WorldWideScience

Sample records for vascular conduit generated

  1. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits

    International Nuclear Information System (INIS)

    Dolati, Farzaneh; Yu, Yin; Zhang, Yahui; Ozbolat, Ibrahim T; Jesus, Aribet M De; Sander, Edward A

    2014-01-01

    Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this paper, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon nanotubes (CNTs) to enhance their mechanical properties and bioprintability. In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication. (paper)

  2. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    Science.gov (United States)

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  3. Novel technique for airless connection of artificial heart to vascular conduits.

    Science.gov (United States)

    Karimov, Jamshid H; Gao, Shengqiang; Dessoffy, Raymond; Sunagawa, Gengo; Sinkewich, Martin; Grady, Patrick; Sale, Shiva; Moazami, Nader; Fukamachi, Kiyotaka

    2017-12-01

    Successful implantation of a total artificial heart relies on multiple standardized procedures, primarily the resection of the native heart, and exacting preparation of the atrial and vascular conduits for pump implant and activation. Achieving secure pump connections to inflow/outflow conduits is critical to a successful outcome. During the connection process, however, air may be introduced into the circulation, traveling to the brain and multiple organs. Such air emboli block blood flow to these areas and are detrimental to long-term survival. A correctly managed pump-to-conduit connection prevents air from collecting in the pump and conduits. To further optimize pump-connection techniques, we have developed a novel connecting sleeve that enables airless connection of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) to the conduits. In this brief report, we describe the connecting sleeve design and our initial results from two acute in vivo implantations using a scaled-down version of the CFTAH.

  4. Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model

    Science.gov (United States)

    De Rooij, R.; Graham, W. D.

    2016-12-01

    The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.

  5. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.

    Science.gov (United States)

    Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, Ibrahim T

    2015-01-01

    The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies.

  6. Stochastic simulation of karst conduit networks

    Science.gov (United States)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José

    2012-01-01

    Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when

  7. Pulmonary artery reconstruction with a tailor-made bovine pericardial conduit following sleeve resection of a long segmental pulmonary artery for the treatment of lung cancer: technical details of the dog-ear method for adjusting diameter during vascular anastomosis.

    Science.gov (United States)

    Shimizu, Kimihiro; Nagashima, Toshiteru; Ohtaki, Yoichi; Takahashi, Toru; Mogi, Akira; Kuwano, Hiroyuki

    2017-05-01

    Sleeve resection of the pulmonary artery (PA) is always required for lung-sparing operations in which half or more of the vessel circumference is infiltrated by the primary tumor or metastatic hilar nodes. Following sleeve resection, conduit reconstruction may be indicated if there is excessive distance between the two vascular stumps, because there is a high degree of tension when repaired by direct anastomosis. We herein present a case of PA reconstruction using a tailor-made bovine pericardial conduit after sleeve resection of PA during lung cancer surgery. The length of resection was longer than 3 cm, and the difference in diameter between the conduit and peripheral PA stump was larger than 0.5 cm. We describe the surgical and oncological merits of a bovine pericardial conduit, and provide details of our reconstruction technique, focusing on adjustment of diameter between the conduit and peripheral PA (dog-ear method).

  8. Pumped Storage and Potential Hydropower from Conduits

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  9. Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures.

    NARCIS (Netherlands)

    Duijnhoven, N.T.L. van; Green, D.J.; Felsenberg, D.; Belavy, D.L.; Hopman, M.T.E.; Thijssen, D.H.J.

    2010-01-01

    Physical inactivity is a potent stimulus for vascular remodeling, leading to a marked decrease in conduit artery diameter. However, little is known about the impact of physical inactivity on artery wall thickness or wall:lumen ratio or the potential of exercise countermeasures to modify artery wall

  10. Design of barrier coatings on kink-resistant peripheral nerve conduits

    Directory of Open Access Journals (Sweden)

    Basak Acan Clements

    2016-02-01

    Full Text Available Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1 electrospinning a layer of polymer fibers onto the surface of the conduit and (2 coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

  11. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  12. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Physicochemical hydrodynamics of porous structures in vascular plants

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon

    2013-11-01

    Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  14. Conduit Stability and Collapse in Explosive Volcanic Eruptions: Coupling Conduit Flow and Failure Models

    Science.gov (United States)

    Mullet, B.; Segall, P.

    2017-12-01

    Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including

  15. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again.

    Science.gov (United States)

    Patterson, Joseph T; Gilliland, Thomas; Maxfield, Mark W; Church, Spencer; Naito, Yuji; Shinoka, Toshiharu; Breuer, Christopher K

    2012-05-01

    Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradigm, and cell seeding of scaffolds in vitro remained the cornerstone of neotissue formation. Our second-generation bone marrow cell-seeded TEVG diverged from tissue engineering dogma with a design that induces the recipient to regenerate vascular tissue in situ. New insights suggest that neovessel development is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the graft. The identification of these signals and the regulatory interactions that influence cell migration, phenotype and extracellular matrix deposition during TEVG remodeling are yielding a next-generation TEVG engineered to guide neotissue regeneration without the use of seeded cells. These developments represent steady progress towards our goal of an off-the-shelf tissue-engineered vascular conduit for pediatric congenital heart surgery.

  16. Optimization of Design of Steam Turbine Exhaust Conduits

    Directory of Open Access Journals (Sweden)

    A. S. Goldin

    2014-01-01

    Full Text Available Improving effectiveness turbine was and remains a key issue for today. In order to improve the efficiency of the turbine is necessary to reduce losses in the steam turbine exhaust conduit.This paper presents the design optimization exhaust conduit steam turbine K-27-2.9 produced by JSC «KTW» at the design stage. The aims of optimizing the design were: decreasing hydraulic resistance of the conduit, reduction of non-uniformity of the flow at the outlet of the conduit, equalizing steam flow ahead of the condenser tube bundle.The conduit models were made and flows in it were simulated in environment of the Solid Works and its application COSMOS Flo Works.As the initial conduit model was selected exhaust conduit of turbine PT-25/34-3.4 produced by JSC «KTW». Was obtained by the calculated velocity field at the outlet of the conduit. The analysis of the calculation results revealed the necessity of changes to the initial design of the conduit. The changes were accompanied by calculating currents flow in the conduit, and assessed the impact of design changes on the nature of the course. Further transformation of the construction of the conduit was held on the results of these calculations. Construction changes are not touched by the outer geometry of the conduit, and were introduced to meet technological.According to calculation results, conclusions were drawn and selected three versions of the conduit.Given are the research results for the initial conduit model and modified design versions. In order to evaluate the flow degree of irregularity the momentum factor (Bussinesku factor for outlet crosssection of the selected conduit design version. Analysis of the research results made it possible to determine optimum design of the exhaust conduit.Introducing the suggested alterations in the conduit design will result in improvement of heat exchange in the condenser, an increase in reliability of the tube bundle operation, a decrease in noise and

  17. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  18. In Vivo Evaluation of Short-Term Performance of New Three-Layer Collagen-Based Vascular Graft Designed for Low-Flow Peripheral Vascular Reconstructions

    Directory of Open Access Journals (Sweden)

    Tomas Grus

    2018-01-01

    Full Text Available Aim. The aim of this study was to evaluate short-term patency of the new prosthetic graft and its structural changes after explantation. Methods. The study team developed a three-layer conduit composed of a scaffold made from polyester coated with collagen from the inner and outer side with an internal diameter of 6 mm. The conduit was implanted as a bilateral bypass to the carotid artery in 7 sheep and stenosis was created in selected animals. After a period of 161 days, the explants were evaluated as gross and microscopic specimens. Results. The initial flow rate (median ± IQR in grafts with and without artificial stenosis was 120±79 ml/min and 255±255 ml/min, respectively. Graft occlusion occurred after 99 days in one of 13 conduits (patency rate: 92%. Wall-adherent thrombi occurred only in sharp curvatures in two grafts. Microscopic evaluation showed good engraftment and preserved structure in seven conduits; inflammatory changes with foci of bleeding, necrosis, and disintegration in four conduits; and narrowing of the graft due to thickening of the wall with multifocal separation of the outer layer in two conduits. Conclusions. This study demonstrates good short-term patency rates of a newly designed three-layer vascular graft even in low-flow conditions in a sheep model.

  19. Conduit enlargement in an eogenetic karst aquifer

    Science.gov (United States)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.; Neuhoff, Philip S.

    2010-11-01

    SummaryMost concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10 -6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10 -7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the

  20. The corrosion effect on the conduit systems

    International Nuclear Information System (INIS)

    Laaidi, Naouar; Belattar, Sougratti

    2009-01-01

    The conduits in the buildings require a regular and permanent control, in order to avoid the risks of deterioration caused by the corrosion or the escape of water. In this work, we present a thermal nondestructive testing method of concrete structures containing water conduits, based on numerical modeling in three dimensions. The goal is to study the detectability of these conduits in different situations and to give a thermal characterization of the rust behaviour in the steel conduits. (author)

  1. Bentall Operation with Valved Homograft Conduit

    Science.gov (United States)

    Choudhary, Shiv K.; Talwar, Sachin; Kumar, A. Sampath

    2000-01-01

    Lesions of the ascending aorta associated with aortic valve disease are usually treated by implanting a prosthetic valved conduit (Bentall procedure). In this report, we present our experience in which a valved homograft conduit was used for the procedure. Six patients underwent a Bentall procedure with the use of a cryopreserved valved homograft conduit. Two of the patients had annuloaortic ectasia, 2 had Marfan syndrome, and 1 had an atherosclerotic aneurysm of the aorta. One patient had severe aortic stenosis due to a bicuspid aortic valve, along with an aneurysm and localized dissection of the ascending aorta. In all of the patients, the aortic annulus was substantially dilated, with accompanying moderate-to-severe aortic regurgitation. A standard procedure was performed with moderate hypothermia, cardiopulmonary bypass, and aortic and bicaval cannulation. The ascending aorta and the aortic valve were replaced with a cryopreserved valved homograft conduit (aortic in 5 patients and pulmonary in 1). The native coronary ostia were anastomosed directly to the homograft. Echocardiography, which was performed intraoperatively, before discharge from the hospital, and at follow-up visits (1 to 36 months), revealed good valve function without dilatation of the homograft conduits. There was 1 late death due to Aspergillus fumigatus endocarditis, 6 months postoperatively. In 1 patient, magnetic resonance imaging performed at 24 months revealed normal caliber of the homograft conduit. We conclude that the Bentall procedure can be performed, safely and with excellent results, using cryopreserved homograft conduits. PMID:11198310

  2. Insulin resistance: vascular function and exercise

    Directory of Open Access Journals (Sweden)

    Moon-Hyon Hwang

    2016-09-01

    Full Text Available Insulin resistance associated with metabolic syndrome and Type 2 diabetes mellitus is an epidemic metabolic disorder, which increases the risk of cardiovascular complications. Impaired vascular endothelial function is an early marker for atherosclerosis, which causes cardiovascular complications. Both experimental and clinical studies indicate that endothelial dysfunction in vasculatures occurs with insulin resistance. The associated physiological mechanisms are not fully appreciated yet, however, it seems that augmented oxidative stress, a physiological imbalance between oxidants and antioxidants, in vascular cells is a possible mechanism involved in various vascular beds with insulin resistance and hyperglycemia. Regardless of the inclusion of resistance exercise, aerobic exercise seems to be beneficial for vascular endothelial function in both large conduit and small resistance vessels in both clinical and experimental studies with insulin resistance. In clinical cases, aerobic exercise over 8 weeks with higher intensity seems more beneficial than the cases with shorter duration and lower intensity. However, more studies are needed in the future to elucidate the physiological mechanisms by which vascular endothelial function is impaired in insulin resistance and improved with aerobic exercise.

  3. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  4. Frictional melting and stick-slip behavior in volcanic conduits

    Science.gov (United States)

    Kendrick, Jackie Evan; Lavallee, Yan; Hirose, Takehiro; di Toro, Giulio; Hornby, Adrian Jakob; Hess, Kai-Uwe; Dingwell, Donald Bruce

    2013-04-01

    Dome-building eruptions have catastrophic potential, with dome collapse leading to devastating pyroclastic flows with almost no precursory warning. During dome growth, the driving forces of the buoyant magma may be superseded by controls along conduit margins; where brittle fracture and sliding can lead to formation of lubricating cataclasite and gouge. Under extreme friction, pseudotachylyte may form at the conduit margin. Understanding the conduit margin processes is vital to understanding the continuation of an eruption and we postulate that pseudotachylyte generation could be the underlying cause of stick-slip motion and associated seismic "drumbeats", which are so commonly observed at dome-building volcanoes. This view is supported by field evidence in the form of pseudotachylytes identified in lava dome products at Soufrière Hills (Montserrat) and Mount St. Helens (USA). Both eruptions were characterised by repetitive, periodic seismicity and lava spine extrusion of highly viscous magma. High velocity rotary shear (HVR) experiments demonstrate the propensity for melting of the andesitic and dacitic material (from Soufrière Hills and Mount St. Helens respectively) at upper conduit stress conditions (HVR experiments which mimic rapid velocity fluctuations in stick-slip behavior demonstrate velocity-weakening behavior of melt, with a tendency for unstable slip. During ascent, magma may slip and undergo melting along the conduit margin. In the process the shear resistance of the slip zone is increased, acting as a viscous brake halting slip (the "stick" of stick-slip motion). Sufficient buoyancy-driven pressures from ascending magma below eventually overcome resistance to produce a rapid slip event (the "slip") along the melt-bearing slip zone, which is temporarily lubricated due to velocity-weakening. New magma below experiences the same slip event more slowly (as the magma decompresses) to produce a viscous brake and the process is repeated. This allows a

  5. Brachial artery repair using the basilic vein as a reliable conduit in a 3-year-old child

    Directory of Open Access Journals (Sweden)

    Hyunyoung G. Kim

    2017-04-01

    Full Text Available A supracondylar fracture of the humerus is the most common upper extremity fracture in children with concurrent neurovascular complications. However, bypass grafting in the management of a pediatric open elbow dislocation with an arterial injury has rarely been reported in the literature. Hence, an adequate conduit for a vessel graft interposition remains questionable when a primary anastomosis is limited in an arterial reconstruction. The purpose of this study is to present a brachial artery reconstruction in a 3-year-old patient with an open supracondylar fracture of the humerus. In the clinical and surgical examination of the patient, an open wound in the left antecubital fossa presented with accompanying brachial artery injury. To repair the artery, a reverse end-to-end anastomosis was conducted using basilic vein graft from the ipsilateral arm under general anesthesia. The patient had palpable radial pulses in the postoperative clinical examination and was discharged without complications. The great saphenous vein (GSV has proven to be the most common and the best conduit for arterial reconstruction of the upper extremity in the adult patients. However, the GSV graft is known to have the propensity for becoming aneurysmal in pediatric patients. Some studies have demonstrated the basilic vein as a suitable conduit in pediatric patients, in that it has durable patency, fewer branches, size compatibility for anastomosis, and proximity to the brachial artery. Our case confirms the safety of using this autogenous vein from within the zone of injury for arterial reconstruction, after a supracondylar humeral fracture. The management of pediatric elbow fractures accompanying vascular injuries can be technically demanding due to relatively small, delicate structures and concurrent neurovascular network. Nonetheless, a vascular injury should be treated with high level of suspicion and immediate intervention to avoid any limb ischemia or loss. In

  6. Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes1[W][OPEN

    Science.gov (United States)

    Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila

    2014-01-01

    Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347

  7. Engineering based assessment for a shape design of a pediatric ePTFE pulmonary conduit valve.

    Science.gov (United States)

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Miura, Hidekazu; Mura, Seitaro; Yamagishi, Masaaki

    2016-08-01

    The authors examined the hemodynamic characteristics of expanded polytetrafluoroethylene (ePTFE) pulmonary valved conduits quantitatively by our originally developed pediatric pulmonary mechanical circulatory system, in order to suggest the optimal shape design. The system consisted of pneumatically driven right atrium and ventricle model, a pulmonary valve chamber, and elastic pulmonary compliance model with peripheral vascular resistance units, a venous reservoir. We employed two different types of ePTFE valve and evaluated the relationship between the leaflets motion and hemodynamic characteristics by using a high-speed video camera. As a result, we successfully reproduced hemodynamic simulations in our pediatric pulmonary mock system. We confirmed that the presence of bulging sinuses in the pulmonary valved conduit reduced the transvalvular energy loss and increased the valve opening area during systolic period. Our engineering-based in vitro analysis could be useful for proposing a shape design optimization of sophisticated pediatric ePTFE pulmonary valve.

  8. Biological conduit small gap sleeve bridging method for peripheral nerve injury: regeneration law of nerve fibers in the conduit

    Directory of Open Access Journals (Sweden)

    Pei-xun Zhang

    2015-01-01

    Full Text Available The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair peripheral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good histocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks, the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objective and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.

  9. Drill pipes and casings utilizing multi-conduit tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1989-01-24

    A seal adapted for use with a multi-conduit well tubular, or the like, is described which consists of: a plate with fluid passages, each passage corresponding to an opening of a conduit of the multiconduit tubular, and a groove on the plate around each passage; and elastomer means partially embeddable into each groove for sealing each conduit of a tubular to a corresponding conduit of another similar tubular.

  10. 47 CFR 32.2441 - Conduit systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...

  11. Peripheral nerve conduits: technology update

    Science.gov (United States)

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  12. Fractal Branching in Vascular Trees and Networks by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.

    2016-01-01

    Vascular patterning offers an informative multi-scale, fractal readout of regulatory signaling by complex molecular pathways. Understanding such molecular crosstalk is important for physiological, pathological and therapeutic research in Space Biology and Astronaut countermeasures. When mapped out and quantified by NASA's innovative VESsel GENeration Analysis (VESGEN) software, remodeling vascular patterns become useful biomarkers that advance out understanding of the response of biology and human health to challenges such as microgravity and radiation in space environments.

  13. Artificial urinary conduit construction using tissue engineering methods.

    Science.gov (United States)

    Kloskowski, Tomasz; Pokrywczyńska, Marta; Drewa, Tomasz

    2015-01-01

    Incontinent urinary diversion using an ileal conduit is the most popular method used by urologists after bladder cystectomy resulting from muscle invasive bladder cancer. The use of gastrointestinal tissue is related to a series of complications with the necessity of surgical procedure extension which increases the time of surgery. Regenerative medicine together with tissue engineering techniques gives hope for artificial urinary conduit construction de novo without affecting the ileum. In this review we analyzed history of urinary diversion together with current attempts in urinary conduit construction using tissue engineering methods. Based on literature and our own experience we presented future perspectives related to the artificial urinary conduit construction. A small number of papers in the field of tissue engineered urinary conduit construction indicates that this topic requires more attention. Three main factors can be distinguished to resolve this topic: proper scaffold construction along with proper regeneration of both the urothelium and smooth muscle layers. Artificial urinary conduit has a great chance to become the first commercially available product in urology constructed by regenerative medicine methods.

  14. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  15. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Conduit for regeneration of biological material

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a conduit comprising a first material, having 1) a through-going hole, 2) fibers aligned along the long-axis in the through-going hole, each fiber having a diameter in the range 200-2000 nm. The conduit is preferably for regeneration of biological material, even...

  17. Sealing a conduit end

    International Nuclear Information System (INIS)

    Mentz, R.M.

    1993-01-01

    An apparatus for sealing or blocking conduits, such as the primary nozzles of a nuclear steam generator is described. It includes an annular bracket sealingly attached to the open end of the nozzle, the bracket having a plurality of threaded holes therein. Mounted atop the bracket is a generally circular nozzle dam for covering the opening. Interposed between the nozzle dam and the bracket is an extrusion-resistant seal member having a plurality of apertures therethrough for receiving each bolt. The seal member is configured to resist extrusion by having laminated layers of differing hardnesses, so that the seal member will not laterally extrude away from each bolt in a manner that enlarges the aperture surrounding each bolt as the nozzle dam is bolted to the bracket. (author)

  18. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  19. Drill pipes and casings utilizing multi-conduit tubular; Flerkanals roerstreng

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1997-04-23

    The invention relates to a multi-conduit tubular having fluid conduits and electrical conduits, with associated surface fluid and electrical commutators, and downhole sensors for providing surface monitors with instantaneous formation data. Each tubular includes a plurality of uniform linear conduits there through, with a gasket seal plate interposed between joined tubular for assuring a high pressure seal between joined conduits. the seal plate includes an intermediate electrical connector for connecting electrical conduit connectors of one tubular to another. A coupling collar with uniform diameter internal coarse and fine threads joins the tubular ends having similar threads by differential thread action without respective tubular rotation. Each tubular end includes an inter-engaging index recess and index lug, and drive recesses and lugs for maintaining angular registry of the tubular string and for driving one drill tubular with another. A fluid commutator includes a rotating shaft with passages connected to the tubular conduits, and rotating in a manifold having annular grooves in communication with the shaft passages and external fluid sources. An adaptor couples each commutator shaft passage to one or more tubular conduits. Slip rings on a quill shaft and stationary brush means provide electrical continuity from the electrical conduit wires to surface equipment. A cross-over sub includes formation parameter sensors and telemetry equipment in a blocked off portion of a fluid conduit. An annular accumulator connected with the well bore annulus applies a pressure thereto in response to downhole sensors to change the effective density of the drill mud. The multi-conduit tubular is further adapted for use as a well casing to provide downhole access of a plurality of fluids and electrical parameter sensors. 28 figs.

  20. Solar fuels generator

    Science.gov (United States)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  1. The adventitia: essential regulator of vascular wall structure and function.

    Science.gov (United States)

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.

  2. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    Science.gov (United States)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  3. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    Science.gov (United States)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  4. Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.

    2010-01-01

    PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P dropout were dominated first by remodeling of arteries and subsequently by veins.

  5. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Directory of Open Access Journals (Sweden)

    Westerholm Roger

    2010-07-01

    Full Text Available Abstract Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3 or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin and endothelial-independent (sodium nitroprusside and verapamil vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel

  6. A novel conduit-based coaptation device for primary nerve repair.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Cardwell, Nancy; Pollins, Alonda C; Afshari, Ashkan; Nguyen, Lyly; Dortch, Richard D; Thayer, Wesley P

    2018-06-01

    Conduit-based nerve repairs are commonly used for small nerve gaps, whereas primary repair may be performed if there is no tension on nerve endings. We hypothesize that a conduit-based nerve coaptation device will improve nerve repair outcomes by avoiding sutures at the nerve repair site and utilizing the advantages of a conduit-based repair. The left sciatic nerves of female Sprague-Dawley rats were transected and repaired using a novel conduit-based device. The conduit-based device group was compared to a control group of rats that underwent a standard end-to-end microsurgical repair of the sciatic nerve. Animals underwent behavioral assessments at weekly intervals post-operatively using the sciatic functional index (SFI) test. Animals were sacrificed at four weeks to obtain motor axon counts from immunohistochemistry. A sub-group of animals were sacrificed immediately post repair to obtain MRI images. SFI scores were superior in rats which received conduit-based repairs compared to the control group. Motor axon counts distal to the injury in the device group at four weeks were statistically superior to the control group. MRI tractography was used to demonstrate repair of two nerves using the novel conduit device. A conduit-based nerve coaptation device avoids sutures at the nerve repair site and leads to improved outcomes in a rat model. Conduit-based nerve repair devices have the potential to standardize nerve repairs while improving outcomes.

  7. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  8. Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.

    2010-01-01

    PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P < 0.01). Throughout DR progression, the density of larger vessels (G(sub 1-5)) remained essentially unchanged, and D(sub v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins.

  9. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial.

    Science.gov (United States)

    Beckman, Joshua A; Goldfine, Allison B; Leopold, Jane A; Creager, Mark A

    2016-12-01

    Oxidative stress is a key driver of vascular dysfunction in diabetes mellitus. Ebselen is a glutathione peroxidase mimetic. A single-site, randomized, double-masked, placebo-controlled, crossover trial was carried out in 26 patients with type 1 or type 2 diabetes to evaluate effects of high-dose ebselen (150 mg po twice daily) administration on oxidative stress and endothelium-dependent vasodilation. Treatment periods were in random order of 4 wk duration, with a 4-wk washout between treatments. Measures of oxidative stress included nitrotyrosine, plasma 8-isoprostanes, and the ratio of reduced to oxidized glutathione. Vascular ultrasound of the brachial artery and plethysmographic measurement of blood flow were used to assess flow-mediated and methacholine-induced endothelium-dependent vasodilation of conduit and resistance vessels, respectively. Ebselen administration did not affect parameters of oxidative stress or conduit artery or forearm arteriolar vascular function compared with placebo treatment. There was no difference in outcome by diabetes type. Ebselen, at the dose and duration evaluated, does not improve the oxidative stress profile, nor does it affect endothelium-dependent vasodilation in patients with diabetes mellitus. Copyright © 2016 the American Physiological Society.

  10. A generative modeling approach to connectivity-Electrical conduction in vascular networks

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav

    2016-01-01

    The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel...... to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks...... of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub...

  11. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Science.gov (United States)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  12. Degradation properties of the electrostatic assembly PDLLA/CS/CHS nerve conduit

    Energy Technology Data Exchange (ETDEWEB)

    Xu Haixing [School of Chemical Engineering, Wuhan University of Technology, Wuhan 430070 (China); Yan Yuhua; Wan Tao; Li Shipu, E-mail: yanyuhua8@126.co [Biomedical Materials and Engineering Research Center, Wuhan University of Technology, Wuhan 430070 (China)

    2009-08-15

    A poly(d,l-lactic acid)/chondroitin sulfate/chitosan (PDLLA/CS/CHS) nerve conduit for repairing nerve defects was prepared by electrostatic assembly and the thermally induced phase separation technique. The hydrophilic characteristics of the PDLLA/CS/CHS assembly nerve conduits were improved markedly. The degradation behavior of the nerve conduit with various assembly layers was evaluated by a pH change, weight loss rate and molecular weight change. The pH of the solution of the nerve conduit could be effectively adjusted by varying the layer numbers and overcoming the acidity-caused auto-acceleration of PDLLA; the nerve conduit can retain its integrity in a phosphate buffer solution after being degraded for 3 months. After such a conduit was implanted in the rat for 3 months, obvious degradation occurred, but the regenerated nerve was integrated and it grew successfully from the proximal to distal nerve stump. All these results implied that the degradation rate of the prepared conduit can adapt to the regeneration of the peripheral nerve, which might be a new derivative of PDLLA-based biodegradable materials for repairing nerve injuries without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as shown by PDLLA.

  13. Radioactive material generator

    International Nuclear Information System (INIS)

    Czaplinski, T.V.; Bolter, B.J.; Heyer, R.E.; Bruno, G.A.

    1975-01-01

    A radioactive material generator includes radioactive material in a column, which column is connected to inlet and outlet conduits, the generator being embedded in a lead casing. The inlet and outlet conduits extend through the casing and are topped by pierceable closure caps. A fitting, containing means to connect an eluent supply and an eluate container, is adapted to pierce the closure caps. The lead casing and the fitting are compatibly contoured such that they will fit only if properly aligned with respect to each other

  14. Validation of the Society for Vascular Surgery's objective performance goals for critical limb ischemia in everyday vascular surgery practice.

    Science.gov (United States)

    Goodney, Philip P; Schanzer, Andres; Demartino, Randall R; Nolan, Brian W; Hevelone, Nathanael D; Conte, Michael S; Powell, Richard J; Cronenwett, Jack L

    2011-07-01

    To develop standardized metrics for expected outcomes in lower extremity revascularization for critical limb ischemia (CLI), the Society for Vascular Surgery (SVS) has developed objective performance goals (OPGs) based on aggregate data from randomized trials of lower extremity bypass (LEB). It remains unknown, however, if these targets can be achieved in everyday vascular surgery practice. We applied SVS OPG criteria to 1039 patients undergoing 1039 LEB operations for CLI with autogenous vein (excluding patients on dialysis) within the Vascular Study Group of New England (VSGNE). Each of the individual OPGs was calculated within the VSGNE dataset, along with its surrounding 95% confidence intervals (CIs) and compared to published SVS OPGs using χ(2) comparisons and survival analysis. Across most risk strata, patients in the VSGNE and SVS OPG cohorts were similar (clinical high-risk [age >80 years and tissue loss]: 15.3% VSGNE; 16.2% SVS OPG; P = .58; anatomic high risk [infrapopliteal target artery]: 57.8% VSGNE; 60.2% SVS OPG; P = .32). However, the proportion of VSGNE patients designated as conduit high-risk (lack of single-segment great saphenous vein) was lower (10.2% VSGNE; 26.9% SVS OPG;P Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  15. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  16. LOAD ON BURIED PRESSURE CONDUITS WITH REFERENCE TO ...

    African Journals Online (AJOL)

    width of conduit or trench; the shearing forces on the plane between the backfill and adjacent earth; for embankment condition, the amounL of relative settlement between the backfill and adjacent earth; the rigidity of the conduit support under embankment loading. Table 3. Selected values of c'' for use in Eq. 8. Sand and.

  17. Small-sized conduits in the right ventricular outflow tract in young children: bicuspidalized homografts are a good alternative to standard conduits.

    Science.gov (United States)

    François, Katrien; De Groote, Katya; Vandekerckhove, Kristof; De Wilde, Hans; De Wolf, Daniel; Bové, Thierry

    2017-10-03

    Downsizing a homograft (HG) through bicuspidalization has been used for more than 2 decades to overcome the shortage of small-sized conduits for reconstruction of the right ventricular outflow tract (RVOT) in young children. Our goal was to investigate the durability of bicuspidalized HGs compared with other small HGs. A retrospective analysis of 93 conduits ≤20 mm, implanted over 23 years, was performed. The end-points were survival, structural valve degeneration and conduit replacement. The conduits comprised 40 pulmonary HGs, 12 aortic HGs, 17 bicuspidalized HGs and 24 xenografts. The median age, mean conduit diameter and z-value at implantation were 1.4 (interquartile range 0.3-3) years, 16.5 ± 2.7 mm and 2.8 ± 1.3, respectively. Valve position was heterotopic in 59 patients and orthotopic in 34 patients. At a mean follow-up period of 7.6 ± 5.9 years, the hospital survival rate was 89%. Freedom from explant at 5 and 10 years was 83 ± 5% and 52 ± 6%, respectively. Freedom from structural valve degeneration was 79 ± 5% at 5 years and 47 ± 6% at 10 years [68 ± 8% for pulmonary HG, 42 ± 16% for bicuspidalized HG, 31 ± 15% for aortic HG and 20 ± 9% for xenografts (log rank P right ventricular outflow tract conduit in young children. However, when a small pulmonary HG is unavailable, bicuspidalization offers a valid alternative, preferable to xenograft conduits, at mid-term follow-up. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. Twenty years of cable-in-conduit conductors: 1975-1995

    International Nuclear Information System (INIS)

    Dresner, L.

