 MPa. Its in vitro strength loss after 15, 30, and 60 days immersion are 24, 37, and 38% respectively. The as-rolled Mg-4Zn alloy is featured with the slighter in vitro loss of mechanical integrity due to uniform bio-corrosion and is desirable for the usage in the field of bone fixation.

  11. Friction surfacing for enhanced surface protection of marine engineering components: erosion-corrosion study

    Science.gov (United States)

    Rajakumar, S.; Balasubramanian, V.; Balakrishnan, M.

    2016-08-01

    Good mechanical properties combined with outstanding corrosion-resistance properties of cast nickel-aluminum bronze (NAB) alloy lead to be a specific material for many marine applications, including ship propellers. However, the erosion-corrosion resistance of cast-NAB alloy is not as good as wrought NAB alloy. Hence, in this investigation, an attempt has been made to improve the erosion-corrosion resistance of cast NAB alloy by depositing wrought (extruded) NAB alloy applying the friction surfacing (FS) technique. Erosion-corrosion tests were carried out in slurries composed of sand particles of 3.5% NaCl solution. Silica sand having a nominal size range of 250-355 μm is used as an erodent. Specimens were tested at 30° and 90° impingement angles. It is observed that the erosion and erosion-corrosion resistance of friction surfaced NAB alloy exhibited an improvement as compared to cast NAB alloy. Scanning electron microscope (SEM) analysis showed that the erosion tracks developed on the cast NAB alloy were wider and deeper than those formed on the friction surfaced extruded NAB alloy.

  12. The CAST experiment

    International Nuclear Information System (INIS)

    CAST (CERN Axion Solar Telescope) is a helioscope looking for axions coming from the solar core to the Earth. The experiment, located at CERN, is based on the Primakoff effect and uses a magnetic field of 9 Tesla provided by a decommissioned LHC magnet. CAST is able to follow the Sun during sunrise and sunset and therefore three X-ray detectors are mounted on both ends of the magnet waiting for a photon from axion-to-photon conversion due to the Primakoff effect. During its first phase, which concluded in 2004, CAST has been looking for axions with masses up to 0.02 eV. CAST's second phase manages to re-establish the coherence needed to scan for axions with masses up to 1.16 eV by using a buffer gas. This technique enables the experiment to look into the theoretical regions for axions. During the years 2005 and 2006, the use of 4He in CAST has already provided coherence in order to look for axions with masses up to 0.4 eV

  13. An Experimental Study on Effect of Steel Corrosion on the Bond–Slip Performance of Reinforced Concrete

    OpenAIRE

    Zhang, Xiaolin; Liang, Xuebing; Huang, Hancheng; Zhou, Haijun

    2016-01-01

    This paper studied the effects of reinforcement corrosion on bond performance between rebar and concrete. Tests were carried out to evaluate the degradation of bond between reinforcing steel and concrete for different corrosion levels of reinforcing steel. A series of 20 specimens of different concrete strength with various reinforcing steel corrosion levels were designed and manufactured. Each specimen was casted as a 200-mm concrete cube, and a steel rebar was centrally embedded with two st...

  14. Effects of Cr - Ni 18/9 Austenitic Cast Steel Modification by Mischmetal

    Directory of Open Access Journals (Sweden)

    M. Gajewski

    2012-12-01

    Full Text Available This paper presents the results of Cr - Ni 18/9 austenitic cast steel modifications by mischmetal. The study was conducted on industrial melts. Cast steel was melted in an electric induction furnace with a capacity of 2000 kg and a basic lining crucible. .The mischmetal was introduced into the ladle during tapping of the cast steel from the furnace. The effectiveness of modification was examined with the carbon content of 0.1% and the presence of δ ferrite in the structure of cast steel stabilized with titanium. The changes in the structure of cast steel and their effect on mechanical properties and intergranular corrosion were studied. It was found that rare earth metals decrease the sulfurcontent in cast steel and above all, they cause a distinct change in morphology of the δ ferrite and non-metallic inclusions. These changes have improved mechanical properties. R02, Rm, and A5 and toughness increased significantly. There was a great increase of the resistance to intergranular corrosion in the Huey test. The study confirmed the high efficiency of cast steel modification by mischmetal in industrial environments. The final effect of modification depends on the form and manner of placing mischmetal into the liquid metal and the melting technology, ie the degree of deoxidation and desulfurization of the metal in the furnace.

  15. Corrosion resistance of Elektron 21 magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2007-05-01

    Full Text Available Purpose: Elektron 21 magnesium alloy containing neodymium, gadolinium and zinc has high strength, good corrosion resistance and excellent castability. It is designed mainly for aerospace applications. The purpose of the investigation was to study the corrosion resistance of Elektron 21 magnesium alloy in as cast condition and after heat treatment in 3.5% NaCl saturated with Mg(OH2 solution.Design/methodology/approach: Solution treatment was performed at 525°C/8h/water, while ageing treatments at following conditions 250°C/4-96h/air. Immersion test was performed in 3.5% NaCl saturated with Mg(OH2 solution at room temperature. Specimens were placed in 3.5% NaCl solution for periods of time between one and 5 days. After immersion test, the microstructure and the appearances of the corroded structure were examined by optical microscopy (Olympus GX-70 and a scanning electron microscopy (Hitachi S3400.Findings: The corrosion rates of Elektron 21 alloy increased with increasing the exposure time and finally (after 5 days reached maximum value 0.092 mg/cm-2day-1. Solution treatment at 520°C for 8 h caused decrease in corrosion rate (0.072 mg cm-2 day-1 due to dissolving of intermetallic phase precipitates at matrix. Ageing at 200°C for 4h and 16h caused next decrease in corrosion rate to value 0.052 and 0,055 mg cm-2 day-1 respectively, while after ageing for 48h corrosion rate increase to value 0.067 mg cm-2 day-1, due to increase of volume fraction and size of β’ phase and precipitations of equilibrium β phase. It was also noticed that the longer time of ageing the higher corrosion rates were observed.Research limitations/implications: Future researches should include investigations of the influence of other environments on the corrosion resistance of Elektron 21 alloy.Practical implications: The improvement of corrosion resistance of Elektron 21 alloy can cause increase in it application in aerospace industry.Originality/value: The

  16. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  17. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  18. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  19. Boiler corrosion. Corrosion of boilers at low boiler water temperatures. Heizkessel-Korrosion. Korrosion von Heizkesseln bei tiefen Kesselwassertemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-02-01

    Thermostatic cast iron and steel 35.8 specimens were inserted between the fire tubes of a test boiler and exposed to flue gases for a period of three weeks. The corrosion rates at material temperatures between 20 and 60deg C as well as the effects of continuous and intermittent boiler operation were determined. Details are given on the specimens alloying constituents, the testing and test conditions (schematic representation of the experimental set-up). Diagrams and tables facilitate access to test results informing about corrosion rates and corrosion product structure analyses for continuous burner operation. While low boiler water temperatures (below 60deg C in the case of extra light heating oils) are found to necessarily involve higher risks and shorter boiler service lives, low flue gas temperatures alone are considered not to be increasing the risk of boiler corrosion. (HWJ).

  20. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  1. Strip casting of stainless steels

    OpenAIRE

    Raabe, D.

    1997-01-01

    FLAT PRODUCTS OF STAINLESS STEELS ARE CONVENTIONALLY MANUFACTURED BY CONTINUOUS CASTING, HOT ROLLING, HOT BAND ANNEALING, PICKLING, COLD ROLLING AND RECRYSTALLISATION. IN THE LAST YEARS STRIP CASTING HAS INCREASINGLY ATTRACTED ATTENTION. IT OFFERS THREE IMPROVEMENTS IN COMPARISON TO THE CONVENTIONAL METHOD.1.) IT ALLOWS TO CAST STEEL SHEETS WITH THE SAME THICKNESS AND WIDTH AS THOSE PRODUCED BY HOT ROLLING. THIS MEANS THAT THE HOT ROLLING PROCESSIS BYPASSED. 2.) THE STRIP CAST STEEL REVEALS A...

  2. Three-dimensional registration of synchrotron radiation-based micro-computed tomography images with advanced laboratory micro-computed tomography data from murine kidney casts

    Science.gov (United States)

    Thalmann, Peter; Hieber, Simone E.; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Kurtcuoglu, Vartan; Olgac, Ufuk; Marmaras, Anastasios; Kuo, Willy; Meyer, Eric P.; Beckmann, Felix; Herzen, Julia; Ehrbar, Stefanie; Müller, Bert

    2014-09-01

    Malfunction of oxygen regulation in kidney and liver may lead to the pathogenesis of chronic diseases. The underlying mechanisms are poorly understood. In kidney, it is hypothesized that renal gas shunting from arteries to veins eliminates excess oxygen. Such shunting is highly dependent on the structure of the renal vascular network. The vascular tree has so far not been quantified under maintenance of its connectivity as three-dimensional imaging of the vessel tree down to the smallest capillaries, which in mouse model are smaller than 5 μm in diameter, is a challenging task. An established protocol uses corrosion casts and applies synchrotron radiation-based micro-computed tomography (SRμCT), which provides the desired spatial resolution with the necessary contrast. However, SRμCT is expensive and beamtime access is limited. We show here that measurements with a phoenix nanotomrm (General Electric, Wunstorf, Germany) can provide comparable results to those obtained with SRμCT, except for regions with small vessel structures, where the signal-to-noise level was significantly reduced. For this purpose the nanotom®m measurement was compared with its corresponding measurement acquired at the beamline P05 at PETRA III at DESY, Hamburg, Germany.

  3. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  4. Erosion-corrosion

    International Nuclear Information System (INIS)

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  5. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management of...... reinforcement corrosion....

  6. Scheduled Caste Women: Problems And Challenges

    OpenAIRE

    Vijayakumar Murthy; Jaikishan Thakur

    2013-01-01

    The paper analyzed the Caste system based on Varnas during the ancient India. It also examined the demerits of caste attached to the present scheduled castes in general and scheduled caste women in particular. The scheduled caste women are disadvantaged by their caste and gender and as such they are subject to exploitation and discrimination by their family members, by their caste people and by forward castes. Hence, there is increase in exploitation, discrimination and violence against the s...

  7. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  8. Extrusion cast explosive

    Science.gov (United States)

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  9. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Ph.D Liu Jincheng

    2010-01-01

    @@ Note: This book consists of five sections: Chapter 1 Introduction, Chapter 2 Grey Iron, Chapter 3 Spheroidal Graphite Cast Iron, Chapter 4 Vermicular Cast Iron, and Chapter 5 White Cast Iron. CHINA FOUNDRY publishes this book in several parts serially, starting from the first issue of 2009.

  10. Mix/Cast Contamination Control

    Science.gov (United States)

    Wallentine, M.

    2005-01-01

    Presented is a training handbook for Mix/Cast Contamination Control; a part of a series of training courses to qualify access to Mix/Cast facilities. Contents: List Contamination Control Requirements; Identify foreign objects debris (FOD), Control Areas and their guidelines; Describe environmental monitoring; List Contamination Control Initiatives; Describe concern for Controlled Materials; Identify FOD Controlled Areas in Mix/Cast.

  11. Society for Vascular Medicine

    Science.gov (United States)

    ... 2017 Learn more Patient Information Pages from Vascular Medicine August 2016 The Vascular Laboratory More info for ... Learn more. Trending Now: Hot Topics in Vascular Medicine Video Series Fibromuscular Dysplasia (FMD) with Drs. Jeffrey ...

  12. Automatic inspection of surface defects in die castings after machining

    Directory of Open Access Journals (Sweden)

    S. J. Świłło

    2011-07-01

    Full Text Available A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withstand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a threshold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.

  13. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  14. Towards Corrosion Detection System

    Directory of Open Access Journals (Sweden)

    B.B.Zaidan

    2010-05-01

    Full Text Available Corrosion is a natural process that seeks to reduce the binding energy in metals. The end result of corrosion involves a metal atom being oxidized. Surface corrosion on aluminum aircraft skins, near joints and around fasteners, is often an indicator of buried structural corrosion and cracking In this paper we proposed a new method on which we are moving towards designing a method to detect the corrosion within the metals, the new method has defined texture analysis as the main method for this approach, the proposed enhancement shows less false positive and less false negative. The main functions used in this approach beside texture analysis are Edge detection, structure element and image dilation. The new approach has designed to detect a part of the image that has been affected by the corrosion, the tested images has showed a good result lying on detecting the corrosion part from the image.

  15. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products.

  16. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  17. Investigation on Exfoliation Corrosion and Neutral Salt Spray Corrosion Resistanceof Al-6Mg Alloy with Addition of Scandium

    Institute of Scientific and Technical Information of China (English)

    WANG Yue

    2004-01-01

    Al-6Mg-Sc alloy was prepared by means of melting-casting. Corrosionresistance of Al-6Mg-Sc alloy was studied in exfoliation corrosion and Neutral Salt Spray Test. Microstructure of the Al-6Mg-Sc alloy was investigated by using optical microscope and transmission electron micrograph( TEM ). It was found that additionof scandium served as a potent grain refiner, resulting a homogeneous, dispersed distribution of β-phrase in microstructure of the alloys. The discontinuous precipitation of β-phrase in grain boundaries therefore highly improved corrosion resistance of the alloys.

  18. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  19. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  20. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Wilkening, D. [Columbia Falls Aluminum Co., 2000 Aluminum Dr., Columbia Falls, MT 59912 (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., P.O. Box 1071, Anaconda, MT 59711 (United States)

    1998-12-31

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{sup TM} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast. (orig.) 18 refs.

  1. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad J.M.PAPIS; Joerg F.LOEFFLER; Peter J.UGGOWITZER

    2009-01-01

    'Compound casting'simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, 'compound casting' of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu-ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and AI12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protec-tive coating to the substrate.

  2. The microbial corrosion; La corrosion microbienne

    Energy Technology Data Exchange (ETDEWEB)

    Beech, I.B. [University of Portsmouth, School of Pharmacy - Biomedical Science, Chemistry-Physics and Radiography, Portsmouth (United Kingdom)

    1999-02-01

    Underestimated for a long time, corrosion due to microorganisms induces degradation, sometimes fulminant, of a lot of metallic structures in the world. Searchers are using plentiful analytical tools to understand this phenomenon. (O.M.)

  3. Surface films and corrosion of copper

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  4. Bimetallic layered castings alloy steel – carbon cast steel

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2011-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast processso-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic carbon cast steel, whereas working part (layer is plate of austenitic alloy steel sort X10CrNi 18-8. The ratio of thickness between bearing and working part is 8:1. The quality of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  5. Casting larger polycrystalline silicon ingots

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  6. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  7. Aqueous corrosion behavior of uranium-molybdenum alloys

    Science.gov (United States)

    Gardner, Levi D.

    Nuclear fuel characterization requires understanding of the various conditions to which materials are exposed in-reactor. One of these important conditions is corrosion, particularly that of fuel constituents. Therefore, corrosion behavior is of special interest and an essential part of nuclear materials characterization efforts. In support of the Office of Material Management and Minimization's Reactor Conversion Program, monolithic uranium-10 wt% molybdenum alloy (U-Mo) is being investigated as a low enriched uranium alternative to highly enriched uranium dispersion fuel currently used in domestic high performance research reactors. The aqueous corrosion behavior of U-Mo is being examined at Pacific Northwest National Laboratory (PNNL) as part of U-Mo fuel fabrication capability activity. No prior study adequately represents this behavior given the current state of alloy composition and thermomechanical processing methods, and research reactor water chemistry. Two main measurement techniques were employed to evaluate U-Mo corrosion behavior. Low-temperature corrosion rate values were determined by means of U-Mo immersion testing and subsequent mass-loss measurements. The electrochemical behavior of each processing condition was also qualitatively examined using the techniques of corrosion potential and anodic potentiodynamic polarization. Scanning electron microscopy (SEM) and optical metallography (OM) imagery and hardness measurements provided supplemental corrosion analysis in an effort to relate material corrosion behavior to processing. The processing effects investigated as part of this were those of homogenization heat treatment (employed to mitigate the effects of coring in castings) and sub-eutectoid heat treatment, meant to represent additional steps in fabrication (such as hot isostatic pressing) performed at similar temperatures. Immersion mass loss measurements and electrochemical results both showed very little appreciable difference between

  8. Erosion-corrosion; Erosionkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Aghili, B

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment 32 refs, 16 figs, tabs

  9. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2013-07-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  10. Corrosion of support materials

    International Nuclear Information System (INIS)

    Results from a heavily fouled 19 tube C-E model boiler test to investigate the potential for egg crate corrosion in aggressively fouled AVT chemistry are reported. Substantial support plate and egg crate corrosion was produced in this test. Carbon steel drilled support plates exhibited extensive denting which resulted in flow hole ligament cracking. Corrosion of the carbon steel egg crate, through-wall at areas of tube contact, resulted in denting of the Alloy 600 heat transfer tubes. Corrosion performance of the 409 stainless steel egg crate was improved compared to the carbon steel egg crate although localized through-wall corrosion was noted. The results from the above test and previously reported tests were compared based on the following simplifying assumptions: maximum dent size and/or corrosion penetrations utilized, average bulk water chloride concentrations, pilling bedworth ratios, pot and model boilers data are equivalent, heat flux not significantly variable, and plot is semi-quantitative. Conclusions based on plots of maximum corrosion rates as a function of average bulk water chloride concentrations are presented. Finally, the corrosion performance of the various materials of construction for support systems were ranked for each test. Final material selection for future support systems must be based on a balance of thermal/hydraulic, metallurgical, corrosion and design considerations

  11. Development of Lead-Free Copper Alloy-Graphite Castings

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K. [Univ. of Wisconsin-Milwaukee (US)

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  12. Atmospheric corrosion of metals in tropics and subtropic. 2. Corrosion resistance of different metals and alloys

    International Nuclear Information System (INIS)

    Data from 169 sources concerning corrosion of different metals, alloys and means of protection, obtained for a 30-year period (up to 1987) in different continent including Europe (Bulgaria, Spain, Italy, France, USSR); America (USA, Panama, Cuba, Venezuela, Brasil, Argentine); Africa (Nigeria, SAR); Australia, New Zeland, Papua-Newguinea, Philippines, are systemized. Actual results of full-scal atmospheric testings of iron, zinc, copper, cadmium, aluminium, tin, lead, carbon, low-alloys. Stainless steels, cast irons, halvanic coatings, copper, aluminium, nickel, titanium, magnesium alloys are presented. Data on the fracture rate can be used for creating the data base in banks on atmospheric resistance of metal materials

  13. Corrosion studies on containment materials for vitrified heat generating waste

    International Nuclear Information System (INIS)

    Mean corrosion rates of carbon steels, monitored by Rsub(p) measurements on specimens in on-going long term immersion tests, are presented. True corrosion rates measured on specimens from two dismantled tests after > 2 years exposure were about 25 μm yr-1 for both cast and forged steel buried in granite at 90 C but only approx. 3 and 7 μm yr-1 for the same materials, respectively, in bentonite. Extreme value statistical analysis of maximum pit penetrations observed in experimental studies, to compensate for the small area of test specimens compared with a container, indicates that after 1000 years the maximum pit depth could be 200 mm. Overall, tests with γ-radiation on carbon steel specimens immersed in deaerated seawater at 90 C show that there is an acceleration of corrosion rate with continued exposure at the three radiation dose rates used. However in deaerated groundwater at 90 C the general corrosion rate of forged 0.2% carbon steel is -1 at a dose rate of 105 Rads h-1. Threshold stresses for the initiation of stress corrosion cracking in carbon steel parent and weld metal have been estimated. Preliminary experiments have been initiated to investigate the effect of sulphate reducing bacteria on the corrosion of carbon steel buried in bentonite. (author)

  14. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D. (Sedco Forex, Montrouge (France)); Edwards, R. (Schlumberger Well Services, Columbus, OH (United States)); Hayman, A. (Etudes et Productions Schlumberger, Clamart (France)); Hill, D. (Schlumberger Dowell, Tulsa, OK (United States)); Mehta, S. (Schlumberger Dowell, St. Austell (United Kingdom)); Semerad, T. (Mobil Oil Indonesia, Inc., Sumatra (Indonesia))

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  15. Skeleton castings dynamic load resistance

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2013-06-01

    Full Text Available Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement.Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of internal topology of skeleton casting was based on numerical simulations of stress distribution.Findings: The possibility of manufacturing of geometrically complex skeleton castings without use of advanced techniques was confirmed.Research limitations/implications: With use of computer tomography, analysis of deformation mechanisms was carried out. Different levels of impact energies were usedPractical implications: Spatial skeleton casting with octahedron elementary cell confirmed their usefulness as impact energy absorbers.Originality/value: The overall aim of presented research was to determine the mechanisms of skeleton castings deformation processes. Thanks to CT data next step will be to create accurate numerical model for further simulation and design optimization.