    1995-01-01

    This paper reviews our progress during the last two decades in understanding cable-in-conduit conductors. The emphasis is on the physical principles governing the behavior of cable-in-conduit conductors, and no detailed mathematics is presented. The paper is constructed as a historical narrative

  19. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation.

    Science.gov (United States)

    Aloni, Roni

    2013-11-01

    The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.

  20. Analysis of achilles tendon vascularity with second-generation contrast-enhanced ultrasound.

    Science.gov (United States)

    Genovese, Eugenio; Ronga, Mario; Recaldini, Chiara; Fontana, Federico; Callegari, Leonardo; Maffulli, Nicola; Fugazzola, Carlo

    2011-01-01

    To compare morphological, power Doppler, and contrast-enhanced ultrasound (CEUS) features of the Achilles tendon between asymptomatic athletes and athletes who had undergone surgical repair of a previous rupture. Twenty-four athletes were divided in two groups (A and B). Group A included 14 patients with a median age of 32 years (range 27 to 47 years) who had undergone surgical repair for unilateral Achilles tendon rupture. Group B (control group) included 10 subjects with a median age of 34 years (range 27 to 40 years) with no previous or present history of tendinopathy. All patients were evaluated with ultrasound, power Doppler, and CEUS with second-generation contrast agent. We studied the uninjured Achilles tendon in athletes of group A and either the left or the right Achilles tendon of the athletes in group B. CEUS showed a significantly greater ability to detect a greater number of vascular spots within the uninjured tendon of group A compared to group B (power Doppler ultrasound in the uninjured contralateral Achilles tendon. CEUS is useful to evaluate vascularity not detected by other imaging techniques. Vascularity in the uninjured tendon seems to be increased in patients who had a previous rupture. Copyright © 2011 Wiley Periodicals, Inc.

  1. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  2. Short-term outcomes after incontinent conduit for gynecologic cancer: comparison of ileal, sigmoid, and transverse colon.

    Science.gov (United States)

    Tabbaa, Zaid M; Janco, Jo Marie T; Mariani, Andrea; Dowdy, Sean C; McGree, Michaela E; Weaver, Amy L; Cliby, William A

    2014-06-01

    The aim of this study is to estimate the overall rates of significant incontinent conduit-related complications and compare rates between conduit types. This was a retrospective review of 166 patients who underwent incontinent urinary diversion from April 1993 through April 2013. Patients were categorized by conduit type-ileal, sigmoid colon, and transverse colon. Significant conduit-related complications were assessed at 30 and 90days after surgery. Significant conduit-related complication was defined as any of the following: ureteral stricture, conduit leak, conduit obstruction, conduit ischemia, ureteral anastomotic leak, stent obstruction requiring intervention via interventional radiology procedure or reoperation, and renal failure. A total of 166 patients underwent formation of an incontinent urinary conduit, most commonly during exenteration for gynecologic malignancy. There were 129 ileal, 11 transverse colon, and 26 sigmoid conduits. The overall significant conduit-related complication rate within 30days was 15.1%. Complication rates for ileal, transverse and sigmoid conduits were 14.7%, 0%, and 23.1%, respectively (Fisher's exact test, p=0.24). By 90days, the Kaplan-Meier estimated rates of significant complications were 21.8% overall, and 22.3%, 0%, and 28.9%, respectively, by conduit type (log-rank test, p=0.19). The most common significant conduit-related complications were conduit or ureteral anastomotic leaks and conduit obstructions. By 1 and 2years following surgery, the Kaplan-Meier estimated overall rate of significant conduit-related complication increased to 26.5% and 30.1%, respectively. Our study suggests that there are multiple appropriate tissue sites for use in incontinent conduit formation, and surgical approach should be individualized. Most significant conduit-related complications occur within 90days after surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Simulation of Microdamage and Evaluation of Remaining Life of Steam Conduit Components from New-Generation Refractory Steel 10Kh9MF-Sh

    Science.gov (United States)

    Gladshtein, V. I.

    2018-03-01

    The effects of microdamage on the remaining life of high-temperature components of steam conduits from high-chromium steel 10Kh9MF-Sh and low-alloy steel 12Kh1M1F are compared. To simulate the microdamage, specimens with a circular notch and different relative diameters are fabricated. Specimens with a notch simulating the highest degree of microdamage and smooth specimens are tested for long-term strength. The coefficient of the remaining life of a conduit is computed for the range of relative damage presenting practical interest.

  4. Robotic Assisted Radical Cystoprostatectomy and Intracorporeal Ileal Conduit Urinary Diversion for a Kidney Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Peter A. Caputo

    Full Text Available ABSTRACT Introduction and Objectives: Robotic assisted radical cystectomy (RARC is an alternative to open radical cystectomy. As experience is gained with the RARC approach the technique is being applied to more complex surgical cases. We describe here our technique for RARC with intracorporeal ileal conduit urinary diversion for a renal transplant recipient. Materials and Methods: The patient is a 60-year old man with high-grade muscle invasive bladder cancer. He has a history of renal failure due to polycystic kidney disease and received a deceased donor renal transplant in 2008. His hospital course at time of transplant was complicated by low-level BK virus viremia. Interestingly his trans-urethral bladder tumor resection specimen at time of bladder cancer diagnosis stained positive for SV40. His native kidneys were anuric so bilateral laparoscopic nephrectomy was performed in a staged fashion 2 weeks prior to RARC. Our surgical technique utilizes 6 trocars, of note a 12-mm assistant trocar is placed 1 cm superior to the pubic symphysis, and this trocar is solely used to pass a laparoscopic stapler to facilitate the excision of the ileal segment and the stapled enteric anastomosis. Surgical steps include: identification of native ureters bilaterally (removed en bloc with the bladder specimen; identification of the transplanted ureter at the right bladder dome; posterior bladder and prostate dissection along Denonvilliers’ fascia; development of the space of Retzius; ligation and transection of the bladder and prostate vascular bundles; apical prostate dissection and transection of urethra; left pelvic lymphadenectomy; ilium resection for creation of the ileal conduit; stapled enteric anastomosis; ureteroileal anastomosis; maturation of the ileal conduit stoma. Results: The surgery had no intraoperative complications. Operative time was 443 minutes (7.4 hours. Estimated blood loss was 250 cc. Length of hospital stay was 5 days. The patient

  5. The adventitia: Essential role in pulmonary vascular remodeling.

    Science.gov (United States)

    Stenmark, Kurt R; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia; Anwar, Adil; Li, Min; Riddle, Suzette; Frid, Maria

    2011-01-01

    A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in "sensing" vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the "outside in." © 2011 American Physiological Society.

  6. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    Science.gov (United States)

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  7. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    Science.gov (United States)

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft

  8. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries

    Directory of Open Access Journals (Sweden)

    Charanpreet Singh

    2015-06-01

    Full Text Available Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants.

  9. On magma fragmentation by conduit shear stress: Evidence from the Kos Plateau Tuff, Aegean Volcanic Arc

    Science.gov (United States)

    Palladino, Danilo M.; Simei, Silvia; Kyriakopoulos, Konstantinos

    2008-12-01

    Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas-pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones

  10. Reverse Saphenous Conduit Flap in 19 Dogs and 1 Cat.

    Science.gov (United States)

    Cavalcanti, Jacqueline V J; Barry, Sabrina L; Lanz, Otto I; Barnes, Katherine; Coutin, Julia V

    2018-05-14

    The purpose of this retrospective study was to report the outcomes of 19 dogs and 1 cat undergoing reverse saphenous conduit flap between 1999 and 2016. Reverse saphenous conduit flap was used to treat traumatic wounds and wounds resulting from tumor excision in the hind limb; the majority of cases had medial shearing injuries. All animals had complete flap survival. In five animals (20%), minor donor site dehiscence occurred, which did not require surgery. Other postoperative complications included signs of severe venous congestion in one dog. Reverse saphenous conduit flap is a useful technique to repair skin defects of the distal hind limb.

  11. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  12. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats.

    Science.gov (United States)

    Huang, W; Begum, R; Barber, T; Ibba, V; Tee, N C H; Hussain, M; Arastoo, M; Yang, Q; Robson, L G; Lesage, S; Gheysens, T; Skaer, Nicholas J V; Knight, D P; Priestley, J V

    2012-01-01

    Various attempts have been made to develop artificial conduits for nerve repair, but with limited success. We describe here conduits made from Bombyx mori regenerated silk protein, and containing luminal fibres of Spidrex(®), a silk-based biomaterial with properties similar to those of spider silk. Assessment in vitro demonstrated that Spidrex(®) fibres support neurite outgrowth. For evaluation in vivo, silk conduits 10 mm in length and containing 0, 100, 200 or 300 luminal Spidrex(®) fibres, were implanted to bridge an 8 mm gap in the rat sciatic nerve. At 4 weeks, conduits containing 200 luminal Spidrex(®) fibres (PN200) supported 62% and 59% as much axon growth as autologous nerve graft controls at mid-conduit and distal nerve respectively. Furthermore, Spidrex(®) conduits displayed similar Schwann cell support and macrophage response to controls. At 12 weeks, animals implanted with PN200 conduits showed similar numbers of myelinated axons (81%) to controls, similar gastrocnemius muscle innervation, and similar hindpaw stance assessed by Catwalk footprint analysis. Plantar skin innervation was 73% of that of controls. PN200 Spidrex(®) conduits were also effective at bridging longer (11 and 13 mm) gaps. Our results show that Spidrex(®) conduits promote excellent axonal regeneration and function recovery, and may have potential for clinical application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Peripheral nerve conduits: technology update

    Directory of Open Access Journals (Sweden)

    Arslantunali D

    2014-12-01

    Full Text Available D Arslantunali,1–3,* T Dursun,1,2,* D Yucel,1,4,5 N Hasirci,1,2,6 V Hasirci,1,2,7 1BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU, Ankara, Turkey; 2Department of Biotechnology, METU, Ankara, Turkey; 3Department of Bioengineering, Gumushane University, Gumushane, Turkey; 4Faculty of Engineering, Department of Medical Engineering, Acibadem University, Istanbul, Turkey; 5School of Medicine, Department of Histology and Embryology, Acibadem University, Istanbul, Turkey; 6Department of Chemistry, Faculty of Arts and Sciences, METU, Ankara, Turkey; 7Department of Biological Sciences, Faculty of Arts and Sciences, METU, Ankara, Turkey *These authors have contributed equally to this work Abstract: Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers and designs (tubular, fibrous, and matrix type are being presented. Keywords: peripheral nerve injury, natural biomaterials, synthetic biomaterials

  14. POROSITY OF THE WALL OF A NEUROLAC (R) NERVE CONDUIT HAMPERS NERVE REGENERATION

    NARCIS (Netherlands)

    Meek, Marcel F.; Den Dunnen, Wilfred F. A.

    2009-01-01

    One way to improve nerve regeneration and bridge longer nerve gaps may be the use of semipermeable/porous conduits. With porosity less biomaterial is used for the nerve conduit. We evaluated the short-term effects of porous Neurolac (R) nerve conduits for in vivo peripheral nerve regeneration. In 10

  15. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

    Directory of Open Access Journals (Sweden)

    Daniel Biermann

    Full Text Available The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12. Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3 revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.

  16. Polymeric Nerve Conduits with Contact Guidance Cues Used in Nerve Repair

    Institute of Scientific and Technical Information of China (English)

    G DAI; X NIU; J YIN

    2016-01-01

    In the modern life, the nerve injury frequently happens due to mechanical, chemical or thermal accidents. In the trivial injuries, the peripheral nerves can regenerate on their own; however, in most of the cases the clinical treatments are required, where relatively large nerve injury gaps are formed. Currently, the nerve repair can be accomplished by direct suture when the injury gap is not too large;while the autologous nerve graft working as the gold standard of peripheral nerve injury treatment for nerve injuries with larger gaps. However, the direct suture is limited by heavy tension at the suture sites, and the autologous nerve graft also has the drawbacks of donor site morbidity and insufifcient donor tissue. Recently, artiifcial nerve conduits have been developed as an alternative for clinical nerve repair to overcome the limitations associated with the above treatments. In order to further improve the efifciency of nerve conduits, various guidance cues are incorporated, including physical cues, biochemical signals, as well as support cells. First, this paper reviewed the contact guidance cues applied in nerve conduits, such as lumen ifllers, multi-channels and micro-patterns on the inner surface. Then, the paper focused on the polymeric nerve conduits with micro inner grooves. The polymeric nerve conduits were fabricated using the phase inversion-based ifber spinning techniques. The smart spinneret with grooved die was designed in the spinning platform, while different spinning conditions, including flow rates, air-gap distances, and polymer concentrations, were adjusted to investigate the inlfuence of fabrication conditions on the geometry of nerve conduits. The inner groove size in the nerve conduits can be precisely controlled in our hollow ifber spinning process, which can work as the efifcient contact guidance cue for nerve regeneration.

  17. Gas-Generator Augmented Expander Cycle Rocket Engine

    Science.gov (United States)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  18. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  19. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  20. Fabrication and Optimization of Gelatin/ Nano Bioglass Conduits for Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    M. Foroutan Koudehi

    2014-07-01

    Full Text Available Introduction & Objective: Peripheral nerve injury is common in trauma patients and 4.5% of all soft-tissue injuries are accompanied by defects of peripheral nerve. Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Designed conduits com-prised of natural and synthetic materials are now widely used in the construction of damaged tissues. The aim of this project was to prepare nanocomposite conduits from gelatin and bioglass for damaged peripheral nerve reconstruction. Materials & Methods: In this experimental study,compound water solution of gelatin and nano bioglass synthesized through sol gel method, was made. After preparing the solution, special mandrels were dipped in solution several times and freeze dried in order to be emptied of wa-ter via sublimation. The conduits had the following dimensions: internal diameter: 1.6 mm, outside diameter: 2.2 mm and length about 12 mm. In order to evaluate the biocompatibility of conduits we used cytotoxicity test by Chinese ovary cells and MTT assay by Miapaca-2 (pancreatic cancer cell line. Results: The prepared nano bioglass and conduits were characterized using transmission elec-tron microscopy, scanning electron microscopy, fourier transformed infrared spectroscopy and X-ray diffraction. Results of biocompatibility test showed no sign of cytotoxicity and cells were found to be attached to the pore walls offered by the conduits. Conclusion: According to the results, nano bioglass conduits could be a good candidate for peripheral nerve regeneration. (Sci J Hamadan Univ Med Sci 2014; 21 (2:152-160

  1. Vascular Response of the Segments Adjacent to the Proximal and Distal Edges of the ABSORB Everolimus-Eluting Bioresorbable Vascular Scaffold

    DEFF Research Database (Denmark)

    Gogas, Bill D; Serruys, Patrick W; Diletti, Roberto

    2012-01-01

    This study sought to investigate in vivo the vascular response at the proximal and distal edges of the second-generation ABSORB everolimus-eluting bioresorbable vascular scaffold (BVS).......This study sought to investigate in vivo the vascular response at the proximal and distal edges of the second-generation ABSORB everolimus-eluting bioresorbable vascular scaffold (BVS)....

  2. Midterm performance of a novel restorative pulmonary valved conduit: preclinical results

    NARCIS (Netherlands)

    Soliman, Osama I.; Miyazaki, Yosuke; Abdelghani, Mohammad; Brugmans, Marieke; Witsenburg, Maarten; Onuma, Yoshinobu; Cox, Martijn; Serruys, Patrick W.

    2017-01-01

    Aims: The Xeltis bioabsorbable pulmonary valved conduit (XPV), designed to guide functional restoration of patients' own tissue, is potentially more durable than current pulmonary bioprosthetic valves/valved conduits. The aim of this study was to assess the haemodynamic performance of the novel XPV

  3. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  4. How do bryophytes govern generative recruitment of vascular plants?

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Graae, B.J.; Douma, J.C.; Grau, O.; Milbau, A.; Shevtsova, A.; Wolters, L.; Cornelissen, J.H.C.

    2011-01-01

    Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific

  5. FATIGUE PROPERTIES OF MODIFIED 316LN STAINLESS STEEL AT 4 K FOR HIGH FIELD CABLE-IN-CONDUIT APPLICATIONS

    International Nuclear Information System (INIS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-01-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb 3 Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  6. Treatment of right ventricle to pulmonary artery conduit stenosis in infants with hypoplastic left heart syndrome.

    Science.gov (United States)

    Münsterer, Andrea; Kasnar-Samprec, Jelena; Hörer, Jürgen; Cleuziou, Julie; Eicken, Andreas; Malcic, Ivan; Lange, Rüdiger; Schreiber, Christian

    2013-09-01

    To determine the incidence of right ventricle-to-pulmonary artery (RV-PA) conduit stenosis after the Norwood I operation in patients with hypoplastic left heart syndrome (HLHS), and to determine whether the treatment strategy of RV-PA conduit stenosis has an influence on interstage and overall survival. Ninety-six patients had a Norwood operation with RV-PA conduit between 2002 and 2011. Details of reoperations/interventions due to conduit obstruction prior to bidirectional superior cavopulmonary anastomosis (BSCPA) were collected. Overall pre-BSCPA mortality was 17%, early mortality after Norwood, 6%. Early angiography was performed in 34 patients due to desaturation at a median of 8 days after the Norwood operation. Fifteen patients (16%) were diagnosed with RV-PA conduit stenosis that required treatment. The location of the conduit stenosis was significantly different in the patients with non-ringed (proximal) and the patients with ring-enforced conduit (distal), P = 0.004. In 6 patients, a surgical revision of the conduit was performed; 3 of them died prior to BSCPA. Another 6 patients had a stent implantation and 3 were treated with balloon dilatation followed by a BSCPA in the subsequent 2 weeks. All patients who were treated interventionally for RV-PA conduit obstruction had a successful BSCPA. Patients who received a surgical RV-PA conduit revision had a significantly higher interstage (P = 0.044) and overall mortality (P = 0.011) than those who received a stent or balloon dilatation of the stenosis followed by an early BSCPA. RV-PA conduit obstruction after Norwood I procedure in patients with HLHS can be safely and effectively treated by stent implantation, balloon dilatation and early BSCPA. Surgical revision of the RV-PA conduit can be reserved for patients in whom an interventional approach fails, and an early BSCPA is not an option.

  7. Collagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit.

    Science.gov (United States)

    Sulong, Ahmad Fadzli; Hassan, Nur Hidayah; Hwei, Ng Min; Lokanathan, Yogeswaran; Naicker, Amaramalar Selvi; Abdullah, Shalimar; Yusof, Mohd Reusmaazran; Htwe, Ohnmar; Idrus, Ruszymah Bt Hj; Haflah, Nor Hazla Mohamed

    2014-01-01

    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative. To develop an artificial nerve conduit using collagen-coated polylactic-glycolic acid (PLGA) and to analyse the survivability and propagating ability of the neuro-differentiated human mesenchymal stem cells in this conduit. The PLGA conduit was constructed by dip-molding method and coated with collagen by immersing the conduit in collagen bath. The ultra structure of the conduits were examined before they were seeded with neural-differentiated human mesenchymal stem cells (nMSC) and implanted sub-muscularly on nude mice thighs. The non-collagen-coated PLGA conduit seeded with nMSC and non-seeded non-collagen-coated PLGA conduit were also implanted for comparison purposes. The survivability and propagation ability of nMSC was studied by histological and immunohistochemical analysis. The collagen-coated conduits had a smooth inner wall and a highly porous outer wall. Conduits coated with collagen and seeded with nMSCs produced the most number of cells after 3 weeks. The best conduit based on the number of cells contained within it after 3 weeks was the collagen-coated PLGA conduit seeded with neuro-transdifferentiated cells. The collagen-coated PLGA conduit found to be suitable for attachment, survival and proliferation of the nMSC. Minimal cell infiltration was found in the implanted conduits where nearly all of the cells found in the cell seeded conduits are non-mouse origin and have neural cell markers, which exhibit the biocompatibility of the conduits. The collagen-coated PLGA conduit is biocompatible, non-cytotoxic and suitable for use as artificial nerve conduits.

  8. Development of a comprehensive inventory management system for underground fiber optic conduits.

    Science.gov (United States)

    2013-03-01

    Major State Departments of Transportation operate and maintain networks of thousands of miles of conduits, many : carrying fiber optic cables that are vital to State communication systems. These conduits are located alongside or : across highways and...

  9. Computer tomography valorization of the vascular lingual channels in the jaw

    International Nuclear Information System (INIS)

    Costantino, Sebastian; Capiel, Carlos h; Bouzas, Carlos; Vuotto, Miguel; Ferrari, Daniela; Bazzano, Sebastian

    2006-01-01

    Purpose: To determine the frequency, location and position of vascular lingual channels of jaw by dental CT and classifying them based on its location. Material and methods: Dental CT of 100 consecutive patients were reevaluated as previous evaluation to the positioning of dental implants. They are classified by linking their location on the jaw with the number of tooth present or absent in that area. Results: All patients had at least one lingual vascular channel in the jaw; 36 patients presented two channels, eight patients presented three and a patient presented four. The more frequent location was between the sectors of the pieces 31 and 41. Sixteen patients showed two channels (superior and inferior) in that location. The second location by frequency was between pieces 32 and 33 (nine patients). The average distance between the lingual surface of the alveolar rim and the vascular channels was of 16 mm. Conclusion: the dental CT is an excellent method for the identification of the vascular lingual channels by its multiplanar capacity and appropriate image resolution. The characterization and classification of these conduits by a method of easy reading for the radiologists and the dentists assure a correct pre surgical valuation avoiding hemorrhages during the jaw perforation in the positioning of dental implants. (author) [es

  10. Experimental study on scale removal from special-shaped conduits through underwater electrical discharge

    International Nuclear Information System (INIS)

    Cao, Y; Wang, Z Q; Li, G F; Wu, Y; Zhou, J J

    2013-01-01

    Underwater electrical discharge technology is an innovative technique that can be used to enhance the stress intensity of water and improve the load addition. The technique enlarges the section area and compresses the surrounding water using a high-powered shock wave, which is induced by an underwater electrical discharge. This paper investigates the effectiveness of scale removal for special-shaped conduits employing underwater electrical discharge. Experimental results show that the pressure wave generated by underwater electrical discharge is capable of eliminating scale in special-shaped conduits. The data indicates that when the capacitance of the parallel-pulsed capacitors was 4 μF, the high pulsed power voltage was 33 kV and the primary discharge gap was 48 mm, the result of scale removal was remarkable. In laboratory tests, the scale of special equipment was removed to a great extent by this method. Because of its effectiveness and low cost, this method improves the practice and extends the lifetime of such equipment, and thus has potential application and economic value.

  11. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy

    International Nuclear Information System (INIS)

    Bal, S; Kruithof, A C; Bouwstra, J; Liebl, H; Tomerius, M; Lademann, J; Meinke, M

    2010-01-01

    Solid microneedles enhance the penetration of drugs into the viable skin but little is known about the geometry of the conduits in vivo. Therefore, laser scanning microscopy was used to visualize the conduits of a microneedle system with needles at a length of 300 μm in 6 healthy subjects over a period of time. The model drug, a fluorescent dye was applied before and after piercing. Laser scanning microscopy was evaluated as being an excellent method to monitor the geometry and closure of the conduits over time. The used microneedle system was evaluated as suitable to enhance the transport of model drugs into the viable epidermis without bleeding and a short closure time of the conduits at the skin surface

  12. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy

    Science.gov (United States)

    Bal, S.; Kruithof, A. C.; Liebl, H.; Tomerius, M.; Bouwstra, J.; Lademann, J.; Meinke, M.

    2010-03-01

    Solid microneedles enhance the penetration of drugs into the viable skin but little is known about the geometry of the conduits in vivo. Therefore, laser scanning microscopy was used to visualize the conduits of a microneedle system with needles at a length of 300 μm in 6 healthy subjects over a period of time. The model drug, a fluorescent dye was applied before and after piercing. Laser scanning microscopy was evaluated as being an excellent method to monitor the geometry and closure of the conduits over time. The used microneedle system was evaluated as suitable to enhance the transport of model drugs into the viable epidermis without bleeding and a short closure time of the conduits at the skin surface.

  13. Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity

    Science.gov (United States)

    Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.

    2012-12-01

    In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.

  14. Generation of a vascularized organoid using skeletal muscle as the inductive source.

    LENUS (Irish Health Repository)

    Messina, Aurora

    2005-09-01

    The technology required for creating an in vivo microenvironment and a neovasculature that can grow with and service new tissue is lacking, precluding the possibility of engineering complex three-dimensional organs. We have shown that when an arterio-venous (AV) loop is constructed in vivo in the rat groin, and placed inside a semisealed chamber, an extensive functional vasculature is generated. To test whether this unusually angiogenic environment supports the survival and growth of implanted tissue or cells, we inserted various preparations of rat and human skeletal muscle. We show that after 6 weeks incubation of muscle tissue, the chamber filled with predominantly well-vascularized recipient-derived adipose tissue, but some new donor-derived skeletal muscle and connective tissue were also evident. When primary cultured myoblasts were inserted into the chamber with the AV loop, they converted to mature striated muscle fibers. Furthermore, we identify novel adipogenesis-inducing properties of skeletal muscle. This represents the first report of a specific three-dimensional tissue grown on its own vascular supply.

  15. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Science.gov (United States)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  16. Scientific Results of Conduit Drilling in the Unzen Scientific Drilling Project (USDP

    Directory of Open Access Journals (Sweden)

    Kozo Uto

    2005-09-01

    Full Text Available Abstract Directional drilling at Unzen Volcano in Japan duringmid of 2004 penetrated the magma conduit and successfullyrecovered samples of the lava dike that is believed to havefed the 1991–1995 eruption. The dike was sampled about1.3 km below the volcano’s summit vent and is intrudedinto a broader conduit zone that is 0.5 km wide. This zoneconsists of multiple older lava dikes and pyroclastic veinsand has cooled to less than 200˚C. The lava dike sample wasunexpectedly altered, suggesting that circulation of hydrothermalfluids rapidly cools the conduit region of even veryactive volcanoes. It is likely that seismic signals monitoredprior to emergence of the lava dome reflected fracturing ofthe country rocks, caused by veining as volatiles escapedpredominantly upward, not outward, from the rising magma.Geophysical and geological investigation of cuttings andcore samples from the conduit and of bore-hole logging datacontinues.

  17. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  18. Peripheral nerve regeneration with conduits: use of vein tubes.

    Science.gov (United States)

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; Dos Santos, João Baptista Gomes

    2015-04-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  19. Peripheral nerve regeneration with conduits: use of vein tubes

    Directory of Open Access Journals (Sweden)

    Rodrigo Guerra Sabongi

    2015-01-01

    Full Text Available Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  20. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  1. Free-boundary models of a meltwater conduit

    KAUST Repository

    Dallaston, Michael C.

    2014-08-01

    © 2014 AIP Publishing LLC. We analyse the cross-sectional evolution of an englacial meltwater conduit that contracts due to inward creep of the surrounding ice and expands due to melting. Making use of theoretical methods from free-boundary problems in Stokes flow and Hele-Shaw squeeze flow we construct an exact solution to the coupled problem of external viscous creep and internal heating, in which we adopt a Newtonian approximation for ice flow and an idealized uniform heat source in the conduit. This problem provides an interesting variant on standard free-boundary problems, coupling different internal and external problems through the kinematic condition at the interface. The boundary in the exact solution takes the form of an ellipse that may contract or expand (depending on the magnitudes of effective pressure and heating rate) around fixed focal points. Linear stability analysis reveals that without the melting this solution is unstable to perturbations in the shape. Melting can stabilize the interface unless the aspect ratio is too small; in that case, instabilities grow largest at the thin ends of the ellipse. The predictions are corroborated with numerical solutions using boundary integral techniques. Finally, a number of extensions to the idealized model are considered, showing that a contracting circular conduit is unstable to all modes of perturbation if melting occurs at a uniform rate around the boundary, or if the ice is modelled as a shear-thinning fluid.

  2. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    Science.gov (United States)

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  3. A novel balloon assisted two-stents telescoping technique for repositioning an embolized stent in the pulmonary conduit.

    Science.gov (United States)

    Kobayashi, Daisuke; Gowda, Srinath T; Forbes, Thomas J

    2014-08-01

    A 9-year-old male, with history of pulmonary atresia and ventricular septal defect, status post complete repair with a 16 mm pulmonary homograft in the right ventricular outflow tract (RVOT) underwent 3110 Palmaz stent placement for conduit stenosis. Following deployment the stent embolized proximally into the right ventricle (RV). We undertook the choice of repositioning the embolized stent into the conduit with a transcatheter approach. Using a second venous access, the embolized stent was carefully maneuvered into the proximal part of conduit with an inflated Tyshak balloon catheter. A second Palmaz 4010 stent was deployed in the distal conduit telescoping through the embolized stent. The Tyshak balloon catheter was kept inflated in the RV to stabilize the embolized stent in the proximal conduit until it was successfully latched up against the conduit with the deployment of the overlapping second stent. One year later, he underwent Melody valve implantation in the pre-stented conduit relieving conduit insufficiency. This novel balloon assisted two-stents telescoping technique is a feasible transcatheter option to secure an embolized stent from the RV to the RVOT. © 2014 Wiley Periodicals, Inc.

  4. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader.

    Science.gov (United States)

    Abd El-Hay, Soad S; Colyer, Christa L

    2017-01-13

    Despite the importance of nitric oxide (NO) in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. By using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1). Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Beer's law was linear over a nanomolar range (1-10 nM) of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10-1000 µM) of acetylcholine (ACh) for 3 min. To confirm specificity, N ω -Nitro-l-arginine methyl ester (l-NAME)-the standard inhibitor of endothelial NO synthase-was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  5. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader

    Directory of Open Access Journals (Sweden)

    Soad S. Abd El-Hay

    2017-01-01

    Full Text Available Background: Despite the importance of nitric oxide (NO in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. Objective: By using the fluorescent probe 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM, we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. Methods: A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1. Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Results: Beer’s law was linear over a nanomolar range (1–10 nM of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10–1000 µM of acetylcholine (ACh for 3 min. To confirm specificity, Nω-Nitro-l-arginine methyl ester (l-NAME—the standard inhibitor of endothelial NO synthase—was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. Conclusions: The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  6. Free-boundary models of a meltwater conduit

    KAUST Repository

    Dallaston, Michael C.; Hewitt, Ian J.

    2014-01-01

    © 2014 AIP Publishing LLC. We analyse the cross-sectional evolution of an englacial meltwater conduit that contracts due to inward creep of the surrounding ice and expands due to melting. Making use of theoretical methods from free-boundary problems

  7. Placental vascular pathology and increased thrombin generation as mechanisms of disease in obstetrical syndromes

    Directory of Open Access Journals (Sweden)

    Salvatore Andrea Mastrolia

    2014-11-01

    Full Text Available Obstetrical complications including preeclampsia, fetal growth restriction, preterm labor, preterm prelabor rupture of membranes and fetal demise are all the clinical endpoint of several underlying mechanisms (i.e., infection, inflammation, thrombosis, endocrine disorder, immunologic rejection, genetic, and environmental, therefore, they may be regarded as syndromes. Placental vascular pathology and increased thrombin generation were reported in all of these obstetrical syndromes. Moreover, elevated concentrations of thrombin-anti thrombin III complexes and changes in the coagulation as well as anticoagulation factors can be detected in the maternal circulation prior to the clinical development of the disease in some of these syndromes. In this review, we will assess the changes in the hemostatic system during normal and complicated pregnancy in maternal blood, maternal–fetal interface and amniotic fluid, and describe the contribution of thrombosis and vascular pathology to the development of the great obstetrical syndromes.

  8. Phase separation phenomena in branching conduits. Topical report Dec 78-Dec 81

    International Nuclear Information System (INIS)

    Saba, N.; Lahey, R.T. Jr.

    1982-03-01

    The analysis of Light Water Reactor (LWR) Loss-of-Coolant Accidents (LOCA's) requires that one be able to accurately calculate the two-phase flow splits in complex, branching conduits. The purpose of this study is to provide a general method for calculating the phase separation in a branching conduit. The degree of phase separation of a two-phase (air/water) mixture flowing through a plexiglas tee test section was measured. In addition, flow visualization, using high speed photography, was performed. The experimental design considerations, error analysis and the dependence of the observed phase separation on global parameters, such as inlet quality, mass flux and separation angle, are discussed. The pressure gradients were measured along the various conduits and the differential pressure was obtained at the tee junction by extrapolation. It was found that the degree of phase separation was quite pronounced, with the vapor phase preferentially separating into the branch. Using these data, a physically-based empirical model was developed with which to calculate the phasic distribution of a subsonic two-phase mixture in the downstream branches of a branching conduit

  9. Biocarbon urinary conduit: laboratory experience and clinical applications.

    Science.gov (United States)

    Kobashi, L I; Raible, D A

    1980-07-01

    A new urinary conduit utilizing pure vitreous carbon has been used successfully in dogs. Pure carbon appears to be inert with respect to urine and urothelium. Lack of urinary salt encrustation on the exposed surface provides a well-functioning urinary conduit for vesical drainage. Twenty-one vesicostomies were performed in dogs. Careful follow-up and histologic studies of removed specimens were done to establish the biocompatibility of pure carbon. All vesicostomies functioned well. A description of the device, protocol, and results of laboratory experimentation are outlined. The surgical procedure is explained in detail. Results encourage the clinical trial of these devices in humans. Indications include patients with neurogenic vesicla dysfunction and those with total urinary incontinence, both of which require permanent indwelling catheters.

  10. Uncovering Offshore Financial Centers: Conduits and Sinks in the Global Corporate Ownership Network.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Fichtner, Jan; Takes, Frank W; Heemskerk, Eelke M

    2017-07-24

    Multinational corporations use highly complex structures of parents and subsidiaries to organize their operations and ownership. Offshore Financial Centers (OFCs) facilitate these structures through low taxation and lenient regulation, but are increasingly under scrutiny, for instance for enabling tax avoidance. Therefore, the identification of OFC jurisdictions has become a politicized and contested issue. We introduce a novel data-driven approach for identifying OFCs based on the global corporate ownership network, in which over 98 million firms (nodes) are connected through 71 million ownership relations. This granular firm-level network data uniquely allows identifying both sink-OFCs and conduit-OFCs. Sink-OFCs attract and retain foreign capital while conduit-OFCs are attractive intermediate destinations in the routing of international investments and enable the transfer of capital without taxation. We identify 24 sink-OFCs. In addition, a small set of five countries - the Netherlands, the United Kingdom, Ireland, Singapore and Switzerland - canalize the majority of corporate offshore investment as conduit-OFCs. Each conduit jurisdiction is specialized in a geographical area and there is significant specialization based on industrial sectors. Against the idea of OFCs as exotic small islands that cannot be regulated, we show that many sink and conduit-OFCs are highly developed countries.

  11. Opportunities for Energy Development in Water Conduits: A Report Prepared in Response to Section 7 of the Hydropower Regulatory Efficiency Act of 2013

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [BCS, Incorporated, Laurel, MD (United States); Bishop, Norman A. [Knight Piesold, Chicago, IL (United States); Reiser, Sonya L. [Knight Piesold, Chicago, IL (United States); Johnson, Kurt [Telluride Energy LLC, Grand Junction, CO (United States); Bailey, Andrea C. [BCS, Incorporated, Laurel, MD (United States); Frank, Anthony [BCS, Incorporated, Laurel, MD (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2014-09-01

    In Section 7 of the Hydropower Regulatory Efficiency Act (HREA) of 2013 (P.L. 113-23), Congress directed the U.S. Department of Energy (DOE) to prepare an analysis of conduit hydropower opportunities available in the United States and to present case studies that describe the potential energy generation from these types of hydropower projects. Those analyses have been included in a new DOE report to Congress, and this ORNL/TM provides additional technical details supporting that report. Conduit hydropower offers important new ways to enhance renewable energy portfolios in the United States, as well as to increase the energy efficiency of water delivery systems. Conduit hydropower projects are constructed on existing water-conveyance structures, such as irrigation canals or pressurized pipelines that deliver water to municipalities, industry, or agricultural water users. Although water conveyance infrastructures are usually designed for non-power purposes, new renewable energy can often be harvested from them without affecting their original purpose and without the need to construct new dams or diversions. Conduit hydropower differs from more conventional hydropower development in that it is generally not located on natural rivers or waterways and therefore does not involve the types of environmental impacts that are associated with hydropower. The addition of hydropower to existing water conduits can provide valuable new revenue sources from clean, renewable energy. The new energy can be used within the existing water distribution systems to offset other energy demands, or it can be sold into regional transmission systems.

  12. Novel drug delivering conduit for peripheral nerve regeneration

    Science.gov (United States)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1-10 ng ml-1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial-drug conjugate each time.

  13. Havery Mudd 2014-2015 Computer Science Conduit Clinic Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Aspesi, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bai, J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Deese, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shin, L [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-12

    Conduit, a new open-source library developed at Lawrence Livermore National Laboratories, provides a C++ application programming interface (API) to describe and access scientific data. Conduit’s primary use is for inmemory data exchange in high performance computing (HPC) applications. Our team tested and improved Conduit to make it more appealing to potential adopters in the HPC community. We extended Conduit’s capabilities by prototyping four libraries: one for parallel communication using MPI, one for I/O functionality, one for aggregating performance data, and one for data visualization.

  14. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  15. SQUG cable tray and conduit evaluation procedure

    International Nuclear Information System (INIS)

    Smith, P.D.; Eder, S.J.; Conoscente, J.P.

    1990-01-01

    Cable tray and conduit systems for electrical cables are a common feature and industrial facilities. They have an excellent performance history in past strong earthquake, even though they are rarely designed for earthquakes. Considerable data have been gathered on their performance in earthquakes and in shake table testing. The data have been used to develop a procedure for the verification of the seismic adequacy of cable tray and conduit systems in operating nuclear plants. The procedure is discussed in this paper. It will result in substantial savings, such as reduced engineering effort, fewer modifications of existing hardware, and simpler documentation, relative to alternate procedures like dynamic analysis of shake table testing. The procedure ensures safety-function in a unique manner since the methodology used to develop it (1) is based on a large body of historical data and (2) uses a relative approach of ensuring that nuclear plant systems will perform at least as well as systems that performed well in past earthquakes. (orig.)

  16. Structures and lithofacies of inferred silicic conduits in the Paraná-Etendeka LIP, southernmost Brazil

    Science.gov (United States)

    Simões, M. S.; Lima, E. F.; Sommer, C. A.; Rossetti, L. M. M.

    2018-04-01

    Extensive silicic units in the Paraná-Etendeka LIP have been long interpreted as pyroclastic density currents (rheomorphic ignimbrites) derived from the Messum Complex in Namibia. In recent literature, however, they have been characterized as effusive lava flows and domes. In this paper we describe structures and lithofacies related to postulated silicic lava feeder conduits at Mato Perso, São Marcos and Jaquirana-Cambará do Sul areas in southern Brazil. Inferred conduits are at least 15-25 m in width and the lithofacies include variably vesicular monomictic welded and non-welded breccias in the margins to poorly vesicular, banded, spherulitic and microfractured vitrophyres in the central parts. Flat-lying coherent vitrophyres and massive obsidian are considered to be the subaerial equivalents of the conduits. Large-scale, regional tectonic structures in southern Brazil include the NE-SW aligned Porto Alegre Suture, Leão and Açotea faults besides the Antas Lineament, a curved tectonic feature accompanying the bed of Antas river. South of the Antas Lineament smaller-scale, NW-SE lineaments limit the exposure areas of the inferred conduits. NE-SW and subordinate NW-SE structures within this smaller-scale lineaments are represented by the main postulated conduit outcrops and are parallel to the dominant sub-vertical banding in the widespread banded vitrophyre lithofacies. Upper lava flows display flat-lying foliation, pipe-like and spherical vesicles and have better developed microlites. Petrographic characteristics of the silicic vitrophyres indicate that crystal-poor magmas underwent distinct cooling paths for each inferred conduit area. The vitrophyre chemical composition is defined by the evolution of trachydacitic/dacitic vitrophyres with 62-65 wt% SiO2 to rhyodacite and rhyolite with 66-68 wt% SiO2. The more evolved rocks are assigned to the latest intrusive grey vitrophyre outcropping in the center of the conduits. Degassing pathways formed during

  17. The vascular effects of sodium tanshinone IIA sulphonate in rodent and human pregnancy.

    Directory of Open Access Journals (Sweden)

    Jude S Morton

    Full Text Available Danshen, in particular its derivative tanshinone IIA (TS, is a promising compound in the treatment of cardiovascular diseases and has been used for many years in traditional Chinese medicine. Although many actions of TS have been researched, its vasodilator effects in pregnancy remain unknown. There have been a few studies that have shown the ability of TS to reduce blood pressure in women with hypertensive pregnancies; however, there are no studies which have examined the vascular effects of TS in the pregnant state in either normal or complicated pregnancies. Our aim was to determine the vasoactive role of TS in multiple arteries during pregnancy including: rat resistance (mesenteric and uterine and conduit (carotid arteries. Further, we aimed to assess the ability of TS to improve uterine blood flow in a rodent model of intrauterine growth restriction. Wire myography was used to assess vascular responses to the water-soluble derivative, sodium tanshinone IIA sulphonate (STS or to the endothelium-dependent vasodilator, methylcholine. At mid-pregnancy, STS caused direct vasodilation of rat resistance (pEC50 mesenteric: 4.47±0.05 and uterine: 3.65±0.10 but not conduit (carotid arteries. In late pregnancy, human myometrial arteries responded with a similar sensitivity to STS (pEC50 myometrial: 3.26±0.13. STS treatment for the last third of pregnancy in eNOS-/- mice increased uterine artery responses to methylcholine (Emax eNOS-/-: 55.2±9.2% vs. eNOS-/- treated: 75.7±8.9%, p<0.0001. The promising vascular effects, however, did not lead to improved uterine or umbilical blood flow in vivo, nor to improved fetal biometrics; body weight and crown-rump length. Further, STS treatment increased the uterine artery resistance index and decreased offspring body weight in control mice. Further research would be required to determine the safety and efficacy of use of STS in pregnancy.

  18. Investigation of entrance length in circular and noncircular conduits by computational fluid dynamics simulation

    Directory of Open Access Journals (Sweden)

    Pimpun Tongpun

    2014-08-01

    Full Text Available This study estimated entrance length of circular and noncircular conduits, including circle, triangle, square and hexagon cross-sectional conduit, by using computational fluid dynamics (CFD. For simulation condition, the length of noncircular conduit was 10 m and the hydraulic diameter was 0.2 m. The laminar flow with Reynolds number of 500 and turbulent flow with Reynolds number of 50,000 were applied to investigate water flow in conduits. The governing equations were solved iteratively by using ANSYS FLUENT 14.0. For turbulent flow simulation, standard k-epsilon and RNG k-epsilon model were employed to simulate turbulence. The preliminary results were validated by comparison with theoretical data. At first, grid independency was evaluated to optimize the model. Norm* was employed to investigate the entrance length, which is related to velocity. The simulated results revealed that the entrance length for laminar flow was longer than turbulent flow.

  19. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Fatemeh Mottaghitalab

    Full Text Available As a contribution to the functionality of nerve guide conduits (NGCs in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  20. Autologous alternative veins may not provide better outcomes than prosthetic conduits for below-knee bypass when great saphenous vein is unavailable.

    Science.gov (United States)

    Avgerinos, Efthymios D; Sachdev, Ulka; Naddaf, Abdallah; Doucet, Dannielle R; Mohapatra, Abhisekh; Leers, Steven A; Chaer, Rabih A; Makaroun, Michel S

    2015-08-01

    There is a need to better define the role of alternative autologous vein (AAV) segments over contemporary prosthetic conduits in patients with critical limb ischemia when great saphenous vein (GSV) is not available for use as the bypass conduit. Consecutive patients who underwent bypass to infrageniculate targets between 2007 and 2011 were categorized in three groups: GSV, AAV, and prosthetic. The primary outcome was graft patency. The secondary outcome was limb salvage. Cox proportional hazards regression was used to adjust for baseline confounding variables. A total of 407 infrainguinal bypasses to below-knee targets were analyzed; 255 patients (63%) received a single-segment GSV, 106 patients (26%) received an AAV, and 46 patients (11%) received a prosthetic conduit. Baseline characteristics were similar among groups, with the exception of popliteal targets and anticoagulation use being more frequent in the prosthetic group. Primary patency at 2 and 5 years was estimated at 47% and 32%, respectively, for the GSV group; 24% and 23% for the AAV group; and 43% and 38% for the prosthetic group. Primary assisted patency at 2 and 5 years was estimated at 71% and 55%, respectively, for the GSV group; 53% and 51% for the AAV group; and 45% and 40% for the prosthetic group. Secondary patency at 2 and 5 years was estimated at 75% and 60%, respectively, for the GSV group; 57% and 55% for the AAV group; and 46% and 41% for the prosthetic group. In Cox analysis, primary patency (hazard ratio [HR], 0.55; P < .001; 95% confidence interval [CI], 0.404-0.758), primary assisted patency (HR, 0.57; P = .004; 95% CI, 0.388-0.831), and secondary patency (HR, 0.56; P = .005; 95% CI, 0.372-0.840) were predicted by GSV compared with AAV, but there was no difference between AAV and prosthetic grafts except for the primary patency, for which prosthetic was protective (HR, 0.38; P < .001; 95% CI, 0.224-0.629). Limb salvage was similar among groups. AAV conduits may not offer a significant

  1. VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma

    Science.gov (United States)

    Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.

    2016-12-01

    Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes

  2. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  3. Transcatheter Pulmonary Valve Replacement for Right Ventricular Outflow Tract Conduit Dysfunction After the Ross Procedure

    DEFF Research Database (Denmark)

    Gillespie, Matthew J; McElhinney, Doff B; Kreutzer, Jacqueline

    2015-01-01

    BACKGROUND: Right ventricular outflow tract (RVOT) conduit dysfunction is a limitation of the Ross procedure. Transcatheter pulmonary valve replacement (TPVR) could alter the impact of conduit dysfunction and the risk-benefit balance for the Ross procedure. METHODS: Retrospective review of databa......BACKGROUND: Right ventricular outflow tract (RVOT) conduit dysfunction is a limitation of the Ross procedure. Transcatheter pulmonary valve replacement (TPVR) could alter the impact of conduit dysfunction and the risk-benefit balance for the Ross procedure. METHODS: Retrospective review....... Of these, 56 (84%) received a Melody valve; in 5 of the 11 patients who did not, the implant was aborted due to concern for coronary artery compression, and 1 implanted patient required emergent surgery for left coronary compression. The RVOT gradient decreased from a median 38 mm Hg to 13.5 mm Hg (p

  4. 26 CFR 1.58-2 - General rules for conduit entities; partnerships and partners.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true General rules for conduit entities; partnerships...; partnerships and partners. (a) General rules for conduit entities. Sections 1.58-3 through 1.58-6 provide rules... example, if a trust has $100,000 of capital gains for the taxable year, all of which are distributed to A...

  5. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells.

    Science.gov (United States)

    Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Farzamfar, Saeed; Mansouri, Korosh; Ai, Jafar

    2018-04-01

    The current study aimed to enhance the efficacy of peripheral nerve regeneration using a biodegradable porous neural guidance conduit as a carrier to transplant allogeneic Schwann cells (SCs). The conduit was prepared from polyurethane (PU) and gelatin nanofibrils (GNFs) using thermally induced phase separation technique and filled with melatonin (MLT) and platelet-rich plasma (PRP). The prepared conduit had the porosity of 87.17 ± 1.89%, the contact angle of 78.17 ± 5.30° and the ultimate tensile strength and Young's modulus of 5.40 ± 0.98 MPa and 3.13 ± 0.65 GPa, respectively. The conduit lost about 14% of its weight after 60 days in distilled water. The produced conduit enhanced the proliferation of SCs demonstrated by a tetrazolium salt-based assay. For functional analysis, the conduit was seeded with 1.50 × 10 4 SCs (PU/GNFs/PRP/MLT/SCs) and implanted into a 10-mm sciatic nerve defect of Wistar rat. Three control groups were used: (1) PU/GNFs/SCs, (2) PU/GNFs/PRP/SCs, and (3) Autograft. The results of sciatic functional index, hot plate latency, compound muscle action potential amplitude and latency, weight-loss percentage of wet gastrocnemius muscle and histopathological examination using hematoxylin-eosin and Luxol fast blue staining, demonstrated that using the PU/GNFs/PRP/MLT conduit to transplant SCs to the sciatic nerve defect resulted in a higher regenerative outcome than the PU/GNFs and PU/GNFs/PRP conduits.

  6. Mechanical cleaning of oil spills in seawater using circular conduits

    Energy Technology Data Exchange (ETDEWEB)

    Shedid, S.; Abou Kassem, J.; Zekri, A. [United Arab Emirates Univ., Al Ain City (United Arab Emirates). Dept. of Chemical and Petroleum Engineering

    2005-10-15

    Treatment of the crude oil pollution in seawater has attracted global attention during the last two decades. This study was undertaken using circular conduits as a mechanical means to clean oil spills in seawater under different conditions of temperature, oil gravity, shaking frequency, conduit diameter, and initial thickness of oil layer. An experimental model was designed and built to achieve the study. It consists of shaking water bath (to represent sea waves) fitted with temperature controller and glass tubes of different inside diameters of 0.3 cm, 0.5 cm, and 0.7 cm. Three crude oils of different oil gravity of 35{sup o}API, 38{sup o}API, and 47{sup o}API were investigated under different shaking frequencies of 20, 40, and 60 stroke/minute with different tube diameters. The results proved that application of mechanical cleaning of oil spills using circular conduits is a practical technique. The cleaning of black oil spills is more efficient than one of volatile oil. Furthermore, the results indicated that the increase of shaking frequency and/or water temperature provide(s) faster cleaning of oil spills while temperature increase recovers the maximum oil. (Author)

  7. Geometry and Hydraulics of Englacial Conduits, Storglaciaren, Sweden

    Science.gov (United States)

    Fountain, A. G.; Schlichting, R.; Frodin, S.; Jacobel, R. W.

    2001-12-01

    Englacial conduits are the primary structure responsible for transporting surface water to the base of a glacier, where it supplies the subglacial hydraulic system and, in turn, affects glacier movement. Despite the well-known theoretical descriptions of englacial conduits, little direct evidence exists about their geometry and hydraulics. In July 2001, we initiated a field effort on Storglaciären, Sweden, to intersect englacial conduits by drilling into the glacier using a hot water drill. A companion project (Jacobel et al., this session) attempted to detect the englacial conduits using ground-penetrating radar. In a typical borehole, the water level remained at the surface while drilling through the impermeable ice. Once a connection was made, the water level dropped roughly 10 m and remained low despite continued water pumping. A small video camera was lowered, with attachments, to measure the geometry of the opening, and water flow speed. The water level in the hole provided a piezometric measure of the pressure. We drilled 22 holes at 3 separate locations and 17 (77%) connected englacially, the remaining 5 reached the bed without englacial connection, of which 2 drained at the bed. The geometry of the connections was highly irregular in cross-section with 1-2 cm openings, reminiscent of crevasse-like features rather than circular cross-sections as anticipated from the theoretical literature. Flow behavior was observed by tracking particle motion. The flow was complicated, in part by the inferred tangential intersection between the borehole and structure, and by the observed surging behavior. Flow speeds were low, on the order of 1 cm sec-1. Water level records from 3 different holes over several days exhibited highly correlated variations and large diurnal excursions. In contrast, records from holes drilled to the bed showed little variation. Based on these measurements, our conceptual picture of the englacial system is that of a sluggish flow system

  8. Tension layer winding of cable-in-conduit conductor

    International Nuclear Information System (INIS)

    Devernoe, A.; Ciancetta, G.; King, M.; Parizh, M.; Painter, T.; Miller, J.

    1996-01-01

    A 710 mm i.d. by 440 mm long, 6 layer Cable-in-Conduit (CIC) coil was precision tension layer wound with Incoloy 908 jacketed conductor to model winding technology that will be used for the Nb 3 Sn outsert coils of the 45 Tesla Hybrid Magnet Project at the US National High Magnetic Field Laboratory. This paper reports on the set up of a new winding facility with unique capabilities for insulating and winding long length CIC conductor and on special procedures which were developed to wind and support layer to layer transitions and to safely form conductor into and out of the winding. Analytical methods used to predict conduit keystoning, springback and back tensioning requirements before winding are reported in comparison to results obtained during winding and actual winding build-up dimensions on a layer by layer basis in comparison to design requirements

  9. Nuclear steam generator sludge lance method and apparatus

    International Nuclear Information System (INIS)

    Shirey, R.A.; Murray, D.E.

    1991-01-01

    This paper describes a sludge lancing system for removing sludge deposits from an interior region of a steam generator. It comprises: a peripheral fluid injection means for injecting a fluid at a high pressure about a periphery of the steam generator, the peripheral fluid injection means comprising at least one elongated fluid conduit, at least one injection nozzle and a joint positioned at a predetermined point along the elongated fluid conduit for permitting the peripheral fluid injection means to bend to a predetermined angle at the joint within the steam generator; a reciprocable fluid injection means for injecting a fluid at a high pressure toward the sludge deposits and dislodging the sludge deposits; and a supporting means positioned within the interior of the steam generator for supporting the reciprocable fluid injection means throughout the reciprocation of the reciprocable fluid injection means

  10. Delineating saturated conduit patterns and dimensions in the upper Floridan aquifer through numerical groundwater flow modeling (Invited)

    Science.gov (United States)

    Kincaid, T. R.; Meyer, B. A.

    2009-12-01

    In groundwater flow modeling, aquifer permeability is typically defined through model calibration. Since the pattern and size of conduits are part of a karstic permeability framework, those parameters should be constrainable through the same process given a sufficient density of measured conditions. H2H Associates has completed a dual-permeability steady-state model of groundwater flow through the western Santa Fe River Basin, Florida from which a 380.9 km network of saturated conduits was delineated through model calibration to heads and spring discharges. Two calibration datasets were compiled describing average high-water and average low-water conditions based on heads at 145 wells and discharge from 18 springs for the high-water scenario and heads at 188 wells and discharge from 9 springs for the low-water scenario. An initial conduit network was defined by assigning paths along mapped conduits and inferring paths along potentiometric troughs between springs and swallets that had been connected by groundwater tracing. These initial conduit assignments accounted for only 13.75 and 34.1 km of the final conduit network respectively. The model was setup using FEFLOW™ where conduits were described as discrete features embedded in a porous matrix. Flow in the conduits was described by the Manning-Strickler equation where variables for conduit area and roughness were used to adjust the volume and velocity of spring flows. Matrix flow was described by Darcy’s law where hydraulic conductivity variations were limited to three geologically defined internally homogeneous zones that ranged from ~2E-6 m/s to ~4E-3 m/s. Recharge for both the high-water and low-water periods was determined through a water budget analysis where variations were restricted to nine zones defined by land-use. All remaining variations in observed head were then assumed to be due to conduits. The model was iteratively calibrated to the high-water and low-water datasets wherein the location, size

  11. 26 CFR 1.7701(l)-1 - Conduit financing arrangements.

    Science.gov (United States)

    2010-04-01

    ... determines that such recharacterization is appropriate to prevent avoidance of any tax imposed by title 26 of...) INCOME TAX (CONTINUED) INCOME TAXES General Actuarial Valuations § 1.7701(l)-1 Conduit financing...

  12. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts

    Directory of Open Access Journals (Sweden)

    Michele Carrabba

    2018-04-01

    Full Text Available Occlusive arterial disease, including coronary heart disease (CHD and peripheral arterial disease (PAD, is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid or self-assembled (cell-sheet, microtissue aggregation and bioprinting. Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.

  14. Interstage evaluation of homograft-valved right ventricle to pulmonary artery conduits for palliation of hypoplastic left heart syndrome.

    Science.gov (United States)

    Sandeep, Nefthi; Punn, Rajesh; Balasubramanian, Sowmya; Smith, Shea N; Reinhartz, Olaf; Zhang, Yulin; Wright, Gail E; Peng, Lynn F; Wise-Faberowski, Lisa; Hanley, Frank L; McElhinney, Doff B

    2018-04-01

    Palliation of hypoplastic left heart syndrome with a standard nonvalved right ventricle to pulmonary artery conduit results in an inefficient circulation in part due to diastolic regurgitation. A composite right ventricle pulmonary artery conduit with a homograft valve has a hypothetical advantage of reducing regurgitation, but may differ in the propensity for stenosis because of valve remodeling. This retrospective cohort study included 130 patients with hypoplastic left heart syndrome who underwent a modified stage 1 procedure with a right ventricle to pulmonary artery conduit from 2002 to 2015. A composite valved conduit (cryopreserved homograft valve anastomosed to a polytetrafluoroethylene tube) was placed in 100 patients (47 aortic, 32 pulmonary, 13 femoral/saphenous vein, 8 unknown), and a nonvalved conduit was used in 30 patients. Echocardiographic functional parameters were evaluated before and after stage 1 palliation and before the bidirectional Glenn procedure, and interstage interventions were assessed. On competing risk analysis, survival over time was better in the valved conduit group (P = .040), but this difference was no longer significant after adjustment for surgical era. There was no significant difference between groups in the cumulative incidence of bidirectional Glenn completion (P = .15). Patients with a valved conduit underwent more interventions for conduit obstruction in the interstage period, but this difference did not reach significance (P = .16). There were no differences between groups in echocardiographic parameters of right ventricle function at baseline or pre-Glenn. In this cohort of patients with hypoplastic left heart syndrome, inclusion of a valved right ventricle to pulmonary artery conduit was not associated with any difference in survival on adjusted analysis and did not confer an identifiable benefit on right ventricle function. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier

  15. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    Science.gov (United States)

    Zhu, J.; Currens, J.C.; Dinger, J.S.

    2011-01-01

    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  16. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels

    Science.gov (United States)

    Duan, Bin; Hockaday, Laura A.; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Heart valve disease is a serious and growing public health problem for which prosthetic replacement is most commonly indicated. Current prosthetic devices are inadequate for younger adults and growing children. Tissue engineered living aortic valve conduits have potential for remodeling, regeneration, and growth, but fabricating natural anatomical complexity with cellular heterogeneity remain challenging. In the current study, we implement 3D bioprinting to fabricate living alginate/gelatin hydrogel valve conduits with anatomical architecture and direct incorporation of dual cell types in a regionally constrained manner. Encapsulated aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells (VIC) were viable within alginate/gelatin hydrogel discs over 7 days in culture. Acellular 3D printed hydrogels exhibited reduced modulus, ultimate strength, and peak strain reducing slightly over 7-day culture, while the tensile biomechanics of cell-laden hydrogels were maintained. Aortic valve conduits were successfully bioprinted with direct encapsulation of SMC in the valve root and VIC in the leaflets. Both cell types were viable (81.4±3.4% for SMC and 83.2±4.0% for VIC) within 3D printed tissues. Encapsulated SMC expressed elevated alpha-smooth muscle actin when printed in stiff matrix, while VIC expressed elevated vimentin in soft matrix. These results demonstrate that anatomically complex, heterogeneously encapsulated aortic valve hydrogel conduits can be fabricated with 3D bioprinting. PMID:23015540

  17. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair.

    Science.gov (United States)

    Zhang, Li; Zhao, Weijia; Niu, Changmei; Zhou, Yujie; Shi, Haiyan; Wang, Yalin; Yang, Yumin; Tang, Xin

    2018-07-01

    Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.

  18. 78 FR 61987 - Corbett Water District; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-10-09

    ... District; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting... construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The Corbett Hydroelectric...

  19. Ileal-conduit following cystectomy, single-institution revision of indications and outcome

    International Nuclear Information System (INIS)

    Abol-Enein, Hassan A.; Abdul-Muhsin, Ausama S.; Alhallaq, Yousuf M.