  16. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lei, E-mail: lei.yang@hzg.de [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Huang Yuanding; Peng Qiuming; Feyerabend, Frank; Kainer, Karl Ulrich; Willumeit, Regine; Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany)

    2011-12-15

    Microstructure, mechanical and corrosion properties of binary magnesium-dysprosium (Mg-5, 10, 15, 20 wt.% Dy) alloys were investigated for medical applications. In the as-cast condition, the distribution of Dy is quite inhomogeneous. Mg-10Dy alloy exhibits a moderate tensile and compression yield strength, and the best elongation and corrosion resistance. After T4 (solutionizing) treatment, the distribution of Dy becomes homogeneous. The tensile and compression yield strength of all Mg-Dy alloys decreases. The elongation remains unchanged, while the corrosion resistance is largely improved after T4 treatment.

  17. Influence of mictrostructure features on the corrosion behaviourof AZ91 alloy in chloride media

    Directory of Open Access Journals (Sweden)

    Lenka Bukovinová

    2014-11-01

    Full Text Available The influence of the microstructure of as-cast AZ91 magnesium alloy, which applied to solution annealing treatment and ageing treatment respectively, was evaluated in terms of its corrosion behaviour in 0.1 M NaCl solution at room temperature. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS and the surface was characterized by scanning Kelvin probe force microscopy (SKPFM. The extent of corrosion damage was dependent on the microstructure. Surface potential maps indicated that, the surface potential of α-matrix is more positive than surface potential of β phase.

  18. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  19. Phase transformations in cast duplex stainless steels

    Science.gov (United States)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  20. Microstructure of Cast Ni-Cr-Al-C Alloy

    Directory of Open Access Journals (Sweden)

    Cios G.

    2015-04-01

    Full Text Available Nickel based alloys, especially nickel based superalloys have gained the advantage over other alloys in the field of high temperature applications, and thus become irreplaceable at high temperature creep and aggressive corrosion environments, such as jet engines and steam turbines. However, the wear resistance of these alloys is insufficient at high temperatures. This work describes a microstructure of a new cast alloy. The microstructure consists of γ matrix strengthened by γ’ fine precipitates (dendrites improving the high temperature strength and of Chromium Cr7C3 primary carbides (in interdendritic eutectics which are designed to improve wear resistance as well as the high temperature strength.

  1. Branding of vascular surgery.

    Science.gov (United States)

    Perler, Bruce A

    2008-03-01

    The Society for Vascular Surgery surveyed primary care physicians (PCPs) to understand how PCPs make referral decisions for their patients with peripheral vascular disease. Responses were received from 250 PCPs in 44 states. More than 80% of the respondents characterized their experiences with vascular surgeons as positive or very positive. PCPs perceive that vascular surgeons perform "invasive" procedures and refer patients with the most severe vascular disease to vascular surgeons but were more than twice as likely to refer patients to cardiologists, believing they are better able to perform minimally invasive procedures. Nevertheless, PCPs are receptive to the notion of increasing referrals to vascular surgeons. A successful branding campaign will require considerable education of referring physicians about the totality of traditional vascular and endovascular care increasingly provided by the contemporary vascular surgical practice and will be most effective at the local grassroots level.

  2. DEGRADATION WORKS OF MONUMENTAL ART CAST BRONZE UNDER THE INFLUENCE OF ENVIRONMENTAL FACTORS

    Directory of Open Access Journals (Sweden)

    Delia NICA-BADEA

    2012-11-01

    Full Text Available Intensive pollution, combined with the lack of conservation of monuments exposed to these environments make the main cause of deterioration of cultural objects to atmospheric corrosion metal. This paper proposes a study of the main factors leading to degradation Bronze alloy, cast bronze monuments exposed to open atmosphere: corrosive environmental factors, stability and products of corrosion of bronze. In general, all corrosion products present on a metal surface are indicated as 'skate', can be composed of single-layer or multilayer products. The paper also includes a case study on the influence of environmental factors on degradation Matthias monument statue in Cluj-Napoca, Romania. Visual inspection of the monument informs us that have white spots, gray, reddish not consistent with the base color green patina, surfaces showing depigmentation, the rain washed areas, crystallization, deposition of air-borne particles.

  3. Modelling the corrosion-induced cracking of reinforced concrete structures exposed to the atmosphere

    International Nuclear Information System (INIS)

    The prediction of concrete cracking due to corrosion in atmospheric/carbonated conditions is a major issue for the evaluation of the durability of structures and the choice of maintenance policies. Because of the complexity of the phenomenon, a fully predictive approach is still missing. The proposed work can be considered as one step in this direction. It deals with a modelling study achieved at the Commissariat a l'Energie Atomique (CEA) with the CAST3M finite elements software. Model is constituted of three components: (1) concrete hydric behaviour, (2) rebar corrosion and (3) mechanical consequences on concrete (mainly concrete cracking). Actual developments consider analogies between rebar corrosion mechanisms and atmospheric corrosion ones, assuming that corrosion processes are influenced by the relative humidity evolution of atmosphere and/or of concrete. (authors)

  4. The effect of heat treatment on the corrosion behaviour of 319 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N.; Georgiou, E.P.; Giannakopoulos, K.I. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, Athens (Greece)

    2009-06-15

    The effect of various heat treatments on the corrosion behaviour of 319 T1 cast aluminium alloy was investigated. From this alloy, specimens were heat treated in T5, T6 and two steps solution heat treatment T6 conditions and afterwards were subjected to electrochemical corrosion in a 0.1 M NaCl solution (pH = 12). From the above treatments, T5 heat treatment did not improve the corrosion resistance of the as-received alloy in contrast to T6 heat treatment which improved the corrosion resistance of the same alloy. However, two steps solutionizing T6 treatment showed the best corrosion resistance of the aluminium alloy. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Segregation in cast products

    Indian Academy of Sciences (India)

    A Ghosh

    2001-02-01

    Microsegregation gets eliminated significantly if subsequent hot working and/or annealing are done on cast products. Macrosegregation however persists, causing problems in quality, and hence, has to be attended to. Microsegregation is a consequence of rejection of solutes by the solid into the interdendritic liquid. Scheil’s equation is mostly employed. However, other equations have been proposed, which take into account diffusion in solid phase and/or incomplete mixing in liquid. Macrosegregation results from movements of microsegregated regions over macroscopic distances due to motion of liquid and free crystals. Motion of impure interdendritic liquid causes regions of positive macrosegregation, whereas purer solid crystals yield negative macrosegregation. Flow of interdendritic liquid is primarily natural convection due to thermal and solutal buoyancy, and partly forced convection due to suction by shrinkage cavity formation etc. The present paper briefly deals with fundamentals of the above and contains some recent studies as well. Experimental investigations in molten alloys do not allow visualization of the complex flow pattern as well as other phenomena, such as dendrite-tip detachment. Experiments with room temperature analogues, and mathematical modelling have supplemented these efforts. However, the complexity of the phenomena demands simplifying assumptions. The agreement with experimental data is mostly qualitative. The paper also briefly discusses centreline macrosegregation during continuous casting of steel, methods to avoid it, and the, importance of early columnar-to-equiaxed transition (CET) as well as the fundamentals of CET.

  6. Corrosion evaluation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of {+-} 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs.

  7. Development of Refractories for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    TIAN Shouxin; JIN Congjin; YAO Jinfu; LI Zeya

    2004-01-01

    The paper introduces refractories for continuous casting, especially, refractories for continuous casting for clean steel in baosteel. Developing direction of refractories for continuous casting has been pointed out to satisfy the new metallurgical operating practice.

  8. Electrochemical and Mechanical Behavior of Lead-Silver and Lead-Bismuth Casting Alloys for Lead-Acid Battery Components

    Science.gov (United States)

    Osório, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri

    2015-09-01

    The present study focuses on the interrelation of microstructure, mechanical properties, and corrosion resistance of Pb-Ag and Pb-Bi casting alloys, which can be used in the manufacture of lead-acid battery components, as potential alternatives to alloys currently used. A water-cooled solidification system is used, in which vertical upward directional solidification is promoted permitting a wide range of microstructures to be investigated. Correlations between microstructural arrays, tensile strengths, and corrosion resistances of Pb-1 wt pct Ag, Pb-2.5 wt pct Ag, Pb-1 wt pct Bi, and Pb-2.5 wt pct Bi alloys are envisaged. It is shown that a compromise between corrosion resistance (represented by the corrosion current density) and mechanical properties (represented by the ultimate tensile strength) can be obtained. Comparisons between specific strengths and mechanical/corrosion ratios are also made. It is also shown that, for microstructures solidified under cooling rates higher than 10 K/s, the Pb-Ag alloys exhibit higher specific strength and mechanical/corrosion ratio. In contrast, for casting processes in which the cooling rates are lower than 5 K/s, the dilute Pb-Bi alloy ( i.e., 1 wt pct Bi) is shown to have more appropriate requirements for lead-acid battery components. Comparisons between specific strengths, mechanical/corrosion ratio, and relative weight and cost with Pb-Sn and Pb-Sb alloys are also made.

  9. Numerical simulation on the solidification structure of Ø600mm continuous casting round bloom

    Science.gov (United States)

    Fang, Q.; Ni, H. W.; Wang, S. J.; Zang, H.

    2016-03-01

    A FE (Finite Element)—CA (Cellular Automation) coupling model was developed for the simulation of solidification structure formation during the Ø600mm round bloom continuous casting process of Q345E steel. The simulation result of the temperature field was consistent with the nail-shooting experimental result, and the simulated solidification structure of the bloom was in great agreement with corrosion testing under the same casting condition. The simulation results showed that the centre equiaxed crystal ratio increased slightly with the increase of secondary cooling water rate and decreased with the increase of casting temperature and casting speed. When the secondary cooling water rate was over 0.08L/kg, it had less effect on the solidification structure. As the casting temperature increased by 1°C or the casting speed increased by 0.01m/min, the centre equiaxed crystal ratio would decrease by 0.4%∼1.2% and 3%∼0.8% respectively. According to the simulation results, the optimized continuous casting process of Ø600mm round bloom should be the secondary cooling water rate of 0.08L/kg, the casting temperature of 1532°C∼1539°C and the casting speed of 0.20m/min∼0.22m/min. It was found that the solidification structure of Ø600mm Q345E steel round bloom was much improved after the optimized continuous casting process was adopted in practical production.

  10. Lost Foam Casting in China

    Institute of Scientific and Technical Information of China (English)

    YE Sheng-ping; WU Zhi-chao

    2006-01-01

    @@ 1. Lost Foam Casting Committee of Foundry Institution of Chinese Mechanical Engineering Society (FICMES) From the beginning of the 1990s, China entered a research and expansion climax in lost foam casting technology realm after the United States, Germany, and Japan etc.

  11. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2009-01-01

    @@ This book consists of five sections:Chapter 1 Introduction,Chapter 2 Grey Iron,Chapter 3 Ductile Iron,Chapter 4Vermicular Cast Iron,and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  12. Collagen vascular disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on this page, ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many of many ...

  13. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...... with sensitive electrical resistance technique and crevice corrosion current measurements....

  14. Localized corrosion mechanism associated with precipitates containing Mg in Al alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To clarify the localized corrosion mechanism associated with precipitates containing Mg in Al alloys, the simulated bulk precipitates of S and β were synthesized through melting and casting. Their electrochemical behaviors and coupling behaviors with α(Al) in NaCl solution were measured. Meanwhile, simulated Al alloys containing S and β particles were prepared and their corrosion morphologies were observed. It's found that there exist two kinds of corrosion mechanisms associated with precipitates containing Mg. The precipitate of β is anodic to the alloy base, resulting in its anodic dissolution and corrosion during the whole corrosion process. While, there exists a corrosion conversion mechanism associated with the S precipitate, which contains active element Mg and noble element Cu simultaneously. At an initial stage, S is anodic to the alloy matrix at its periphery and the corrosion occurs on its surface. However, during its corrosion process, Mg is preferentially dissolved and noble Cu is enriched in the remnants.This makes S become cathodic to α(Al) and leads to anodic dissolution and corrosion on the alloy base at its periphery at a later stage.

  15. Bronchoalveolar casting using formalin-fixed canine lungs and a low viscosity silicone rubber.

    Science.gov (United States)

    Nettum, J A

    1993-06-01

    A method for creating tough, flexible, bronchoalveolar casts from formalin-fixed canine lung is described. A lung was washed using simple methods and fixed in 10% neutral-buffered formalin. While still wet with formalin, an intact lobe was injected with silicone sealant, Silastic 734 RTV (Room Temperature Vulcanizing), using a caulk gun. Following digestion with protease and corrosion with potassium hydroxide, a bronchoalveolar cast was recovered giving detail as shown using scanning electron microscopy or conveniently seen by stereo light microscopy. This method should be useful for micro-anatomy studies of normal and diseased lungs. PMID:8393308

  16. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Hassen, F. [Ecole des Mines de Paris - CGES, 77 - Fontainebleau (France); Bienvenu, Y. [Ecole des Mines de Paris, CM, 91 - Evry (France); Noirel, J.F. [Charbonnages de France, DTN, 57 - Freyming Merlebach (France); Metz, M. [charbonnages de France, ESA, 57 - Freyming Merlebach (France)

    2005-07-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  17. Renovascular hypertension causes cerebral vascular remodeling

    Institute of Scientific and Technical Information of China (English)

    Yamei Tang; Xiangpen Li; Yi Li; Qingyu Shen; Xiaoming Rong; Ruxun Huang; Ying Peng

    2011-01-01

    Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that the vascular network was sparse. The arterioles of the RHRs at 10 weeks had smaller lumen diameters, but thicker vessel walls with hyalinosis formation compared with control animals. The endothelial cell membrane appeared damaged, and microthrombus formed. After ischemia, the infarction size was larger in RHRs than in control animals. These results suggest that cerebral arterioles in RHRs underwent structural remodeling. High blood pressure may aggravate the severity of brain injury in cerebral ischemia and affect the recovery of ischemia.

  18. Natural analogues for expansion due to the anaerobic corrosion of ferrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Adams, R. [Serco Assurance, Culham Science Centre (United Kingdom)

    2006-10-15

    In Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a cast iron insert and a copper outer container. The canisters will be placed in a deep geologic repository and surrounded by bentonite. If a breach of the outer copper container were to occur the cast iron insert would undergo anaerobic corrosion, forming a magnetite film whose volume would be greater than that of the base metal. In principle there is a possibility that accumulation of iron corrosion product could cause expansion of the copper canister. Anaerobic corrosion rates are very slow, so in the work described in this report reference was made to analogous materials that had been corroding for long periods in natural anoxic aqueous environments. The report considers the types of naturally occurring environments that may give rise to anoxic environments similar to deep geological groundwater and where ferrous materials may be found. Literature information regarding the corrosion of iron archaeological artefacts is summarised and a number of specific archaeological artefacts containing iron and copper corroding in constrained geometries in anoxic natural waters are discussed in detail. No evidence was obtained from natural analogues which would suggest that severe damage is likely to occur to the SKB waste canister design as a result of expansive corrosion of cast iron under repository conditions.

  19. Natural analogues for expansion due to the anaerobic corrosion of ferrous materials

    International Nuclear Information System (INIS)

    In Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a cast iron insert and a copper outer container. The canisters will be placed in a deep geologic repository and surrounded by bentonite. If a breach of the outer copper container were to occur the cast iron insert would undergo anaerobic corrosion, forming a magnetite film whose volume would be greater than that of the base metal. In principle there is a possibility that accumulation of iron corrosion product could cause expansion of the copper canister. Anaerobic corrosion rates are very slow, so in the work described in this report reference was made to analogous materials that had been corroding for long periods in natural anoxic aqueous environments. The report considers the types of naturally occurring environments that may give rise to anoxic environments similar to deep geological groundwater and where ferrous materials may be found. Literature information regarding the corrosion of iron archaeological artefacts is summarised and a number of specific archaeological artefacts containing iron and copper corroding in constrained geometries in anoxic natural waters are discussed in detail. No evidence was obtained from natural analogues which would suggest that severe damage is likely to occur to the SKB waste canister design as a result of expansive corrosion of cast iron under repository conditions

  20. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt;

    2000-01-01

    was moderately reproduced (kappa = 0.59). Vascular grade was significantly associated with axillary node involvement, tumour size, malignancy grade, oestrogen receptor status and histological type. In univariate analyses vascular grade significantly predicted recurrence free survival and overall survival for all...... patients (P analysis showed that vascular grading contributed with independent prognostic value in all patients (P

  1. Effect of Ablation Casting on Microstructure and Casting Properties of A356 Aluminium Casting Alloy

    Institute of Scientific and Technical Information of China (English)

    V.Bohlooli; M.Shabani Mahalli; S.M.A.Boutorabi

    2013-01-01

    Recently the Ablation Casting Technology was invented as a new casting process to improve foundry products quality.In this study,the effects of processing variables on the porosity content,microstructure and feedability of A356 casting alloy were investigated.Secondary dendrite arm spacing (SDAS) and eutectic silicon morphologies were studied to evaluate the influence of Ablation Casting on the microstructure.Casting density was measured in order to identify porosity content and feedability of ablated and non-ablated specimens.In addition,solidification behavior of the samples was investigated by using thermal analysis technique.The cooling curves and the first derivative curves were plotted and compared with each other.Results showed the ablation process could increase solidification rate significantly.In addition,the microstructural evidences revealed that Ablation Casting process results in more fine and homogeneous structure compared to the nonablated casting.The feedability improved,SDAS reduced to 35% and porosity content decreased to 3.84 vol.% by implementing this process.It concluded the Ablation Casting is an effective process to gain higher quality in aluminum foundry.

  2. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch;

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  3. Corrosion Failures in Marine Environment

    Directory of Open Access Journals (Sweden)

    R. Krishnan

    1985-04-01

    Full Text Available This paper gives a brief description of typical marine environments and the most common form of corrosion of materials used in this environment. Some typical case histories of failures pertaining to pitting, bimetallic corrosion, dealloying, cavitation and stress corrosion cracking are illustrated as typical examples of corrosion failures.

  4. How to Prevent Vascular Disease

    Science.gov (United States)

    ... our CEO Board of Directors Scientific Advisory Board History of Vascular Cures Impact Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic ...

  5. Al - BASED CAST COMPOSITES

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Yadav

    2011-08-01

    Full Text Available The economy is very important feature nowadays in themarket. The researches are playing an important role inengineering field to increase the life of machine parts /components and decrease the cost. The compositematerials have the potential to replace widely used steeland aluminium due to their good characteristics withbetter performance. The Al-based composites have foundextensive applications in automobile industries andaerospace industries due to their increased stiffness,strength, thermal conductivity and wear resistanceproperties. A number of particulate phases have beenemployed in the Al-alloy matrix. The cast aluminiumceramicparticulate composites are finding applications inpistons, connecting rods, cylinder liner, engine cylinderblock, electrical contacts etc.The present investigation isbased on study of the effect of particulate phase on theSEM study, micro-hardness, elastic modulus, tensilestrength and the wear behaviour of Al-5 % SiC-7 % Fe,Al-10 % SiC-6 % Fe and Al-15 % SiC-5 % Fe composites.

  6. Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel; Bolat, Georgiana [Technical Univ. Iasi (Romania). Faculty of Chemical Engineering and Environmental Protection; Strugaru, Sorin Iacob; Munteanu, Corneliu [Technical Univ. Iasi (Romania). Faculty of Mechanical Engineering; Souto, Ricardo M. [Univ. of La Laguna, Tenerife (Spain). Dept. of Chemistry

    2015-03-15

    Plasma nitriding at 500 C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.

  7. The Corrosion and Preservation of Iron Antiques.

    Science.gov (United States)

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  8. Multifocal vascular lesions.

    Science.gov (United States)

    Levin, Laura E; Lauren, Christine T

    2016-03-01

    Multifocal vascular lesions are important to recognize and appropriately diagnose. Generally first noticed on the skin, multifocal vascular lesions may have systemic involvement. Distinguishing among the different types of multifocal vascular lesions is often based on clinical features; however, radiological imaging and/or biopsy are frequently needed to identify distinct features and guide treatment. Knowledge of the systemic associations that can occur with different vascular anomalies may reduce life-threatening complications, such as coagulopathy, bleeding, cardiac compromise, and neurologic sequelae. This review provides a synopsis of the epidemiology, pathogenesis, presentation, workup, and treatment of several well-recognized multifocal vascular tumors and malformations. PMID:27607324

  9. Microbiologically influenced corrosion testing

    International Nuclear Information System (INIS)

    This symposium was held November 16--17, 1992 in Miami, Florida. The purpose of the symposium was to provide a forum for state-of-the-art information on the effects of microorganisms on the corrosion of metals. Many industrial needs in the area of microbial influenced corrosion testing are identified in the presentations along with latest laboratory and field testing techniques. Strategies to monitor and control corrosion and biofouling in water distribution systems, underground pipelines, buildings, and marine vessels are discussed. Individual papers have been processed separately for inclusion in the appropriate data bases

  10. Understanding localized corrosion

    Directory of Open Access Journals (Sweden)

    G.S. Frankel

    2008-10-01

    Full Text Available The breakdown of a protective passive film leading to accelerated dissolution at localized sites is an important practical issue and a vexing scientific problem. The small dimensions, short timescale, and dynamic interplay between a heterogeneous surface and changing potential and solution concentration gradients complicate the development of a complete understanding of the phenomena. This review touches on some of the recent developments in the field, including scanning tunneling microscopy imaging of the earliest stages of pitting which supports a new model explaining the localization of attack, pitting in thin aqueous layers relevant to atmospheric corrosion, the factors controlling crevice corrosion, and predictive modeling of localized corrosion.

  11. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  12. Panel report on corrosion in energy systems

    International Nuclear Information System (INIS)

    Corrosion problems in high-temperature (non aqueous) energy systems, corrosion in aqueous energy systems and institutional problems inhibiting the development of corrosion science and engineering are discussed

  13. NUMERICAL MODELING OF HARDENING OF UNINTERRUPTEDLY-CASTED BRONZE CASTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The three-dimensional numerical model for calculation of thermal fields during solidification of continuously casted bronze casting is developed. Coefficients of heat transfer on borders of calculation areas on the basis of the solution of inverse heat transfer conduction problem are determined. The analysis of thermal fields, depending on loop variables of drawing and the sizes of not cooled zone of crystallizer is curried out.

  14. The microbial corrosion

    International Nuclear Information System (INIS)

    Underestimated for a long time, corrosion due to microorganisms induces degradation, sometimes fulminant, of a lot of metallic structures in the world. Searchers are using plentiful analytical tools to understand this phenomenon. (O.M.)

  15. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  16. EFFECTS OF Ce ON CORROSION RESISTANCE OF AZ91D MAGNESIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    Z.H. Huang; X.F. Guo; Z.M. Zhang; C.J. Xu

    2005-01-01

    As-cast and corrosive microstructures of AZ91D alloy containing various Ce contents were observed by optical microscope (OM). The phase compositions of the alloys before and after the corrosion were analyzed by X-ray diffraction (XRD). Meanwhile, the corrosion resistance of the alloys was tested by weight loss and potentiodynamic polarization curve methods respectively.The results show that rod-like Al4Ce phase is formed in AZ91D alloy containing certain Ce content and as-cast microstructures are refined. AZ91D-0. 7%Ce alloy has good grain refinementeffect. The addition of Ce can reduce the corrosion rate and corrosion current density of AZ91Dalloy and those of AZ91D-0. 1%Ce alloy reach the minimum, which are 0.35mg/(cm2·d) and2.761μA/cm2 with 75% and 86% reduction, respectively. The increasing volume fraction and reticular degree of β phase can improve the corrosion resistance of the alloys.

  17. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instanta

  18. Accelerated cyclic corrosion tests

    OpenAIRE

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  19. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... consists mainly of CO2-Na2CO3-NaHCO3-MEG-H2O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO2 corrosion...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...

  20. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    OpenAIRE

    Kalandyk B.; Zapała R.; Boroń Ł.; Solecka M.

    2014-01-01

    Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC) and type of fracture obtained after breaking the specim...

  1. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang

    2009-01-01

    @@ Preface Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc.

  2. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author)

  3. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2011-01-01

    @@ Vermicular graphite cast iron(VG iron for short in the following sections)is a type of cast iron in which the graphite is intermediate in shape between flake and spheroidal.Compared with the normal flake graphite in grey iron, the graphite in VG iron is shorter and thicker and shows a curved, more rounded shape.Because its outer contour is exactly like a worm, hence it is called vermicular graphite.

  4. Light metal compound casting

    Institute of Scientific and Technical Information of China (English)

    Konrad; J.; M.; PAPIS; Joerg; F.; LOEFFLER; Peter; J.; UGGOWITZER

    2009-01-01

    ‘Compound casting’simplifies joining processes by directly casting a metallic melt onto a solid metal substrate. A continuously metallurgic transition is very important for industrial applications, such as joint structures of spaceframe constructions in transport industry. In this project, ‘compound casting’ of light metals is investigated, aiming at weight-saving. The substrate used is a wrought aluminium alloy of type AA5xxx, containing magnesium as main alloying element. The melts are aluminium alloys, containing various alloying elements (Cu, Si, Zn), and magnesium. By replacing the natural oxygen layer with a zinc layer, the inherent wetting difficulties were avoided, and compounds with flawless interfaces were successfully produced (no contraction defects, cracks or oxides). Electron microscopy and EDX investigations as well as optical micrographs of the interfacial areas revealed their continu- ously metallic constitution. Diffusion of alloying elements leads to heat-treatable microstructures in the vicinity of the joining interfaces in Al-Al couples. This permits significant variability of mechanical properties. Without significantly cutting down on wettability, the formation of low-melting intermetallic phases (Al3Mg2 and Al12Mg17 IMPs) at the interface of Al-Mg couples was avoided by applying a protective coating to the substrate.

  5. Virtualisation of casting engineering

    Directory of Open Access Journals (Sweden)

    J.S. Suchy

    2007-09-01

    Full Text Available Purpose: Fast response to an enquiry, minimization of costs of identification of best-suited process solution, as well as a capacity to tackle new challenges is the shortest description of the requirements posed by the contemporary market of machines and equipment. These, in consequence, called for making use of mathematical models and their solution by means of simulation algorithms.Design/methodology/approach: The notable effectiveness of numerical methods streamlined the production preparation process. Maintaining competitiveness, even more tough because of economic factors, is only possible due to cost-effective operation, high quality and well-timed order completion. These, on the other hand, can be facilitated by a broad application of IT tools aiding production management and preparation.Findings: Integration of systems aiding design processes, systems used for simulating selected elements of technologies, as well as of systems supporting instrumentation manufacturing calls for a need to solve a number of complex problems related to IT, mathematical modelling, logistics and knowledge management. Software packages for a simulation of processes that are indispensable in order to achieve the designed distribution of matter structures and condition are of particular importance.Research limitations/implications: Despite the fact that there is a wide range of software for these purposes available on the market, there is a need to build and integrate into IT systems new purpose-developed solutions customised to technologies applied and non-standard problems.Originality/value: Virtualization of casting engineering

  6. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  7. Modelling of flow phenomena during DC casting

    OpenAIRE

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instantaneous transformation, but occurs in temperature interval. In the casting process the latent heat is moved away by convection and conduction. A number of problems may occur during solidification, beca...

  8. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik;

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...... is reached causing the formation of anodic and cathodic regions along the reinforcement. Critical chloride thresholds, randomly distributed along the reinforcement sur-face, link the initiation and propagation phase of reinforcement corrosion. To demonstrate the potential use of the developed model......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  9. Corrosion behaviour of container materials for the disposal of high-level waste forms in rock salt formations

    International Nuclear Information System (INIS)

    Extensive laboratory-scale experiments to evaluate the long-term corrosion behaviour of selected materials in brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel as well cast steel, spheroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature, gamma-radiation and different compositions of salt brines. (orig./PW)

  10. Vascularity in thyroid neoplasms

    DEFF Research Database (Denmark)

    Larsen, Karen Kjaer; Andersen, Niels Frost; Melsen, Flemming;

    2006-01-01

    The aim of the present study was to evaluate the reliability of four different methods (vascular grading, Chalkley count, microvessel density (MVD) and stereological estimation) for quantifying intratumoral microvascularity in thyroid neoplasms, by comparing the variability within and between...... count should be the preferred method for assessing microvascularity in thyroid neoplasms. The diagnostic evaluation revealed a tendency towards higher degree of vascularity in FA compared to both FC and PC for all methods. No statistically significant association was seen between vascular density and...

  11. Vascular cognitive impairment

    OpenAIRE

    Rebecca F. Gottesman; Hillis, Argye E.

    2014-01-01

    The term vascular cognitive impairment (VCI) has been proposed to encompass all people with cognitive impairment of cerebrovascular origin. VCI is not a single condition, but has several clinical presentations, etiologies, and treatment. VCI forms a spectrum that includes vascular dementia, mixed Alzheimer’s disease with a vascular component, and VCI that does not meet dementia criteria. Multiple pathophysiological mechanisms contribute to VCI, accounting for its heterogeneity. Although main ...

  12. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfeng, E-mail: jfwang@cqu.edu.cn; Li, Yang; Huang, Song; Zhou, Xiaoen

    2014-10-30

    Highlights: • Corrosion of four cast Mg–xSn alloys in 3.5 wt.% NaCl solution was investigated. • Both Mg(OH){sub 2}/SnO{sub 2} corrosion product film and Mg(OH){sub 2}/MgSnO{sub 3} clusters formed on Mg–1.5Sn. • Compact Mg(OH){sub 2}/MgSnO{sub 3} film suppressed the cathodic effect of the impurity inclusions. • Mg–xSn (x = 0.5, 1.0, 2.0 wt.%) alloys only formed loose Mg(OH){sub 2}/SnO{sub 2} corrosion product film. - Abstract: The corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn (x = 0.5, 1.0, 1.5, and 2.0 wt.%) alloys in 3.5 wt.% NaCl solution were investigated by immersion tests, electrochemical measurements, corrosion morphology observations, and X-ray diffraction analysis. Immersion tests and electrochemical measurements illustrated that the best corrosion resistance was reported for the Mg–1.5Sn alloy. Both Mg(OH){sub 2}/SnO{sub 2} corrosion product film and Mg(OH){sub 2}/MgSnO{sub 3} clusters formed on Mg–1.5Sn alloy surface. Mg(OH){sub 2}/MgSnO{sub 3} clusters were compact and suppressed the cathodic effect of the impurity inclusions greatly. The Mg–xSn (x = 0.5, 1.0, and 2.0 wt.%) alloys only formed loose Mg(OH){sub 2}/SnO{sub 2} corrosion product film during the corrosion process.

  13. Reliability and Sensitivity Analysis of Cast Iron Water Pipes for Agricultural Food Irrigation

    Directory of Open Access Journals (Sweden)

    Yanling Ni

    2014-07-01

    Full Text Available This study aims to investigate the reliability and sensitivity of cast iron water pipes for agricultural food irrigation. The Monte Carlo simulation method is used for fracture assessment and reliability analysis of cast iron pipes for agricultural food irrigation. Fracture toughness is considered as a limit state function for corrosion affected cast iron pipes. Then the influence of failure mode on the probability of pipe failure has been discussed. Sensitivity analysis also is carried out to show the effect of changing basic parameters on the reliability and life time of the pipe. The analysis results show that the applied methodology can consider different random variables for estimating of life time of the pipe and it can also provide scientific guidance for rehabilitation and maintenance plans for agricultural food irrigation. In addition, the results of the failure and reliability analysis in this study can be useful for designing of more reliable new pipeline systems for agricultural food irrigation.

  14. Preventing galvanic corrosion - Systematic development of a magnesium car body component; Vermeidung von Bimetallkorrosion - Systematische Entwicklung eines Magnesium Karosseriebauteils

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, H.; Izquierdo, P.; Klose, S.G. [Daimler AG, Stuttgart (Germany); Heitmann, Volker; Hoeche, D.; Kainer, K.U. [GKSS, Geesthacht (Germany); Blawert, C.

    2010-10-15

    The hatch back of the new Mercedes-Benz E-Class T-Model is one example for a hybrid design with inner magnesium high pressure die casting liner and outer aluminium sheet. The hybrid lift gate has to fulfil a variety of requirements corresponding to dimensional stability, weight, stiffness, crash and corrosion performance. The hybrid concept in general as well as various interfaces and connecting points require a careful design to prevent galvanic corrosion. Critical points are introduced and for two examples (gas pressure spring and hinge) the constructive criterions are discussed. Finally, the concept of corrosion protection measures and results of various testing trials of the component are presented.

  15. Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Syung Yul; Park, Dong Hyun; Won, Jong Pil; Kim, Yun Hae; Lee, Myung Hoon; Moon, Kyung Man; Jeong, Jae Hyun [Korea Maritime Univ., Busan (Korea, Republic of)

    2012-06-15

    Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold and hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at 190 .deg. C for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at 190 .deg. C for 16hrs.

  16. Untouchable castes of Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Kharinin Artem Igorevich

    2015-04-01

    Full Text Available The Untouchable Castes of Uttar Pradesh are examined in this article. This region is one of the most populated in India. Also it is one of the most social mixed-composed in whole State. That’s why main conclusions which were made on this material can be extrapolated to all social space of country. The authors choose four ethno-caste groups, which represent the majority in untouchables and the three smallest in jaties. Their positions in regional hierarchy and economic specialization are analyzed in detail. There are a lot of information about their number, social structure, literacy rating, endogamy, day-to-day practices, customs and other features. Special accents were pointed on mind orientation of their elites toward integration in modern society or, conversely, toward the conservation of traditional forms of existence. The issues of origin and social evolution of untouchable castes of Uttar Pradesh are examined. There is assessment of castes’ sanskritization or other forms of social selfdevelopment. The quality of “scheduled” castes social environment is analyzed. As a marks of its positiveness the data about discrimination untouchables from other social groups and degree of political representativeness of “scheduled” castes, accessibility of education and labour were chosen. The conclusions were made about development degree of some castes. The factors that play role in positive changes in contemporary conditions were determined. The authors put forward their own hypothesis of future development of untouchable castes in Uttar Pradesh. Empiric base of this article was established on sources that have Indian origin and historical and social research of outstanding western indologies.

  17. Microvascularization on collared peccary placenta: a microvascular cast study [corrected] in late pregnancy.

    Science.gov (United States)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke; Miglino, Maria Angélica

    2012-07-01

    The microvascularization of the collared peccary (Tayassu tajacu) placenta was studied by vascular casts and immunolocalization of α-smooth muscle actin and vimentin, to identify the three dimensional organization and vascular flow interrelation in the microvasculature between the maternal and fetal compartments of the placentae. The immunolocalization of vimentin in the vascular endothelium and in the smooth muscle cells of blood vessels showed indented capillaries along the uterine epithelium and the trophoblast at the sides of complementary maternal and fetal microfolds, or rugae. This confers the three-dimensional structure observed in vascular casts. On the maternal side, casts demonstrated uterine folds coated by with primary and secondary ridges, and by areolae dispersed between these ridges. The arteriole runs through the center/middle of ridges, branching at the top into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base of the bulbous protrusions, the fetal venules arise. The blood vessel orientation in the materno-fetal interface of the placentae of collared peccaries suggests a blood flow pattern of the type countercurrent to cross current. The same pattern has been reported in domestic swine demonstrating that, even after 38 million years, the Tayassuidae and Suidae families exhibit similar placental morphology, which is here characterized at the microvascular level.

  18. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  19. Employment of neural networks for modelling of corrosive wear of hard magnetic composite materials

    International Nuclear Information System (INIS)

    The paper presents a neural network model for evaluation of the rate of corrosive wear of the polymer matrix hard magnetic composite materials with particles of the powdered rapid quenched Nd-Fe-B trip with addition of metallic powder: iron, aluminium, CuSn10 type cast copper-tin alloy and X2CrNiMo17-12-2 high alloy steel. A neural network model was established based on the research results from the investigations carried out in two corrosive environments. Three types of input data were used in the investigation; the contribution of the added powder, the nominal variable that defined the corrosive environment and the time duration of the test. The percentage corrosive wear of the surface was the output produced from such input data. (author)

  20. Corrosion testing using isotopes

    Science.gov (United States)

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  1. Development of vacuum die-casting process

    Institute of Scientific and Technical Information of China (English)

    Masashi Uchida

    2009-01-01

    The vacuum die-casting process, started 25 years ago in Japan, has been widely applied. This technology contributes very much to improvement of castings quality. The main factor causing the defects of die castings is the trapped air in the mold cavity, while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting. At the same time, due to the shot speed and the casting pressure reduced in half, the service life of the die is prolonged and the productivity is enhanced, as well. Vacuum die-casting process is of great significance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.

  2. Fillability of Thin-Wall Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  3. Severe Environmental Corrosion Erosion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Severe Environment Corrosion Erosion Facility in Albany, OR, allows researchers to safely examine the performance of materials in highly corrosive or erosive...

  4. Microbial Corrosion: 1988 Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-04-01

    Microbial action can greatly increase corrosion damage in power plant water systems. This workshop pulled together practical experience and theoretical knowledge on microbially induced corrosion, documented diagnostic and treatment methods, and identified areas for future research.

  5. Instant Casting Movie Theater: The Future Cast System

    Science.gov (United States)

    Maejima, Akinobu; Wemler, Shuhei; Machida, Tamotsu; Takebayashi, Masao; Morishima, Shigeo

    We have developed a visual entertainment system called “Future Cast” which enables anyone to easily participate in a pre-recorded or pre-created film as an instant CG movie star. This system provides audiences with the amazing opportunity to join the cast of a movie in real-time. The Future Cast System can automatically perform all the processes required to make this possible, from capturing participants' facial characteristics to rendering them into the movie. Our system can also be applied to any movie created using the same production process. We conducted our first experimental trial demonstration of the Future Cast System at the Mitsui-Toshiba pavilion at the 2005 World Exposition in Aichi Japan.

  6. As-Cast Acicular Ductile Aluminum Cast Iron

    Institute of Scientific and Technical Information of China (English)

    S M Mostafavi Kashani; S M A Boutorabi

    2009-01-01

    The effects of nickel (2.2%)and molybdenum (0.6%)additions on the kinetics, microstructure, and me-chanical properties of ductile aluminum cast iron were studied under the as-cast and tempered conditions. Test bars machined from cast to size samples were used for mechanical and metallurgical studies. The results showed that adding nickel and molybdenum to the base iron produced an upper bainitic structure, resulting in an increase in strength and hardness. The same trend was shown when the test bars were tempered at 300 ℃ in the range of 300℃ to 400 ℃. The elongation increased with increasing the temperature from 300 ℃ to 400 ℃. The carbon content of the retained austenite also increased with increasing the temperature. The results also showed that the kinetics, mi-crostructure, and mechanical properties of this iron were similar to those of Ni-Mo alloyed silicon ductile iron.