    2008-01-01

    Objective was to revise indications, case fatality ratio, and postoperative early and late complications of ileal conduit as a method of urinary diversion. This is a retrospective study in which 200 patients underwent an ileal conduit from August 1994 to December 2000 in Mansoura Urology and Nephrology Center, Mansoura, Egypt. Preoperative criteria of patient selection, preoperative findings and postoperative follow-up data were reviewed. In 200 patients aged 29-75 years, with a mean age of 55.84-/+ 8.91 years, the ileal conduit was chosen as a method of urinary diversion, due to one of the following patient or surgical factors; 50 (25%) cardiopulmonary co-morbidities, 27(13.5%) liver cirrhosis, 20 (10%) impaired renal function, 18 (9%) poorly controlled diabetes mellitus and 3 (1.5%) morbid obesity. Frozen section pathological examination showed carcinoma invasion of the urethra in 26 (13%) and prostate stroma in 16 (8%) male patients. Severe adhesions and difficulty cystectomy were encountered in 25 (12.5%) patients. Tumor was found at or close to the bladder neck in 13 (6.5%) female patients and 2 (1%) patients were found to have short mesentery. The mean follow up period was 90.02 -/+ 22.63 months. Fatality rate was 2%. Twenty-three (11.5%) patients had early complications, while 36 (23.7%) patients had late complications. Ileal conduit is still the best urinary diversion method in many patients who have bladder cancer with associated chronic medical disease or certain surgical factors that render other urinary diversion methods more difficult carry more postoperative morbidity and mortality or both. (author)

  20. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  1. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  2. 78 FR 63176 - Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting...

    Science.gov (United States)

    2013-10-23

    ... Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To... of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The...

  3. MR and CT imaging of pulmonary valved conduits in children and adolescents: normal appearance and complications

    Energy Technology Data Exchange (ETDEWEB)

    Tenisch, Estelle V.; Alamo, Leonor T.; Gudinchet, Francois [Lausanne University Hospital, Department of Medical Imaging, Lausanne (Switzerland); Sekarski, Nicole [Lausanne University Hospital, Department of Pediatrics, Lausanne (Switzerland); Hurni, Michel [Lausanne University Hospital, Department of Cardiovascular Surgery, Lausanne (Switzerland)

    2014-12-15

    The Contegra registered is a conduit made from the bovine jugular vein and then interposed between the right ventricle and the pulmonary artery. It is used for cardiac malformations in the reconstruction of right ventricular outflow tract. To describe both normal and pathological appearances of the Contegra registered in radiological imaging, to describe imaging of complications and to define the role of CT and MRI in postoperative follow-up. Forty-three examinations of 24 patients (17 boys and 7 girls; mean age: 10.8 years old) with Contegra registered conduits were reviewed. Anatomical description and measurements of the conduits were performed. Pathological items examined included stenosis, dilatation, plicature or twist, thrombus or vegetations, calcifications and valvular regurgitation. Findings were correlated to the echographic gradient through the conduit when available. CT and MR work-up showed Contegra registered stenosis (n = 12), dilatation (n = 9) and plicature or twist (n = 7). CT displayed thrombus or vegetations in the Contegra registered in three clinically infected patients. Calcifications of the conduit were present at CT in 12 patients and valvular regurgitation in three patients. The comparison between CT and/or MR results showed a good correlation between the echographic gradient and the presence of stenosis in the Contegra registered. CT and MR bring additional information about permeability and postoperative anatomy especially when echocardiography is inconclusive. Both techniques depict the normal appearance of the conduit, and allow comparison and precise evaluation of changes in the postoperative follow-up. (orig.)

  4. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    Science.gov (United States)

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ureteric catheterization via an ileal conduit: technique and retrieval of a JJ stent.

    Science.gov (United States)

    Wah, T M; Kellett, M J

    2004-11-01

    Retrograde ureteric catheterization of a patient with an ileal conduit is difficult, because guide wires and catheters coil in the conduit. A modified loopogram, using a Foley catheter as a fulcrum through which catheters can be advanced to the ureteric anastomosis, is described. This technique was used to remove a JJ stent, which had been inserted previously across a stricture in one ureter, the stent crossing from one kidney to the other.

  6. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    Science.gov (United States)

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Steens

    2017-04-01

    Full Text Available Summary: The vascular wall (VW serves as a niche for mesenchymal stem cells (MSCs. In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs, based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. : In this article, Klein and colleagues show that iPSCs generated from skin fibroblasts of transgenic mice carrying a GFP gene under the control of the endogenous Nestin promoter to facilitate lineage tracing (NEST-iPSCs can be directly programmed toward mouse vascular wall-typical multipotent mesenchymal stem cells (VW-MSC by ectopic lentiviral expression of a previously defined VW-MSC-specific HOX code. Keywords: vascular wall-derived mesenchymal stem cells, HOX gene, induced pluripotent stem cells, direct programming, nestin

  8. Continent catheterizable conduit for urinary diversion in children: Applicability and acceptability

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2015-01-01

    Full Text Available Background: Continent catheterizable conduit (CCC has made clean intermittent catheterization (CIC painless and easy. It is applicable in diverse clinical conditions. Nonetheless, convincing the parents for the need of conduit procedure is still difficult. Materials and Methods: A prospective study, included children who underwent CCC procedure from March 2008 to February 2013. The data were assessed for; diagnosis, type of conduit, number of preoperative counselling sessions before acceptance, role of "self-help group" in decision making, parental concern and satisfaction for the procedure. Results: Twenty-nine patients (males; 24, females; 5 underwent CCC procedure for various clinical conditions. The multiple preoperative counselling sessions and creation of "self-help groups" were helped them for decision making. The main concerns among parents were: (1 Impact of procedure on future fertility and sexual life. (2 Patency of native urethral channel. (3 Permanent urinary stoma over the abdomen. Conclusion: CCC procedures are applicable to a wide array of clinical situations with a good outcome. The acceptability of the CCC procedure improves with preoperative counselling of parent/child, initiation of preoperative per urethral CIC and creation of self-help groups.

  9. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. An Ongoing Role of α-Calcitonin Gene–Related Peptide as Part of a Protective Network Against Hypertension, Vascular Hypertrophy, and Oxidative Stress

    DEFF Research Database (Denmark)

    Smillie, Sarah-Jane; King, Ross; Kodji, Xenia

    2014-01-01

    α-Calcitonin gene-related peptide (αCGRP) is a vasodilator, but there is limited knowledge of its long-term cardiovascular protective influence. We hypothesized that αCGRP protects against the onset and development of angiotensin II-induced hypertension and have identified protective mechanisms......CGRP knockout mice. These results demonstrate the ongoing upregulation of αCGRP at the levels of both conduit and resistance vessels in vascular tissue in a model of hypertension and the direct association of this with protection against aortic vascular hypertrophy and fibrosis. This upregulation is maintained...... at a time when expression of aortic endothelial NO synthase and antioxidant defense genes have subsided, in keeping with the concept that the protective influence of αCGRP in hypertension may have been previously underestimated....

  11. Development and Implementation of a Segment/Junction Box Level Database for the ITS Fiber Optic Conduit Network

    Science.gov (United States)

    2012-03-01

    This project initiated the development of a computerized database of ITS facilities, including conduits, junction : boxes, cameras, connections, etc. The current system consists of a database of conduit sections of various lengths. : Over the length ...

  12. The Norwood procedure: in favor of the RV-PA conduit.

    Science.gov (United States)

    Barron, David J

    2013-01-01

    Evolution of the Norwood procedure has culminated in there currently being three treatment strategies available for initial management: the 'classical' Norwood (utilizing a Blalock-Taussig shunt), the Norwood with right-ventricle to pulmonary artery (RV-PA) conduit, and the 'hybrid' Norwood procedure utilizing bilateral pulmonary artery banding and ductal stenting. Each variant has its potential advantages and disadvantages, and this paper looks to examine the evidence in favor of each strategy, with emphasis on the supportive data for the RV-PA conduit. The 'classical' procedure has the benefit of the greatest accumulated surgical experience and avoids any incision into the ventricle. However, the diastolic run-off of the Blalock-Taussig shunt can cause hemodynamic instability and unpredictable coronary steal phenomenon. The RV-PA conduit has the advantage of maintaining diastolic pressure with a more stable postoperative course, but at the cost of a ventriculotomy that may have detrimental long-term sequelae. The 'hybrid' procedure has the advantage of avoiding cardiopulmonary bypass, but does not always secure coronary blood flow and has a high inter-stage morbidity and reintervention rate. The evidence shows that each technique may have its place in future management, and that treatment algorithms could emerge that direct the choice of procedure for specific patient groups. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Parastomal hernias after radical cystectomy and ileal conduit diversion

    Directory of Open Access Journals (Sweden)

    Timothy F. Donahue

    2016-07-01

    Full Text Available Parastomal hernia, defined as an “incisional hernia related to an abdominal wall stoma”, is a frequent complication after conduit urinary diversion that can negatively impact quality of life and present a clinically significant problem for many patients. Parastomal hernia (PH rates may be as high as 65% and while many patients are asymptomatic, in some series up to 30% of patients require surgical intervention due to pain, leakage, ostomy appliance problems, urinary obstruction, and rarely bowel obstruction or strangulation. Local tissue repair, stoma relocation, and mesh repairs have been performed to correct PH, however, long-term results have been disappointing with recurrence rates of 30%–76% reported after these techniques. Due to high recurrence rates and the potential morbidity of PH repair, efforts have been made to prevent PH development at the time of the initial surgery. Randomized trials of circumstomal prophylactic mesh placement at the time of colostomy and ileostomy stoma formation have shown significant reductions in PH rates with acceptably low complication profiles. We have placed prophylactic mesh at the time of ileal conduit creation in patients at high risk for PH development and found it to be safe and effective in reducing the PH rates over the short-term. In this review, we describe the clinical and radiographic definitions of PH, the clinical impact and risk factors associated with its development, and the use of prophylactic mesh placement for patients undergoing ileal conduit urinary diversion with the intent of reducing PH rates.

  14. 78 FR 66355 - Pleasant Grove City, UT; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-11-05

    ... City, UT; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and... Grove City, Utah (Pleasant Grove) filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  15. 78 FR 53752 - City of Sandpoint, Idaho; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-08-30

    ... Sandpoint, Idaho; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and... intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The Little...

  16. 78 FR 61985 - City of Astoria, Oregon; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-10-09

    ..., Oregon; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting... of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The...

  17. Evidence for Arbovirus Dissemination Conduits from the Mosquito (Diptera: Culicidae) Midgut

    National Research Council Canada - National Science Library

    Romoser, William

    2004-01-01

    .... Experiments using Venezuelan equine encephalitis viral replicon particles, which express the green fluorescent protein gene in cells, indicate the operation of tissue conduits, possibly involving...

  18. AC losses and stability on large cable-in-conduit superconductors

    Science.gov (United States)

    Bruzzone, Pierluigi

    1998-12-01

    The cable-in-conduit superconductors are preferred for applications where the AC losses and stability are a major concern, e.g., fusion magnets and SMES. A review of coupling currents loss results for both NbTi and Nb 3Sn cable-in-conduit conductors (CICC) is presented and the AC loss relevant features are listed, with special emphasis for the role of the interstrand resistance and strand coating. The transient stability approach for CICCs is discussed and the analytical models are quoted as well as the relevant experimental database. The likely spectrum of transient disturbance in CICC is reviewed and the need to account for interstrand current sharing in the design is outlined. Eventually a practical criterion for the interstrand resistance is proposed to link the stability and AC loss design.

  19. CIBLAGE D'INFLATION ET CONDUITE DE LA POLITIQUE ...

    African Journals Online (AJOL)

    Administrateur

    de l'amendement de la loi relative à la monnaie et au crédit, l'Algérie a explicitement ... la Banque d'Algérie, très importante pour la conduite de la politique monétaire. ..... matière de contrainte budgétaire entre les secteurs public et privé. En.

  20. Design and production of stopper made of concrete foam composite used for open channel conduit cover and parking bumper

    Science.gov (United States)

    Syam, Bustami; Sebayang, Alexander; Sebayang, Septian; Muttaqin, Maraghi; Darmadi, Harry; Basuki, WS; Sabri, M.; Abda, S.

    2018-03-01

    Open channel conduit is designed and produced with the aims to reduce excess water, whether from rain, seepage, or excess irrigation water in an area. It is also included in one of the important components of urban infrastructure in tackling the problem of flooding and waterlogging. On the roadway, e.g. housing complex the open channel conduits should function the same, however conduit covers are needed. The covers should be also designed to function as parking bumper. This paper discusses the design and production of the stoppers using our newly invented materials; the stoppers are structurally tested under static, dynamic, and bump test. Response of the conduit cover are found from structural analysis using finite element software ANSYS MECHANICAL version 17.5. Two types of stoppers are introduced: flat and curvy configuration. It was obtained that both types are suitable for open channel conduit cover and parking bumper.

  1. 78 FR 56872 - City of Barre, Vermont; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-09-16

    ..., Vermont; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting... construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The Nelson Street 17 kW...

  2. The vascular surgery workforce: a survey of consultant vascular surgeons in the UK, 2014.

    Science.gov (United States)

    Harkin, D W; Beard, J D; Shearman, C P; Wyatt, M G

    2015-04-01

    The purpose of this study was to describe the demographics, training, and practice characteristics of consultant vascular surgeons across the UK to provide an assessment of current, and inform future prediction of workforce needs. A questionnaire was developed using a modified Delphi process to generate questionnaire items. The questionnaire was emailed to all consultant vascular surgeons (n = 450) in the UK who were members of the Vascular Society of Great Britain & Ireland. 352 consultant vascular surgeons from 95 hospital trusts across the UK completed the survey (78% response rate). The mean age was 50.6 years old, the majority (62%) were mid-career, but 24% were above the age of 55. Currently, 92% are men and only 8% women. 93% work full-time, with 60% working >50 hours, and 21% working >60 hours per week. The average team was 5 to 6 (range 2-10) vascular surgeons, with 23% working in a large team of ≥8. 17% still work in small teams of ≤3. Over 90% of consultant vascular surgeons perform the major index vascular surgery procedures (aneurysm repair, carotid endarterectomy, infra-inguinal bypass, amputation). While 84% perform standard endovascular abdominal aortic aneurysm repair (EVAR), <50% perform more complex endovascular aortic therapy. The majority of vascular surgeons "like their job" (85%) and are "satisfied" (69%) with their job. 34% of consultant vascular surgeons indicated they were "extremely likely" to retire within the next 10 years. This study provides the first detailed analysis of the new specialty of vascular surgery as practiced in the UK. There is a need to plan for a significant expansion in the consultant vascular surgeon workforce in the UK over the next 10 years to maintain the status quo. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Thermal Expansivity Between 150 and 800°C of Hydrothermally Altered Conduit Dyke Samples from USDP-4 Drill Core (Mt Unzen, Shimabara, Japan)

    Science.gov (United States)

    Yilmaz, T. I.; Hess, K. U.; Vasseur, J.; Wadsworth, F. B.; Gilg, H. A.; Nakada, S.; Dingwell, D. B.

    2017-12-01

    When hot magma intrudes the crust, the surrounding rocks expand. Similarly, the cooling magma contracts. The expansion and contraction of these multiphase materials is not simple and often requires empirical constraint. Therefore, we constrained the thermal expansivity of Unzen dome and conduit samples using a NETZSCH® DIL 402C. Following experiments, those samples were scanned using a Phoenix v|tome|x m to observe the cracks that may have developed during the heating and cooling. The dome samples do not show petrological or chemical signs of alteration. However, the alteration of the conduit dykes is represented by the occurrence of the main secondary phases such as chlorite, sulfides, carbonates, R1 (Reichweite parameter) illite-smectite, and kaolinite. These alteration products indicate an (I) early weak to moderate argillic magmatic alteration, and a (II) second stage weak to moderate propylitic hydrothermal alteration. The linear thermal expansion coefficient aL of the dome material is K-1 between 150° and 800°C and shows a sharp peak of up to K-1 around the alpha-beta-quartz-transition ( 573°C). In contrast, aL of the hydrothermally altered conduit samples starts to increase around 180° and reaches K-1 at 400°C. We interpret this effect as being due to the water content of the kaolinite and the R1 illite-smectite, which induces larger expansions per degree temperature change. Furthermore, the altered conduit samples show a more pronounced increases of aL between 500 and 650°C of up to peaks at K-1, which is generated by the breakdown of chlorite, iron-rich dolomite solid solutions, calcite, and pyrite. We use a 1D conductive model of heat transfer to explore how the country rock around the Unzen conduit zone would heat up after intrusion. In turn, we convert these temperature profiles to thermal stress profiles, assuming the edifice is largely undeformable. We show that these high linear thermal expansion coefficients of the hydrothermally altered

  4. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  5. Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish

    DEFF Research Database (Denmark)

    Dahl Ejby Jensen, Lasse; Cao, Renhai; Hedlund, Eva-Maria

    2009-01-01

    and lymphatic perfusion. Here we show in the adult zebrafish and glass catfish (Kryptopterus bicirrhis) that blood-lymphatic conduits directly connect arterial vessels to the lymphatic system. Under hypoxic conditions, arterial-lymphatic conduits (ALCs) became highly dilated and linearized by NO...

  6. The Use of Degradable Nerve Conduits for Human Nerve Repair: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    M. F. Meek

    2005-01-01

    Full Text Available The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, has some disadvantages. Many alternative experimental techniques have thus been developed, such as degradable nerve conduits. Degradable nerve guides have been extensively studied in animal experimental studies. However, the repair of human nerves by degradable nerve conduits has been limited to only a few clinical studies. In this paper, an overview of the available international published literature on degradable nerve conduits for bridging human peripheral nerve defects is presented for literature available until 2004. Also, the philosophy on the use of nerve guides and nerve grafts is given.

  7. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  8. Long-Term Regeneration and Functional Recovery of a 15 mm Critical Nerve Gap Bridged by Tremella fuciformis Polysaccharide-Immobilized Polylactide Conduits

    Directory of Open Access Journals (Sweden)

    Shan-hui Hsu

    2013-01-01

    Full Text Available Novel peripheral nerve conduits containing the negatively charged Tremella fuciformis polysaccharide (TF were prepared, and their efficacy in bridging a critical nerve gap was evaluated. The conduits were made of poly(D,L-lactide (PLA with asymmetric microporous structure. TF was immobilized on the lumen surface of the nerve conduits after open air plasma activation. The TF-modified surface was characterized by the attenuated total reflection Fourier-transformed infrared spectroscopy and the scanning electron microscopy. TF modification was found to enhance the neurotrophic gene expression of C6 glioma cells in vitro. TF-modified PLA nerve conduits were tested for their ability to bridge a 15 mm gap of rat sciatic nerve. Nerve regeneration was monitored by the magnetic resonance imaging. Results showed that TF immobilization promoted the nerve connection in 6 weeks. The functional recovery in animals receiving TF-immobilized conduits was greater than in those receiving the bare conduits during an 8-month period. The degree of functional recovery reached ~90% after 8 months in the group of TF-immobilized conduits.

  9. Analytical studies on hotspot temperature of cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Takigami, Hiroyoshi; Kubo, Hiroatsu

    2001-01-01

    This paper describes an analytical study to review the hotspot temperature design criteria of the cable-in-conduit conductors for the ITER magnet system. The ITER magnet system uses three kinds of cable-in-conduit conductors for the Toroidal Field (TF) coils, the Central Solenoid (CS) and the Poloidal Field (PF) coils. The amount of copper in the superconducting cable has been defined by using the classical hotspot temperature design criteria that is based on the adiabatic condition. In the current design, ITER superconducting cables include a large amount of pure copper strands to satisfy the classical criteria. However, temperature and stress in the conduit and insulations after quench can be simulated with the quench simulation program and stress analysis program using the latest analysis tools. This analysis shows that the strand temperature is dominated by the conduction along strands and the heat capacity of other conductor materials and coolant. The hotspot temperature depends strongly on the delay time for quench detection. This analysis provides an estimation of delay times for quench detection. The thermal and stress analysis can provide the maximum allowable temperature after quench by determination of a failure or a functional disorder condition of the jacket material and turn insulation. In conclusion, it is found that the current density of the cable space can be increased, by reducing the extra copper strand, thereby, allowing a reduction of the coil radial build. (author)

  10. A rare case of prosthetic endocarditis and dehiscence in a mechanical valved conduit.

    Science.gov (United States)

    Kannan, Arun; Smith, Cristy; Subramanian, Sreekumar; Janardhanan, Rajesh

    2014-02-07

    A middle-aged adult patient with a history of aortic root replacement with a mechanical valved conduit and remote chest trauma was referred to our institution with prosthetic endocarditis. Transoesophageal echocardiogram at our institution confirmed a near-complete dehiscence of the prosthetic aortic valve from the conduit, with significant perivalvular flow forming a pseudoaneurysm. The patient underwent a high-risk re-operation, involving redo aortic root replacement with a homograft after extensive debridement of the infected tissue. The patient was discharged to an outside facility after an uncomplicated hospital course, and remains stable.

  11. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    Science.gov (United States)

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  12. Thoracoscopic management of volvulus of the gastric conduit following minimally invasive Ivor-Lewis esophagectomy.

    Science.gov (United States)

    Linson, Jeremy; Latzko, Michael; Ahmed, Bestoun; Awad, Ziad

    2016-07-01

    We present a case of emergent thoracoscopic management of volvulus of the gastric conduit following minimally invasive Ivor-Lewis esophagectomy. The patient is a 69-year-old Caucasian male with a history of adenocarcinoma of the lower third of the esophagus. Initial presentation was dysphagia with solid foods, which progressed in severity until he was unable to swallow anything. EUS demonstrated a partially obstructing mass at 33 cm; biopsy revealed poorly differentiated adenocarcinoma, stage T3N2Mx. PET scan did not reveal any metastatic disease. Preoperative management included neo-adjuvant chemoradiation therapy (5-FU and cisplatin) and early placement of a jejunal feeding tube. Intra-operative leak test was performed as a matter of routine following completion of the esophagogastric anastomosis. A nasogastric tube was placed intra-operatively and removed on POD2 according to our standard pathway. Postoperatively, the patient progressed without difficulty to POD4, when we routinely obtain an upper GI swallow study. This demonstrated a lack of transit of contrast through the distal neo-esophagus. Follow-up endoscopy revealed volvulus of the gastric conduit with obliteration of the lumen. We immediately took the patient to the OR for thoracoscopic detorsion, which we accomplished successfully by entering the existing trochar sites and using blunt dissection.␣Upon entering the thoracic cavity, the staple line that had been oriented anteriorly was now posterior. Attachments were gently teased away from the chest wall and the conduit was detorsed and anchored to the chest wall in the correct orientation with silk suture. Intra-operative endoscopy demonstrated a patent conduit. Postoperative upper GI fluoroscopy now showed good transit of contrast. The patient continued to improve and was eventually advanced to mechanical soft diet and discharged on postoperative day 9. Early intervention is indicated in cases of volvulus of the gastric conduit following Ivor

  13. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency.

    Science.gov (United States)

    Sarkar, S; Salacinski, H J; Hamilton, G; Seifalian, A M

    2006-06-01

    When autologous vein is unavailable, prosthetic graft materials, particularly expanded polytetrafluoroethylene are used for peripheral arterial revascularisation. Poor long term patency of prosthetic materials is due to distal anastomotic intimal hyperplasia. Intimal hyperplasia is directly linked to shear stress abnormalities at the vessel wall. Compliance and calibre mismatch between native vessel and graft, as well as anastomotic line stress concentration contribute towards unnatural wall shear stress. High porosity reduces graft compliance by causing fibrovascular infiltration, whereas low porosity discourages the development of an endothelial lining and hence effective antithrombogenicity. Therefore, consideration of mechanical properties is necessary in graft development. Current research into synthetic vascular grafts concentrates on simulating the mechanical properties of native arteries and tissue engineering aims to construct a new biological arterial conduit.

  15. Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dawson, P.; Whilldin, D.; Chouet, B.

    2004-01-01

    Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

  16. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  17. Hydraulic analysis of harmonic pumping tests in frequency and time domains for identifying the conduits networks in a karstic aquifer

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.

    2018-04-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.

  18. Faulting within the Mount St. Helens conduit and implications for volcanic earthquakes

    Science.gov (United States)

    Pallister, John S.; Cashman, Katharine V.; Hagstrum, Jonathan T.; Beeler, Nicholas M.; Moran, Seth C.; Denlinger, Roger P.

    2013-01-01

    granular fault gouge. Based on these comparisons, we find that aseismic creep is achieved by micron-scale displacements on Riedel shears and by granular flow, whereas the drumbeat earthquakes require millimeter to centimeter displacements on relatively large (e.g., ∼1000 m2) slip patches, possibly along observed extensive principal shear zones within the fault core but probably not along the smaller Riedel shears. Although our field and structural data are compatible with stick-slip models, they do not rule out seismic and infrasound models that call on resonance of steam-filled fractures to generate the drumbeat earthquakes. We suggest that stick-slip and gas release processes may be coupled, and that regardless of the source mechanism, the distinctive drumbeat earthquakes are proving to be an effective precursor for dome-forming eruptions.Our data document a continuous cycle of deformation along the conduit margins beginning with episodes of fracture in the damage zone and followed by transfer of motion to the fault core. We illustrate the cycle of deformation using a hypothetical cross section of the Mount St. Helens conduit, extending from the surface to the depth of magmatic solidification.

  19. Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Soon-Youn Choi

    Full Text Available Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22phox and NOX4. The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3 and decreased the expression of dickkopf-related protein-1 (DKK-1 in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (α-SMA and SM22α and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

  20. Silicic magma differentiation in ascent conduits. Experimental constraints

    Science.gov (United States)

    Rodríguez, Carmen; Castro, Antonio

    2017-02-01

    Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that

  1. The effect of bioresorbable vascular scaffold implantation on distal coronary endothelial function in dyslipidemic swine with and without diabetes.

    Science.gov (United States)

    van den Heuvel, Mieke; Sorop, Oana; van Ditzhuijzen, Nienke S; de Vries, René; van Duin, Richard W B; Peters, Ilona; van Loon, Janine E; de Maat, Moniek P; van Beusekom, Heleen M; van der Giessen, Wim J; Jan Danser, A H; Duncker, Dirk J

    2018-02-01

    We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM+HFD). Five DM+HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >5mm proximal and distal to the scaffold and corresponding segments of non-scaffolded coronary arteries, and segments of small arteries within the flow-territory of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Conduit segments proximal and distal of the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p≤0.01), with distal segments being most prominently affected(p≤0.01). Endothelial dysfunction was only observed in DM±HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (pswine, and did not appear to be either NO- or EDHF-mediated. Six months of BVS implantation in DM+HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients. Copyright © 2017. Published by Elsevier B.V.

  2. Transverse colon conduit urinary diversion in patients treated with very high dose pelvic irradiation

    International Nuclear Information System (INIS)

    Ravi, R.; Dewan, A.K.; Pandey, K.K.

    1994-01-01

    Urinary diversion may be required in patients receiving pelvic irradiation for gynaecological or genitourinary cancers either as part of a planned or salvage surgical procedure or for urological complications of irradiation. Records were reviewed for 30 such patients who underwent transverse colon conduit as a primary form of urinary diversion. Most of the conduits were constructed using refluxing ureterocolic anastomoses with stents. The results showed no operative mortality. Although the procedure was associated with a complication rate of 37% and a re-operation rate of 20%, there were no bowel or urinary anastomotic leaks. The operation could be safely performed on patients with renal failure, with 83% of such patients showing normal or improved serum creatinine levels post operatively. The advantages of transverse colon conduit urinary diversion are the use of non-irradiated bowel and ureters for diversion. It is recommended as a primary form of urinary diversion in these high risk cases. (Author)

  3. Selective reinnervation: a comparison of recovery following microsuture and conduit nerve repair.

    Science.gov (United States)

    Evans, P J; Bain, J R; Mackinnon, S E; Makino, A P; Hunter, D A

    1991-09-20

    Selective reinnervation was studied by comparing the regeneration across a conventional neurorraphy versus a conduit nerve repair. Lewis rats underwent right sciatic nerve transection followed by one of four different nerve repairs (n = 8/group). In groups I and II a conventional neurorraphy was performed and in groups III and IV the proximal and distal stumps were coapted by use of a silicone conduit with an interstump gap of 5 mm. The proximal and distal stumps in groups I and III were aligned anatomically correct and the proximal stump was rotated 180 degrees in groups II and IV (i.e. proximal peroneal nerve opposite the distal tibial nerve and the proximal tibial nerve opposite the distal peroneal nerve). By 14 weeks, there was an equivalent, but incomplete return in sciatic function index (SFI) in groups I, III, and IV as measured by walking track analysis. However, the SFI became unmeasurable by 6 weeks in all group II animals. At 14 weeks, the percent innervation of the tibialis anterior and medial gastronemius muscles by the peroneal and tibial nerves respectively was estimated by selective compound muscle action potential amplitude recordings. When fascicular alignment was reversed, there was greater tibial (P = 0.02) and lesser peroneal (P = 0.005) innervation of the gastrocnemius muscle in the conduit (group IV) versus the neurorraphy (group II) group. This suggests that the gastrocnemius muscle may be selectively reinnervated by the tibial nerve. However, there was no evidence of selective reinnervation of the tibialis anterior muscle. Despite these differences, the functional recovery in both conduit repair groups (III and IV) was equivalent to a correctly aligned microsuture repair (group I) and superior to that in the incorrectly aligned microsuture repair (group II).

  4. Pericardial tissue valves and Gore-Tex conduits as an alternative for right ventricular outflow tract replacement in children.