  7. Microstructure of AE44 magnesium alloy before and after hot-chamber die casting

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2007-01-01

    Full Text Available Purpose: AE44 magnesium alloy allows attractive high temperature mechanical properties, as well as diecastabilityand good corrosion resistance. It contains magnesium, aluminum, cerium and lanthanum. Typically,it is used in automotive industry for structural components working at elevated temperature (150÷175°C. Theaim of this paper is to present the results of investigations on the microstructure of the AE44 magnesium alloybefore and after hot chamber die casting.Design/methodology/approach: Die casting was carried out on 280 tone locking force hot-chamber die castingmachine. For the microstructure observation, a Olympus GX+70 metallographic microscope and a HITACHIS-3400N scanning electron microscope with a Thermo Noran EDS spectrometer equipped with SYSTEM SIXwere used.Findings: Based on the investigation carried out it was found that the AE44 magnesium alloy before diecasting is characterized by α-Mg solid solution with globular, lamellar and acicular precipitations of Al11RE3and Al3RE phases. Moreover, there was found globular Mn-rich phase existence (probably Al8CeMn4 phase.After hot-chamber die casting the microstructure of AE44 alloys consist of equiaxed dendrites of α-Mg withprecipitates of Al11RE3 and probably Al2RE phase.Research limitations/implications: Future researches should contain investigations of the influence of the hotchamber die casting process parameters on the microstructure and mechanical properties of AE44 magnesiumalloy.Practical implications: AE44 magnesium alloy can be cast with cold- and hot-chamber die casting machine.Results of investigation may be useful for preparing die casting technology of this alloy.Originality/value: The results of the researches make up a basis for the investigations of new magnesium alloyscontaining rare earth elements for hot chamber die casting designed to service in elevated temperature.

  8. Green Rusts and Their Relationship to Iron Corrosion; a Key Role in Microbially Influenced Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Genin, J.-M. R.; Refait, Ph.; Abdelmoula, M. [Universite Henri Poincare, Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564, CNRS-Universite Henri Poincare-Nancy 1, Equipe Microbiologie et Physique and Departement Materiaux et Structures, ESSTIN (France)

    2002-03-15

    Moessbauer spectroscopy (MS) has often been used to characterise double-layered hydroxysalts usually named green rusts (GR) and to follow their Fe(II)/Fe(III) ratio during the oxidation process of Fe(OH){sub 2} in the presence of aggressive anions such as Cl{sup -}, SO{sub 4}{sup 2-}, CO{sub 3}{sup 2-},.... They are intermediate compounds between the initial metal Fe(0) via the Fe(II) and the final Fe(III) (oxyhydr)oxides constituting the usual rusts. E-pH Pourbaix diagrams of iron for predicting the aqueous corrosion conditions of iron-based materials are determined by monitoring the electrode potential E{sub h} and pH vs. time. The crystal structure of GRs, in any case constituted of layers of [Fe{sup II}{sub (1-x)}Fe{sup III}{sub x} (OH){sub 2}]{sup x+} that alternate with interlayers [(x/n)A{sup n-}.(mx/n)H{sub 2}O]{sup x-} made of A{sup n-} anions and water molecules, are presented. Several examples of the role of GRs are discussed, from chloride pitting of concrete reinforcing bars to bacterial corrosion of cast iron in water pipes or steel sheet piles in harbours. The efficiency of corrosion inhibitors like phosphate and their relationship to the oxidation of GRs are presented from basic MS studies. But most importantly, the evidence by MS of the dissimilatory reduction of a common ferric oxyhydroxide, {gamma}-FeOOH lepidocrocite, into a GR by the action of a bacterium, Shewanella putrefaciens, opens the path through which microbially influenced corrosion (MIC) operates. A cycling of aerobic and anaerobic conditions is necessary where GRs but also magnetite play likely the key role.

  9. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  10. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz Ocaña, Iván; Cano, Heidis

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  11. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; I. Díaz; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  12. [Vascular graft prosthesis].

    Science.gov (United States)

    Chakfé, N; Dieval, F; Thaveau, F; Rinckenbach, S; Hassani, O; Camelot, G; Durand, B; Kretz, J-G

    2004-06-01

    Performed since the 1950s, vascular grafting has opened modern era of vascular surgery. Autologous venous grafts are of first choice for revascularisation of small arteries. Synthetic grafts are mainly modelled using microporous polytetrafluoroethylene or terephtalate polyethylene. These prosthesis are mainly used for revascularization of medium and large size arteries. PMID:15220107

  13. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    International Nuclear Information System (INIS)

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments

  14. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  15. Research progress on squeeze casting in China

    Institute of Scientific and Technical Information of China (English)

    Li Yuanyuan; Zhang Weiwen; Zhao Haidong; You Dongdong; Zhang Datong; Shao Ming; Zhang Wen

    2014-01-01

    Squeeze casting is a technology with short route, high efficiency and precise forming, possessing features of casting and plastic processing. It is widely used to produce high performance metallic structural parts. As energy conservation and environmental protection concerns have risen, lightweight and high performance metal parts are urgently needed, which accelerated the development of squeeze casting technology over the past two decades in China. In this paper, research progress on squeeze casting aloys, typical parts manufacturing and development of squeeze casting equipment in China are introduced. The future trend and development priorities of squeeze casting are discussed.

  16. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  17. Research on the squeeze cast technology of the castings with large ratio of height to thickness

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; SAN Jing-chao; XU Na; CAO Liang; BAI Yan-hua; LI Rong-de

    2005-01-01

    The squeeze cast technology is only applicable, at present, to the castings with a ratio of height to thickness less than 3.5. Researching the squeeze cast technology for castings with a large ratio of height to thickness will broaden the applicable range of the advanced casting technology. This paper describes a study of the temperature distribution during solidification for castings with a ratio of height to thickness of 7 by the methods of experiment and computer simulation. The shrinkage porosity distribution in the castings and the mechanical properties of the castings were also researched. The experimental and simulated results show that increasing squeeze force, or enhancing mold temperature,cannot reduce the shrinkage porosities in the castings. When castings solidify in a sequential manner and the squeeze force effectively acts on the surface of the liquid metal, the shrinkage porosities in the castings are eliminated and mechanical properties are clearly improved.

  18. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  19. CAST Physics Proposal to SPSC

    CERN Document Server

    CAST, Collaboration

    2011-01-01

    The CAST experiment has the potential to search for solar axions (dark matter particle candidates) or other particles with similar coupling. E.g., paraphtons (Hidden Sector), chameleons (dark energy), while considering the possibility whether CAST could be transformed to an antenna for relic axions with rest mass up to 0.1 to 1meV. While axion searches suggest detectors with lower background, paraphoton and chameleon searches require detectors with sub-keV threshold energy and the use of transparent windows in front of the Micromegas detectors, which cover 3 out of the 4 CAST magnet exits. Ongoing theoretical estimates and experimental investigations will define the priorities of the suggested 4 physics items of this proposal for the period 2012-2014.

  20. Corrosion inhibition in the presence of microbial corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Videla, H.A. [Univ. of La Plata (Argentina). Dept. of Chemistry

    1996-12-01

    Microorganisms influence corrosion by changing the electrochemical conditions at the metal/solution interface. These changes may have different effects, ranging from the induction of localized corrosion to corrosion inhibition. The key to the alteration of conditions at a metal surface and hence, the enhancement or inhibition of corrosion is the formation of a biofilm. On a biologically conditioned metal surface microorganisms can induce corrosion inhibition in several ways: (a) by neutralizing the action of a corrosive substance already present in the medium; (b) by stabilizing a protective film on a metal surface or (c) by inducing a decrease in the medium aggressiveness. Seldomly mentioned in the literature, microbial inhibition of corrosion could be a potentially useful tool to counteract many of the biodeterioration cases encountered in practice.

  1. Material concepts for coatings in highly corrosive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilden, J. [Technische Universitaet Berlin (Germany). Fachgebiet Fuege- und Beschichtungstechnik; Schuetze, M.; Durham, R. [Karl-Winnacker-Institut, DECHEMA e. V., Frankfurt a. M (Germany); Drescher, V.E.

    2010-07-15

    Although well known, corrosion processes are still a problem for technical constructions. Although different coating technologies and materials have been developed and approved to prevent base metals from being destroyed, industrial applications dealing with aggressive atmospheres, require new material concepts to protect them. Using the example of two different applications, on the one hand heat exchangers in waste incineration plants and on the other hand permanent-molds used for casting non-ferrous metals, innovative material concepts for corrosion protection are given. Heat exchangers in waste incineration plants are exposed to highly corrosive atmospheres especially due to high temperatures in combination with chlorine containing atmospheres. Wire arc sprayed coatings made of iron-based alloys containing chromium, silicon and boron provide a new approach for these applications and, compared to standard nickel-based alloys, they are cheaper and potentially more resistant coatings. In the case of permanent-molds corrosion, mainly occurs due to direct dissolution of the base material by the liquid metal. Tungsten-based pseudoalloys are known to be extremely resistant against liquid metals and therefore sintered inlays of these materials are sometimes used in extremely stressed regions. These materials have not previously been applied as a coating. Therefore different coating technologies have to be considered and the metallurgical behaviour of the material due to the associated higher cooling rates must be investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Soil corrosion monitoring near a pipeline under CP

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Locke, M.L. (NW Natural); Warthen, M.R. (NW Natural); Kane, Russell D. (Intercorr International Inc.); Eden, Dawn C. (Intercorr International Inc.)

    2005-01-01

    Electrochemical noise (EN), linear polarization resistance (LPR), and harmonic distortion analysis (HDA) were used with three-electrode probes to monitor the corrosion occurring in soil in dry and wet conditions near a gas pipeline under cathodic protection. The test site was a cathodic protection (CP) test station where impressed current CP was applied to a 2 in. (5.1 cm) diameter FBE coated steel pipe using an 84 in. (0.2 m) TA-2 high-silicon cast iron anode. Electrochemical measurements were made at three locations, two inside the CP field and one outside the CP field. Electrochemical measurements were first made with the CP system off to establish the baseline corrosion and then with increasing levels of CP. The degree of protection was based on polarized potential and the adequacy of protection was determined by depolarization measurements. CP of an adjacent pipeline did not affect the measurement of either corrosion rate or pitting factor when using buried soil corrosion probes and the EN, LPR, and HDA techniques.

  3. Biliary Cast Syndrome: Hepatic Artery Resistance Index, Pathological Changes, Morphology and Endoscopic Therapy

    Directory of Open Access Journals (Sweden)

    Hu Tian

    2015-01-01

    Full Text Available Background: Biliary cast syndrome (BCS was a postoperative complication of orthotopic liver transplantation (OLT, and the reason for BSC was considered to relate with ischemic type biliary lesions. This study aimed to evaluate the relationship between BCS following OLT and the hepatic artery resistance index (HARI, and to observe pathological changes and morphology of biliary casts. Methods: Totally, 18 patients were diagnosed with BCS by cholangiography following OLT using choledochoscope or endoscopic retrograde cholangiopancreatography. In addition, 36 patients who did not present with BCS in the corresponding period had detectable postoperative HARI on weeks 1, 2, 3 shown by color Doppler flow imaging. The compositions of biliary casts were analyzed by pathological examination and scanning electron microscopy. Results: HARI values of the BCS group were significantly decreased as compared with the non-BCS group on postoperative weeks 2 and 3 (P 1 (OR = 1.300; 1.223; and 1.889, respectively. The OR of HARI 3 was statistically significant (OR = 1.889; 95% confidence interval = 1.166-7.490; P = 0.024. The compositions of biliary casts were different when bile duct stones were present. Furthermore, vascular epithelial cells were found by pathological examination in biliary casts. Conclusions: HARI may possibly serve as an independent risk factor and early predictive factor of BCS. Components and formation of biliary casts and bile duct stones are different.

  4. Now-casting Irish GDP

    OpenAIRE

    D'Agostino, Antonello; McQuinn, Kieran; O'Brien, Derry

    2008-01-01

    In this paper we present "now-casts" of Irish GDP using timely data from a panel data set of 41 different variables. The approach seeks to resolve two issues which commonly confront forecastors of GDP - how to parsimoniously avail of the many different series, which can potentially influence GDP and how to reconcile the within-quarterly release of many of these series with the quarterly estimates of GDP? The now-casts in this paper are generated by firstly, using dynamic factor analysis to ex...

  5. Cementite Solidification in Cast Iron

    Science.gov (United States)

    Coronado, J. J.; Sinatora, A.; Albertin, E.

    2014-06-01

    Two hypereutectic cast irons (5.01 pct Cr and 5.19 pct V) were cast and the polished surfaces of test pieces were deep-etched and analyzed via scanning electron microscopy. The results show that graphite lamellae intersect the cementite and a thin austenite film nucleates and grows on the cementite plates. For both compositions, graphite and cementite can coexist as equilibrium phases, with the former always nucleating and growing first. The eutectic carbides grow from the austenite dendrites in a direction perpendicular to the primary plates.

  6. Search for chameleons with CAST

    OpenAIRE

    Anastassopoulos, V.; Arik, M.; Aune, S.(IRFU, Centre d' Etudes Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France); Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Christensen, F.; J. I. Collar; T. Dafni; Davenport, M.; K. Desch; Dermenev, A.

    2015-01-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($\\\\beta_{\\\\rm m}$) and to photons ($\\\\beta_{\\\\gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$\\\\,$keV to 400$\\\\,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$\\\\,$eV. Even t...

  7. Corrosion Behavior of Welded Joints of Al-6Mg Alloy with Trace Scandium Addition

    Institute of Scientific and Technical Information of China (English)

    Wang Yue

    2004-01-01

    Al-6Mg alloy with trace Sc addition was prepared by means of melting-casting.The samples of the welded joints of Al-6Mg alloy with trace Sc addition were made by method of manual argon-arc welding.Neutral salt spray test was carried out by referring to GB/T10125-1997 and GB6384-1986 practice.Exfoliation testing was carried out in accordance with the method of Al-Mg alloy exfoliation corrosion test.The corrosion behaviors of the welded joints of AlMg alloy with high level of Mg and trace Sc addition were studied.The microstructures of the welded joints were observed by using optical microscope and transmission electron microscope.The corrosion resistance mechanism of the alloy was also involved.This work intended to determine if the welded joints of Al-6Mgalloy with trace Sc addition can have excellent corrosion resistance, when their strength are clearly improved.The results show that trace content of Sc refines the grains of alloys effectively, raises remarkably the corrosion resistance of the welded joints of Al-6Mg alloy with trace Sc addition.The corrosion resistance mechanisms are that there is free of continuous grain boundary precipitation or network which could be susceptible to corrosion in the microstructure of welded joints.

  8. Relationship between Heat Treatment and Corrosion Behavior of Mg-15Y Alloy

    Institute of Scientific and Technical Information of China (English)

    XU Hong; DENG Xia; ZHANG Xin; ZHANG Kui; LIU Yanpeng; LI Shaohua

    2015-01-01

    The corrosion behaviors of a basic type of RE-containing magnesium alloy Mg-15Y processed by different heat treatment methods were studied in 3.5% NaCl solution at room temperature. The amount of Mg24Y5phase decreased with the extending of homogenization treatment. The time for achieving dissolving equilibrium of homogenization treatment at 525, 535, and 545℃ was 24, 20, and 8 h, respectively. The corrosion behavior of Mg-15Y alloy was studied using immersion, hydrogen evolution and electrochemical tests. The experimental results revealed that the heat treatment improved the corrosion resistance, and the corrosion resistance became better with increasing the heat treatment time. The corrosion mode of the alloy after heat treatment was microgalvanic corrosion consisting of the cathodic Mg24Y5 phase and anodic α-Mg matrix, and Mg-15Y exhibited favorable uniform corrosion mode in NaCl solution. The volume and increasing tendency of the homogenization treatment samples were both more than those of the as-cast sample.

  9. Corrosion resistance of AZ31 alloy after plastic working in NaCl solutions

    Directory of Open Access Journals (Sweden)

    W. Walke

    2011-04-01

    Full Text Available Purpose: The purpose of the study was to assess corrosion resistance of magnesium alloy AZ31 (Mg-Al-Zn alloy after plastic working in NaCl solutions. It presents currently applied methods of magnesium alloys plastic working. Basic groups of magnesium alloys that are used for plastic working have been discussed.Design/methodology/approach: Corrosion tests of AZ31 alloy were carried out in solution with concentration of 0.01-2 M NaCl with application of the system for electrochemical tests VoltaLab®PGP201. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves by means of potentiodynamic method. Immersion tests were carried out in NaCl solutions in the time of 1-5 days. Scanning microscopy enabled to present microstructure of AZ31 after immersion tests.Findings: Results of all carried out tests explicitly prove deterioration of corrosion properties of magnesium alloy AZ31 with the increase in molar concentration of NaCl solution.Practical implications: It was determined that irrespective of molar concentration of NaCl solution pitting corrosion was found in the tested alloy. It proves that application of protective coating on elements made of the tested alloy is necessary.Originality/value: Literature gives the results of corrosion tests with reference to cast alloy AZ31. Tests of corrosion resistance of hot rolled AZ31 in chloride solutions have been made for the first time.

  10. Electrochemical evaluation of corrosion inhibitors for repairing of highway transportation infrastructures

    Science.gov (United States)

    Lee, K. Wayne; Cao, Yong; Brown, Richard; Guo, Rui-Guang

    2000-06-01

    Among the methods to tackle corrosion of steel reinforcement in highway transportation infrastructure, using corrosion inhibitors has been identified as the most easily and economically applied technique. This study used Electrochemical Impedance Spectroscopy (EIS) to evaluate four corrosion inhibitors in simulated pore solution (SPS) and saturated calcium hydroxide solution (CHS). Three promising inhibitors were identified. It was also found that the electrochemical laboratory test was practical to evaluate corrosion inhibitors quickly and effectively in simulated concrete solutions. A simulated field concrete repair method was devised in order to verify the developed electrochemical laboratory test result. Sixty-three concrete short beam specimens were used. The embedded steel rebars were exposed to chloride environment and electrochemically monitored in accordance with the ASTM G109 procedure. After active corrosion of the upper rebars was detected, the chloride- contaminated concrete was removed. The three aforementioned promising inhibitors were applied to corroded rebars, and new concrete was cast. These rebars were electrochemically monitored to evaluate the effectiveness of corrosion inhibitors for corrosion control. It was found that there was a good correlation between these two test results, and the most effective inhibitor was finally identified.

  11. Pediatric vascular access

    International Nuclear Information System (INIS)

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  12. Pediatric vascular access

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, James S. [Northwestern University, Feinberg School of Medicine, Department of Medical Imaging, Children' s Memorial Hospital, Chicago, IL (United States)

    2006-05-15

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  13. Corrosion protection by anaerobiosis.

    Science.gov (United States)

    Volkland, H P; Harms, H; Wanner; Zehnder, A J

    2001-01-01

    Biofilm-forming bacteria can protect mild (unalloyed) steel from corrosion. Mild steel coupons incubated with Rhodoccocus sp. strain C125 and Pseudomonas putida mt2 in an aerobic phosphate-buffered medium containing benzoate as carbon and energy source, underwent a surface reaction leading to the formation of a corrosion-inhibiting vivianite layer [Fe3(PO4)2]. Electrochemical potential (E) measurements allowed us to follow the buildup of the vivianite cover. The presence of sufficient metabolically active bacteria at the steel surface resulted in an E decrease to -510 mV, the potential of free iron, and a continuous release of ferrous iron. Part of the dissolved iron precipitated as vivianite in a compact layer of two to three microns in thickness. This layer prevented corrosion of mild steel for over two weeks, even in a highly corrosive medium. A concentration of 20 mM phosphate in the medium was found to be a prerequisite for the formation of the vivianite layer.

  14. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  15. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  16. Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid

    Institute of Scientific and Technical Information of China (English)

    Ying Lia; Fang Lu; Honglong Li; Wenjun Zhu; Haobo Pan; Guoxin Tand; Yonghua Lao; Chengyun Ning; Guoxin Ni

    2014-01-01

    The rapid degradation of magnesium (Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation (MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid (SBF) were studied systematically. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2 and the calcium phosphate (Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.

  17. Longitudinal Mechanical Properties of Small-Diameter Polyurethane Vascular Graft Reinforced by Tubular Knitted Fabric

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fei; XU Wei-lin; OUYANG Chen-xi; LIU Xiu-ying; XU Hai-ye; YAO Mu

    2008-01-01

    The vascular graft with 4 nun diameter was prepared by casting one layer of polyurethane (PU) film onto the knitting tubular fabric as the reinforced support. The effects of different PU content and wall thickness on the longitudinal mechanical properties of vascular graft were investigated. The breaking elongation, breaking force, initial modulus and breaking work were studied. The results showed that the longitudinal mechanical properties of vascular graft were enhanced as the content of polyurethane increased, which resulted from the combination of PU excellent elasticity and fabric preferable strength.

  18. Expansion due to the anaerobic corrosion of iron

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H. [Serco Assurance, Culham Science Centre (United Kingdom)

    2006-12-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in vertical storage holes drilled in a series of caverns excavated from the granite bedrock at a depth of about 500 m and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container, designed to provide mechanical strength and to keep individual fuel bundles at a safe distance from one another, thereby minimising the risk of criticality. The container is fitted inside an inherently corrosion resistant copper overpack that is designed to provide containment over the long timescales required. As part of the safety case for the repository, one of the scenarios being addressed by SKB involves the early mechanical failure of the outer copper overpack, allowing water to enter the outer container and corrode the inner one. One consequence of this failure would be the long-term build up of corrosion product, which could induce stresses in the spent fuel canister. A programme of experimental work was undertaken to investigate the effect of corrosion product formation on the generation of stresses in the outer copper container. This report describes the construction of an apparatus to directly measure the expansion caused by the anaerobic corrosion of ferrous material in a simulated repository environment whilst under representative compressive loads. This apparatus, known as the 'stress cell' consisted of a stack of interleaved carbon steel and copper discs that was subjected to a compressive load simulating the loads expected in a repository and immersed in simulated anoxic groundwater at 69 deg C. The stack was mounted in a rigid frame and a system of levers was used to amplify any expansion caused by corrosion; the expansion of the stack was measured using sensitive displacement transducers

  19. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock salt formations

    International Nuclear Information System (INIS)

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. To characterise the corrosion behaviour of these materials in more detail, further in-depth laboratory-scale and in-situ corrosion studies have been performed in the present study. Besides the above-mentioned materials, also some in-situ investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have been carried out in order to complete the results available to date. (orig.)

  20. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  1. The heat treatment of Fermanal cast steel

    OpenAIRE

    F. Binczyk; A. Smoliński; J. Szymszal

    2007-01-01

    The study discloses the results of microstructural examinations, testing of magnetic properties and hardness measurements as cast and after heat treatment conducted on the Fermanal cast steel. A characteristic feature of this cast steel is its density lower by about 10% than the density of carbon cast steel [4]. It has been proved that the factor deciding about the composition of microstructure (fraction of ferrite and austenite) is the content of aluminium. The matrix totally austenitic is p...

  2. CONTINUOUSLY-CYCLIC CASTING OF HOLLOW CYLINDER SLUGS OF HIGH-CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The analysis of castings formation is presented and the package of measures dircted on increase of stability of casting process is developed. Parametres of casting of hollow cylindrical billets by the method of directional solidification out of white high-chromium cast iron are defined.

  3. Corrosion potential analysis system

    Science.gov (United States)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  4. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  5. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅳ) 3.7 Segregation of SG iron The non-uniform distribution of solute elements during solidification results in the micro segregation of SG iron.As for the redistribution of elements in the phases of the solidification structure,there is no intrinsic difference between SG iron and grey iron[132].

  6. Search for chameleons with CAST

    DEFF Research Database (Denmark)

    Anastassopoulos, V.; Arik, M.; Aune, S.;

    2015-01-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm) and to photons (βΥ) via the Primako eect. By reducing the X-ray detection...

  7. Advanced Lost Foam Casting Technology

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅲ) 3.6 Solidification morphology of SG iron Solidification morphology refers to the description of change,distribution and interrelationship of the solidification structures such as graphite spheroids,austenite,eutectic cells,etc.[99

  9. Cern Axion Solar Telescope (CAST)

    CERN Multimedia

    2002-01-01

    The CERN Solar Axion Telescope, CAST, aims to shed light on a 30-year-old riddle of particle physics by detecting axions originating from the 15 million degree plasma in the Sun 's core. Axions were proposed as an extension to the Standard Model of particle physics to explain why CP violation is observed in weak but not strong interactions.

  10. 14 CFR 23.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Casting factors. 23.621 Section 23.621... Casting factors. (a) General. The factors, tests, and inspections specified in paragraphs (b) through (d... do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified...

  11. Chimerical categories: caste, race, and genetics.

    Science.gov (United States)

    Sabir, Sharjeel

    2003-12-01

    Is discrimination based on caste equivalent to racism? This paper explores the complex relationship between genetic, race and caste. It also discusses the debate over the exclusion of a discussion of caste-based discrimination at the 2001 World Conference against Racism, Racial Discrimination, Xenophobia and Related Intolerance held in Durban, South Africa. PMID:14768649

  12. Congenital Vascular Malformation

    Science.gov (United States)

    ... clots, obstruction of major vessels, causing progressive limb asymmetry by overgrowth, and for cosmetic indications or because ... t he Vascular Disease Foundation (VDF) develops educational information and initiatives for patients, their families and friends, ...

  13. Heart and vascular services

    Science.gov (United States)

    ... Repair of aneurysms (dilated/enlarged portions) of the aorta and its branches Procedures may also be used ... Nutrition and lifestyle counseling, including smoking cessation and diabetes education Supervised exercise Alternative Names Circulatory system; Vascular ...

  14. Thrombolysis in vascular surgery

    OpenAIRE

    Smith, Linn

    2015-01-01

    Background and aims: Thrombolysis is in common use in the treatment of acute forms of vascular disease. It may be used both systemically and locally, in the latter case through an endovascular approach, socalled catheter-directed thrombolysis. The aims of this thesis were to investigate how thrombolysis affects performance-related outcomes pertaining to vascular patency after thrombolysis, and how it affects patient safety and the development of complications. Metho...

  15. CastML – a language for description of casting products and processes

    OpenAIRE

    A. Stawowy; R. Wrona; A. Macioł

    2008-01-01

    This work presents CastML – an XML dialect for description of casting products and processes. CastML is extension of MatML which is an extensible markup language designed specifically for the exchange of materials information. The set of CastML tags allows to describe materials’ information as well as technological processes, engineering drawings, products classifications and products manufacturers. CastML is simple, understandable and flexible language which makes it attractive for the speci...

  16. Ultrasonic inspection of nodular cast iron insert edge distance using curved linear PA-probe

    Energy Technology Data Exchange (ETDEWEB)

    Lipponen, A.; Sarkimo, M. (VTT Technical Research Centre of Finland, Espoo (Finland)); Pitkaenen, J. (Posiva Oy, Eurajoki (Finland))

    2010-05-15

    Nuclear fuel disposal canisters consist of a copper tube and a cast iron insert. The copper tube is designed for corrosion protection. The design and use of the nodular cast iron insert is based on strength and fracture mechanic aspects and it is the load carrying part of the structure. The preliminary acceptance criteria for the cast iron insert are under study. There are several aspects in accepting the inspection results of nodular cast iron insert for use. One aspect among others is the position of the edge which is nearest to surface. In an earlier study this was stated to have a tolerance of edge position +- 5 mm. There have been studies both on eccentricity and the real position of the nearest edge tolerances. To determine the edge position, different ultrasonic techniques were tested using a curved linear PA-probe. To evaluate whether the distance variation is within the tolerance limit, the real geometrical nominal distance must be computed. Because the tolerances of the cast iron insert and its internal geometry can give a large variation in the edge position, these must be carefully evaluated. The applied ultrasonic system is a 128 element phased array equipment. The used probe is curved and adjusted to curvature of the cast iron insert. The curved probe was designed to inspect the edge of the channel with one long axial line scanning. During line scanning the phased array probe does at the same time electronical scanning. To optimize this electronic scanning, three different ultrasonic techniques were used. This evaluation of edge distance was tested in four inspections of real size cast iron inserts. It was seen that the variation of the edge position is about 1 to 12 mm in radial direction (straightness) and in circumferential direction about 2 to 8 mm (twist) in range of about 4 m. (orig.)

  17. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  18. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  19. Process development of thin strip steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  20. Prediction of Part Distortion in Die Casting

    Energy Technology Data Exchange (ETDEWEB)

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  1. Long term thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties and metallurgical structure were investigated using materials aged at 290--400 C up to 30,000 hours. As the results show, effects of thermal aging on mechanical properties and metallurgical behavior were identified. In addition, prediction method for Charpy absorbed energy and fracture toughness was established. The following results have been obtained: (1) it was recognized that Charpy absorbed energy and fracture toughness tend to decrease and the tensile strength tend to increase with the increasing aging time; (2) it was confirmed that thermal aging embrittlement was caused by the phase separation in ferrite from the test results of APFIM; (3) in the degradation prediction model development the prediction model was applied to the material test data, including materials aged for 30,000 hours. As the results, the degradation prediction formulas for CVRT, CVHT, JIC and J6 were obtained. The toughness of cast duplex stainless steels during service could be estimated from chemical composition using this method

  2. Long term thermal aging of cast duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Isao; Koyama, Masakuni [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Kawaguchi, Seiichi [Mitsubishi Heavy Industries, Ltd., Takasago (Japan); Mimaki, Hidehito [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Akiyama, Mamoru; Mishima, Yoshitsugu [Univ. of Tokyo (Japan); Okubo, Tadatsune [Sophia Univ., Tokyo (Japan); Mager, T.R.

    1996-09-01

    Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties and metallurgical structure were investigated using materials aged at 290--400 C up to 30,000 hours. As the results show, effects of thermal aging on mechanical properties and metallurgical behavior were identified. In addition, prediction method for Charpy absorbed energy and fracture toughness was established. The following results have been obtained: (1) it was recognized that Charpy absorbed energy and fracture toughness tend to decrease and the tensile strength tend to increase with the increasing aging time; (2) it was confirmed that thermal aging embrittlement was caused by the phase separation in ferrite from the test results of APFIM; (3) in the degradation prediction model development the prediction model was applied to the material test data, including materials aged for 30,000 hours. As the results, the degradation prediction formulas for CVRT, CVHT, J{sub IC} and J{sub 6} were obtained. The toughness of cast duplex stainless steels during service could be estimated from chemical composition using this method.

  3. Corrosive electrochemistry of jamesonite

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 余润兰; 胡岳华; 覃文庆

    2004-01-01

    The corrosive electrochemistry of jamesonite (Pb4 FeSb6 S14) was studied by the electrochemical methods of cyclic voltammetry, polarization, and AC impedance. The electrochemical processes of jamesonite were controlled by the corrosive reactions, growth of the metal-deficient and sulfur-riched layer, passivation and breakdown of elemental sulfur film on the electrode surface. The corrosive potential(ψcorr) moves negatively, its corrosive current increases, and hydroxyl action becomes stronger with the rising pH value. The charge transfer resistance increases and the capacitance decreases due to the gradual growth of the metal-deficient and sulfur-riched layer on the mineral surface from -378 to 122 mV (vs SHE). Element sulfur layer is formed at the potential of 122 mV. The charge transfer resistance increases and its capacitance rises slowly due to the gradual breakdown of sulfur film at voltage from 222 mV to 422 mV. S2O2-3 and SO2-4 ions occur when the electrode potential is over 422 mV. Under basic condition, the hydrophobic hydroxyl precipitate occurs on jamesonite surface, so that its collectorless floatability is poor. Under the condition of pH 6.86, it can be deduced that the potential range of collectorless floatability of jamesonite is from 22 to 422 mV due to the passive action of the hydrophilic sulfur on jamesonite surface, and its optimum range of floatable potential is between 122 and 322 mV.

  4. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  5. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  6. The cavitational erosion resistance of the B2-type Fe-Al casting alloys

    Directory of Open Access Journals (Sweden)

    R. Jasionowski

    2010-01-01

    Full Text Available The problem of the destruction of turbo-machinery components is very complex, because it consists of processes of erosion and corrosion. The most dangerous factor is the cavitation phenomenon, which is very difficult to eliminate through the use of design solutions. It causes deterioration of the operating characteristics of machinery and equipment, such as water turbines, steam turbines, centrifugal pumps, screw vessels, cylinder liners with water-cooled engines, acoustic probe. The most commonly used method of limiting the destruction of cavitation phenomenon is the optimum choice of parameters of geometric and hydraulic machines, the appropriate design of elements and streamlined flow and providing working conditions of flow devices. The above-mentioned methods by design, the size of flow devices are limited, so better action to prevent the flow of erosion may use the material for greater resistance to erosion and cavitation corrosion is the alloy of intermetallic FeAl phase, which production costs are low compared to cast steel and cast iron alloy based on chromium and nickel.The paper presents results of an investigation carried out for cavitational resistance of the B2-type Fe-Al casting alloys using a flux-impact measuring device. The intermetallic FeAl alloys proved to have good resistance to this type of erosion in comparison to other construction materials, investigated by flux-impact device.

  7. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Science.gov (United States)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  8. Antioxidants and vascular health.

    Science.gov (United States)

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies. PMID:26585821

  9. Corrosion of bio implants

    Indian Academy of Sciences (India)

    U Kamachi Mudali; T M Sridhar; Baldev Raj

    2003-06-01

    Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co–Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

  10. Corrosion detection by induction

    Science.gov (United States)

    Roddenberry, Joshua L.

    Bridges in Florida are exposed to high amounts of humidity due to the state's geography. This excess moisture results in a high incidence of corrosion on the bridge's steel support cables. Also, the inclusion of ineffective waterproofing has resulted in additional corrosion. As this corrosion increases, the steel cables, responsible for maintaining bridge integrity, deteriorate and eventually break. If enough of these cables break, the bridge will experience a catastrophic failure resulting in collapse. Repairing and replacing these cables is very expensive and only increases with further damage. As each of the cables is steel, they have strong conductive properties. By inducing a current along each group of cables and measuring its dissipation over distance, a picture of structural integrity can be determined. The purpose of this thesis is to prove the effectiveness of using electromagnetic techniques to determine cable integrity. By comparing known conductive values (determined in a lab setting) to actual bridge values, the tester will be able to determine the location and severity of any damage, if present.

  11. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch;

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  12. [Microbial corrosion of dental alloy].

    Science.gov (United States)

    Li, Lele; Liu, Li

    2004-10-01

    There is a very complicated electrolytical environment in oral cavity with plenty of microorganisms existing there. Various forms of corrosion would develop when metallic prosthesis functions in mouth. One important corrosive form is microbial corrosion. The metabolic products, including organic acid and inorganic acid, will affect the pH of the surface or interface of metallic prosthesis and make a change in composition of the medium, thus influencing the electron-chemical reaction and promoting the development of corrosion. The problem of develpoment of microbial corrosion on dental alloy in the oral environment lies in the primary condition that the bacteria adhere to the surface of alloy and form a relatively independent environment that promotes corrosion. PMID:15553877

  13. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  14. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  15. Microstructure 2007of WE43 casting magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2007-03-01

    Full Text Available Purpose: WE43 is a high-strength magnesium alloy characterized by good mechanical properties both at an ambient and elevated temperature (up to 300°C. It contains mainly yttrium and neodymium. The aim of this paper is to present the results of research on the microstructure of the WE43 magnesium alloy in an as-cast condition.Design/methodology/approach: For the microstructure observation, a Reichert metallographic microscope MeF2 and a HITACHI S-3400N scanning electron microscope with a Thermo Noran EDS equipped with SYSTEM SIX were used. A qualitative phase analysis was performed with a JEOL JDX-7S diffractometer. Microstrucutral examinations were performed JEOL 3010 transmission electron microscope.Findings: Based on the investigation carried out it was found that the microstructure of WE43 alloy after continuous casting consists of α-Mg matrix and irregular precipitates of Mg41Nd5, rectangular particles of MgY phase, particles of Mg24Y5, longitudinal precipitates of β (Mg14Nd2Y compound at grain boundaries and the grain interiors. All of these phases contain yttrium and neodymium. Research limitations/implications: Future researches should contain investigations of the influence of heat treatment parameters on microstructure, corrosion resistance and mechanical properties of WE43 alloy.Practical implications: WE43 magnesium alloy is used in the aircraft industry, for wheels, engine casings, gear box casings and rotor heads in helicopters. Results of investigation may be useful for development casting technology of the Mg-Y-Nd alloys.Originality/value: The results of the researches make up a basis for the next investigations of magnesium alloys with addition of Y and Nd designed to exploitation at temperature to 300°C.

  16. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content

    Directory of Open Access Journals (Sweden)

    Angeliki Lekatou

    2016-02-01

    Full Text Available Hypereutectic Al-Co alloys of various Co contents (7–20 weight % (wt.% Co were prepared by vacuum arc melting, aiming at investigating the influence of the cobalt content on the microstructure and corrosion behavior. Quite uniform and directional microstructures were attained. The obtained microstructures depended on the Co content, ranging from fully eutectic growth (7 wt.% and 10 wt.% Co to coarse primary Al9Co2 predominance (20 wt.% Co. Co dissolution in Al far exceeded the negligible equilibrium solubility of Co in Al; however, it was hardly uniform. By increasing the cobalt content, the fraction and coarseness of Al9Co2, the content of Co dissolved in the Al matrix, and the hardness and porosity of the alloy increased. All alloys exhibited similar corrosion behavior in 3.5 wt.% NaCl with high resistance to localized corrosion. Al-7 wt.% Co showed slightly superior corrosion resistance than the other compositions in terms of relatively low corrosion rate, relatively low passivation current density and scarcity of stress corrosion cracking indications. All Al-Co compositions demonstrated substantially higher resistance to localized corrosion than commercially pure Al produced by casting, cold rolling and arc melting. A corrosion mechanism was formulated. Surface films were identified.

  17. On the performance of a novel grain refiner in hyper-eutectic Al-Si cast alloys

    OpenAIRE

    Bolzoni, L.; Nowak, M.; Hari Babu, N

    2014-01-01

    The stringent requirements for pollution reduction are pushing the automotive industry towards the employment of lightweight structures and, therefore, aluminium and its alloys play a remarkable role. Al-Si casting alloy with eutectic or hyper- eutectic compositions are, normally, employed for the production of high performance automotive products such as pistons and engine blocks which have to withstand critical loading conditions (i.e. high temperature, high pressure and corrosive exhaust g...

  18. Recent developments of InteCAST software and its applications on special castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    with the development of computer technology, foundry CAE technology has made rapid progress. Commercial software packages of casting process simulation, therefore, have become more and more practical. This paper introduces both the recent developments and some applications of InteCAST software, a commercial numerical simulation software package for foundry industry, with more than 120 customers all over the world. The function modules of InteCAST8.0 and some new techniques, such as uneven mesh technology for mold filling simulation and numerical mouse technology for data visualization, were introduced. Several applications on special castings such as investment casting, low pressure die casting, and high pressure die casting, were given. These applications showed that the software can help engineers to optimize casting process by forecasting casting defect.

  19. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    electrochemical measurements as well as elemental analysis look very promising for elucidating corrosion reaction mechanisms. The study of initial surface reactions at the atomic or submicron level is becoming an important field of research in the understanding of corrosion processes. At present, mainly two...... scanning microscope techniques are employed investigating corrosion processes, and usually in situ: in situ scanning tunneling microscopy (in situ STM) and in situ scanning force microscopy (in situ AFM). It is these techniques to which attention is directed here....