    Science.gov (United States)

    Allen, Bradley S; El-Zein, Chawki; Cuneo, Betina; Cava, Joseph P; Barth, Mary Jane; Ilbawi, Michel N

    2002-09-01

    There is still no perfect conduit for reconstruction of the right ventricular outflow tract (RVOT) in children. Homografts are not always available in the appropriate size, and degenerate in a few years. This study evaluates the pericardial valve with Gore-Tex conduit as an alternative for RVOT construction. From January 1, 1993, to September 30, 1999, a pericardial tissue valve was inserted in all patients undergoing RVOT reconstruction or pulmonary valve replacement (PVR) who were large enough to accommodate a tissue valve. In patients without a native main pulmonary artery, a new technique was used to construct an RV-PA conduit out of a flat sheet of Gore-Tex, as Dacron frequently leads to stenosis. Data were collected by retrospective review, follow-up echocardiograms, and assessment by a single cardiologist. There were 48 patients, 22 undergoing a PVR alone and 26 a RV-PA valved Gore-Tex conduit. Diagnosis included tetralogy of Fallot (n = 25); truncus arteriosis (n = 9); ventricular septal defect with PA (n = 5); DORV (n = 4); D-TGA with PS (n = 2); and 1 each IAA with sub AS, VSD with PI, and PS s/p Ross procedure. Patient age ranged from 3 to 33 years and 98% were reoperations. The valve sizes ranged from 19 to 33 mm and the median hospital length of stay was 4 days. There were 2 (4.2%) perioperative and 1 (2.1%) late deaths, none related to the valve or Gore-Tex conduit. At a follow-up of 15 to 86 months (mean 43 +/- 16 months), all remaining 45 patients are New York Heart Association class I, all valves are functional, and no patient has required valve or conduit replacement or revision; more importantly, echocardiogram revealed no significant valve or conduit stenosis (mean gradient 16 +/- 8 mm Hg) and no evidence of regurgitation or structural degeneration. A pericardial tissue valve and Gore-Tex conduit provides a reliable alternative for RVOT reconstruction in pediatric patients. It is readily available, molds in the limited retrosternal space, and

  5. Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida

    OpenAIRE

    Zexuan Xu; Seth Willis Bassett; Bill Hu; Scott Barrett Dyer

    2016-01-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and travel...

  6. Lorentz force effect on mixed convection micropolar flow in a vertical conduit

    Science.gov (United States)

    Abdel-wahed, Mohamed S.

    2017-05-01

    The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.

  7. Electromagnetic nondestructive testing at high lift-off using a magnetic image conduit

    International Nuclear Information System (INIS)

    Lee, Jin Yi; Jun, Jong Woo; Kim, Jung Min; Le, Min Hhuy

    2013-01-01

    To protect sensors from the extreme environments, such as, heat, moisture, pollution and radiation, cracks must be inspected for; this can be done by measuring the distribution of magnetic fields at high lift-off through nondestructive electro-magnetic testing. However, as the intensity of an electro-magnetic field is inversely proportional to the square of the lift-off, it becomes increasingly difficult to effective inspect a crack as the lift-off increases. In this paper, a magnetic image conduit to minimize the intensity loss of an electro-magnetic field at high lift-off is proposed, and the effectiveness of a conduit for magnetic imaging is verified by means of both theoretical and experimental approaches.

  8. Using MODFLOW with CFP to understand conduit-matrix exchange in a karst aquifer during flooding

    Science.gov (United States)

    Spellman, P.; Screaton, E.; Martin, J. B.; Gulley, J.; Brown, A.

    2011-12-01

    Karst springs may reverse flow when allogenic runoff increases river stage faster than groundwater heads and may exchange of surface water with groundwater in the surrounding aquifer matrix. Recharged flood water is rich in nutrients, metals, and organic matter and is undersaturated with respect to calcite. Understanding the physical processes controlling this exchange of water is critical to understanding metal cycling, redox chemistry and dissolution in the subsurface. Ultimately the magnitude of conduit-matrix exchange should be governed by head gradients between the conduit and the aquifer which are affected by the hydraulic conductivity of the matrix, conduit properties and antecedent groundwater heads. These parameters are interrelated and it is unknown which ones exert the greatest control over the magnitude of exchange. This study uses MODFLOW-2005 coupled with the Conduit Flow Processes (CFP) package to determine how physical properties of conduits and aquifers influence the magnitude of surface water-groundwater exchange. We use hydraulic data collected during spring reversals in a mapped underwater cave that sources Madison Blue Spring in north-central Florida to explore which factors are most important in governing exchange. The simulation focused on a major flood in 2009, when river stage increased by about 10 meters over 9 days. In a series of simulations, we varied hydraulic conductivity, conduit diameter, roughness height and tortuosity in addition to antecedent groundwater heads to estimate the relative effects of each parameter on the magnitude of conduit-matrix exchange. Each parameter was varied across plausible ranges for karst aquifers. Antecedent groundwater heads were varied using well data recorded through wet and dry seasons throughout the spring shed. We found hydraulic conductivity was the most important factor governing exchange. The volume of exchange increased by about 61% from the lowest value (1.8x10-6 m/d) to the highest value (6 m

  9. 3D bioprinting for vascularized tissue fabrication

    Science.gov (United States)

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  10. Impact of pacing modality and biventricular pacing on cardiac output and coronary conduit flow in the post-cardiotomy patient.

    LENUS (Irish Health Repository)

    Healy, David G

    2012-02-03

    We have previously demonstrated the role of univentricular pacing modalities in influencing coronary conduit flow in the immediate post-operative period in the cardiac surgery patient. We wanted to determine the mechanism of this improved coronary conduit and, in addition, to explore the possible benefits with biventricular pacing. Sixteen patients undergoing first time elective coronary artery bypass grafting who required pacing following surgery were recruited. Comparison of cardiac output and coronary conduit flow was performed between VVI and DDD pacing with a single right ventricular lead and biventricular pacing lead placement. Cardiac output was measured using arterial pulse waveform analysis while conduit flow was measured using ultrasonic transit time methodology. Cardiac output was greatest with DDD pacing using right ventricular lead placement only [DDD-univentricular 5.42 l (0.7), DDD-biventricular 5.33 l (0.8), VVI-univentricular 4.71 l (0.8), VVI-biventricular 4.68 l (0.6)]. DDD-univentricular pacing was significantly better than VVI-univentricular (P=0.023) and VVI-biventricular pacing (P=0.001) but there was no significant advantage to DDD-biventricular pacing (P=0.45). In relation to coronary conduit flow, DDD pacing again had the highest flow [DDD-univentricular 55 ml\\/min (24), DDD-biventricular 52 ml\\/min (25), VVI-univentricular 47 ml\\/min (23), VVI-biventricular 50 ml\\/min (26)]. DDD-univentricular pacing was significantly better than VVI-univentricular (P=0.006) pacing but not significantly different to VVI-biventricular pacing (P=0.109) or DDD-biventricular pacing (P=0.171). Pacing with a DDD modality offers the optimal coronary conduit flow by maximising cardiac output. Biventricular lead placement offered no significant benefit to coronary conduit flow or cardiac output.

  11. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2016-10-01

    Full Text Available Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites. The silk fibers are secreted by the labial gland of the larvae of some orders of Holometabola (insects with pupa or the spinnerets of spiders. The majority of studies using silks for biomedical applications use materials from silkworms or spiders, mostly of the genus Nephila clavipes. Silk is one of the most promising biomaterials with effects not only in nerve regeneration, but in a number of regenerative applications. The development of silks for human biomedical applications is of high scientific and clinical interest. Biomaterials in use for biomedical applications have to meet a number of requirements such as biocompatibility and elicitation of no more than a minor inflammatory response, biodegradability in a reasonable time and specific structural properties. Here we present the current status in the field of silk-based conduit development for nerve repair and discuss current advances with regard to potential clinical transfer of an implantable nerve conduit for enhancement of nerve regeneration.

  12. Vascular disease in cocaine addiction.

    Science.gov (United States)

    Bachi, Keren; Mani, Venkatesh; Jeyachandran, Devi; Fayad, Zahi A; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-07-01

    Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Virtual reality: emerging role of simulation training in vascular access.

    Science.gov (United States)

    Davidson, Ingemar J A; Lok, Charmaine; Dolmatch, Bart; Gallieni, Maurizio; Nolen, Billy; Pittiruti, Mauro; Ross, John; Slakey, Douglas

    2012-11-01

    Evolving new technologies in vascular access mandate increased attention to patient safety; an often overlooked yet valuable training tool is simulation. For the end-stage renal disease patient, simulation tools are effective for all aspects of creating access for peritoneal dialysis and hemodialysis. Based on aviation principles, known as crew resource management, we place equal emphasis on team training as individual training to improve interactions between team members and systems, cumulating in improved safety. Simulation allows for environmental control and standardized procedures, letting the trainee practice and correct mistakes without harm to patients, compared with traditional patient-based training. Vascular access simulators range from suture devices, to pressurized tunneled conduits for needle cannulation, to computer-based interventional simulators. Simulation training includes simulated case learning, root cause analysis of adverse outcomes, and continual update and refinement of concepts. Implementation of effective human to complex systems interaction in end-stage renal disease patients involves a change in institutional culture. Three concepts discussed in this article are as follows: (1) the need for user-friendly systems and technology to enhance performance, (2) the necessity for members to both train and work together as a team, and (3) the team assigned to use the system must test and practice it to a proficient level before safely using the system on patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams

    Science.gov (United States)

    Bailly-Comte, Vincent; Martin, Jonathan B.; Jourde, Hervé; Screaton, Elizabeth J.; Pistre, Séverin; Langston, Abigail

    2010-05-01

    SummaryKarst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves. We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of

  15. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    Directory of Open Access Journals (Sweden)

    Elodie eSaubin

    2016-05-01

    Full Text Available The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types.Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation

  16. Comparative analysis of the pressure profilometry of vesicocutaneous continent catheterizable conduits between patients with and without rectus abdominis neosphincter (Yachia principle).

    Science.gov (United States)

    Rondon, Atila; Leslie, Bruno; Arcuri, Leonardo Javier; Ortiz, Valdemar; Macedo, Antonio

    2015-09-01

    To assess whether crossing rectus abdominis muscle strips, as proposed by Yachia, would change urinary catheterizable conduit's pressure profilometry, in static and dynamic conditions. Non-randomized selection of 20 continent patients that underwent Macedo's ileum-based reservoir, 10 including Yachia's technique (Study Group) and 10 without this mechanism of continence (Control Group). Demographics and cystometric data were assessed. Conduit's pressure profilometry was obtained by infusing saline through a multichannel catheter, at rest and during Valsalva maneuver. We assessed the pressure: (a) in the bladder; (b) in conduit's proximal segment; and (c) in conduit's distal segment, which is presumably the abdominal wall and crossed muscle strips site. Mean age at surgery was 6.1 years in the Control Group and 7.7 years in the Study Group. There was no statistically significant difference between groups regarding maximum cystometric bladder capacity and leakage point pressure. At rest, the pressure profilometry showed similar results between groups in all segments analyzed. During Valsalva maneuver, pressure profilometry showed similar results between groups in bladder and conduit's proximal segment pressure. In this condition, conduit's distal segment pressure in the Study Group (Mean = 72.9 and Peak = 128.7 cmH2 O) was significantly greater (P continence. © 2014 Wiley Periodicals, Inc.

  17. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media.

    Science.gov (United States)

    Rexhaj, Emrush; Pireva, Agim; Paoloni-Giacobino, Ariane; Allemann, Yves; Cerny, David; Dessen, Pierre; Sartori, Claudio; Scherrer, Urs; Rimoldi, Stefano F

    2015-10-01

    Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans. Copyright © 2015 the American Physiological Society.

  18. A new venous conduit utilizing the recipient portal vein branches for segment V in adult partial liver transplantation.

    Science.gov (United States)

    Moon, I S; Kim, D G; Lee, M D; Hong, S K; Park, S C; Oh, D Y; Ahn, S T; Lee, Y J

    2005-03-01

    Right anterior-medial lobe congestion due to temporary clamping of segment V and/or VIII is common in the operative theater during adult donor right lobe liver transplantation, the most common procedure in our institute. We have used an autogenous saphenous vein conduit to recipient portal vein tributaries in 15 cases, as a "Y-to-I venoplasty" since January 2004. The recipient portal vein is transected 5 mm proximal to its bifurcation and extended to both sides with partial hepatic dissection. The "Y-to-I venoplasty" is made by suture closure of the portal vein transversely to form a tube. The average length is 7.5 cm with a 1.3 cm width. One end of "Y-to-I venoplasty" conduit is anastomosed to the donor segment V branch on the back table. And the other end is anastomosed directly to the IVC via a new window or the middle hepatic vein stump in recipient. The phase distension of the conduit with respiration is noted in the operative field. A 6/15 (40%) patency rate, was observed by CT angiography at the second postoperative week. All-patient conduits showed good flow on serial examinations at the 60th postoperative day. This new venous graft, made of recipient portal vein is a good conduit for segment V decongestion in adult right lobe partial liver transplantation.

  19. Erosion of cohesive soil layers above underground conduits

    Science.gov (United States)

    Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier

    2017-06-01

    Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  20. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005

    Science.gov (United States)

    Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.

    2007-01-01

    This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by

  1. Convection in a volcanic conduit recorded by bubbles

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Gonnermann, Helge M.; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2013-01-01

    Microtextures of juvenile pyroclasts from Kīlauea’s (Hawai‘i) early A.D. 2008 explosive activity record the velocity and depth of convection within the basaltic magma-filled conduit. We use X-ray microtomography (μXRT) to document the spatial distribution of bubbles. We find small bubbles (radii from 5 μm to 70 μm) in a halo surrounding larger millimeter-size bubbles. This suggests that dissolved water was enriched around the larger bubbles—the opposite of what is expected if bubbles grow as water diffuses into the bubble. Such volatile enrichment implies that the volatiles within the large bubbles were redissolving into the melt as they descended into the conduit by the downward motion of convecting magma within the lava lake. The thickness of the small bubble halo is ∼100–150 μm, consistent with water diffusing into the melt on time scales on the order of 103 s. Eruptions, triggered by rockfall, rapidly exposed this magma to lower pressures, and the haloes of melt with re-dissolved water became sufficiently supersaturated to cause nucleation of the population of smaller bubbles. The required supersaturation pressures are consistent with a depth of a few hundred meters and convection velocities of the order of 0.1 m s−1, similar to the circulation velocity observed on the surface of the Halema‘uma‘u lava lake.

  2. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  3. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress.

    Science.gov (United States)

    Santos-Parker, Jessica R; Strahler, Talia R; Bassett, Candace J; Bispham, Nina Z; Chonchol, Michel B; Seals, Douglas R

    2017-01-03

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBF ACh ; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBF ACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBF ACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function.

  4. Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap

    International Nuclear Information System (INIS)

    Ni, Hsiao-Chiang; Tseng, Ting-Chen; Hsu, Shan-hui; Chen, Jeng-Rung; Chiu, Ing-Ming

    2013-01-01

    Nerve conduits are often used in combination with bioactive molecules and stem cells to enhance peripheral nerve regeneration. In this study, the acidic fibroblast growth factor 1 (FGF1) was immobilized onto the microporous/micropatterned poly (D, L-lactic acid) (PLA) nerve conduits after open air plasma treatment. PLA substrates grafted with chitosan in the presence of a small amount of gold nanoparticles (nano Au) showed a protective effect on the activity of the immobilized FGF1 in vitro. Different conduits were tested for their ability to bridge a 15 mm critical gap defect in a rat sciatic nerve injury model. Axon regeneration and functional recovery were evaluated by histology, walking track analysis and electrophysiology. Among different conduits, PLA conduits grafted with chitosan–nano Au and the FGF1 after plasma activation had the greatest regeneration capacity and functional recovery in the experimental animals. When the above conduit was seeded with aligned neural stem cells, the efficacy was further enhanced and it approached that of the autograft group. This work suggested that microporous/micropatterned nerve conduits containing bioactive growth factors may be successfully fabricated by micropatterning techniques, open plasma activation, and immobilization, which, combined with aligned stem cells, may synergistically contribute to the regeneration of the severely damaged peripheral nerve. (paper)

  5. Erosion of cohesive soil layers above underground conduits

    Directory of Open Access Journals (Sweden)

    Luu Li-Hua

    2017-01-01

    Full Text Available Using a recently developed 2D numerical modelling that combines Discrete Element (DEM and Lattice Boltzmann methods (LBM, we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  6. The Railway and the River: Conduits of Dickens’s Imaginary City

    NARCIS (Netherlands)

    Moore, B.; Murail, E.; Thornton, S.

    2017-01-01

    This chapter analyses the railway and the river as two key conduits of Dickens’ imaginary city, arguing that each simultaneously connects and fractures the modern urban world that he depicts. Focusing on Dombey and Son and Our Mutual Friend, the chapter explores how railway and river combine

  7. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid

    Directory of Open Access Journals (Sweden)

    Sachiro eKakinoki

    2014-07-01

    Full Text Available We developed a microfibrous poly(L-lactic acid (PLLA nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG30 that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG30 composisting of an elastin-like repetitive sequence (VPGIG30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73 was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG30 inner layer.

  8. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    Science.gov (United States)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  9. FDG-PET identification of infected pulmonary artery conduit following tetralogy of fallot (TOF) repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu Yang; Williams, Hadyn; Pucar, Darko [Dept. of Radiology, Medical College of Georgia, Augusta (United States)

    2017-03-15

    Tetralogy of Fallot (TOF) is one of the most common forms of cyanotic congenital heart disease usually managed by serial surgical repairs. The repaired prosthetic valve or conduit is susceptible to life-threatening infection. FDG-PET is an effective alternative to evaluate the source of infection when other examinations are inconclusive. We report an unusual case of an infected pulmonary artery conduit after TOF repair although the echocardiogram was negative for vegetation, which was later confirmed by surgery and pathology. The case highlights the role of FDG-PET as a problem-solving tool for potential endocarditis and cardiac device infection cases after complex cardiac surgery.

  10. FDG-PET identification of infected pulmonary artery conduit following tetralogy of fallot (TOF) repair

    International Nuclear Information System (INIS)

    Zhang, Yu Yang; Williams, Hadyn; Pucar, Darko

    2017-01-01

    Tetralogy of Fallot (TOF) is one of the most common forms of cyanotic congenital heart disease usually managed by serial surgical repairs. The repaired prosthetic valve or conduit is susceptible to life-threatening infection. FDG-PET is an effective alternative to evaluate the source of infection when other examinations are inconclusive. We report an unusual case of an infected pulmonary artery conduit after TOF repair although the echocardiogram was negative for vegetation, which was later confirmed by surgery and pathology. The case highlights the role of FDG-PET as a problem-solving tool for potential endocarditis and cardiac device infection cases after complex cardiac surgery

  11. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  12. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  13. Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida

    Science.gov (United States)

    Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett

    2016-08-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  14. Self-Replenishing Vascularized Fouling-Release Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C; Vu, TL; Lin, JJ; Kolle, S; Juthani, N; Watson, E; Weaver, JC; Alvarenga, J; Aizenberg, J

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella sauna, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

  15. Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit.

    Science.gov (United States)

    Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Hamidieh, Amir-Ali; Amani, Amir; Farzamfar, Saeed; Ai, Jafar

    2018-05-01

    The current study aimed to enhance the efficacy of peripheral nerve regeneration using an electrically conductive biodegradable porous neural guidance conduit for transplantation of allogeneic Schwann cells (SCs). The conduit was produced from polylactic acid (PLA), multiwalled carbon nanotubes (MWCNTs), and gelatin nanofibrils (GNFs) coated with the recombinant human erythropoietin-loaded chitosan nanoparticles (rhEpo-CNPs). The PLA/MWCNTs/GNFs/rhEpo-CNPs conduit had the porosity of 85.78 ± 0.70%, the contact angle of 77.65 ± 1.91° and the ultimate tensile strength and compressive modulus of 5.51 ± 0.13 MPa and 2.66 ± 0.34 MPa, respectively. The conduit showed the electrical conductivity of 0.32 S cm -1 and lost about 11% of its weight after 60 days in normal saline. The produced conduit was able to release the rhEpo for at least 2 weeks and exhibited favorable cytocompatibility towards SCs. For functional analysis, the conduit was seeded with 1.5 × 10 4 SCs and implanted into a 10 mm sciatic nerve defect of Wistar rat. After 14 weeks, the results of sciatic functional index, hot plate latency, compound muscle action potential amplitude, weight-loss percentage of wet gastrocnemius muscle and Histopathological examination using hematoxylin-eosin and Luxol fast blue staining demonstrated that the produced conduit had comparable nerve regeneration to the autograft, as the gold standard to bridge the nerve gaps. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1463-1476, 2018. © 2017 Wiley Periodicals, Inc.

  16. Magma wagging and whirling in volcanic conduits

    Science.gov (United States)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  17. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  18. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    Science.gov (United States)

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  19. Vulcanian explosions at Volcán de Colima, Mexico: modelling the conduit processes

    Science.gov (United States)

    Varley, N. R.; Stevenson, J.; Johnson, J.; Reyes, G.; Weber, K.; Sanderson, R.

    2006-12-01

    Activity at Volcán de Colima has increased over the past 8 years, and is possibly building towards a significant eruption. Monitoring its current activity is therefore critical, with recent expansion of the network providing new types of data which need to be understood. Recent activity has consisted of 3 effusive episodes lasting up to 22 months, separated by periods characterised by daily Vulcanian eruptions of small to moderate size; the largest producing pyroclastic flows reaching over 5 km, representing the most significant since the last Plinian event (1913). A model has been proposed to explain the mechanism of the Vulcanian explosions, derived through integrating different data including seismicity, SO2 flux and the ascent velocity and thermal emission of the eruption column. Infrasound measurements have helped to demonstrate the variability in the distribution of energy produced by the events. Swarms of low frequency seismic events were associated with the largest magnitude explosions and have been examined statistically with variations observed in the magnitude-frequency relationship of each swarm and their distribution. Seismic evidence of migration of the source has been identified, maybe explained by brittle fracturing associated with an increasing pressure differential within the conduit system. Volcán de Colima has a complex edifice structure with explosions switching between multiple vents and showing pulsing. Variation in remotely monitored fumarole temperatures has also been related to the explosive activity. It is clear that small variations of certain critical factors within the conduit system can lead to a transition between effusive and explosive activity. Frequent transitions at Volcán de Colima provide an ideal opportunity to analyse variations in the observable signals and deduce relationships with changes within the conduit that influence magma ascent and degassing, such as its volatile contents or ascent velocity. One goal of this

  20. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    Science.gov (United States)

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  1. Inactive supply wells as conduits for flow and contaminant migration: conditions of occurrence and suggestions for management

    Science.gov (United States)

    Gailey, Robert M.

    2017-11-01

    Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations.

  2. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  3. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    Directory of Open Access Journals (Sweden)

    Tim Kornfeld

    2016-11-01

    Full Text Available Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95% throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  4. A 40 kA NbTi cable in conduit conductor for the large poloidal field coils of net

    International Nuclear Information System (INIS)

    Torossian, A.; Bessette, D.; Turck, B.; Kazimierzak, B.

    1990-01-01

    The main feature of this cable in conduit design is to separate the manufacture of the full length of the steel conduit (400 m) and of the cable in order to minimize the industrial risk and consequently the cost. A circular cross section for that cable seems to be the most suitable for that purpose: - axisymmetric cabling with full transposition of strands, - cable behaviour independent of the field orientation, - less deformation of subcables, - cross section remains circular when the cable is under tension and makes the slippage of the cable in the conduit easier, - butt welding of 8 m long tubes forming the conduit becomes simpler. The square external shape allows to minimize the amount of insulating material and consequently improves the overall current density of the coil. This conductor is aimed to large poloidal field coils for NET which do not require high field and in that case NbTi seems to be the best choice with regard to reliability and cost but Nb 3 Sn could be used as well. Stainless steel ribbons are inserted between subcables in order to reduce losses induced by the rapid field changes and also to improve the mechanical behaviour of the cable

  5. 3D Modeling of Vascular Pathologies from contrast enhanced magnetic resonance images (MRI)

    International Nuclear Information System (INIS)

    Cantor Rivera, Diego; Orkisz, Maciej; Arias, Julian; Uriza, Luis Felipe

    2007-01-01

    This paper presents a method for generating 3D vascular models from contrast enhanced magnetic resonance images (MRI) using a fast marching algorithm. The main contributions of this work are: the use of the original image for defining a speed function (which determines the movement of the interface) and the calculation of the time in which the interface identifies the artery. The proposed method was validated on pathologic carotid artery images of patients and vascular phantoms. A visual appraisal of vascular models obtained with the method shows a satisfactory extraction of the vascular wall. A quantitative assessment proved that the generated models depend on the values of algorithm parameters. The maximum induced error was equal to 1.34 voxels in the diameter of the measured stenoses.

  6. NRC Information No. 90-23: Improper installation of Patel conduit seals

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    On November 6, 1989, the staff at the H.B. Robinson plant notified the NRC that they had discovered that some of the conduit seal grommets used to seal insulated wire conductors entering environmentally qualified instrument housings were oversized for the application. The seals are used to prevent moisture from entering safety-related electrical components following loss-of-coolant accidents. The problem was attributed to inadequate installation instructions that were used when the seals were installed in 1986 and 1987. These instructions listed the grommets by wire gauge size and gave maximum wire insulation diameters for each wire size. In accordance with these instructions, the seals were selected based on wire gauge alone. However, since the insulation thickness for a given wire gauge the correct grommet size would have been the minimum wire insulation diameter for which a particular grommet will achieve an effective seal. The selection of grommet size based only on wire gauge size resulted in the installation of some grommets that were too large to provide an effective seal. As a result, some of the seals failed pressure tests that were designed to simulate post-LOCA pressures. During the investigation of the grommet leakage problem, the Robinson staff also checked the torque on the conduit seal union nuts that are used to compress the seals. EGS Corporation recommends that the union nuts be torqued to 50 ft-lb. On approximately half of the 90 seals inspected, the union nut moved about 1/4 inch when this torque was applied. EGS Corporation reports that 1/4 inch of movement does not necessarily indicate a degraded seal but recommends that the correct torque be verified on a representative sample of installed conduit seals

  7. Pseudotachylyte formation in volcanic conduits: Montserrat vs. Mount St. Helens

    Science.gov (United States)

    Kendrick, J. E.; Lavallee, Y.; Petrakova, L.; Ferk, A.; Di Toro, G.; Hess, K.; Ferri, F.; Dingwell, D. B.

    2012-12-01

    Seismogenic fracture and faulting may result in non-equilibrium frictional melting of rock, which upon cooling and recrystallisation forms pseudotachylyte. In volcanic environments, the transition from endogenous to exogenous growth can be attributed to a shift in magma rheology into the brittle regime, and thus the ascent of high-viscosity magma can form discrete shear zones, comparable to tectonic faults, along conduit margins. Pseudotachylytes have, until now, rarely been noted in exogenous volcanic materials and seldom in active volcanic environments. This is despite the simultaneous occurrence of high pressures and differential stresses, which make high-viscosity magmas ideal candidates for the occurrence of frictional melting. Here, we compare the chemical, thermal, magnetic and structural properties of two candidate volcanic pseudotachylytes; one from Soufriere Hills (Montserrat) and one from Mount St. Helens (USA). Additionally, we present data from a set of high-velocity rotary shear experiments on the host materials of these natural pseudotachylytes in which melting was induced after just 10's of centimeters of slip at realistic extrusion velocities (0.4 - 1.6 ms-1) and low normal stresses (0.5-2 MPa). After 1-2 meters of slip a continuous melt layer formed, at which point friction decreased and the fault zone displayed slip-weakening behaviour. For volcanic conduits, this would facilitate temporarily elevated slip rates, or an increase in extrusion rate, and could cause transitions in dome morphology and eruption style. This study demonstrates that shear fracturing in magma or sliding along conduit margins can readily result in frictional melting. The conspicuous absence of pseudotachylytes in active volcanic environments is likely the result of exceptionally high background temperatures which precipitate near-equilibrium melting, thereby obviating one of the characteristic signatures of pseudotachylyte - glassy protomelts formed by selective melting of

  8. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Right ventricular to pulmonary artery conduit instead of modified Blalock-Taussig shunt improves postoperative hemodynamics in newborns after the Norwood operation.

    Science.gov (United States)

    Mair, Rudolf; Tulzer, Gerald; Sames, Eva; Gitter, Roland; Lechner, Evelyn; Steiner, Jürgen; Hofer, Anna; Geiselseder, Gertraud; Gross, Christoph

    2003-11-01

    Perioperative mortality, prolonged postoperative recovery after the Norwood procedure, and mortality between stage I and stage II might be related to shunt physiology. A right ventricular to pulmonary artery conduit offers a banded physiology in contrast to a Blalock-Taussig shunt. The purpose of this study was to assess the hemodynamic differences and their consequences in the postoperative course between Norwood patients with a Blalock-Taussig shunt and those with a right ventricular to pulmonary artery conduit. From October 1999 until May 2002, 32 unselected consecutive patients underwent a Norwood procedure at the General Hospital Linz. The first 18 patients received a Blalock-Taussig shunt. In the remaining 14 patients we performed a right ventricular to pulmonary artery conduit. Both groups were compared. The diastolic blood pressure was significantly higher in the right ventricular to pulmonary artery conduit group (P <.001). Despite a higher FIO(2), PO(2) levels tended to be lower in the first 5 postoperative days. At the age of 3 months, catheterization laboratory data showed a lower Qp/Qs ratio in the same group (0.86 [0.78; 1] versus 1.55 [1.15; 1.6]; P =.005) and a higher dp/dt (955 [773; 1110] vs 776 [615; 907]; P =.018). (Descriptive data reflect medians and quartiles [in brackets].) Hospital survival was 72% in the Blalock-Taussig shunt group versus 93% in the right ventricular to pulmonary artery conduit group. Mortality between stage I and stage II was 23% in the Blalock-Taussig shunt group versus 0% in the right ventricular to pulmonary artery conduit group. A higher diastolic blood pressure and a lower Qp/Qs ratio were associated with a more stable and efficient circulation in patients with a right ventricular to pulmonary artery conduit. More intensive ventilatory support was necessary during the first postoperative days. We did not note any adverse effects of the ventriculotomy on ventricular performance.

  10. Enhancing Peripheral Nerve Regeneration with a Novel Drug-Delivering Nerve Conduit

    Science.gov (United States)

    2015-10-01

    our novel nerve conduit. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...growth in dorsal root ganglion ( DRG ) cell culture Tasks/Subtasks: 1. In Vitro NGF/GNDF release kinetics experiments.......................... (Gale...Axonal growth of DRGs ................................................................ (Terry, Shea) (11-18months) Progress: We have started these

  11. Implication of Free Fatty Acids in Thrombin Generation and Fibrinolysis in Vascular Inflammation in Zucker Rats and Evolution with Aging

    Directory of Open Access Journals (Sweden)

    Jérémy Lagrange

    2017-11-01

    Full Text Available Background: The metabolic syndrome (MetS and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis.Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs and its interplay with adipokines, free fatty acids (FFA, and metalloproteinases (MMPs in obese Zucker rats that share features of the human MetS.Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT.Results: Endogenous thrombin potential (ETP was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL-1β and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats.Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1 increased fibrinogen and impaired fibrinolysis and (2 increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.

  12. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  13. Reimbursement in hospital-based vascular surgery: Physician and practice perspective.

    Science.gov (United States)

    Perri, Jennifer L; Zwolak, Robert M; Goodney, Philip P; Rutherford, Gretchen A; Powell, Richard J

    2017-07-01

    The purpose of this study was to determine change in value of a vascular surgery division to the health care system during 6 years at a hospital-based academic practice and to compare physician vs hospital revenue earned during this period. Total revenue generated by the vascular surgery service line at an academic medical center from 2010 through 2015 was evaluated. Total revenue was measured as the sum of physician (professional) and hospital (technical) net revenue for all vascular-related patient care. Adjustments were made for work performed, case complexity, and inflation. To reflect the effect of these variables, net revenue was indexed to work relative value units (wRVUs), case mix index, and consumer price index, which adjusted for work, case complexity, and inflation, respectively. Differences in physician and hospital net revenue were compared over time. Physician work, measured in RVUs per year, increased by 4%; case complexity, assessed with case mix index, increased by 10% for the 6-year measurement period. Despite stability in payer mix at 64% to 69% Medicare, both physician and hospital vascular-related revenue/wRVU decreased during this period. Unadjusted professional revenue/wRVU declined by 14.1% (P = .09); when considering case complexity, physician revenue/wRVU declined by 20.6% (P = .09). Taking into account both case complexity and inflation, physician revenue declined by 27.0% (P = .04). Comparatively, hospital revenue for vascular surgery services decreased by 13.8% (P = .07) when adjusting for unit work, complexity, and inflation. At medical centers where vascular surgeons are hospital based, vascular care reimbursement decreased substantially from 2010 to 2015 when case complexity and inflation were considered. Physician reimbursement (professional fees) decreased at a significantly greater rate than hospital reimbursement for vascular care. This trend has significant implications for salaried vascular surgeons in hospital

  14. A theoretical study of the energy output of two magnetohydrodynamic generators

    International Nuclear Information System (INIS)

    Vergnes, Jean

    1975-01-01

    The outputs of two alternating-current generators consisting of rectangular conduits which contain an electroconducting viscous fluid and are subjected to a uniform magnetic induction field are compared. This study supposes that the electric circuit is closed by a resistance R [fr

  15. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    Science.gov (United States)

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (psodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID

  16. Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan

    Science.gov (United States)

    Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.

    2006-12-01

    The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14

  17. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    International Nuclear Information System (INIS)

    Coombs, C.R.; Hawke, B.R.; Wilson, L.

    1990-01-01

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles. 28 refs

  18. The impact of various scaffold components on vascularized bone constructs.

    Science.gov (United States)

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  19. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  20. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2018-05-01

    Full Text Available Summary: Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by “self-condensation” culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation. : Takahashi et al. report on generating vascularized islet tissue from humans and mice. After transplantation, vascularized islets significantly improve survival of diabetic mice, demonstrating the quick normalization of blood glucose compared with conventional islet transplantation. Keywords: tissue engineering, tissue-based therapy, vascularization, islet transplantation, organoid

  1. Bacterial adherence to vascular grafts after in vitro bacteremia

    International Nuclear Information System (INIS)

    Rosenman, J.E.; Pearce, W.H.; Kempczinski, R.F.

    1985-01-01

    All currently used arterial prosthetics have a greater susceptibility to infection following bacteremia than does autogenous tissue. This experiment compares quantitative bacterial adherence to various prosthetic materials after bacteremia carried out in a tightly controlled and quantitative fashion. Ten centimeters long, 4 mm i.d. Dacron, umbilical vein (HUV), and polytetrafluoroethylene (PTFE) grafts, as well as PTFE grafts with a running suture line at the midportion were tested. Each graft was interposed into a pulsatile perfusion system modified from a Waters MOX 100 TM renal transplant pump. Indium-111-labeled Staphylococcus aureus were added to heparinized canine blood to give a mean concentration of 4.7 X 10(6) bacteria/cc. This infected blood was recirculated through each graft for 30 min at a rate of 125 cc/m, 100 Torr (sys), 60 beats/min. The gamma counts/graft were used to calculate the number of bacteria/cm2 of graft surface. After nine experiments, a mean of 9.63 X 10(5) bacteria/cm2 were adherent to the Dacron, 1.04 X 10(5) bacteria/cm2 to the HUV, and 2.15 X 10(4) bacteria/cm2 to the PTFE. These differences were all significant at the 0.05 level. The addition of a suture line increased bacterial adherence to the PTFE graft by 50%. These results suggest that PTFE is the vascular graft material of choice when a prosthetic graft must be implanted despite a high risk of subsequent clinical bacteremia. An in vitro, pulsatile perfusion model gave accurate and reproducible results, and appears well suited for further studies of bacterial, or platelet adherence to grafts, as well as the biomechanics of vascular conduits

  2. What goes up might come down: Backflow in the conduits of persistently degassing volcanoes and ramifications for melt-inclusion analysis

    Science.gov (United States)

    Suckale, J.; Qin, Z.; Picchi, D.; Keller, T.

    2017-12-01

    Many active volcanoes erupt significantly less magma than they degas, implying that large quantities of magma must descend back into the plumbing system after degassing. The resulting bidirectional flow field in the volcanic conduit is fundamentally unstable. These instabilities are important to understand, because they likely control the episodicity of eruptive behavior observed at persistently degassing volcanoes. Laboratory experiments have provided invaluable insights into the flow regimes that may arise in volcanic conduits, but are not straightforward to scale up to volcanic systems. The goal of this study is to use direct numerical simulations to virtually reproduce the analogue experiments by Stevenson and Blake, 1998, compare them to simple analytical models and gain insights into the different flow regimes and interface instabilities observed in actual volcanic conduits. Direct numerical simulations provide a compelling complement to analogue experiments, because they are not constrained by the scales or flow properties achievable in a laboratory setting. By linking virtual and analogue experiments, we show that the interface between ascending and descending fluid is not usually stationary in volcanic conduits (see fig). The intuition that buoyant, volatile-rich magma moves up while heavy, degassed magma moves down is hence not generally true in bidirectional conduit flow. Instead, our results show that a potentially significant portion of the volatile-rich magma flows downwards despite its positive buoyancy - a process commonly referred to as backflow. The existence of backflow in volcanic conduits has potentially important ramifications for understanding melt-inclusion trends, because it affects exsolved and dissolved volatile components differently. Our preliminary results suggest that carbon dioxide bubbles exsolved at depth tend to decouple from the backflow and escape into the upward moving portion of the fluid, while dissolved water is recycled

  3. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  4. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    Science.gov (United States)

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  5. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    Directory of Open Access Journals (Sweden)

    Florian Hiermeier

    2017-11-01

    Full Text Available Valveless pumping phenomena (peristalsis, Liebau-effect can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  6. Cardiovascular effects of right ventricle-pulmonary artery valved conduit implantation in experimental pulmonic stenosis

    International Nuclear Information System (INIS)

    Saida, Y.; Tanaka, R.; Fukushima, R.; Hoshi, K.; Hira, S.; Soda, A.; Iizuka, T.; Ishikawa, T.; Nishimura, T.; Yamane, Y.

    2009-01-01

    Right ventricle (RV)-pulmonary artery (PA) valved conduit (RPVC) implantation decreases RV systolic pressure in pulmonic stenosis (PS) by forming a bypass route between the RV and the PA. The present study evaluates valved conduits derived from canine aortae in a canine model of PS produced by pulmonary artery banding (PAB). Pulmonary stenosis was elicited using PAB in 10 conditioned beagles aged 8 months. Twelve weeks after PAB, the dogs were assigned to one group that did not undergo surgical intervention and another that underwent RPVC using denacol-treated canine aortic valved grafts (PAB+RPVC). Twelve weeks later, the rate of change in the RV-PA systolic pressure gradient was significantly decreased in the PAB+RPVC, compared with the PAB group (60.5+-16.7% vs. 108.9+-22.9%; p0.01). In addition, the end-diastolic RV free wall thickness (RVFWd) was significantly reduced in the PAB+RPVC, compared with the PAB group (8.2+-0.2 vs. 9.4+-0.7 mm; p0.05). Thereafter, regurgitation was not evident beyond the conduit valve and the decrease in RV pressure overload induced by RPVC was confirmed. The present results indicate that RPVC can be performed under a beating heart without cardiopulmonary bypass and adapted to dogs with various types of PS, including 'supra valvular' PS or PS accompanied by dysplasia of the pulmonary valve. Therefore, we consider that this method is useful for treating PS in small animals

  7. Dynamic analysis on cavitation and embolization in vascular plants under tension

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin; Lee, Sang Joon

    2014-11-01

    Plants can transport sap water from the soil to the tip of their leaves using the tensile forces created by leaf transpiration without any mechanical pumps. However, the high tension adversely induces a thermodynamically metastable state in sap water with negative pressure and gas bubbles are prone to be formed in xylem vessels. Cavitation easily breaks down continuous water columns and grows into embolization, which limits water transport through xylem vessels. Meanwhile, the repair process of embolization is closely related to water management and regulation of sap flow in plants. In this study, the cavitation and embolization phenomena of liquid water in vascular plants and a physical model system are experimentally and theoretically investigated in detail under in vivo and in vitro conditions. This study will not only shed light on the understanding of these multiphase flows under tension but also provide a clue to solve cavitation problems in micro-scale conduits and microfluidic network systems. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  8. Matrix ageing and vascular impacts: focus on elastin fragmentation.

    Science.gov (United States)

    Duca, Laurent; Blaise, Sébastien; Romier, Béatrice; Laffargue, Muriel; Gayral, Stéphanie; El Btaouri, Hassan; Kawecki, Charlotte; Guillot, Alexandre; Martiny, Laurent; Debelle, Laurent; Maurice, Pascal

    2016-06-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide and represent a major problem of public health. Over the years, life expectancy has considerably increased throughout the world, and the prevalence of CVD is inevitably rising with the growing ageing of the population. The normal process of ageing is associated with progressive deterioration in structure and function of the vasculature, commonly called vascular ageing. At the vascular level, extracellular matrix (ECM) ageing leads to molecular alterations in long half-life proteins, such as elastin and collagen, and have critical effects on vascular diseases. This review highlights ECM alterations occurring during vascular ageing with a specific focus on elastin fragmentation and also the contribution of elastin-derived peptides (EDP) in age-related vascular complications. Moreover, current and new pharmacological strategies aiming at minimizing elastin degradation, EDP generation, and associated biological effects are discussed. These strategies may be of major relevance for preventing and/or delaying vascular ageing and its complications. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  9. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells

    OpenAIRE

    Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana

    2017-01-01

    Summary: The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka f...

  10. Sexual Function after Non-Nerve-Sparing Radical Cystoprostatectomy: A Comparison between Ileal Conduit Urinary Diversion and Orthotopic Ileal Neobladder Substitution

    Directory of Open Access Journals (Sweden)

    M.A Asgari

    2013-07-01

    Full Text Available Objective To compare the erectile function (EF and sexual desire (SD in men after radical cystoprostatectomy (RCP who had either an ileal conduit urinary diversion or orthotropic ileal neobladder substitution. Materials and Methods Eighty one sexually active men with bladder cancer were enrolled in this prospective study. After RCP according to patients' preferences they underwent either ileal conduit urinary diversion (n = 41 or orthotropic ileal neobladder substitution (n = 40. EF and SD were assessed using International Index of Erectile Function (IIEF questionnaire. Patients were assessed at 4-week before surgery and were followed up at 1, 6, and 12-month postoperatively using the same questionnaire. Results Postoperatively the EF and SD domains deteriorated significantly in both groups, but in a small proportion of the patients submitted to ileal neobladder they gradually improved with time (P = 0.006. At 12-month postoperative period, 4 (9.8% and 14 (35.0% patients in ileal conduit and ileal neobladder groups were able to achieve erections hard enough for vaginal penetration and maintained their erection to completion of intercourse, respectively (P = 0.006. Among patients in the ileal conduit and ileal neobladder groups, additional 4 (9.8% and 7 (17.1% patients were able to get some erection, but were unable to maintain their erection to completion of intercourse (P = 0.02. At 12-month follow up period 24.4% of the ileal conduit and 45.0% of the ileal neobladder patients rated their sexual desire very high or high (P = 0.01. Conclusion When performed properly, orthotopic ileal neobladder substitution after RCP offers better long-term results in terms of EF and SD.

  11. 76 FR 53678 - Calleguas Municipal Water District Notice of Surrender of Exemption (Conduit)

    Science.gov (United States)

    2011-08-29

    ... Municipal Water District Notice of Surrender of Exemption (Conduit) Pursuant to section 4.95(a) of the Commission's regulations,\\1\\ Calleguas Municipal Water District filed with the Commission a petition to... Municipal Water District, 87 FERC ] 62,256 (1999). \\3\\ See filing of July 11, 2011 by Calleguas Municipal...

  12. Frictional melting dynamics in the upper conduit: A chemical answer to a complex physical question

    Science.gov (United States)

    Henton De Angelis, S.; Lavallee, Y.; Kendrick, J. E.; Hornby, A.; von Aulock, F. W.; Clesham, S.; Hirose, T.; Perugini, D.

    2013-12-01

    During volcanic eruptions the generation of frictional heat along the walls of the shallow conduit leads to melting of the rocks along the slip interface. Frictional melting has previously been described as a process out of thermodynamic equilibrium, but upon slip and mingling of the melt batches, homogeneity can be achieved, and may have an h important rheological control on the dynamics of slip. To test melt homogenization in the frictional melt zones of volcanic conduits we performed constant-rate slip experiments under controlled stress conditions using a high-velocity rotary shear apparatus. Volcanic dome samples from three different volcanoes (Volcán De Colima, Soufrière Hills Volcano and Santiaguito Volcano) were investigated. Each sample was subjected to a stress of 1 MPa and slip rate of 1 m/s. For each sample set 5 experiments were conducted: 1) experiment stopped at the onset of melting; 2) experiment stopped on the formation of a full melt layer; 3) experiment stopped after 5m of slip at steady state conditions; 4) experiment stopped after 10m of slip at steady state conditions; 5) experiment stopped after 15m of slip at steady state conditions. We analyzed the resulting proto-melt zones using micron sized X-ray spectroscopy in the high-brightness synchrotron beamline I18 (at Diamond Light Source UK). Particular focus was given to the concentration variance analysis of Rare Earth Elements as their mobilities can be used to precisely quantify the degree and timescale of homogenisation involved during frictional melting. This study refines our understanding of the chemical process of melting and mixing which carry important consequences for the rheological control on the physical dynamics of slip.

  13. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  14. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery.

    Science.gov (United States)

    Huang, Alex L; Silver, Annemarie E; Shvenke, Elena; Schopfer, David W; Jahangir, Eiman; Titas, Megan A; Shpilman, Alex; Menzoian, James O; Watkins, Michael T; Raffetto, Joseph D; Gibbons, Gary; Woodson, Jonathan; Shaw, Palma M; Dhadly, Mandeep; Eberhardt, Robert T; Keaney, John F; Gokce, Noyan; Vita, Joseph A

    2007-10-01

    Reactive hyperemia is the compensatory increase in blood flow that occurs after a period of tissue ischemia, and this response is blunted in patients with cardiovascular risk factors. The predictive value of reactive hyperemia for cardiovascular events in patients with atherosclerosis and the relative importance of reactive hyperemia compared with other measures of vascular function have not been previously studied. We prospectively measured reactive hyperemia and brachial artery flow-mediated dilation by ultrasound in 267 patients with peripheral arterial disease referred for vascular surgery (age 66+/-11 years, 26% female). Median follow-up was 309 days (range 1 to 730 days). Fifty patients (19%) had an event, including cardiac death (15), myocardial infarction (18), unstable angina (8), congestive heart failure (6), and nonhemorrhagic stroke (3). Patients with an event were older and had lower hyperemic flow velocity (75+/-39 versus 95+/-50 cm/s, P=0.009). Patients with an event also had lower flow-mediated dilation (4.5+/-3.0 versus 6.9+/-4.6%, P<0.001), and when these 2 measures of vascular function were included in the same Cox proportional hazards model, lower hyperemic flow (OR 2.7, 95% CI 1.2 to 5.9, P=0.018) and lower flow-mediated dilation (OR 4.2, 95% CI: 1.8 to 9.8, P=0.001) both predicted cardiovascular events while adjusting for other risk factors. Thus, lower reactive hyperemia is associated with increased cardiovascular risk in patients with peripheral arterial disease. Furthermore, flow-mediated dilation and reactive hyperemia incrementally relate to cardiovascular risk, although impaired flow-mediated dilation was the stronger predictor in this population. These findings further support the clinical relevance of vascular function measured in the microvasculature and conduit arteries in the upper extremity.

  15. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Directory of Open Access Journals (Sweden)

    Di Liddo R

    2016-10-01

    Full Text Available Rosa Di Liddo,1,2 Paola Aguiari,3 Silvia Barbon,1,2 Thomas Bertalot,1 Amit Mandoli,1 Alessia Tasso,1 Sandra Schrenk,1 Laura Iop,3 Alessandro Gandaglia,3 Pier Paolo Parnigotto,2 Maria Teresa Conconi,1,2 Gino Gerosa31Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 2Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, 3Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy Abstract: Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC on acellular aortic (AVL and pulmonary (PVL valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary

  16. Incorporation of cooling-induced crystallisation into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.

    2015-12-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all

  17. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    Science.gov (United States)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  18. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  19. The Malnutrition-Related Increase in Early Visceralization of Leishmania donovani Is Associated with a Reduced Number of Lymph Node Phagocytes and Altered Conduit System Flow

    Science.gov (United States)

    Ibrahim, Marwa K.; Barnes, Jeffrey L.; Anstead, Gregory M.; Jimenez, Fabio; Travi, Bruno L.; Peniche, Alex G.; Osorio, E. Yaneth; Ahuja, Seema S.; Melby, Peter C.

    2013-01-01

    In a murine model of moderate childhood malnutrition we found that polynutrient deficiency led to a 4–5-fold increase in early visceralization of L. donovani (3 days post-infection) following cutaneous infection and a 16-fold decrease in lymph node barrier function (pmalnutrition-related parasite dissemination we analyzed the cellularity, architecture, and function of the skin-draining lymph node. There was no difference in the localization of multiple cell populations in the lymph node of polynutrient deficient (PND) mice, but there was reduced cellularity with fewer CD11c+dendritic cells (DCs), fibroblastic reticular cells (FRCs), MOMA-2+ macrophages, and CD169+ subcapsular sinus macrophage (p<0.05 for all) compared to the well-nourished (WN) mice. The parasites were equally co-localized with DCs associated with the lymph node conduit network in the WN and PND mice, and were found in the high endothelial venule into which the conduits drain. When a fluorescent low molecular weight (10 kD) dextran was delivered in the skin, there was greater efflux of the marker from the lymph node conduit system to the spleens of PND mice (p<0.04), indicating that flow through the conduit system was altered. There was no evidence of disruption of the conduit or subcapsular sinus architecture, indicating that the movement of parasites into the subcortical conduit region was due to an active process and not from passive movement through a leaking barrier. These results indicate that the impaired capacity of the lymph node to act as a barrier to dissemination of L. donovani infection is associated with a reduced number of lymph node phagocytes, which most likely leads to reduced capture of parasites as they transit through the sinuses and conduit system. PMID:23967356

  20. [Vascular depression in the elderly. Does inflammation play a role?].

    Science.gov (United States)

    Viscogliosi, Giovanni; Andreozzi, Paola; Chiriac, Iulia Maria; Ettorre, Evaristo; Vulcano, Achiropita; Servello, Adriana; Marigliano, Benedetta; Marigliano, Vincenzo

    2011-06-01

    Vascular depression in the elderly. Does inflammation play a role?Depression is the most common comorbidity in the elderly, and it is a major determinant of disability. The late-onset depression in highly associated to cardiovascular disease. Depressive symptoms may follow vascular brain damage, especially when mood regulating areas are affected. However depression is strongly associated to vascular disease even when there is no manifest brain damage. Recently great attention has been given to chronic inflammation, both related to depression and vascular disease. Both experimental and clinical evidence shows that a rise in the concentrations of proinflammatory cytokines and glucocorticoids in depressed patients is associated with defect in serotonergic function. Chronic inflammation may underlie many forms of depression associated with vascular disease and metabolic syndrome. The importance of the inflammation hypothesis of depression lies is that psychotropic drugs may have central anti-inflammatory action, and that new generation of central anti-inflammatory drugs may be useful in depression treatment.

  1. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  2. How to quantify conduits in wood?

    Science.gov (United States)

    Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven

    2013-01-01

    Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.

  3. Characterization of molecule and particle transport through nanoscale conduits

    Science.gov (United States)

    Alibakhshi, Mohammad Amin

    Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A

  4. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  5. Axon-glial disruption: the link between vascular disease and Alzheimer's disease?

    Science.gov (United States)

    Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H

    2011-08-01

    Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.

  6. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  7. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    Science.gov (United States)

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  8. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits

    OpenAIRE

    Christine Radtke

    2016-01-01

    Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropo...

  9. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  10. Analysis of aortic root surgery with composite mechanical aortic valve conduit and valve-sparing reconstruction.

    Science.gov (United States)

    Dias, Ricardo Ribeiro; Mejia, Omar Asdrubal Vilca; Fiorelli, Alfredo Inácio; Pomerantzeff, Pablo Maria Alberto; Dias, Altamiro Ribeiro; Mady, Charles; Stolf, Noedir Antonio Groppo

    2010-01-01

    Comparative analysis of early and late results of aortic root reconstruction with aortic valve sparing operations and the composite mechanical valve conduit replacement. From November 2002 to September 2009, 164 consecutive patients with mean age 54 ± 15 years, 115 male, underwent the aortic root reconstruction (125 mechanical valve conduit replacements and 39 valve sparing operations). Sixteen percent of patients had Marfan syndrome and 4.3% had bicuspid aortic valve. One hundred and forty-four patients (88%) were followed for a mean period of 41.1 ± 20.8 months. The hospital mortality was 4.9%, 5.6% in operations with valved conduits and 2.6% in the valve sparing procedures (P valve sparing operations, respectively (95% CI = 70% - 95%, P = 0.001), (95% CI = 82% - 95% P = 0.03) and (95% CI = 81% - 95%, P = 0.03). Multivariate analysis showed that creatinine greater than 1.4 mg/dl, Cabrol operation and renal dialysis were predictors of mortality, respectively, with occurrence chance of 6 (95% CI = 1.8 - 19.5, P = 0.003), 12 (95% CI = 3 - 49.7, P = 0.0004) and 16 (95% CI = 3.6 - 71.3, P = 0.0002). The aortic root reconstruction has a low early and late mortality, high survival free of complications and low need for reoperation. During the late follow-up, valve sparing aortic root reconstructions presented fewer incidences of bleeding, thromboembolic events and endocarditis.

  11. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  12. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow

  13. Aptitude visuelle à la conduite automobile: exemple des candidats au permis de conduire à Libreville

    Science.gov (United States)

    Souhail, Hassane; Assoumou, Prudence; Birinda, Hilda; Mengome, Emmanuel Mve

    2015-01-01

    L'objectif était d’évaluer l'aptitude visuelle à la conduite automobile des candidats au permis de conduire à Libreville. Il s'agissait d'une étude transversale, descriptive et analytique, qui s'est déroulée à Libreville pendant la période du 4 avril 2012 au 14 juillet 2012 (soit 4 mois et 10 jours). La population d’étude concernait les candidats soumis aux épreuves d'obtention du permis de conduire. Nous avons inclus dans notre travail, les candidats, ayant donné leur consentement par écrit et exclus ceux refusant d'adhérer à l'enquête. Les variables étudiées concernaient l’âge, le sexe, la population d’étude, l'activité professionnelle, l'acuité visuelle de loin et de près, la vision des couleurs, la catégorie du permis de conduire, et l'aptitude visuelle à la conduite automobile. La saisie et l'analyse des données ont été collectées au moyen d'une fiche d'enquête standardisée; après vérification et validation, elles ont été saisies sur le logiciel Excel Windows et analysées sur le logiciel Epi Info version 3.5.1. L’âge moyen des 406 candidats était de 29 ans ± 6,65 ans avec des extrêmes allant de 17 ans à 52 ans. Les hommes représentaient 283 (69,7%) et les femmes 123 (30,3%), soit un ratio de 2,3. Les fonctionnaires étaient retrouvés dans 39,4 % des cas, suivi des élèves-étudiants dans 33,5%. Dans notre population d’étude, 71 sur 406 candidats avaient une baisse de l'acuité visuelle de loin, soit 17,5%. Dans notre série, nous avons retrouvés 34 candidats âgés de 40 ans et plus, et seulement 14 candidats (41,2%) avaient une baisse de l'acuité visuelle de près. La quasi-totalité des patients avaient une vision de couleurs normale (99,5%), cependant 2 candidats avaient une vision de couleurs anormale, soit une prévalence de 0,5%. Dans notre échantillon, 403 (99,3%) sollicitaient un permis de conduire de catégorie léger (perms A, A1, B, F) et 3 (0,7%) sollicitaient un permis de conduire de type

  14. Percutaneous transthoracic computed tomography-guided AICD insertion in a patient with extracardiac Fontan conduit.

    LENUS (Irish Health Repository)

    Murphy, Darra T

    2011-02-01

    Percutaneous pulmonary venous atrial puncture was performed under computed tomography guidance to successfully place an automated implantable cardiac defibrillator into a 26-year-old patient with extracardiac Fontan conduit who had presented with two out-of-hospital cardiac arrests. The procedure avoided the need for lead placement at thoracotomy.

  15. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  16. Visualized Evaluation of Blood Flow to the Gastric Conduit and Complications in Esophageal Reconstruction.

    Science.gov (United States)

    Noma, Kazuhiro; Shirakawa, Yasuhiro; Kanaya, Nobuhiko; Okada, Tsuyoshi; Maeda, Naoaki; Ninomiya, Takayuki; Tanabe, Shunsuke; Sakurama, Kazufumi; Fujiwara, Toshiyoshi

    2018-03-01

    Evaluation of the blood supply to gastric conduits is critically important to avoid complications after esophagectomy. We began visual evaluation of blood flow using indocyanine green (ICG) fluorescent imaging in July 2015, to reduce reconstructive complications. In this study, we aimed to statistically verify the efficacy of blood flow evaluation using our simplified ICG method. A total of 285 consecutive patients who underwent esophagectomy and gastric conduit reconstruction were reviewed and divided into 2 groups: before and after introduction of ICG evaluation. The entire cohort and 68 patient pairs after propensity score matching (PS-M) were evaluated for clinical outcomes and the effect of visualized evaluation on reducing the risk of complication. The leakage rate in the ICG group was significantly lower than in the non-ICG group for each severity grade, both in the entire cohort (285 subjects) and after PS-M; the rates of other major complications, including recurrent laryngeal nerve palsy and pneumonia, were not different. The duration of postoperative ICU stay was approximately 1 day shorter in the ICG group than in the non-ICG group in the entire cohort, and approximately 2 days shorter after PS-M. Visualized evaluation of blood flow with ICG methods significantly reduced the rate of anastomotic complications of all Clavien-Dindo (CD) grades. Odds ratios for ICG evaluation decreased with CD grade (0.3419 for CD ≥ 1; 0.241 for CD ≥ 2; and 0.2153 for CD ≥ 3). Objective evaluation of blood supply to the reconstructed conduit using ICG fluorescent imaging reduces the risk and degree of anastomotic complication. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Science.gov (United States)

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana

    2016-03-25

    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Boa Kim

    Full Text Available Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs using in vitro and in vivo complementary studies.Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2 for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm. Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta and muscle feed (femoral artery arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds.Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function.

  19. Experimental composite guidance conduits for peripheral nerve repair: An evaluation of ion release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.F. [Department of Biological Sciences and Medical Engineering Design and Innovation Centre, Cork Institute of Technology, Cork (Ireland); Coughlan, A. [Inamori School of Engineering, Alfred University, Alfred, NY. 14802 (United States); O' Shea, H. [Department of Biological Sciences and Medical Engineering Design and Innovation Centre, Cork Institute of Technology, Cork (Ireland); Towler, M.R. [Inamori School of Engineering, Alfred University, Alfred, NY. 14802 (United States); Kehoe, S., E-mail: sharonkehoe@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Boyd, D., E-mail: d.boyd@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4R2 (Canada)

    2012-08-01

    Poly (lactide-co-glycolide) (PLGA) - Pluronic F127 - glass composites have demonstrated excellent potential, from the perspective of controlled mechanical properties and cytocompatibility, for peripheral nerve regeneration. In addition to controlling the mechanical properties and cytotoxicity for such composite devices, the glass component may mediate specific responses upon implantation via degradation in the physiological environment and release of constituent elements. However, research focused on quantifying the release levels of such therapeutic ions from these experimental medical devices has been limited. To redress the balance, this paper explores the ion release profiles for Si{sup 4+}, Ca{sup 2+}, Na{sup +}, Zn{sup 2+}, and Ce{sup 4+} from experimental composite nerve guidance conduits (CNGC) comprising PLGA (at 12.5, and 20 wt.%), F127 (at 0, 2.5 and 5 wt.%) and various loadings of Si-Ca-Na-Zn-Ce glass (at 20 and 40 wt.%) for incubation periods of up to 28 days. The concentration of each ion, at various time points, was determined using Inductively Coupled Plasma-Atomic Emission Spectrometry (Perkin Elmer Optima 3000). It was observed that the Si{sup 4+}, Na{sup +}, Ca{sup 2+}, Zn{sup 2+} release from CNGCs in this study ranged from 0.22 to 6.477 ppm, 2.307 to 3.277 ppm, 40 to 119 ppm, and 45 to 51 ppm, respectively. The Ce{sup 4+} concentrations were under the minimum detection limits for the ICP instrument utilized. The results indicate that the ion release levels may be appropriate to mediate therapeutic effects with respect to peripheral nerve regeneration. The data generated in this paper provides requisite evidence to optimize composition for pre-clinical evaluation of the experimental composite. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Time-dependent degradation studies of PLGA/glass composite nerve guidance conduits (NGCs). Black-Right-Pointing-Pointer Si{sup 4+}, Na{sup +}, Ca{sup 2+} and Zn{sup 2+} release levels for the

  20. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    Science.gov (United States)

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Ceramic fiber blanket wrap for fire protection of cable trays and conduits

    International Nuclear Information System (INIS)

    Chaille, C.E.; Reiman, R.J.