  20. Corrosion problems of power engineering

    International Nuclear Information System (INIS)

    The proceedings contain 26 contributions, out of which 11 have been inputted in INIS. These are concerned with methods for the evaluation of corrosion resistance of materials for the nuclear industry, with examination of the corrosion behavior of composite overlays and of steels after the action of decontamination solutions, and with theoretical models of crack propagation. Corrosion problems of steam turbines, steam generator tubes and thermocouple bushings are discussed. (M.D.). 28 figs., 8 tabs., 63 refs

  1. Greener Approach towards Corrosion Inhibition

    OpenAIRE

    Neha Patni; Shruti Agarwal; Pallav Shah

    2013-01-01

    Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant or...

  2. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  3. Search for chameleons with CAST

    CERN Document Server

    Anastassopoulos, V; Aune, S; Barth, K; Belov, A; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Christensen, F; Collar, J I; Dafni, T; Davenport, M; Desch, K; Dermenev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Giomataris, I; Hailey, C; Haug, F; Hasinoff, M D; Hofmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakobsen, A; Jakovčić, K; Kaminski, J; Karuza, M; Kavuk, M; Krčmar, M; Krieger, C; Krüger, A; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Ortega, I; Papaevangelou, T; Pivovarov, M J; Raffelt, G; Riege, H; Rosu, M; Ruz, J; Savvidis, I; Solanki, S K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K; Brax, P; Lavrentyev, I; Upadhye, A

    2015-01-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($\\beta_{\\rm m}$) and to photons ($\\beta_{\\gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$\\,$keV to 400$\\,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$\\,$eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of $\\beta_{\\gamma}\\!\\lesssim\\!10^{11}$ for $1<\\beta_{\\rm m}<10^6$.

  4. Search for chameleons with CAST

    Directory of Open Access Journals (Sweden)

    V. Anastassopoulos

    2015-10-01

    Full Text Available In this work we present a search for (solar chameleons with the CERN Axion Solar Telescope (CAST. This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm and to photons (βγ via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of βγ≲1011 for 1<βm<106.

  5. Casting and Mechanized Titanium Restorations

    OpenAIRE

    Madrigal, A.; Lopez, I; Suarez, MJ; Salido, MP.

    2002-01-01

    INTRODUCTION: New materials and methods for clinical dentistry are continuously being introduced. There is a growing interest in the use of titanium as a restorative material for several reasons: its relatively low cost, favorable physical properties and biocompatibility. However, titanium is technically more difficult to handle than conventional metal alloys. There are two fabrication methods for titanium restorations: casting and mechanized (a combination of machine duplication and spark er...

  6. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting....... Consequently, a combination of carburizing and oxidizing conditions has a strong mutual catalyzing effect on the metal dusting corrosion....

  7. Internal corrosion of transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Elm, T. [Enbridge Pipelines Inc., Calgary, AB (Canada); Jack, T. [Nova Chemicals Ltd., Calgary, AB (Canada); Boivin, J. [Cormetrics Ltd., Calgary, AB (Canada)

    2003-07-01

    The presentations by Working Group 13 focused on the factors influencing internal pipeline corrosion failures as well as the challenges facing both oil and gas operators to mitigate and monitor internal corrosion. Some of the tools needed to effectively treat the internal corrosion life cycle were also discussed. It was noted that upstream pipelines face many of the same issues as transmission lines, but under different operating conditions. It was emphasized that the overall risk of corrosion is high, but the probability is often under-appreciated even in light of the consequences to public safety, environmental damage and loss of income. The root cause of internal corrosion is water. Areas where water collects are subject to ongoing attack by dissolved corrosive gases, dissolved salts, and corrosive bacteria. Risk assessment is useful in identifying critical points, determining mitigation requirements, and choosing an inspection method. Monitoring with fibre optic sensor technology is useful because it helps identify the source of the problem and helps regulate mitigation activities. It was emphasized that it is equally important to monitor the growth of corrosion features. In the United States, recent failures of gas transmission pipelines due to internal corrosion have resulted in more stringent regulations. Many failures have been prevented because of in-line inspection and pigging. The effect of transporting other substances, such as hydrogen or ethanol, in pipelines was also discussed. tabs., figs.

  8. Panel report on corrosion in energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    Corrosion problems in high-temperature (non aqueous) energy systems, corrosion in aqueous energy systems and institutional problems inhibiting the development of corrosion science and engineering are discussed. (FS)

  9. Corrosion resistance and microstructure characterization of rare-earth-transition metal-aluminum-magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Banczek, E.P.; Zarpelon, L.M.C.; Faria, R.N. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof.Lineu Prestes, 2242, Cidade Universitaria, 05508-900 Sao Paulo -SP (Brazil); Costa, I. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof.Lineu Prestes, 2242, Cidade Universitaria, 05508-900 Sao Paulo-SP (Brazil)], E-mail: icosta@ipen.br

    2009-06-24

    This paper reports the results of investigation carried out to evaluate the corrosion resistance and microstructure of some cast alloys represented by the general formula: La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0, 0.1, 0.3, 0.5, and 0.7). Scanning electron microscopy (SEM) and electrochemical methods, specifically, polarization curves and electrochemical impedance spectroscopy (EIS), have been employed in this study. The effects of Pr substitution on the composition of the various phases in the alloys and their corrosion resistance have been studied. The electrochemical results showed that the alloy without Pr and the one with total La substitution showed the highest corrosion resistance among the studied alloys. The corrosion resistance of the alloys decreased when Pr was present in the lowest concentrations (0.1 and 0.3), but for higher Pr concentrations (0.5 and 0.7), the corrosion resistance increased. Corrosion occurred preferentially in a Mg-rich phase.

  10. In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy

    Directory of Open Access Journals (Sweden)

    Rongchang Zeng

    2014-10-01

    Full Text Available The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPMA, EDS, tensile tests and corrosion measurements. The results demonstrated that the microstructure of the Mg–1.21Li–1.12Ca–1Y alloy was characterized by α-Mg substrate and intermetallic compounds Mg2Ca and Mg24Y5. Most of the fine Mg2Ca particles for the as-cast alloy were distributed along the grain boundaries, while for the as-extruded along the extrusion direction. The Mg24Y5 particles with a larger size than the Mg2Ca particles were positioned inside the grains. The mechanical properties of Mg–1.21Li–1.12Ca–1Y alloy were improved by the grain refinement and dispersion strengthening. Corrosion pits initiated at the α-Mg matrix neighboring the Mg2Ca particles and subsequently the alloy exhibited general corrosion and filiform corrosion as the corrosion product layer of Mg(OH2 and MgCO3 became compact and thick.

  11. Effect of cast steel production metallurgy on the emergence of casting defects

    Directory of Open Access Journals (Sweden)

    L. Čamek

    2016-10-01

    Full Text Available The paper documents metallurgical possibilities of high alloy cast steel production in open induction medium frequency furnaces and an electric arc furnace in a gravity die casting foundry. The observation was focused on the emergence of gas defects in steel castings. The content of gases achieved during the metallurgical processes was evaluated for every unit of the production equipment and the casting ladle before casting into disposable sand moulds. The sand mould area was considered to be constant. The aim was to evaluate the current metallurgical possibilities of affecting the content of gases in high alloy cast steel in the current technical conditions of the foundry.

  12. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    Directory of Open Access Journals (Sweden)

    Daming XU

    2004-08-01

    Full Text Available Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section prcision castings.

  13. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    International Nuclear Information System (INIS)

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: ► A modified arteriovenous loop (AVL) model in rabbit was developed in this study. ► Axial prevascularization was induced in a larger coral block by using the AVL. ► The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  14. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  15. Mechanical properties and corrosion resistance of hot extruded Mg–2.5Zn–1Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dexue, E-mail: dexeliu@hotmail.com [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Guo, Chenggong; Chai, Liqiang [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Sherman, Vincent R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Qin, Xiaoqiong; Ding, Yutian [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States)

    2015-05-15

    Highlights: • MgZnCa alloy was extruded into precise microtube for resorbable stent applications. • Interconnection between micro-structure and corrosion properties was revealed. • Both strength and ductility were simultaneously improved by processing sequence. • Better corrosion resistance in PBS solution was achieved after grain refining. - Abstract: It is demonstrated that the mechanical properties and corrosion resistance of Mg–2.5 wt%Zn–1 wt%Ca alloy are enhanced by the microstructural changes imparted by hot extrusion. A processing procedure is developed to form hollow tubes with an outer diameter of ∼2.0 mm and wall thickness of ∼0.1 mm, which is well suited for subsequent stent manufacturing. The influence of thermal and mechanical processing on corrosion and plasticity was found to be associated with grain-size reduction and the redistribution of intermetallic particles within the microstructure, providing significant improvement of performance over the cast alloy. Observation of the fracture surfaces reveals a mode transition from brittle (cast) to ductile (processed). Enhanced mechanical properties and decreased resorption rate represent significantly improved performance of this alloy after the novel processing sequence. Based on the improved properties, the produced Mg alloy is more suitable for practical in vivo applications.

  16. Influence of solution treatment on microstructure, mechanical and corrosion properties of Mg-4Zn alloy

    Directory of Open Access Journals (Sweden)

    Hongmin Jia

    2015-09-01

    Full Text Available The solution treatment parameters, mechanical properties and corrosion behavior of binary Mg-4Zn alloy were investigated. The results showed that after the solution treatment at 335 °C for 16 h, Mg-4Zn alloy had an ultimate tensile strength of 184.13 MPa and elongation of 9.43%. Furthermore, the corrosion resistance was evaluated by electrochemical measurements and immersion tests in 3.5% NaCl solution. The results revealed that the corrosion current density of the solution treatment Mg alloy was 11.2 µA/cm−2, it was lower than 15.8 µA/cm−2 for the as-cast Mg alloy under the same conditions, which was greatly associated with the micro-cathode effect of the second phases.

  17. Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements.

    Science.gov (United States)

    Takada, Y; Nakajima, H; Okuno, O; Okabe, T

    2001-03-01

    Binary titanium alloys with the beta-stabilizing elements of Co, Cr, Cu, Fe, Mn and Pd (up to 30%) and Ag (up to 45%) were examined through metallographic observation and X-ray diffractometry to determine whether beta phases that are advantageous for dental use could be retained. Corrosion behavior was also investigated electrochemically and discussed thermodynamically. Some cast alloys with Co, Cr, Fe, Mn, and Pd retained the beta phase, whereas those with Ag and Cu had no beta phase. In some alloys, an intermetallic compound formed, based on information from the phase diagram. The corrosion resistance deteriorated in the TiAg alloys because Ti2Ag and/or TiAg intermetallic compounds preferentially dissolved in 0.9% NaCl solution. On the other hand, the remaining titanium alloys became easily passive and revealed good corrosion resistance similar to pure titanium since their matrices seemed to thermodynamically form titanium oxides as did pure titanium.

  18. Wear resistance and corrosion resistance of VCp particle reinforced stainless steel composites

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-rong; HAN Jie-cai; ZUO Hong-bo; LIU Zhao-jing; LI Feng-zhen; REN Shan-zhi

    2005-01-01

    The VCp reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium,and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.

  19. Microbial corrosion of stainless steel.

    Science.gov (United States)

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  20. Corrosion behaviour of container materials for the disposal of high-level wastes in rock salt formations

    International Nuclear Information System (INIS)

    In 1983-84 extensive laboratory-scale experiments (immersion tests) to evaluate the long-term corrosion behaviour of selected materials in salt brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel (reference materials in the joint European corrosion programme) as well as cast steel, spheoroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature (900C; 1700C, 2000C), gamma-radiation (105 rad/h) and different compositions of salt brines. The results obtained show that, in addition to Ti 99.8-Pd, also Hastelloy C4 and unalloyed steels are in principle suitable for being used for long-term stable HLW-containers if the gamma dose rate is reduced by suitable shielding. Furthermore, the susceptibility of Hastelloy C4 to crevice corrosion must be taken into account. Further studies will be necessary to provide final evidence of the suitability of the materials examined. These will mainly involve clarification of questions related to hydrogen embrittlement (Ti 99.8-Pd, unalloyed steels) and to the influence of pressure and saline impurities (e.g. antiJ, antiBr) on corrosion

  1. Thermal Fatigue Behaviour of Co-Based Alloy Coating Obtained by Laser Surface Melt-Casting on High Temperature Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermal fatigue behaviour of C o-based alloy coating obtained by laser surface melt-casting on the high tempe rature alloy GH33 was studied. The results show that after each time of thermal cycling, the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress. Through the first 50 times of thermal cycling, the morphology of coating still inherits the laser casting one, but the dendrites get bigger; After the second 50 times of thermal cycling, corrosion pits emerge from coating, and mostly in the places where coating and substrate meet. The fatigue damage type of coating belongs to stress corrosi on.

  2. Corrosion behaviour of Al86.0Co7.6Ce6.4 glass forming alloy with different microstructures

    Science.gov (United States)

    Li, C. L.; Wang, P.; Sun, S. Q.; Voisey, K. T.; McCartney, D. G.

    2016-10-01

    It has been extensively reported that Al-TM-RE amorphous alloy has excellent mechanical properties and corrosion resistance. In this paper, the corrosion behaviour of an Al86.0Co7.6Ce6.4 glass forming alloy with different microstructures is investigated through electrochemical experiments and microscopy. Results show the effect of microstructure. Laser and electron beam surface melting processes produce rapidly solidified microstructures with different extents of passivation compared to the as-cast alloy. An amorphous surface layer produced by these surface treatments had superior corrosion resistance compared with the crystalline alloy. As-cast and laser treated Al86.0Co7.6Ce6.4 suffered localised corrosion in the Al/Al11Ce3 eutectic region whereas the amorphous material exhibited uniform corrosion. Compared with the electrochemical behaviour of AA2024 and Alclad 2024, the fully amorphous layer prepared by combined laser-electron beam treatment exhibited advantages such as the more negative corrosion potential, the higher pitting potential and the uniform corrosion mechanism, which indicates that this material is a potential anode candidate in the protection of AA2024.

  3. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  4. Advanced casting technologies for lightweight automotive applications

    Directory of Open Access Journals (Sweden)

    Alan A. Luo

    2010-11-01

    Full Text Available This paper provides an overview of alloy and process developments in aluminum and magnesium castings for lightweight automotive applications. Wear-resistant aluminum alloys, creep-resistant and high strength/ductility magnesium alloys have been developed for automotive applications. On the process front, vacuum-assisted die casting and high vacuum die casting technologies have been developed for high-integrity body and chassis applications. Thin-wall and hollow casting components are being produced by low-pressure die casting processes for structural applications. Overcasting technology is gaining traction and has enabled mixed material designs for automotive sub-systems such as engine cradles and instrument panel beams. Simulation tools developed to predict the interfacial interactions of the dissimilar components and the structural integrity of the overcast systems are being validated in the casting trials.

  5. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  6. Chilling Tendency and Chill of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    E. Fra(s); M. Górny; W. Kapturkiewicz; H. López

    2008-01-01

    An analytical expression is presented for the susceptibility of liquid cast iron to solidify according tothe Fe-C-X metastable system (also known as the chilling tendency of cast iron, CT). The analysis incorpo-rates the nucleation and growth processes associated with the eutectic transformation. The CT is related tothe physicochemical state of the liquid, the eutectic cells in the flake graphite, and the number of nodules innodular cast iron. In particular, the CT can be related to the critical wall thickness, Scr, or the chill width, Wcr,in wedge shaped castings. Finally, this work serves as a guide for understanding the effect of technical fac-tors such as the melt chemistry, the spheroidizing and inoculation practice, and the holding time and tam-perature on the resultant CT and chill of the cast iron. Theoretical calculations of Scr and Wcr compare wellwith experimental data for flake graphite and nodular cast iron.

  7. Homogenity of Die Casting and Returning Material

    Directory of Open Access Journals (Sweden)

    J. Malik

    2012-04-01

    Full Text Available Homogeneity of die castings is influenced by wide range of technological parameters as piston velocity in filling chamber of die casting machine, filling time of mould cavity, temperature of cast alloy, temperature of the mould, temperature of filling chamber, surface pressure on alloy during mould filling, final pressure and others. Based on stated parameters it is clear, that main parameters of die casting are filling time of die mould cavity and velocity of the melt in the ingates. Filling time must ensure the complete filling of the mould cavity before solidification process can negatively influence it. Among technological parameters also belong the returning material, which ratio in charge must be constrained according to requirement on final homogeneity of die castings. With the ratio of returning material influenced are the mechanical properties of castings, inner homogeneity and chemical composition.

  8. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  9. Method for casting thin metal objects

    Energy Technology Data Exchange (ETDEWEB)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  10. INHIBITION OF CORROSION

    Science.gov (United States)

    Atherton, J.E. Jr.; Gurinsky, D.H.

    1958-06-24

    A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.

  11. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  12. Corrosion problems in power engineering

    International Nuclear Information System (INIS)

    The proceedings contain 29 papers of which 10 fall under the INIS Subject Scope. The papers deal with the corrosion effects and behavior of materials for the components and pipes of WWER type and sodium cooled fast reactors, and with the general questions of corrosion resistance of materials used in nuclear power plants. (Z.M.)

  13. Agricultural Polymers as Corrosion Inhibitors

    Science.gov (United States)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  14. Plasma sprayed coatings on mild steel split moulds for uranium casting

    International Nuclear Information System (INIS)

    High velocity high temperature plasma jets are used to deposit metals and ceramics on metallic substrates for oxidation and corrosion protection applications. Plasma sprayed ceramic coatings on metallic substrates are also used to prevent its reaction with molten metals. Metal-alumina duplex coatings on mild steel split moulds have been developed and successfully used for casting of uranium. Techno-economics of the coated moulds against the conventional graphite moulds are a major advantage. Mild steel moulds of 600 mm long and 75 mm in diameter have been plasma spray coated with alumina over a bond coat of molybdenum. In-plant tests showed an increase in number of castings per mould compared to the commonly used graphite moulds. (author)

  15. Investigation on Structure and Properties of Brass Casting

    Institute of Scientific and Technical Information of China (English)

    M.M.Haque; A.A.Khan

    2008-01-01

    In this work, alpha (α) brass was poured in green sand mould and metallic chill mould at about 1050℃. Sand casting method and metallic chill casting method are representing the slow and fast cooling rates of the castings, respectively. The slow cooling rate in the sand mould produces larger grains, while the metallic chill mould produces smaller grains in the castings. As the grain size decreases, the strength of the cast brass increases; micro-porosity in the casting decreases and the tendency for the casting to fracture during solidification decreases. Thus, the faster cooling rate casting offers higher strength, density and hardness compared to the slow cooling rate casting.

  16. Newly developed vacuum differential pressure casting of thin-walled complicated Al-alloy castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The newly designed vacuum differential pressure casting (VDPC) unit was introduced, by which the capability of the VDPC process to produce thin-walled complicated Al-alloy castings, that are free from oxides, gas pore and shrinkage cavity and thus enhance overall part quality, was studied. Experimental results were compared with those of traditional gravity pouring and vacuum suction casting. The first series of experiments were focused on investigating the castability of thin section Al-alloy casting. In the second series of experiments the metallographic evidence, casting strength and soundness were examined. Finally, case studies of very interesting thin walled complicated casting applications were described. The advantages of the described technique have made possible to produce thin walled complicated Al-alloy casting (up to a section thickness of 1 mm), which is not practical for gravity pouring and vacuum suction casting.

  17. COOLING METHOD OF SILUMINA CASTINGS AK15M3 AT VERTICAL CENTRIFUGAL CASTING

    OpenAIRE

    V. Yu. Stecenko; K. N. Baranov; A. P. Gutev

    2013-01-01

    The way of cooling of castings from silumin AK15M3 is developed at the vertical centrifugal casting, enabling to receive bimetallic blanks with high-disperse eutectic and hypereutectic microstructures and minimal allowance for machining.