    1980-01-01

    In some areas of nuclear power plants, cables of redundant electrical systems, which are necessary for the safe shutdown of the reactor, are in close proximity. If a fire should occur in one of these areas, both electrical systems could be destroyed before the fire is extinguished and control of the reactor may be lost. A ceramic fiber blanket was evaluated as a fire protective wrap around cable trays and conduits. 2 refs

  2. Adult Stem Cell Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2016-10-01

    accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability . While nerves have the ability to...recovery, minimized disability , and increased quality of life for our wounded warriors. 2. KEYWORDS: Stem Cell, Nerve Conduit, Peripheral Nerve...would be a paradigm shift away from ordering X-rays at 10-12 weeks and only ordering a CT scan. It has the potential to change the standard of care

  3. NAMPT and NAMPT-controlled NAD Metabolism in Vascular Repair.

    Science.gov (United States)

    Wang, Pei; Li, Wen-Lin; Liu, Jian-Min; Miao, Chao-Yu

    2016-06-01

    Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.

  4. Age-related changes in biomechanical properties of transgenic porcine pulmonary and aortic conduits

    International Nuclear Information System (INIS)

    Wilczek, Piotr; Malota, Zbigniew; Lesiak, Anna; Niemiec-Cyganek, Aleksandra; Kubin, Barbara; Nozynski, Jerzy; Mzyk, Aldona; Gramatyka, Michalina; Slomski, Ryszard; Wilczek, Grazyna; Opiela, Jolanta

    2014-01-01

    The limitations associated with conventional valve prosthesis have led to a search for alternatives. One potential approach is tissue engineering. Most tissue engineering studies have described the biomechanical properties of heart valves derived from adult pigs. However, because one of the factors affecting the function of valve prosthesis after implantation is appropriate sizing for a given patient, it is important to evaluate the usefulness of a heart valve given the donor animal’s weight and age. The aim of this study was to evaluate how the age of a pig can influence the biomechanical and hemodynamical properties of porcine heart valve prosthesis after acellularization. Acellular porcine aortic and pulmonary valve conduits were used. Hearts were harvested from animals differing in weight and age. The biomechanical properties of the valves were then characterized using a uniaxial tensile test. Moreover, computer simulations based on the finite element method (FEM) were used to study the influence of biomechanical properties on the hemodynamic conditions. Studying biomechanical and morphological changes in porcine heart valve conduits according to the weight and age of the animals can be valuable for developing age-targeted therapy using tissue engineering techniques. (paper)

  5. Field observations of extended seawater intrusion through subsurface karst conduit networks at Wakulla Spring in the Woodville Karst Plain, Florida

    Science.gov (United States)

    Xu, Z.; Bassett, S.; Hu, B. X.; Dyer, S.

    2016-12-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electric conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 14 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This abstract documented the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  6. Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues.

    Science.gov (United States)

    Jiang, Bin; Suen, Rachel; Wertheim, Jason A; Ameer, Guillermo A

    2016-12-12

    Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.

  7. Electrotonic vascular signal conduction and nephron synchronization

    DEFF Research Database (Denmark)

    Marsh, D.J.; Toma, I.; Sosnovtseva, Olga

    2009-01-01

    Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF) and the ......Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF......) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5: 1 frequency ratio...... is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce...

  8. Multinephron dynamics on the renal vascular network

    DEFF Research Database (Denmark)

    Marsh, Donald J; Wexler, Anthony S; Brazhe, Alexey

    2012-01-01

    Tubuloglomerular feedback (TGF) and the myogenic mechanism combine in each nephron to regulate blood flow and glomerular filtration rate. Both mechanisms are non-linear, generate self-sustained oscillations, and interact as their signals converge on arteriolar smooth muscle, forming a regulatory...... clusters. In-phase synchronization predominated among nephrons separated by 1 or 3 vascular nodes, and anti-phase synchronization for 5 or 7 nodes of separation. Nephron dynamics were irregular and contained low frequency fluctuations. Results are consistent with simultaneous blood flow measurements...... of both mechanisms in the regulatory ensemble, to examine the effects of network structure on nephron synchronization. Symmetry, as a property of a network, facilitates synchronization. Nephrons received blood from a symmetric electrically conductive vascular tree. Symmetry was created by using identical...

  9. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  10. Effect of agmatine on experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  11. A pilot muon radiography to image the shallow conduit of the Stromboli volcano: results and future prospects

    Science.gov (United States)

    Miyamoto, Seigo; Tioukov, Valeri; Sirignano, Chiara; Bozza, Cristiano; Morishima, Kunihiro

    2017-04-01

    The test result of imaging the shallow part of the Stromboli crater zone by using cosmic-ray muons in 2012 and possible performance of the future muon observation will be presented. It is well known that the behavior of volcanic eruptions strongly depends on the shape of the conduit. Stromboli is one of the most known and studied active volcanoes in the world, nevertheless the details of its internal structure are not well defined yet. Geophysical exploration method which use high energy cosmic-ray muons and makes the density image of the object like X-ray radiography for the human body is called "muon radiography " or "muography". A pilot muography was done for the shallow part of Stromboli in 2012. We succeeded to clarify that there is a less density part at the North-East cone in the crater zone. It is considered that the stack of volcanic ashes. On the other hand, we also confirmed that the contamination of the physical background particles and they makes the noisy density image especially about 50 meter below from the top of the crater. In another observation, Nishiyama et al (2014) revealed the contents of background particles and the way to remove them were presented. They showed that the main contents of the background particles is low kinetic energy charged particles and also showed that it is possible to remove them by using multi-layerd muon film detector. We can plan the future muography observation to see the deeper part of the conduit( at least until 100 meter from the top of crater) by their backgroundless method. Therefore we estimated possible performance of the future observation by multi-layer muon films. The result suggests that we might get the image of shallow conduit from the surface to the depth of e.g. 55 meter with 20 meter spatial resolution or 100 meter with 27 meter resolution in case the density in the conduit is 0.0 g/cm3 and with 71 percent statistical confidence level.

  12. Modified conduit preparation creates a pseudosinus in an aortic valve-sparing procedure for aneurysm of the ascending aorta.

    Science.gov (United States)

    Cochran, R P; Kunzelman, K S; Eddy, A C; Hofer, B O; Verrier, E D

    1995-06-01

    Mechanical valved conduit replacement of the aortic root is a durable and appropriate procedure for many diseases of the ascending aorta, but may sacrifice an anatomically salvageable aortic valve. For young active patients and for patients with "systemic" arterial disease (atherosclerosis, Marfan's syndrome) who may require future operations, life-long anticoagulation with its attendant thromboembolic versus hemorrhagic risks is not ideal. Several techniques have been suggested as aortic valve-sparing options. Recently, a procedure was described that combines the freehand homograft techniques with the standard Bentall techniques (David procedure). This innovative technique replaces the ascending aorta with a Dacron cylinder, spares the aortic valve, and restores competence and thus offers an excellent alternative. The durability of this procedure that places the aortic valve inside a cylindrical conduit without sinuses of Valsalva is unknown. In selected patients, we have used this technique to spare the aortic valve. On the basis of experimental data and preliminary computer modeling, with the hope of improving the durability, we have modified the conduit to create a "pseudosinus" in our most recent nine patients. We have done the David procedure in 10 patients. The pseudosinus modification was done in the most recent nine patients. Patients' ages ranged from 37 to 71 years (mean 49.9 years). There were five female and five male patients. Five patients had Marfan's syndrome and five patients had annuloaortic ectasia. There has been no mortality and all patients have had both early and late follow-up echocardiography. Five patients have zero to trace aortic insufficiency, four patients have trace to mild aortic insufficiency, and one patient has mild or "1+" aortic insufficiency. Aortic insufficiency has not progressed in any patient during the 18 months of follow-up. The patient with 1+ aortic insufficiency has no activity limits, good ventricular function, and

  13. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  14. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries.

    Science.gov (United States)

    Halabi, Carmen M; Broekelmann, Thomas J; Lin, Michelle; Lee, Vivian S; Chu, Mon-Li; Mecham, Robert P

    2017-05-01

    Homozygous or compound heterozygous mutations in fibulin-4 ( FBLN4 ) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4 E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4's suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissue-specific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly.

  15. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene.

    Science.gov (United States)

    Seandel, Marco; Butler, Jason M; Kobayashi, Hideki; Hooper, Andrea T; White, Ian A; Zhang, Fan; Vertes, Eva L; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V; Hackett, Neil R; Rabbany, Sina; Boyer, Julie L; Rafii, Shahin

    2008-12-09

    Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1(+) ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1(+) ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1(+) ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1(+) ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1(+) ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-kappaB pathways. Therefore, E4ORF1(+) ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis.

  16. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene

    Science.gov (United States)

    Seandel, Marco; Butler, Jason M.; Kobayashi, Hideki; Hooper, Andrea T.; White, Ian A.; Zhang, Fan; Vertes, Eva L.; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V.; Hackett, Neil R.; Rabbany, Sina; Boyer, Julie L.; Rafii, Shahin

    2008-01-01

    Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1+ ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1+ ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1+ ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1+ ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1+ ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-κB pathways. Therefore, E4ORF1+ ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis. PMID:19036927

  17. A Novel Mammary Fat Pad Transplantation Technique to Visualize the Vessel Generation of Vascular Endothelial Stem Cells.

    Science.gov (United States)

    Yu, Qing Cissy; Song, Wenqian; Lai, Dengwen; Zeng, Yi Arial

    2017-08-03

    Endothelial cells (ECs) are the fundamental building blocks of the vascular architecture and mediate vascular growth and remodeling to ensure proper vessel development and homeostasis. However, studies on endothelial lineage hierarchy remain elusive due to the lack of tools to gain access as well as to directly evaluate their behavior in vivo. To address this shortcoming, a new tissue model to study angiogenesis using the mammary fat pad has been developed. The mammary gland develops mostly in the postnatal stages, including puberty and pregnancy, during which robust epithelium proliferation is accompanied by extensive vascular remodeling. Mammary fat pads provide space, matrix, and rich angiogenic stimuli from the growing mammary epithelium. Furthermore, mammary fat pads are located outside the peritoneal cavity, making them an easily accessible grafting site for assessing the angiogenic potential of exogenous cells. This work also describes an efficient tracing approach using fluorescent reporter mice to specifically label the targeted population of vascular endothelial stem cells (VESCs) in vivo. This lineage tracing method, coupled with subsequent tissue whole-mount microscopy, enable the direct visualization of targeted cells and their descendants, through which the proliferation capability can be quantified and the differentiation commitment can be fate-mapped. Using these methods, a population of bipotent protein C receptor (Procr) expressing VESCs has recently been identified in multiple vascular systems. Procr + VESCs, giving rise to both new ECs and pericytes, actively contribute to angiogenesis during development, homeostasis, and injury repair. Overall, this manuscript describes a new mammary fat pad transplantation and in vivo lineage tracing techniques that can be used to evaluate the stem cell properties of VESCs.

  18. Pediatric vascular access

    International Nuclear Information System (INIS)

    Donaldson, James S.

    2006-01-01

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  19. FPGA controlled artificial vascular system

    Directory of Open Access Journals (Sweden)

    Laqua D.

    2015-09-01

    Full Text Available Monitoring the oxygen saturation of an unborn child is an invasive procedure, so far. Transabdominal fetal pulse oximetry is a promising method under research, used to estimate the oxygen saturation of a fetus noninvasively. Due to the nature of the method, the fetal information needs to be extracted from a mixed signal. To properly evaluate signal processing algorithms, a phantom modeling fetal and maternal blood circuits and tissue layers is necessary. This paper presents an improved hardware concept for an artificial vascular system, utilizing an FPGA based CompactRIO System from National Instruments. The experimental model to simulate the maternal and fetal blood pressure curve consists of two identical hydraulic circuits. Each of these circuits consists of a pre-pressure system and an artificial vascular system. Pulse curves are generated by proportional valves, separating these two systems. The dilation of the fetal and maternal artificial vessels in tissue substitutes is measured by transmissive and reflective photoplethysmography. The measurement results from the pressure sensors and the transmissive optical sensors are visualized to show the functionality of the pulse generating systems. The trigger frequency for the maternal valve was set to 1 per second, the fetal valve was actuated at 0.7 per second for validation. The reflective curve, capturing pulsations of the fetal and maternal circuit, was obtained with a high power LED (905 nm as light source. The results show that the system generates pulse curves, similar to its physiological equivalent. Further, the acquired reflective optical signal is modulated by the alternating diameter of the tubes of both circuits, allowing for tests of signal processing algorithms.

  20. Hot upwelling conduit beneath the Atlas Mountains, Morocco

    Science.gov (United States)

    Sun, Daoyuan; Miller, Meghan S.; Holt, Adam F.; Becker, Thorsten W.

    2014-11-01

    The Atlas Mountains of Morocco display high topography, no deep crustal root, and regions of localized Cenozoic alkaline volcanism. Previous seismic imaging and geophysical studies have implied a hot mantle upwelling as the source of the volcanism and high elevation. However, the existence, shape, and physical properties of an associated mantle anomaly are debated. Here we use seismic waveform analysis from a broadband deployment and geodynamic modeling to define the physical properties and morphology of the anomaly. The imaged low-velocity structure extends to ~200 km beneath the Atlas and appears ~350 K hotter than the ambient mantle with possible partial melting. It includes a lateral conduit, which suggests that the Quaternary volcanism arises from the upper mantle. Moreover, the shape and temperature of the imaged anomaly indicate that the unusually high topography of the Atlas Mountains is due to active mantle support.

  1. Cable-in-conduit conductor optimization for fusion magnet applications

    International Nuclear Information System (INIS)

    Miller, J.R.; Kerns, J.A.

    1987-01-01

    Careful design of the toroidal-field (TF) and poloidal-field (PF) coils in a tokamak machine using cable-in-conduit conductors (CICC) can result in quite high overall winding-pack current densities - even with the high nuclear heat loads that may be imposed in operating a fusion reactor - and thereby help reduce the overall machine size. In our design process, we systematically examined the operational environment of a magnet, e.g., mechanical stresses, current, field, heat load, coolant temperature, and cooldown stresses, to determine the optimum amounts of copper, superconductor, helium, and sheath material for the CICC. This process is being used to design the superconducting magnet systems that comprise the Tokamak Ignition/Burn Experimental Reactor (TIBER II). 13 refs., 2 figs

  2. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging

    Science.gov (United States)

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  3. Hawaiian fissure fountains: Quantifying vent and shallow conduit geometry, episode 1 of the 1969-1974 Mauna Ulu eruption: Chapter 17

    Science.gov (United States)

    Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with 30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution eruptive behavior, especially if incorporated into computer models.

  4. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Sell, S A [Virginia Commonwealth University, Richmond, VA 23298 (United States); McClure, M J [Virginia Commonwealth University, Richmond, VA 23298 (United States); Barnes, C P [Virginia Commonwealth University, Richmond, VA 23298 (United States); Knapp, D C [Virginia Commonwealth University, Richmond, VA 23298 (United States); Walpoth, B H [University Hospital, 1211 Geneva 14 (Switzerland); Simpson, D G [Virginia Commonwealth University, Richmond, VA 23298 (United States); Bowlin, G L [Virginia Commonwealth University, Richmond, VA 23298 (United States)

    2006-06-15

    An electrospun cardiovascular graft composed of polydioxanone (PDO) and elastin has been designed and fabricated with mechanical properties to more closely match those of native arterial tissue, while remaining conducive to tissue regeneration. PDO was chosen to provide mechanical integrity to the prosthetic, while elastin provides elasticity and bioactivity (to promote regeneration in vitro/in situ). It is the elastic nature of elastin that dominates the low-strain mechanical response of the vessel to blood flow and prevents pulsatile energy from being dissipated as heat. Uniaxial tensile and suture retention tests were performed on the electrospun grafts to demonstrate the similarities of the mechanical properties between the grafts and native vessel. Dynamic compliance measurements produced values that ranged from 1.2 to 5.6%/100 mmHg for a set of three different mean arterial pressures. Results showed the 50:50 ratio to closely mimic the compliance of native femoral artery, while grafts that contained less elastin exceeded the suture retention strength of native vessel. Preliminary cell culture studies showed the elastin-containing grafts to be bioactive as cells migrated through their full thickness within 7 days, but failed to migrate into pure PDO scaffolds. Electrospinning of the PDO and elastin-blended composite into a conduit for use as a small diameter vascular graft has extreme potential and warrants further investigation as it thus far compares favorably to native vessel.

  5. Creation of a Bioengineered Skin Flap Scaffold with a Perfusable Vascular Pedicle.

    Science.gov (United States)

    Jank, Bernhard J; Goverman, Jeremy; Guyette, Jacques P; Charest, Jon M; Randolph, Mark; Gaudette, Glenn R; Gershlak, Joshua R; Purschke, Martin; Javorsky, Emilia; Nazarian, Rosalynn M; Leonard, David A; Cetrulo, Curtis L; Austen, William G; Ott, Harald C

    2017-07-01

    Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be

  6. Vascular Access in Children

    International Nuclear Information System (INIS)

    Krishnamurthy, Ganesh; Keller, Marc S.

    2011-01-01

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the “expert procedural pyramid” is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  7. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  8. Relaxin as a natural agent for vascular health

    Directory of Open Access Journals (Sweden)

    Daniele Bani

    2008-06-01

    Full Text Available Daniele BaniDepartment of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence, ItalyAbstract: Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD, the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX, which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.Keywords: relaxin, blood vessels, endothelial cells, vascular smooth muscle, nitric oxide

  9. Linking vascular disorders and Alzheimer’s disease: Potential involvement of BACE1

    Science.gov (United States)

    Cole, Sarah L.; Vassar, Robert

    2012-01-01

    The etiology of Alzheimer’s disease (AD) remains unknown. However, specific risk factors have been identified, and aging is the strongest AD risk factor. The majority of cardiovascular events occur in older people and a close relationship between vascular disorders and AD exists. Amyloid plaques, composed of the beta amyloid peptide (Aβ), are hallmark lesions in AD and evidence indicates that Aβ plays a central role in AD pathophysiology. The BACE1 enzyme is essential for Aβ generation, and BACE1 levels are elevated in AD brain. The cause(s) of this BACE1 elevation remains undetermined. Here we review the potential contribution of vascular disease to AD pathogenesis. We examine the putative vasoactive properties of Aβ and how the cellular changes associated with vascular disease may elevate BACE1 levels. Despite increasing evidence, the exact role(s) vascular disorders play in AD remains to be determined. However, given that vascular diseases can be addressed by lifestyle and pharmacologic interventions, the potential benefits of these therapies in delaying the clinical appearance and progression of AD may warrant investigation. PMID:18289733

  10. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill X; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  11. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  12. Functional and regenerative effects of local administration of autologous mononuclear bone marrow cells combined with silicone conduit on transected femoral nerve of rabbits.

    Science.gov (United States)

    Trindade, Anelise Bonilla; Schestatsky, Pedro; Torres, Vítor Félix; Gomes, Cristiano; Gianotti, Giordano Cabral; Paz, Ana Helena da Rosa; Terraciano, Paula Barros; Marques, Janete Maria Volpato; Guimarães, Karina Magano; Graça, Dominguita Lühers; Cirne-Lima, Elizabeth Obino; Contesini, Emerson Antonio

    2015-10-01

    The inoculation of cells into injury sites can accelerate and improve the quality of nerve regeneration. This study aimed to evaluate the functional and regenerative effects of mononuclear autologous bone marrow cells (MABMC) combined with silicon conduit grafting in rabbit femoral nerves. Twenty-eight animals were allocated to one of two groups: treatment group (TG) or control group (CG), divided according to the time of evaluation, at either 50 or 75 days. After neurotmesis of the femoral nerve, surgical repair was performed with nerve autografts in silicon conduits, leaving a 5mm gap in both groups. The TG received MABMC in silicon conduits, and CG received a sham saline inoculum. Histological, clinical and electrophysiological analyses detected no differences between groups, but analysis of leg diameter showed that TG diameters were larger. This cell therapy did not improve regeneration of the femoral nerve, but there was a tendency for better functional recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hydrothermal Alteration of the Mt Unzen Conduit (Shimabara/Japan)

    Science.gov (United States)

    Yilmaz, T. I.; Mayer, K.; Hess, K. U.; Janots, E.; Gilg, H. A.; Dingwell, D. B.

    2016-12-01

    Investigations were carried out on hydrothermally altered coherent dacitic dykes samples from (USDP-4) drill core at Mt Unzen stratovolcano (Shimabara/Japan). XRF, XRD, EMPA, and C-O-isotope analysis led to insights concerning chemistry, mineralogy, and intensity of alteration as well as the origin of carbonate-precipitating fluids. Additionally a textural characterization of the occurring replacement features in the magma conduit zone was performed. The occurrence of the main secondary phases such as chlorite, pyrite, carbonates, and R1 (Reichweite parameter) illite-smectite indicate a weak to moderate propylitic to phyllic hydrothermal alteration. The dacitic samples of the dykes show different hydrothermal alteration features: (i) carbonate pseudomorphs after hornblende as well as core and zonal textures due to replacement of plagioclase by R1 illite-smectite, (ii) colloform banded fracture fillings and fillings in dissolution vugs, and (iii) chlorite and R1 illite-smectite in the groundmass. Carbonates in fractures comprise iron-rich dolomite solid solutions ("ankerite") and calcite. Isotopic values of d13Cvpdb = -4.59 ± 0.6‰ and d18Ovpdb = -21.73 ± 0.5‰ indicate a hydrothermal-magmatic origin for the carbonate formation. The chlorite-carbonate-pyrite index (CCPI) and the Ishikawa alteration index (AI), applied to the investigated samples show significant differences (CCPI=52.7-57.8; AI=36.1-40.6) indicating their different degree of alteration. According to Nakada et al., 2005, the C13 to C16 dykes represent the feeder dyke from the latest eruption (1991-1995) whereas C8 represents an earlier dyke feeder dyke from an older eruption. Weakest conduit alteration, which was obtained in samples C16-1-5 and C13-2-5, correlates with the alteration degree of the pristine dome rocks. Highest CCPI value was determined for sample C14-1-5 and the highest AI value was determined for sample C15-2-6. The degrees of alteration do not indicate highest alteration of the

  14. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    Science.gov (United States)

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  15. Magnetic losses and reactance change by the use of metallic conduit in electrical installations; Perdidas magneticas y cambio de reactancia por la tuberia metalica en instalaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Campero Littlewood, Eduardo; Castaneda D, Miguel; Castulo A, Roberto; Bratu Serban, Neagu [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the results obtained in the measurement of magnetic losses in metallic conduits in electric installations. The losses for parasitic currents and by hysteresis were obtained in different conditions of magnetic density, caused by the net current resulting from the sum of all the currents of all the conductors that travel along the conduit. These currents are named differential currents, and the conditions in which they appear in the electric installations are described. The magnetic induction phenomenon that occurs in metallic conduit is briefly described and the basic concepts that describe it. A theoretical-experimental methodology is offered to quantify the energy losses by parasitic currents and by the metal magnetization in these metallic conduits. At the same time, the impact of these differential currents impact in the reactance of the electric installation is quantified. The obtained results for twelve conduits of different diameters and different wall thickness are shown. A comparison analysis is made with the reported results in a previous article, where the losses were estimated by means of the temperature rise measurement of the metallic wall. [Espanol] En este articulo se presentan los resultados obtenidos en la medicion de perdidas magneticas en tuberias conduit (metalicas) en instalaciones electricas. Las perdidas por corrientes parasitas y por histeresis se obtuvieron para diferentes condiciones de densidad magnetica, provocada por la corriente neta resultante de la suma de las corrientes de todos los conductores que viajan por la tuberia. A estas corrientes se les designa corrientes diferenciales y se describen las condiciones en las que estas aparecen en las instalaciones electricas. Se explica brevemente el fenomeno de induccion magnetica que se presenta en las tuberias metalicas y los conceptos basicos que la describen. Se plantea una metodologia teorico-experiemental para cuantificar las perdidas de energia, por

  16. Magnetic losses and reactance change by the use of metallic conduit in electrical installations; Perdidas magneticas y cambio de reactancia por la tuberia metalica en instalaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Campero Littlewood, Eduardo; Castaneda D, Miguel; Castulo A, Roberto; Bratu Serban, Neagu [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico, D. F. (Mexico)

    1997-12-31

    In this paper are presented the results obtained in the measurement of magnetic losses in metallic conduits in electric installations. The losses for parasitic currents and by hysteresis were obtained in different conditions of magnetic density, caused by the net current resulting from the sum of all the currents of all the conductors that travel along the conduit. These currents are named differential currents, and the conditions in which they appear in the electric installations are described. The magnetic induction phenomenon that occurs in metallic conduit is briefly described and the basic concepts that describe it. A theoretical-experimental methodology is offered to quantify the energy losses by parasitic currents and by the metal magnetization in these metallic conduits. At the same time, the impact of these differential currents impact in the reactance of the electric installation is quantified. The obtained results for twelve conduits of different diameters and different wall thickness are shown. A comparison analysis is made with the reported results in a previous article, where the losses were estimated by means of the temperature rise measurement of the metallic wall. [Espanol] En este articulo se presentan los resultados obtenidos en la medicion de perdidas magneticas en tuberias conduit (metalicas) en instalaciones electricas. Las perdidas por corrientes parasitas y por histeresis se obtuvieron para diferentes condiciones de densidad magnetica, provocada por la corriente neta resultante de la suma de las corrientes de todos los conductores que viajan por la tuberia. A estas corrientes se les designa corrientes diferenciales y se describen las condiciones en las que estas aparecen en las instalaciones electricas. Se explica brevemente el fenomeno de induccion magnetica que se presenta en las tuberias metalicas y los conceptos basicos que la describen. Se plantea una metodologia teorico-experiemental para cuantificar las perdidas de energia, por

  17. Uterine Vascular Lesions

    Science.gov (United States)

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  18. Injunctions against mere conduit of information protected by copyright

    DEFF Research Database (Denmark)

    Sandfeld Jakobsen, Søren; Petersen, Clement Salung

    2011-01-01

    This paper includes an in-depth analysis of EU law and Scandinavian law on injunctions against internet access providers (IAPs) performing as mere conduit of information protected by copyright. In recent Scandinavian case law, courts have granted preliminary injunctions which have caused IAPs...... to either shut down specific internet connections allegedly used to infringe copyright or to block access to internet content, which allegedly infringed applicable copyright rules. This paper considers some significant legal challenges, which are emerging in the wake of this case law, and which should...... requires rules, which take into due consideration the special aspects related to enforcement of copyright on the internet through IAPs. Secondly, it is shown that the termination of internet connections and the blocking of access to internet content may not support the public policies behind copyright law...

  19. Studying the causes for corrosive destruction of water conduits

    Energy Technology Data Exchange (ETDEWEB)

    Azamatova, F I; Kulinichev, G P; Porubov, I S

    1979-01-01

    Pipes from different oil and gas production administrations were selected for X-ray and metallographic studies of the cause of corrosive destruction. The chemical composition and mechanical properties of the pipe material are presented in tables. The phase composition of the corrosion products was studied by X-rays. The complex structure of the layer made up of the corrosion products was taken into consideration. The studies were conducted in an X-ray diffraction chamber. The obtained results are presented in a table. The metallographic studies showed that a significant corrosive damage of the materials of water conduits occurs as a result of the development of local corrosion processes, caused by the substantive heterogeneity of the structure of the metal, related to the nonuniform distribution of the pearlite because of carbon liquidation.

  20. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve

    International Nuclear Information System (INIS)

    Xu, Fuben; Zhang, Kun; Lv, Peizhen; Lu, Rongbin; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Restoration of normal neurological function of transected peripheral nerve challenged regenerative medicine and surgery. Previous studies showed that Nectin-like molecule 1 (NECL1) is one of the important adhesion molecules on the axons and Schwann cells is located along the internodes in direct apposition to NECL1. In this study, we fabricated PLGA membrane pre-coated with NECL1, mimicking the natural axons to enhance the adhesion of Schwann cells. Investigation of the cellular response in vitro was performed by detecting cytotoxicity, proliferation, morphology, viability, specific markers and Scanning Electron Microscopy (SEM) of Schwann cells cultured in PLGA. Further, the NECL1-coated PLGA conduits were used for peripheral nerve repair after sciatic nerve defect was constructed. Results showed that PLGA-coated NECL1 enhanced cell proliferation compared with PLGA, as evidenced by MTT analysis, cell viability assay and histological evaluation. RT-PCR results showed that GDNF (glial cell line-derived neurotrophic factor), BDNF (brain-derived neurotrophic factor), CNTF (ciliary neurotrophic factor) and neurotrophic factors of axonal regeneration were highly expressed in PLGA/NECL1 group. S100, which is Schwann cell marker, was also elevated in PLGA-NCEL1 in both mRNA and protein expression as demonstrated by PCR and immunohistochemical examination. Moreover, in vivo study showed that implantation of PLGA/NCEL1 tubes in bridging the nerve defect can significantly improve Schwann cell aggregation and attachment and greatly enhance the functional recovery of nerve regeneration as compared with control and PLGA groups. Therefore, the novel blend of PLGA/NECL1 conduits proved to be promising candidate for tissue engineering scaffold. - Highlights: • A fabricated PLGA tubes pre-coated with Nectin-like molecule 1 (NECL1) strategy for sciatic nerve regeneration is proposed. • The NECL1 coated PLGA can promote Schwann cells adhesion and growth meanwhile maintain the

  1. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model.