  18. COOLING METHOD OF SILUMINA CASTINGS AK15M3 AT VERTICAL CENTRIFUGAL CASTING

    Directory of Open Access Journals (Sweden)

    V. Yu. Stecenko

    2013-01-01

    Full Text Available The way of cooling of castings from silumin AK15M3 is developed at the vertical centrifugal casting, enabling to receive bimetallic blanks with high-disperse eutectic and hypereutectic microstructures and minimal allowance for machining.

  19. Influence of Technological Parameters of Furane Mixtures on Shrinkage Creation in Ductile Cast Iron Castings

    Directory of Open Access Journals (Sweden)

    Vasková I.

    2014-10-01

    Full Text Available Ductile cast iron (GS has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.

  20. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  1. Caste and wealth inequality in India

    OpenAIRE

    Zacharias, Ajit; Vakulabharanam, Vamsi

    2009-01-01

    In this paper, we conduct the novel exercise of analyzing the relationship between overall wealth inequality and caste divisions in India using nationally representative surveys on household wealth conducted during 1991–92 and 2002–03. According to our findings, the groups in India that are generally considered disadvantaged (known as Scheduled Castes or Scheduled Tribes) have, as one would expect, substantially lower wealth than the "forward" caste groups, while the Other Backward Classes an...

  2. Plant vascular development

    NARCIS (Netherlands)

    Rybel, De Bert; Mähönen, Ari Pekka; Helariutta, Yrjö; Weijers, Dolf

    2016-01-01

    Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate

  3. Engineered Vascularized Muscle Flap.

    Science.gov (United States)

    Egozi, Dana; Shandalov, Yulia; Freiman, Alina; Rosenfeld, Dekel; Ben-Shimol, David; Levenberg, Shulamit

    2016-01-01

    One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications. PMID:26779840

  4. Barium phosphate conversion coating on die-cast AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Poor corrosion resistance limits the application of magnesium alloys.Conversion coating is widely used to protect magnesium alloys because of easy operation and low cost.A novel conversion coating on die.cast AZ91D magnesium alloy containing barium salts was studied.The optimum concentrations of Ba(NO3)2,Mn(NO3)2 and NH4H2PO4 are 25 g/L,15 mL/L and 20 g/L,respectively,based on orthogonal test resulm.The treating time,solution temperature and PH value are settled to be 5-30 min,50-70℃and 2.35-3.0.respectively.The corrosion resistance of barium conversion coating is better than that of manganese-based phosphate conversion coating by immersion test.The coating is composed of Ba,P, O,Mg,Zn,Mn and Al by EDX analysis.

  5. Selection criteria for corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Webb, L.; Boivin, J. [Cormetrics, Calgary, AB (Canada)

    2008-07-01

    The use of a corrosion inhibitor is the primary method to control internal corrosion of pipelines and to reduce costly failures. This presentation discussed the selection criteria for corrosion inhibitors. The selection process requires a detailed analysis of system chemistry; modeling flow regime; and laboratory testing protocols that challenge the inhibitor under conditions analogous to the field. The nature of corrosion inhibitors and inhibitor requirements were described. Physical factors were also presented. These included viscosity and pour point; stability; density; effect on elastomers and other materials; emulsion tendency; foaming tendency; gunking; polymerization/sludging; and reaction with gases and liquids. Other topics that were discussed included compatibility; solubility; partitioning; environmental effects; and selection requirements. Film tenacity was described in terms of corrosivity; water chemistry; and flow. The presentation concluded with a discussion of performance testing and wheel testing. figs.

  6. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  7. Renal posttransplant's vascular complications

    Directory of Open Access Journals (Sweden)

    Bašić Dragoslav

    2003-01-01

    Full Text Available INTRODUCTION Despite high graft and recipient survival figures worldwide today, a variety of technical complications can threaten the transplant in the postoperative period. Vascular complications are commonly related to technical problems in establishing vascular continuity or to damage that occurs during donor nephrectomy or preservation [13]. AIM The aim of the presenting study is to evaluate counts and rates of vascular complications after renal transplantation and to compare the outcome by donor type. MATERIAL AND METHODS A total of 463 kidneys (319 from living related donor LD and 144 from cadaveric donor - CD were transplanted during the period between June 1975 and December 1998 at the Urology & Nephrology Institute of Clinical Centre of Serbia in Belgrade. Average recipients' age was 33.7 years (15-54 in LD group and 39.8 (19-62 in CD group. Retrospectively, we analyzed medical records of all recipients. Statistical analysis is estimated using Hi-squared test and Fischer's test of exact probability. RESULTS Major vascular complications including vascular anastomosis thrombosis, internal iliac artery stenosis, internal iliac artery rupture obliterant vasculitis and external iliac vein rupture were analyzed. In 25 recipients (5.4% some of major vascular complications were detected. Among these cases, 22 of them were from CD group vs. three from LD group. Relative rate of these complications was higher in CD group vs. LD group (p<0.0001. Among these complications dominant one was vascular anastomosis thrombosis which occurred in 18 recipients (17 from CD vs. one from LD. Of these recipients 16 from CD lost the graft, while the rest of two (one from each group had lethal outcome. DISCUSSION Thrombosis of renal allograft vascular anastomosis site is the most severe complication following renal transplantation. In the literature, renal allograft thrombosis is reported with different incidence rates, from 0.5-4% [14, 15, 16]. Data from the

  8. Development and application of titanium alloy casting technology in China

    Institute of Scientific and Technical Information of China (English)

    NAN Hai; XIE Cheng-mu; ZHAO Jia-qi

    2005-01-01

    The development and research of titanium cast alloy and its casting technology, especially its application inaeronautical industry in China are presented. The technology of molding, melting and casting of titanium alloy, casting quality control are introduced. The existing problems and development trend in titanium alloy casting technology are also discussed.

  9. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for...

  10. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  11. Vacuum-sealed casting process under pressure

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; GUO Tai-ming; WU Chun-jing; WANG Hong

    2006-01-01

    A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.

  12. Cast Process Simulation for the Rapid Tooling.

    Science.gov (United States)

    Zhang, Renji; Jiang, Rui; Liu, Yuan; Yan, Yongnian

    1997-03-01

    A major use for RP (Rapid Prototyping) now is in the foundry industry. It is so called RT (Rapid Tooling). Models are used as patterns for sand and plaster casting or used as sacrificial models in investment casting in the RT. In order to improve casting quality, a cast process simulation program for the RT has been made. This simulation depends on analysis of size accuracy parameters. The result could be came back into the CAD forming program. After that a new CAD data have been adopted in RT process. Then the RT technology could have sufficient accuracy in fabrication. Work supported by the Natural Science Foundation of China (NSFC).

  13. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    OpenAIRE

    Xu, Daming; LI, XIN; Geving AN

    2004-01-01

    Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force fi...

  14. Laser surface treatment of cast Al-Si-Cu alloys

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2013-12-01

    Full Text Available Purpose: The test results presented in this chapter concern formation of the quasi-composite MMCs structure on the surface of elements from aluminium cast alloys AC-AlSi9Cu and AC-AlSi9Cu4 by fusion of the carbide or ceramic particles WC, SiC, ZrO2 and Al2O3 in the surface of alloys. In addition, within the scope of the tests the phase transformations and precipitation processes present during laser remelting and fusion at appropriately selected parameters: laser power, the rate of fusion and quantity of the ceramic powder fed have been partially examined. Design/methodology/approach: In general, the laser surface processing should result in achievement of the surface layer with the most favourable physical and mechanical properties, in particular enhancement of surface hardness, improvement of abrasion resistance and resistance to corrosion is assumed in relation to the selected aluminium alloys after standard thermal processing. Findings: The presented results of the surface layer include analysis of the mechanisms responsible for formation of the layer, and particularly concern remelting of the substrate and its crystallisation at various parameters of the High Power Diode Laser (HPDL and the technological conditions of the surface processing, remelting and fusion of the particles in the surface of cast alloys ACAlSi9Cu and ACAlSi9Cu4. For the purpose of testing the structure of the obtained surface layers the test methods making use of the light microscopy method supported with computer image analysis, transmission and scanning electron microscopy, X-ray analysis, X-ray microanalysis, as well as methods for testing the mechanical and usable properties have been used. Practical implications: What is more, development of the technology of surface refinement of cast alloys Al-Si-Cu with the laser fusion methods will allow for complex solving of the problem related to enhancement of the surface layer properties, taking into account both economic

  15. Mechanical characteristics of fused cast basalt tube encased in steel pipe for protecting steel surface

    Institute of Scientific and Technical Information of China (English)

    Jee-Seok WANG; Jong-Do KIM; Hee-Jong YOON

    2009-01-01

    Because of the various excellent characteristics of cast basalt materials, such as, anti-corrosion, anti-wearing, good hardness, high chemical stability, of which steel may not possess, the steel-basalt composite pipes are used in severe environments for compensating the defects of steel. The limit of bending moment with which steel-basalt composite pipe may safely endure was calculated and the limit curvature of the composite pipe in the safe range was presented. The application temperature of steel-basalt pipe was examined due to a different coefficient among basalt, mortar and mild steel.

  16. Evaluation of Chill Cast Co-Cr Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Ana Laura Ramirez-Ledesma

    2016-08-01

    Full Text Available Binary Co-Cr alloys containing various Cr contents were vacuum induction melted and cast into wedge-shaped copper molds. It was intended to develop a microstructure (1 free from interdendritic segregation and porosity; (2 having minimal intermetallic precipitates; and (3 suitable for biomedical applications. The resultant microstructures were evaluated from sections obtained longitudinally and centrally in the plane normal to the diverging wedge faces. All ingots showed a dendritic microstructure with some characteristic features. For instance, in Co-20–30 wt. % Cr alloys, the chilled cast microstructures consisted of columnar dendrites without interdendritic segregation, a minimum of intermetallic precipitates, and the presence of a predominantly athermal HCP ε-martensite (>80 vol. %. In addition, the metastable FCC γ-Co phase was identified by X-ray diffraction and scanning electron microscopy. In the case of 35–44 wt. % Cr cobalt alloys, a eutectic constituent including the σ-phase were found to develop in the interdendritic regions. From this work, a Co-20 wt. % Cr alloy was chosen for further investigation after heat treating below the γ/ε transition temperature. The resultant tensile strength and ductility were further improved after applying a heat treatment at 730 °C for 30 min, obtaining values of elongation of 26% as compared with 2.55 < 5 of elongation in the as cast condition. Also, the alloy corrosion resistance in artificial saliva was investigated. It was found that the exhibited corrosion rates for the as-cast and heat-treated conditions are between those reported for other similar systems.

  17. Spray casting project final report

    International Nuclear Information System (INIS)

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  18. Vascular manifestations of Behcet's disease

    Directory of Open Access Journals (Sweden)

    Regina Georgiyeva Goloeva

    2010-04-01

    Conclusion. Vascular disorders in BD were diagnosed in one fourth of the patients, mainly in young male patients. Severe thromboses with the development of chronic venous insignificance, Budd-Chiari syndrome, pulmonary and iliac artery aneurysms, and arterial thromboses were observed in male patients only. Vascular events were associated with erythema nodosum and epididymitis; in these concomitances, the vascular risk was substantially increased. Vascular death rates were 2,2%.

  19. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  20. Microdefects in cast multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E.; Klinger, D.; Bergmann, S. [Inst. of Crystal Growth Berlin (Germany)

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  1. Control of Cast Iron Microstructure

    Science.gov (United States)

    Graham, J.; Lillybeck, N.; Franco, N.; Stefanescu, D. M.

    1985-01-01

    The use of microgravity for industrial research in the processing of cast iron was investigated. Solidification experiments were conducted using the KC-135 and F-104 aircraft, and an experiment plan was developed for follow-on experiments using the Shuttle. Three areas of interest are identified: (1) measurement of thermophysical properties in the melt; (2) understanding of the relative roles of homogeneous nucleation, grain multiplication, and innocultants in forming the microstructure; and (3) exploring the possibility of obtaining an aligned graphite structure in hypereutectic Fe, Ni, and Co.

  2. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  3. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O).

  4. A wear and corrosion resistant α-ferrite toughened Fe9Cr9Si2 ternary intermetallic alloy

    International Nuclear Information System (INIS)

    Mechanical moving components working under corrosion or elevated temperature aggressive service conditions demand tribological materials having excellent combinations of wear and corrosion resistance. Most conventional high-performance wear resistant materials such as high Cr cast irons lack adequate corrosion resistance, while most corrosion resistant materials such as stainless steels are poor in resisting wear. In this paper, a novel α-ferrite toughened Fe9Cr9Si2 wear and corrosion resistant ternary intermetallic alloy was developed with a microstructure consisting of small amount of dispersive α particles well distributed in the continuous matrix of Fe9Cr9Si2 (referred as α/Fe9Cr9Si2 alloy). Corrosion properties were evaluated using the anodic polarization methods in H2SO4 and NaCl water solutions. Wear resistance was tested under room-temperature block-on-wheel dry sliding wear test conditions. Due to the unique chemical composition of both the Cr and Si highly alloyed α and the σ-phase Fe9Cr9Si2, the α/Fe9Cr9Si2 alloy exhibited outstanding corrosion resistance. Due to the excellent combination of high hardness and the strong covalent-dominant atomic bonds of σ-Fe9Cr9Si2, the excellent toughness and ductility of α and the unique chemical composition induced oxidation wear, the α-toughened Fe9Cr9Si2 σ-based alloy exhibited outstanding dry sliding wear resistance

  5. Yield Improvement in Steel Casting (Yield II)

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to

  6. Clean cast steel technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  7. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  8. Investigation on Atmospheric Corrosiveness in Hainan Province

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the results of four-year exposure tests for carbon steel samples in Hainan province, the influences of meteorological factors and Cl- on atmospheric corrosion were investigated. The feature of atmospheric corrosion in this area was summarized. A corrosive map for the area was drawn. The corrosion products on carbon steel at some typical places were analyzed by XRD and XPS.

  9. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  10. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  11. Atmospheric corrosion of mild steel

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2011-10-01

    Full Text Available The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a the morphology of steel corrosion products and corrosion product layers; and b long-term atmospheric corrosion ( > 10 years.

    La corrosión atmosférica del acero suave es un tema de gran amplitud que ha sido tratado por muchos autores en numerosas regiones del mundo. Este artículo de compilación incorpora publicaciones relevantes sobre esta temática, en particular sobre la naturaleza de los productos de corrosión atmosférica, mecanismos y cinética de los procesos de corrosión atmosférica, prestando una atención especial a dos aspectos sobre los que la información publicada ha sido menos abundante: a morfología de los productos de corrosión del acero y capas de productos de corrosión, y b corrosión atmosférica a larga duración (> 10 años.

  12. Energy use in selected metal casting facilities - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  13. Atmospheric corrosion model and monitor for low cost solar arrays

    Science.gov (United States)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  14. Vascular cognitive impairment and dementia.

    Science.gov (United States)

    Gorelick, Philip B; Counts, Scott E; Nyenhuis, David

    2016-05-01

    Vascular contributions to cognitive impairment are receiving heightened attention as potentially modifiable factors for dementias of later life. These factors have now been linked not only to vascular cognitive disorders but also Alzheimer's disease. In this chapter we review 3 related topics that address vascular contributions to cognitive impairment: 1. vascular pathogenesis and mechanisms; 2. neuropsychological and neuroimaging phenotypic manifestations of cerebrovascular disease; and 3. prospects for prevention of cognitive impairment of later life based on cardiovascular and stroke risk modification. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26704177

  15. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  16. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  17. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  18. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  19. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys

    International Nuclear Information System (INIS)

    The corrosion behaviour of WE43 magnesium alloys using the mini cell system was studied. Voltammetry and impedance spectroscopy were applied to study on the one hand the effect of microstructure of the working electrode and on the other hand the effect of proteins in the electrolyte. Two types of alloy samples were produced (i) by permanent mould casting and (ii) by gas atomization followed by extrusion. The results showed that the microstructure was strongly influenced by the production process. The extruded samples showed an improved homogeneity of phase distribution compared with cast samples as it was aimed for. Due to increased homogeneity it was expected to find higher corrosion resistance. However, the electrochemical results are contradictory and suggest an additional phase in the extruded microstructure. Using energy dispersive X-ray spectroscopy (EDX) the secondary magnesium rare earths (RE) phase of extruded samples showed differing composition than of cast samples as well as additional oxide phases. After the samples were electrochemically investigated in cell medium with and without fetal calf serum (FCS), an impact of FCS was detected in voltammetry due to the length of the polarisation curve. As the tip of the mini cell in contact with the working electrode is small, developing gases tend to spread on the working electrode and break the contact of liquid to the counter electrode; which results in disrupting the current flow. This effect was more pronounced when rising the voltage and was found reduced when using electrolytes with FCS. Impedance spectra were slightly deformed by FCS, seen as a kinetic effect but not as a basic differing corrosion reaction. The insight into the effects of FCS was provided by the mini cell system as this system enables to collect entire series of measurements. In contrast of two single measurements, those series reflected the slight difference caused by FCS. The focus of the electrochemical corrosion study was set on

  20. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  1. Casting of Titanium and its Alloys

    OpenAIRE

    R. L. Saha; K. T. Jacob

    1986-01-01

    Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  2. Casting of Titanium and its Alloys

    Directory of Open Access Journals (Sweden)

    R. L. Saha

    1986-04-01

    Full Text Available Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  3. Detection of Cast Shadows in Surveillance Applications

    DEFF Research Database (Denmark)

    Erbou, Søren G.; Sørensen, Helge Bjarne Dissing; Stage, Bjarne

    2005-01-01

    Cast shadows from moving objects reduce the general ability of robust classification and tracking of these objects, in outdoor surveillance applications. A method for segmentation of cast shadows is proposed, combining statistical features with a new similarity feature, derived from a physics...

  4. 14 CFR 25.621 - Casting factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Casting factors. 25.621 Section 25.621... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.621 Casting factors. (a) General. The factors, tests, and inspections specified in paragraphs (b) through (d) of this section...

  5. Geometric aspects of the casting process

    NARCIS (Netherlands)

    Ahn, H.-K.

    2002-01-01

    Manufacturing is the process of converting raw materials into useful products. Among the most important manufacturing processes, casting is a commonly used manufacturing process for plastic and metal objects. The industrial casting process consists of two stages. First, liquid is filled into a cavit

  6. The heat treatment of Fermanal cast steel

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-12-01

    Full Text Available The study discloses the results of microstructural examinations, testing of magnetic properties and hardness measurements as cast and after heat treatment conducted on the Fermanal cast steel. A characteristic feature of this cast steel is its density lower by about 10% than the density of carbon cast steel [4]. It has been proved that the factor deciding about the composition of microstructure (fraction of ferrite and austenite is the content of aluminium. The matrix totally austenitic is present in cast steel containing from 0,8 to 0,9% C, from 22 to 24% Mn, and from 4,5 to 5,5% Al. The magnetic properties examined on samples of the Fermanal cast steel were determined by spectroscopy of the Mössbauer effect with isotope 57Fe. The magnetic properties represented by a mean value of the hyperfine magnetic field Bhf and relative magnetic permeability were determined. It has been stated that the level of magnetic properties of the Fermanal cast steel depends on the content of ferrite. The effect of the parameters of solutioning and ageing on the cast steel microstructure and hardness after modification with additions of B, Ti and Nb was investigated.

  7. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  8. Biofilm formation and microbial corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.; Porcella, D.

    1992-07-01

    Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm formation, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.

  9. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  10. Corrosion aspects in reprocessing technology

    International Nuclear Information System (INIS)

    This paper presents two examples illustrating the importance of the physicochemical conditions existing at the metal-medium interface on the corrosion behaviour of materials utilized in spent fuel reprocessing plants: corrosion of a stainless steel in the presence of nitric acid condensates, which is much more severe than in the liquid bulk; behaviour of zirconium, which has an outstanding corrosion resistance in nitric acid, but may suffer depassivation in drastic conditions (not existing in reprocessing plants), with the consequence of a loss of the protective effect of the zirconia passive layer

  11. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  12. Casting fine grained, fully dense, strong inorganic materials

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  13. Corrosion and corrosion fatigue of airframe aluminum alloys

    Science.gov (United States)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  14. Update on Vascular Dementia.

    Science.gov (United States)

    Khan, Ayesha; Kalaria, Raj N; Corbett, Anne; Ballard, Clive

    2016-09-01

    Vascular dementia (VaD) is a major contributor to the dementia syndrome and is described as having problems with reasoning, planning, judgment, and memory caused by impaired blood flow to the brain and damage to the blood vessels resulting from events such as stroke. There are a variety of etiologies that contribute to the development of vascular cognitive impairment and VaD, and these are often associated with other dementia-related pathologies such as Alzheimer disease. The diagnosis of VaD is difficult due to the number and types of lesions and their locations in the brain. Factors that increase the risk of vascular diseases such as stroke, high blood pressure, high cholesterol, and smoking also raise the risk of VaD. Therefore, controlling these risk factors can help lower the chances of developing VaD. This update describes the subtypes of VaD, with details of their complex presentation, associated pathological lesions, and issues with diagnosis, prevention, and treatment. PMID:27502303

  15. Erosion--corrosion

    International Nuclear Information System (INIS)

    The deterioration of materials by corrosion or erosion by itself presents a formidable problem and for this reason investigators have studied these two phenomena independently. In fact, there are very few systematic studies on E-C and the majority of references mention it only in passing. In most real systems, however, the two destructive processes take place simultaneously, hence the purpose of this review is to present the various interactions between the chemical and mechanical agents leading to accelerated degradation of the material. The papers cited in the review are those that lead to a better understanding of the process involved in the accelerated rate of material loss under E-C conditions

  16. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  17. Review on Stress Corrosion and Corrosion Fatigue Failure of Centrifugal Compressor Impeller

    Institute of Scientific and Technical Information of China (English)

    SUN Jiao; CHEN Songying; QU Yanpeng; LI Jianfeng

    2015-01-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  18. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  19. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  20. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  1. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  2. Corrosion Behaviour of Heat-Treated Aluminum-Magnesium Alloy in Chloride and EXCO Environments

    Directory of Open Access Journals (Sweden)

    S. O. Adeosun

    2012-01-01

    Full Text Available Machines designed to operate in marine environment are generally vulnerable to failure by corrosion. It is therefore imperative that the corrosion susceptibility of such facilities is evaluated with a view to establishing mechanism for its mitigation. In this study, the corrosion behaviour of as-cast and retrogression-reagion (RRA specimens of aluminum alloy containing 0.4–2.0 percent magnesium additions in NaCl, FeCl3, and EXCO solutions was investigated. The corrosion simulation processes involved gravimetric and electrochemical techniques. Results show substantial inducement of Mg2Si precipitates at a relatively higher magnesium addition, 1.2–2.0 percent, giving rise to increased attack. This phenomenon is predicated on the nature of the Mg2Si crystals being anodic relative to the alloy matrix which easily dissolved under attack by chemical constituents. Formation of Mg2Si intermetallic without corresponding appropriate oxides like SiO2 and MgO, which protect the precipitates from galvanic coupling with the matrix, accentuates susceptibility to corrosion.

  3. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  4. Spent fuel corrosion and dissolution

    International Nuclear Information System (INIS)

    This paper presents the current status of the Swedish programme for the study of the corrosion of spent fuel in bicarbonate groundwaters. Results from the on-going experimental programme are presented and compared with the data base accumulated over the past ten years. Release of uranium and the other actinides was solubility-controlled under the semi-static type of experiments performed. The limiting solubility for uranium under oxic conditions was consistent with the hypothesis that the redox potential of the system is assumed to correspond to the U3O7/U3O8 transition. The measured release fractions for 137Cs, 90Sr and 99Tc are discussed and used to exemplify the probable dissolution and corrosion processes involved. A substantial part of the Swedish programme is directed to the characterization of spent fuel before and after corrosion tests. Recent results are presented on the identification of possible corrosion sites. (26 refs.) (au)

  5. Bioinspired Design: Magnetic Freeze Casting

    Science.gov (United States)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  6. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Nanocomposite films for corrosion protection

    OpenAIRE

    Sababi, Majid

    2013-01-01

    This thesis describes technical and scientific aspects of new types of composite films/coatings for corrosion protection of carbon steel, composite films with nanometer thickness consisting of mussel adhesive protein (Mefp‐1) and ceria nanoparticles, and polymeric composite coatings with micrometre thickness consisting of conducting polymer and ceria nanoparticles in a UV‐curing polyester acrylate (PEA) resin. The influence of microstructure on corrosion behaviour was studied for a Fe‐Cr‐V‐N ...

  8. The thermal fatigue behaviour of creep-resistant Ni-Cr cast steel

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2007-12-01

    Full Text Available The study gives a summary of the results of industrial and laboratory investigations regarding an assessment of the thermal fatigue behaviour of creep-resistant austenitic cast steel. The first part of the study was devoted to the problem of textural stresses forming in castings during service, indicating them as a cause of crack formation and propagation. Stresses are forming in carbides and in matrix surrounding these carbides due to considerable differences in the values of the coefficients of thermal expansion of these phases. The second part of the study shows the results of investigations carried out to assess the effect of carbon, chromium and nickel on crack resistance of austenitic cast steel. As a criterion of assessment the amount and propagation rate of cracks forming in the specimens as a result of rapid heating followed by cooling in running water was adopted. Tests were carried out on specimens made from 11 alloys. The chemical composition of these alloys was comprised in a range of the following values: (wt-%: 18-40 %Ni, 17-30 %Cr, 1.2-1.6%Si and 0.05-0.6 %C. The specimens were subjected to 75 cycles of heating to a temperature of 900oC followed by cooling in running water. After every 15 cycles the number of the cracks was counted and their length was measured. The results of the measurements were mathematically processed. It has been proved that the main factor responsible for an increase in the number of cracks is carbon content in the alloy. In general assessment of the results of investigations, the predominant role of carbon and of chromium in the next place in shaping the crack behaviour of creep-resistant austenitic cast steel should be stressed. Attention was also drawn to the effect of high-temperature corrosion as a factor definitely deteriorating the cast steel resistance to thermal fatigue.

  9. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  10. Application of Integrated Database to the Casting Design

    Institute of Scientific and Technical Information of China (English)

    In-Sung Cho; Seung-Mok Yoo; Chae-Ho Lim; Jeong-Kil Choi

    2008-01-01

    Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for .the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.

  11. Corrosion fatigue properties of thermally insulated pipeline

    International Nuclear Information System (INIS)

    The corrosion fatigue properties of thermally insulated pipeline were investigated in synthetic groundwater by electrochemical test, corrosion fatigue test and SEM analysis. Since the potential difference between the weldment and the base metal was small, the pipeline steel was not susceptible to galvanic corrosion. No fatigue limit was apparent for corrosion fatigue testing with remarkable reduction of fatigue lifetime. The effects of insulation and stress on the corrosion fatigue resistance of pipeline steel were studied through Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) during corrosion fatigue testing. The result of LPR measurement indicated that the corrosion rate was determined not by the water content of PUR foam but by the magnitude of applied stress. The better corrosion fatigue property of the insulated steel was attributable to the formation of a protective rust layer under the insulation, which reduced the acceleration of corrosion process and the propagation of fatigue crack. This was confirmed by the results of EIS measurements and SEM observation

  12. Characterization of Technetium Speciation in Cast Stone

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  13. Fatigue Properties of Cast Magnesium Wheels

    Science.gov (United States)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-08-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  14. Fatigue Properties of Cast Magnesium Wheels

    Science.gov (United States)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-05-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  15. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    Science.gov (United States)

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. PMID:21783152

  16. Microfluidic Technology in Vascular Research

    Directory of Open Access Journals (Sweden)

    A. D. van der Meer

    2009-01-01

    Full Text Available Vascular cell biology is an area of research with great biomedical relevance. Vascular dysfunction is involved in major diseases such as atherosclerosis, diabetes, and cancer. However, when studying vascular cell biology in the laboratory, it is difficult to mimic the dynamic, three-dimensional microenvironment that is found in vivo. Microfluidic technology offers unique possibilities to overcome this difficulty. In this review, an overview of the recent applications of microfluidic technology in the field of vascular biological research will be given. Examples of how microfluidics can be used to generate shear stresses, growth factor gradients, cocultures, and migration assays will be provided. The use of microfluidic devices in studying three-dimensional models of vascular tissue will be discussed. It is concluded that microfluidic technology offers great possibilities to systematically study vascular cell biology with setups that more closely mimic the in vivo situation than those that are generated with conventional methods.

  17. PEO of pre-anodized Al–Si alloys: Corrosion properties and influence of sealings

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, M., E-mail: marta.mohedano@hzg.de [Helmholtz Zentrum Geesthacht, Magnesium Innovation Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Matykina, E.; Arrabal, R.; Mingo, B.; Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain)

    2015-08-15

    Highlights: • A356 gravity-cast and rheocast pre-anodized aluminium alloys were coated by PEO. • Different sealing techniques were applied after the coating process. • Iron-rich constituents of the substrate occlude the continuity of the porous anodic film. • PEO coatings consisted of a mixture of α-Al{sub 2}O{sub 3}, γ-Al{sub 2}O{sub 3} and mullite. • Post-treatments improved both hydrophobic and corrosion properties. - Abstract: Voltage-controlled PEO coatings were developed on A356 aluminum alloys (gravity-cast and rheocast) with a pre-anodized layer. The influence of the alloy manufacturing process and the effect of Si-rich phase on the structure and composition of the oxide layers were evaluated using SEM, EDS and XRD. The pre-anodized oxide layer preserves the microstructure of the substrate due to the presence of secondary phases that have a different behavior relative to the matrix during anodizing. PEO coatings consisted of a mixture of α-Al{sub 2}O{sub 3}, γ-Al{sub 2}O{sub 3} and mullite. The corrosion behavior and the effectiveness of different sealing techniques based on salts of nickel, cobalt, cerium and phosphonic acid were also studied. Post-treatments improved the hydrophobic properties of the coatings and showed a beneficial effect, significantly increasing the coating impedance and thereby reducing the susceptibility to corrosion.

  18. Analysis of Fly Fishing Rod Casting Dynamics

    OpenAIRE

    Gang Wang; Norman Wereley

    2011-01-01

    An analysis of fly fishing rod casting dynamics was developed comprising of a nonlinear finite element representation of the composite fly rod and a lumped parameter model for the fly line. A nonlinear finite element model was used to analyze the transient response of the fly rod, in which fly rod responses were simulated for a forward casting stroke. The lumped parameter method was used to discretize the fly line system. Fly line motions were simulated during a cast based on fly rod tip resp...

  19. PHYSICAL SIMULATION OF CONTINUOUS ROLL CASTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    L.H. Zhan; J. Zhong; X.Q. Li; M.H. Huang

    2005-01-01

    A series of simulating experimental studies on the rheological behavior and its influential factors of aluminum alloy in continuous roll-casting process have been explored in this paper with a Gleeble-1500 Thermal-Mechanical Simulation Tester and a set of special clamp system. Relevant rheological rules in the process of coupling transient solidification and continuous deformation of roll-casting conditions are obtained. Experimental results indicate that four different characteristic stages exist in the whole rheological process, and relative constitutive models suitable for the given conditions of continuous roll casting process have been established through multivariable linear regression analysis of the experimental data.

  20. Cracks in high-manganese cast steel

    Directory of Open Access Journals (Sweden)

    A. Chojecki

    2009-10-01

    Full Text Available The reasons which account for the formation of in service cracks in castings made from Hadfield steel were discussed. To explain the source of existence of the nuclei of brittle fractures, the properties of cast steel were examined within the range of solidification temperatures, remembering that feeding of this material is specially difficult, causing microporosity in hot spots. This creates conditions promoting the formation of microcracks which tend to propagate during service conditions involving high dynamic stresses, and explains why the cracks are mainly characterized by a brittle nature. The reason for crack formation in service are micro-porosities formed during casting solidification.

  1. The X-ray Telescope of CAST

    OpenAIRE

    M. Kuster(Technische Universität Darmstadt); Bräuninger, H.; Cébrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F. H.; Hoffmann, D H H; Hoffmeister, G.; Joux, J. N.; Kang, D.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and...

  2. Test manufacturing of copper canisters with cast inserts. Assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C.G

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  3. Test manufacturing of copper canisters with cast inserts. Assessment report

    International Nuclear Information System (INIS)

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  4. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  5. MRI evaluation of vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Yicheng Liu; Hongxing Zhang; Wei Huang; Wenjun Wan; Hongfen Peng

    2006-01-01

    OBJECTTVE: To explain the association between vascular dementia and the cranial MRI manifestations, and recognize the value of cranial MRI in the early diagnosis of vascular dementia and the assessment of disease conditions.DATA SOURCES: Pubmed database was searched to identify articles about the cranial MRI manifestations of patients with vascular dementia published in English from January 1992 to June 2006 by using the key words of "MRI, vascular dementia". Others were collected by searching the name of journals and title of articles in the Chinese full-text journal database.STUDY SELECTTON: The collected articles were primarily checked, those correlated with the cranial MRI manifestations of patients with vascular dementia were selected, while the obviously irrelative ones were excluded, and the rest were retrieved manually, the full-texts were searched.DATA EXTRACTION: Totally 255 articles were collected, 41 of them were involved, and the other 214 were excluded.DATA SYNTHESIS: MRI can be taken as one of the effective methods for the early diagnosis and disease evaluation of vascular dementia. White matter lesions are the important risk factors of vascular dementia.Vascular dementia is accompanied by the atrophy of related brain sites, but further confirmation is needed to investigate whether there is significant difference. MRI can be used to quantitatively investigate the infarcted sites and sizes of patients with vascular dementia after infarction, but there is still lack of systematic investigation on the association of the infarcted sites and sizes with the cognitive function of patients with vascular dementia.CONCLUSTON: Cranial MRI can detect the symptoms of vascular dementia at early period, so that corresponding measures can be adopted to prevent and treat vascular dementia in time.

  6. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  7. Solutions of corrosion Problems in advanced Technologies

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Austenitic and ferritic steels were exposed in the superheater area of a straw-fired CHP plant. The specimens were exposed for 1400 hours at 450-600°C. The rate of corrosion was assessed based on unattacked metal remaining. The corrosion products and course of corrosion for the various steel types...... were investigated using light optical and scanning electron microscopy. The ferritic steels suffered from corrosion mainly via material loss. The austenitic steels suffered from predominantly selective corrosion resulting in chromium depletion from the alloy. A clear trend was observed that selective...... corrosion increased with increasing chromium content of the alloy....

  8. A Theoretical Model for Metal Corrosion Degradation

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2010-01-01

    Full Text Available Many aluminum and stainless steel alloys contain thin oxide layers on the metal surface which greatly reduce the corrosion rate. Pitting corrosion, a result of localized breakdown of such films, results in accelerated dissolution of the underlying metal through pits. Many researchers have studied pitting corrosion for several decades and the exact governing equation for corrosion pit degradation has not been obtained. In this study, the governing equation for corrosion degradation due to pitting corrosion behavior was derived from solid-state physics and some solutions and simulations are presented and discussed.

  9. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  10. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  11. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  12. Optimization of the Chemical Composition of Cast Iron Used for Casting Ball Bearing Grinding Disks

    Institute of Scientific and Technical Information of China (English)

    Aurel Crisan; Sorin Ion; Munteanu; Ioan Ciobanu; Iulian Riposan

    2008-01-01

    The chemical composition of cast iron used for casting ball bearing machining disks was varied to optimize the properties such as castability, hardenability, and durability in ball machining. The cast iron characteristics were most strongly dependent on the Ni content and the carbon saturation degree, So. This paper describes the types of test specimens, the working conditions, and the experimental results. The in-crease of the degree of carbon saturation reduces the tendency to form shrinkholes in the castings. The de-crease in the Ni content negatively affects the final hardening treatment. A way to control solidification de-fects in cast iron, by reducing the Ni content, has been verified on cast disks.

  13. CT in vascular pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Bartolozzi, C.; Neri, E.; Caramella, D. [Diagnostic and Interventional Radiology Department of Oncology, University of Pisa, Via Roma 67, I-56100 Pisa (Italy)

    1998-06-02

    Since the introduction of helical scanners, CT angiography (CTA) has achieved an essential role in many vascular applications that were previously managed with conventional angiography. The performance of CTA is based on the accurate selection of collimation width, pitch, reconstruction spacing and scan delay, which must be modulated on the basis of the clinical issue. However, the major improvement of CT has been provided by the recent implementation of many post-processing techniques, such as multiplanar reformatting, shaded surface display, maximum intensity projections, 3D perspectives of surface and volume rendering, which simulate virtual intravascular endoscopy. The integration of the potentialities of the scanner and of the image processing techniques permitted improvement of: (a) the evaluation of aneurysms, dissection and vascular anomalies involving the thoracic aorta; (b) carotid artery stenosis; (c) aneurysms of abdominal aorta; (d) renal artery stenosis; (e) follow-up of renal artery stenting; and (f) acute or chronic pulmonary embolism. Our experience has shown that the assessment of arterial pathologies with CTA requires the integration of 3D post-processing techniques in most applications. (orig.) With 4 figs., 34 refs.

  14. Pulmonary vascular diseases.

    Science.gov (United States)

    Mélot, C; Naeije, R

    2011-04-01

    Diseases of the pulmonary vasculature are a cause of increased pulmonary vascular resistance (PVR) in pulmonary embolism, chronic thromboembolic pulmonary hypertension (CTEPH), and pulmonary arterial hypertension or decreased PVR in pulmonary arteriovenous malformations on hereditary hemorrhagic telangiectasia, portal hypertension, or cavopulmonary anastomosis. All these conditions are associated with a decrease in both arterial PO2 and PCO2. Gas exchange in pulmonary vascular diseases with increased PVR is characterized by a shift of ventilation and perfusion to high ventilation-perfusion ratios, a mild to moderate increase in perfusion to low ventilation-perfusion ratios, and an increased physiologic dead space. Hypoxemia in these patients is essentially explained by altered ventilation-perfusion matching amplified by a decreased mixed venous PO2 caused by a low cardiac output. Hypocapnia is accounted for by hyperventilation, which is essentially related to an increased chemosensitivity. A cardiac shunt on a patent foramen ovale may be a cause of severe hypoxemia in a proportion of patients with pulmonary hypertension and an increase in right atrial pressure. Gas exchange in pulmonary arteriovenous malformations is characterized by variable degree of pulmonary shunting and/or diffusion-perfusion imbalance. Hypocapnia is caused by an increased ventilation in relation to an increased pulmonary blood flow with direct peripheral chemoreceptor stimulation by shunted mixed venous blood flow. PMID:23737196

  15. Report on accelerated corrosion studies.

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  16. 49 CFR 192.275 - Cast iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  17. 21 CFR 888.5960 - Cast removal instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cast removal instrument. 888.5960 Section 888.5960...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5960 Cast removal instrument. (a) Identification. A cast removal instrument is an AC-powered, hand-held device intended to remove a cast from...

  18. Casting directly from a computer model by using advanced simulation software FLOW-3D Cast ®

    OpenAIRE

    M. Sirviö; M. Woś

    2009-01-01

    ConiferRob - A patternless casting technique, originally conceived at VTT Technical Research Centre of Finland and furtherdeveloped at its spin-off company, Simtech Systems, offers up to 40% savings in product development costs, and up to two months shorterdevelopment times compared to conventional techniques. Savings of this order can be very valuable on today's highly competitivemarkets. Casting simulation is commonly used for designing of casting systems. However, most of the software are ...

  19. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    OpenAIRE

    A. Studnicki

    2010-01-01

    In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis), which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to ...

  20. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-01-01

    Full Text Available In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis, which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to registration of data was used Crystaldigraph - PC.