    Directory of Open Access Journals (Sweden)

    Hirofumi Yurie

    Full Text Available Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit.We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6 and silicone tube (silicone group, n = 6. Several assessments were conducted to examine nerve regeneration eight weeks post-surgery.Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01. Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01. Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01.We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.

  2. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats.

    Science.gov (United States)

    Shen, Chiung-Chyi; Yang, Yi-Chin; Liu, Bai-Shuan

    2011-08-01

    This study used a biodegradable composite containing genipin-cross-linked gelatin annexed with β-tricalcium phosphate ceramic particles (genipin-gelatin-tricalcium phosphate, GGT), developed in a previous study, as a nerve guide conduit. The aim of this study was to analyse the influence of a large-area irradiated aluminium-gallium-indium phosphide (AlGaInP) diode laser (660 nm) on the neural regeneration of the transected sciatic nerve after bridging the GGT nerve guide conduit in rats. The animals were divided into two groups: group 1 comprised sham-irradiated controls and group 2 rats underwent low-level laser (LLL) therapy. A compact multi-cluster laser system with 20 AlGaInP laser diodes (output power, 50mW) was applied transcutaneously to the injured peripheral nerve immediately after closing the wound, which was repeated daily for 5 min for 21 consecutive days. Eight weeks after implantation, walking track analysis showed a significantly higher sciatic function index (SFI) score (Pguide conduit in rats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Conduit degassing and thermal controls on eruption styles at Mount St. Helens

    Science.gov (United States)

    Schneider, Andrew; Rempel, Alan W.; Cashman, Katharine V.

    2012-12-01

    The explosivity of silicic eruptions depends on the interplay between magma rheology, exsolution kinetics, and degassing. Magma degassing is governed by the competing effects of vertical transport within the conduit and the lateral flux of gas out of the conduit (Diller et al., 2006; Jaupart and Allegre, 1991). We combine a simplified treatment of these degassing processes with thermodynamic modeling to examine the conditions present at Mount St. Helens during the spine extruding eruption from 2004 to 2008. We find that two parameters are primarily responsible for controlling the eruptive style: the magma chamber temperature, and a dimensionless parameter that gauges the efficiency of lateral degassing. Together, these parameters determine whether and where magma can solidify at depth to form a dense solid plug that is gradually extruded as a volcanic spine. We show that the small (50 oC) decrease in magma chamber temperature between eruptive activity in the 1980s and that of 2004-2008, combined with a modest increase in degassing efficiency associated with lower volumetric flux, can explain the observed change in erupted material from viscous lava flows to solidified spines. More generally, we suggest that similar threshold behavior may explain observed abrupt transitions in effusive eruptive styles at other intermediate composition volcanoes. Finally, we extrapolate our results to suggest that the increase in degassing efficiency accompanying decreasing magma supply rates may have caused the transition from explosive to effusive activity in late 1980.

  4. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Reloadable radioactive generator system

    International Nuclear Information System (INIS)

    Colombetti, L.G.

    1977-01-01

    A generator system that can be reloaded with an elutable radioactive material, such as 99 molybdenum, a multiple number of times is described. The system basically comprises a column filled with alumina, a loading vial containing a predetermined amount of the elutable radioactive material, and a rinsing vial containing a sterile solution. The two vials are connected by a conduit so that when communication is achieved between the column and loading vial and an evacuated vial is placed in communication with the bottom of the column, the predetermined amount of the radioactive material in the loading vial will be transferred to the column. The procedure can be repeated as the elutable material in the column is dissipated

  6. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    International Nuclear Information System (INIS)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-01-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways

  7. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana

    2017-04-11

    The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    Science.gov (United States)

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  9. Pathogenesis of vascular leak in dengue virus infection.

    Science.gov (United States)

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2017-07-01

    Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.

  10. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli

    Science.gov (United States)

    Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.

    2017-01-01

    On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424

  11. Investigating water transport through the xylem network in vascular plants.

    Science.gov (United States)

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  12. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  13. Flow-rate measurements in closed-conduits by tracer techniques

    International Nuclear Information System (INIS)

    Lund Plantat, C.

    1982-01-01

    This paper presents the study of the precision obtained measuring flow-rates in closed-conduits by tracer techniques. The flow-rates analyzed were in the range of 10 to 20 l/s and Reynolds numbers from 10 5 to 2 x 10 5 . Tracer used were fluoresceine and In-113 m; and the measurements were performed with the dilution method (punctual and continuous injection) and the Allen method. Precisions for the method of punctual and continuous injections were 6.25% and 9.45% for fluoresceine and 9.3% and 3% for In-113, respectively. For Allen method with In-113 m a precision of 5% was obtained; probably this value was affected by the short distance between detectors. In all cases the error corresponds with the expected value except in one measurement at a 68.3% confidence level. (I.V.)

  14. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  15. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  16. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  17. Contrast-Enhanced Ultrasound in Vascular Surgery

    DEFF Research Database (Denmark)

    Bredahl, Kim; Mestre, Xavier Marti; Coll, Ramon Vila

    2017-01-01

    modalities. Ultrasound has only challenged these methods in assessment of carotid disease, aortic aneurysms, venous insufficiency, and thromboembolism and in surveillance of in situ bypasses. These practice patterns may change with the introduction of second-generation ultrasound contrast agents which...... are easy to use, manageable, and safe. This topical review attempts to summarize and highlight the current evidence and future prospects for contrast-enhanced ultrasound in vascular surgery, with a particular focus on opportunities in carotid and lower limb arteriosclerotic disease and surveillance after...

  18. Bronchovascular reconstruction with a bovine pericardial conduit and surgical reintervention due to thrombosis with revascularisation.

    Science.gov (United States)

    Peña, Emilio; Blanco, Montserrat; Otero, Teresa

    2014-01-01

    We present the case of a 57-year-old male with left hilar squamous cell carcinoma infiltrating the pulmonary artery and in whom a sleeve bronchoplasty and angioplasty were performed using a bovine pericardial conduit. Three days post-operatively, graft thrombosis was detected; thrombectomy and graft reconstruction were performed with revascularisation of the graft. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  19. [Electrophysiological study on rat conduit pulmonary artery smooth muscle cells under normoxia and acute hypoxia].

    Science.gov (United States)

    Hu, Ying; Zou, Fei; Cai, Chun-Qing; Wu, Hang-Yu; Yun, Hai-Xia; Chen, Yun-Tian; Jin, Guo-En; Ge, Ri-Li

    2006-10-25

    The present study was designed to investigate the electrophysiological characteristics of rat conduit pulmonary artery smooth muscle cells (PASMCs) and the response to acute hypoxia. PASMCs of the 1st to 2nd order branches in the conduit pulmonary arteries were obtained by enzymatic isolation. The PASMCs were divided into acute hypoxia preconditioned group and normoxia group. Hypoxia solutions were achieved by bubbling with 5% CO2 plus 95% N2 for at least 30 min before cell perfusion. Potassium currents were compared between these two groups using whole-cell patch clamp technique. The total outward current of PASMCs was measured under normoxia condition when iBTX [specific blocking agent of large conductance Ca-activated K(+) (BK(Ca)) channel] and 4-AP [specific blocking agent of delayed rectifier K(+) (K(DR)) channel] were added consequently into bath solution. PASMCs were classified into three types according to their size, shape and electrophysiological characteristics. Type I cells are the smallest with spindle shape, smooth surface and discrete perinuclear bulge. Type II cells show the biggest size with banana-like appearance. Type III cells have the similar size with type I, and present intermediary shape between type I and type II. iBTX had little effect on the total outward current in type I cells, while 4-AP almost completely blocked it. Most of the total outward current in type II cells was inhibited by iBTX, and the remaining was sensitive to 4-AP. In type III cells, the total outward current was sensitive to both iBTX and 4-AP. Acute hypoxia reduced the current in all three types of cells: (1614.8+/-62.5) pA to (892.4+/-33.6) pA for type I cells (Ppotassium current and improves the E(m) in PASMCs. These effects may be involved in the modulation of constriction/relaxation of conduit artery under acute hypoxia. Different distribution of K(DR) and BK(Ca) channels in these three types of PASMCs might account for their different constriction

  20. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation)

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  1. Characterisation of cerebral blood flow via determining the vascular mean transit time

    International Nuclear Information System (INIS)

    Lindner, P.; Thelen, M.

    1987-01-01

    By using a recently developed algorithm it is possible to quantify the dynamic information of a DSA sequence of the brain. The theory of algorithm allows to calculate vascular mean transit from time density curves. The algorithm minimizes the problems of densitometry with regard to 'quantitative DSA'. There is a strong correlation between vascular mean transit times and cerebral blood flow values, and therefore the results for mean transit times also correspond to the results obtained for cerebral blood flow. By computerized postprocessing of DSA-images it is possible to generate functional images of the brain with a spatial resolution that had not been attainable so far. The images represent the distribution pattern of reverse vascular mean transit times. The results from 36 patients with proven stenoses of the cervical vessels are reported. (orig.) [de

  2. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    Science.gov (United States)

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  3. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  4. Le projet de recherche: définition, conduite et réalisation

    OpenAIRE

    Stockinger , Peter

    2013-01-01

    Master; Ce support de séminaire développe brièvement les quatre points suivants: 1) Définition d’un projet de recherche – présentation générale et recommandations. 2) La conduite d’un projet de recherche – présentation générale et recommandations. 3) La réalisation d’un projet de recherche sous forme d’un mémoire - présentation générale et recommandations. 4) Des ressources pour conduire un projet de recherche : ressources enligne et références bibliographiques.

  5. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  6. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  7. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    Science.gov (United States)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow

  8. Theory and modelling of quench in cable-in-conduit superconducting magnets

    International Nuclear Information System (INIS)

    Shajii, A.

    1994-04-01

    A new simple, self consistent theoretical model is presented that describes the phenomena of quench propagation in Cable-In-Conduit superconducting magnets. The model (Quencher) circumvents many of the difficulties associated with obtaining numerical solutions in more general existing models. Specifically, a factor of 30-50 is gained in CPU time over the general, explicit time dependent codes used to study typical quench events. The corresponding numerical implementation of the new model is described and the numerical results are shown to agree very well with those of the more general models, as well as with experimental data. Further, well justified approximations lead to the MacQuench model that is shown to be very accurate and considerably more efficient than the Quencher model. The MacQuench code is suitable for performing quench studies on a personal computer, requiring only several minutes of CPU time. In order to perform parametric studies on new conductor designs it is required to utilize a model such as MacQuench because of the high computational efficiency of this model. Finally, a set of analytic solutions for the problem of quench propagation in Cable-In-Conduit Conductors is presented. These analytic solutions represent the first such results that remain valid for the long time scales of interest during a quench process. The assumptions and the resulting simplifications that lead to the analytic solutions are discussed, and the regimes of validity of the various approximations are specified. The predictions of the analytic results are shown to be in very good agreement with numerical as well as experimental results. Important analytic scaling relations are verified by such comparisons, and the consequences of some of these scalings on currently designed superconducting magnets are discussed

  9. Proatherogenic pathways leading to vascular calcification

    International Nuclear Information System (INIS)

    Mazzini, Michael J.; Schulze, P. Christian

    2006-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease

  10. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  11. Investigating the influence of conduit residues on polyurethane plates

    Directory of Open Access Journals (Sweden)

    Rachel Faverzani Magnago

    Full Text Available Abstract Converting waste into a product similar to the original one or into another useful product is to save energy, protect natural resources, and bring back to the production cycle what was discarded. In that direction, new polyurethane-based composites have been developed by incorporating 5%, 10%, 15%, and 20% PVC conduit discarded by the construction industry. The objective of this study was to investigate the interaction between the phases of waste incorporation and the effect upon the new material properties. The samples were produced by the polycondensation process. Microstructural analysis revealed a reduction in pore size across the polymer matrix. However, there were no changes in thermal insulation, water absorption, compressive strength, and burning rate tests and in the thermogravimetric analysis and differential scanning calorimetry. The results from this study showed that the replacement of raw material by waste did not affect its properties.

  12. The effect on stability and thermal hydraulic quenchback of perforating the jacket of a cable-in-conduit conductor

    International Nuclear Information System (INIS)

    Dresner, L.

    1994-01-01

    This Paper continues earlier work on the reduction of the quench pressure in a doubler cable-in-conduit conductor achieved by perforating the inner jacket. The present study examines the effect of the perforations on the stability margin and on the ononset of thermal hydraulic quenchback

  13. Fast evolving conduits in clay-bonded sandstone: Characterization, erosion processes and significance for the origin of sandstone landforms

    Czech Academy of Sciences Publication Activity Database

    Bruthans, J.; Svetlik, D.; Soukup, J.; Schweigstillová, Jana; Válek, Jan; Sedláčková, M.; Mayo, A.L.

    2012-01-01

    Roč. 177, December (2012), s. 178-193 ISSN 0169-555X R&D Projects: GA AV ČR IAA300130806 Institutional support: RVO:67985891 ; RVO:68378297 Keywords : sandstone * erosion * piping * tensile strength * conduit * landform Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.552, year: 2012

  14. Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

    Directory of Open Access Journals (Sweden)

    Mohsen Azimi-Nezhad

    2014-05-01

    Full Text Available Vascular endothelial growth factor (VEGF is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases.

  15. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  16. Utilização de valvas homólogas e heterólogas em condutos extracardíacos The use of homograph and heterograph valves in extracardiac conduits

    Directory of Open Access Journals (Sweden)

    Rui Siqueira de Almeida

    1988-08-01

    Full Text Available O conceito do uso de um conduto extracardíaco para estabelecer uma via de saída, conectando o ventrículo direito com o tronco pulmonar, ou seus ramos, foi desenvolvido na década de 60. Entre 1971 e 1986, 335 pacientes receberam, no The Hospital for Sick Children, de Londres, condutos extracardíacos para o lado direito do coração; 176 destes foram homoenxertos aórticos, preservados em solução antibióticonutriente; 140 heteroenxertos (Hancock, Ross, Carpentier-Edwards, lonescu-Shiley e 19 tubos não valvulados. Estes condutos foram usados na correção de defeitos cardíacos complexos. A idade média foi de 6,34 anos e o peso médio, de 17,8 kg. O diâmetro interno dos condutos variou de 8 a 30 mm. A mortalidade hospitalar foi de 29,2% e o seguimento dos sobrevivente teve uma duração máxima de 14,3 anos, sendo que apenas 40% delas foram relacionadas ao conduto extracardíaco. A curva atuarial, livre de obstrução, dos condutos extracardíacos foi significativa, quando se analisaram os homoenxertos, face a cada grupo de heteroenxertos (p The concept of using extracardiac conduits, to establish an outflow tract between the right ventricle and the pulmonary artery was developed on the sixties. Between 1971 and 1986, 335 patients received extracardiac conduits for the right heart, at The Hospital for Sick Children, London; 176 were antibiotic preserved aortic homografts (Hancock, Ross, Carpentier-Edwards, lonescu-Shiley and 19 non-valved tubes. These conduits were used for the repair of complex congenital heart defects. The mean age of these groups was 6.34 ± 4.6 years and the mean weight 17.8 ± 10.8 kg. The internal diameter of the conduits varied from 8 to 30 mm. The hospital mortality was 29.2% and long-term follow-up of the survivals had a maximum period of 14,39 years. Sixty patients (17.9% were submited to 60 reoperations, being only 40% conduit related. The actuarial survival cun/e of freedom from obstruction was significant

  17. Characterization of vascular complications in experimental model of fructose-induced metabolic syndrome.

    Science.gov (United States)

    El-Bassossy, Hany M; Dsokey, Nora; Fahmy, Ahmed

    2014-12-01

    Vascular dysfunction is an important complication associated with metabolic syndrome (MS). Here we fully characterized vascular complications in a rat model of fructose-induced MS. MS was induced by adding fructose (10%) to drinking water to male Wistar rats of 6 weeks age. Blood pressure (BP) and isolated aorta responses phenylephrine (PE), KCl, acetylcholine (ACh), and sodium nitroprusside (SNP) were recorded after 6, 9, and 12 weeks of fructose administration. In addition, serum levels of glucose, insulin, uric acid, tumor necrosis factor α (TNFα), lipids, advanced glycation end products (AGEs), and arginase activity were determined. Furthermore, aortic reactive oxygen species (ROS) generation, hemeoxygenase-1 expression, and collagen deposition were examined. Fructose administration resulted in a significant hyperinslinemia after 6 weeks which continued for 12 weeks. It was also associated with a significant increase in BP after 6 weeks which was stable for 12 weeks. Aorta isolated from MS animals showed exaggerated contractility to PE and KCl and impaired relaxation to ACh compared with control after 6 weeks which were clearer at 12 weeks of fructose administration. In addition, MS animals showed significant increases in serum levels of lipids, uric acid, AGEs, TNFα, and arginase enzyme activity after 12 weeks of fructose administration. Furthermore, aortae isolated from MS animals were characterized by increased ROS generation and collagen deposition. In conclusion, adding fructose (10%) to drinking water produces a model of MS with vascular complications after 12 weeks that are characterized by insulin resistance, hypertension, disturbed vascular reactivity and structure, hyperuricemia, dyslipidemia, and low-grade inflammation.

  18. Impact of asymmetric lamp positioning on the performance of a closed-conduit UV reactor

    Directory of Open Access Journals (Sweden)

    Tipu Sultan

    2017-06-01

    Full Text Available Computational fluid dynamics (CFD analyses for the performance improvement of a closed-conduit ultraviolet (UV reactor were performed by changing the lamp positions from symmetric to asymmetric. The asymmetric lamp positioning can be useful for UV reactor design and optimization. This goal was achieved by incorporating the two performance factors, namely reduction equivalent dose (RED and system dose performance. Four cases were carried out for asymmetric lamp positioning within the UV reactor chamber and each case consisted of four UV lamps that were simulated once symmetrically and four times asymmetrically. The results of the four asymmetric cases were compared with the symmetric one. Moreover, these results were evaluated by using CFD simulations of a closed-conduit UV reactor. The fluence rate model, UVCalc3D was employed to validate the simulations results. The simulation results provide detailed information about the dose distribution, pathogen track modeling and RED. The RED value was increased by approximately 15% by using UVCalc3D fluence rate model. Additionally, the asymmetric lamp positioning of the UV lamps had more than 50% of the pathogens received a better and a higher UV dose than in the symmetric case. Consequently, the system dose performance was improved by asymmetric lamp positioning. It was concluded that the performance parameters (higher RED and system dose performance were improved by using asymmetric lamp positioning.

  19. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a

  20. Vascular injuries of the upper extremity Lesões vasculares de membros superiores

    Directory of Open Access Journals (Sweden)

    Raafat Shalabi

    2006-12-01

    Full Text Available OBJECTIVE: This study analyzes the causes of injuries, presentations, surgical approaches, outcome and complications of vascular trauma of the upper limbs, in spite of limited hospital resources. METHODS: A 5-year retrospective analysis. From 01/01/2001 to 31/12/2005, 165 patients were operated for vascular injuries at King Fahd Hospital, Medina, Saudi Arabia. Of all peripheral vascular trauma patients (115, upper limb trauma was present in 58. Diagnosis was made by physical examination and hand-held Doppler alone or in combination with Doppler scan/angiography. Primary vascular repair was performed whenever possible; otherwise, the interposition vein graft was used. Fasciotomy was considered when required. Patients with unsalvageable lower extremity injury requiring primary amputation were excluded from the study. RESULTS: Fifty patients were male (86% and eight were female (14%, aged between 2.5-55 years (mean 23 years. Mean duration of presentation was 8 h after the injury. The most common etiological factor was road traffic accidents, accounting for 50.5% in the blunt trauma group and 33% among all penetrating and stab wound injuries. Incidence of concomitant orthopedic injuries was very high in our study (51%. The brachial artery was the most affected (51%. Interposition vein grafts were used in 53% of the cases. Limb salvage rate was 100%. CONCLUSION: Patients who suffer vascular injuries of the upper extremities should be transferred to vascular surgery centers as soon as possible. Decisive management of peripheral vascular trauma will maximize patient survival and limb salvage. Priorities must be established in the management of associated injuries, and delay must be avoided when ischemic changes are present.OBJETIVO: Este estudo analisa as causas de lesões, apresentação, abordagens cirúrgicas, desfechos e complicações do trauma vascular de membros superiores, apesar de recursos hospitalares limitados. MÉTODOS: An

  1. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle.

    Science.gov (United States)

    Krämer, J; Quensel, C; Meding, J; Cardoso, M C; Leonhardt, H

    2001-01-01

    Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to colocalize with smooth muscle alpha actin. In addition to the small smoothelin isoform of 59 kD, we recently identified a large smoothelin isoform of 117 kD. The aim of this study was to identify and characterize novel smoothelin isoforms. The genomic structure and sequence of the smoothelin gene were determined by genomic PCR, RT-PCR and DNA sequencing. Comparison of the cDNA and genomic sequences shows that the small smoothelin isoform is generated by transcription initiation 10 kb downstream of the start site of the large isoform. In addition to the known smoothelin cDNA (c1 isoform) we identified two novel cDNA variants (c2 and c3 isoform) that are generated by alternative splicing within a region, which shows similarity to the spectrin family of F-actin cross-linking proteins. Visceral organs express the c1 form, while the c2 form prevails in well-vascularized tissue as analyzed by RT-PCR. We then generated specific antibodies against the major smoothelin isoforms and could show by Western blotting and immunohistochemistry that the large isoform is specifically expressed in vascular smooth muscle cells, while the small isoform is abundant in visceral smooth muscle. These results strongly suggest that the smoothelin gene contains a vascular and a visceral smooth muscle promoter. The cell-type-specific expression of smoothelin isoforms that are associated with actin filaments may play a role in the modulation of the contractile properties of different smooth muscle cell types. Copyright 2001 S. Karger AG, Basel

  2. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  3. Pediatric central nervous system vascular malformations

    International Nuclear Information System (INIS)

    Burch, Ezra A.; Orbach, Darren B.

    2015-01-01

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  4. Development and fabrication of superconducting hybrid Cable-In-Conduit-Conductor (CICC) for indigenous fusion programme

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Abdulla, K.K.; Singh, R.P.

    2011-01-01

    The Atomic Fuels Division has initiated development and fabrication of Cable-In-Conduit-Conductor (CICC) of various configurations, for superconducting fusion grade magnets required for their indigenous Fusion Programme. The process involves development of high grade superconducting multifilamentary wire, multi stage cabling of superconducting as well as copper wires and, finally, jacketing of the cables in SS316LN tubes. The overview of the development and fabrication of CICC is presented in this article. (author)

  5. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture.

    Science.gov (United States)

    Carrer, Marco; von Arx, Georg; Castagneri, Daniele; Petit, Giai

    2015-01-01

    Trees are among the best natural archives of past environmental information. Xylem anatomy preserves information related to tree allometry and ecophysiological performance, which is not available from the more customary ring-width or wood-density proxy parameters. Recent technological advances make tree-ring anatomy very attractive because time frames of many centuries can now be covered. This calls for the proper treatment of time series of xylem anatomical attributes. In this article, we synthesize current knowledge on the biophysical and physiological mechanisms influencing the short- to long-term variation in the most widely used wood-anatomical feature, namely conduit size. We also clarify the strong mechanistic link between conduit-lumen size, tree hydraulic architecture and height growth. Among the key consequences of these biophysical constraints is the pervasive, increasing trend of conduit size during ontogeny. Such knowledge is required to process time series of anatomical parameters correctly in order to obtain the information of interest. An appropriate standardization procedure is fundamental when analysing long tree-ring-related chronologies. When dealing with wood-anatomical parameters, this is even more critical. Only an interdisciplinary approach involving ecophysiology, wood anatomy and dendrochronology will help to distill the valuable information about tree height growth and past environmental variability correctly. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Composite vascular grafts with high cell infiltration by co-electrospinning

    International Nuclear Information System (INIS)

    Tan, Zhikai; Wang, Hongjie; Gao, Xiangkai; Liu, Tong; Tan, Yongjun

    2016-01-01

    There is an increasing demand for functional small-diameter vascular grafts (diameter < 6 mm) to be used in clinical arterial replacement. An ideal vascular graft should have appropriate biomechanical properties and be biocompatible. Electrospinning has become a popular polymer processing technique for vascular tissue engineering, but the grafts fabricated by electrospinning often have relatively small pores and low porosity, which limit cell infiltration into scaffolds and hinder the regeneration and remodeling of grafts. In the present study, we aimed to develop an efficient method to prepare electrospun composite vascular grafts comprising natural and synthetic materials. We fabricated grafts made of polycaprolactone, gelatin, and polyvinyl alcohol (PVA) by co-electrospinning, and the scaffolds were further functionalized by immobilizing heparin on them. The PVA fibers degraded rapidly in vivo and generated electrospun scaffolds with high porosity, which significantly enhanced cell proliferation and infiltration. The mechanical properties of the grafts are suitable for use in artery replacement. Heparin functionalization of the grafts yielded a good antithrombogenic effect, which was demonstrated in platelet adhesion tests. Moreover, in vitro and in vivo results demonstrated that the heparin release from the grafts enhanced the growth of endothelial cells, which is important for the endothelium of implanted grafts. The results of this study indicate that our method is effective and controllable for the fabrication of vascular grafts that meet the clinical requirements for blood vessel transplantation. - Highlights: • This study indicate an effective method for the fabrication of vascular grafts that meet the clinical requirements. • Co-electrospinning were used to fabricate grafts made of polycaprolactone (PCL), gelatin (GT), and polyvinyl alcohol (PVA). • PVA was used to create large pores within the hybrid scaffolds, thereby enhancing cell infiltration

  7. Composite vascular grafts with high cell infiltration by co-electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zhikai, E-mail: tanzk@hnu.edu.cn; Wang, Hongjie; Gao, Xiangkai; Liu, Tong; Tan, Yongjun

    2016-10-01

    There is an increasing demand for functional small-diameter vascular grafts (diameter < 6 mm) to be used in clinical arterial replacement. An ideal vascular graft should have appropriate biomechanical properties and be biocompatible. Electrospinning has become a popular polymer processing technique for vascular tissue engineering, but the grafts fabricated by electrospinning often have relatively small pores and low porosity, which limit cell infiltration into scaffolds and hinder the regeneration and remodeling of grafts. In the present study, we aimed to develop an efficient method to prepare electrospun composite vascular grafts comprising natural and synthetic materials. We fabricated grafts made of polycaprolactone, gelatin, and polyvinyl alcohol (PVA) by co-electrospinning, and the scaffolds were further functionalized by immobilizing heparin on them. The PVA fibers degraded rapidly in vivo and generated electrospun scaffolds with high porosity, which significantly enhanced cell proliferation and infiltration. The mechanical properties of the grafts are suitable for use in artery replacement. Heparin functionalization of the grafts yielded a good antithrombogenic effect, which was demonstrated in platelet adhesion tests. Moreover, in vitro and in vivo results demonstrated that the heparin release from the grafts enhanced the growth of endothelial cells, which is important for the endothelium of implanted grafts. The results of this study indicate that our method is effective and controllable for the fabrication of vascular grafts that meet the clinical requirements for blood vessel transplantation. - Highlights: • This study indicate an effective method for the fabrication of vascular grafts that meet the clinical requirements. • Co-electrospinning were used to fabricate grafts made of polycaprolactone (PCL), gelatin (GT), and polyvinyl alcohol (PVA). • PVA was used to create large pores within the hybrid scaffolds, thereby enhancing cell infiltration

  8. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  9. Quench detection by fluid dynamic means in cable-in-conduit superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    The tight confinement of the helium in cable-in-conduit superconductors creates protection problems because of the pressure rise that can occur during a quench. But the same pressure rise offers the possibility of a non-electrical means of detecting incipient quenches by monitoring the outflow from the various hydraulic paths of the magnet. If the method is to work, the signal must be large enough to be detected unambiguously at an early time, and must not depend too strongly on the length, Joule power density, or rate of growth of the initial normal zone. This paper explores by calculation the degree to which these conditions can be met. The Westinghouse Large Coil Task coil is used as an example

  10. Lifelike Vascular Reperfusion of a Thiel-Embalmed Pig Model and Evaluation as a Surgical Training Tool.

    Science.gov (United States)

    Willaert, Wouter; Tozzi, Francesca; Van Hoof, Tom; Ceelen, Wim; Pattyn, Piet; D''Herde, Katharina

    2016-01-01

    Vascular reperfusion of Thiel cadavers can aid surgical and anatomical instruction. This study investigated whether ideal embalming circumstances provide lifelike vascular flow, enabling surgical practice and enhancing anatomical reality. Pressure-controlled pump-driven administration of blue embalming solution was assessed directly postmortem in a pig model (n = 4). Investigation of subsequent pump-driven vascular injection of red paraffinum perliquidum (PP) included assessment of flow parameters, intracorporeal distribution, anatomical alterations, and feasibility for surgical training. The microscopic distribution of PP was analyzed in pump-embalmed pig and gravity-embalmed human small intestines. Embalming lasted 50-105 min, and maximum arterial pressure was 65 mm Hg. During embalming, the following consecutive alterations were observed: arterial filling, organ coloration, venous perfusion, and further tissue coloration during the next weeks. Most organs were adequately preserved. PP generated low arterial pressures (drainage is a prerequisite to prevent anatomical deformation, allowing simulation of various surgeries. In pump-embalmed pig small intestines, PP flowed from artery to vein through the capillaries without extravasation. In contrast, arterioles were blocked in gravity-embalmed human tissues. In a pig model, immediate postmortem pressure-controlled pump embalming generates ideal circumstances for (micro)vascular reperfusion with PP, permitting lifelike anatomy instruction and surgical training. © 2016 S. Karger AG, Basel.

  11. Vascular malformations in pediatrics

    International Nuclear Information System (INIS)

    Reith, W.; Shamdeen, M.G.

    2003-01-01

    Vascular malformations are the cause of nearly all non-traumatic intracranial hemorrhage in children beyond the neonatal stage. Therefore, any child presenting with spontaneous intracranial hemorrhage should be evaluated for child abuse and for vascular malformations. Intracerebral malformations of the cerebral vasculature include vein of Galen malformations, arteriovenous malformation (AVM), cavernomas, dural arteriovenous fistulas, venous anomalies (DVA), and capillary teleangiectasies. Although a few familial vascular malformation have been reported, the majority are sporadic. Clinical symptoms, diagnostic and therapeutic options are discussed. (orig.) [de

  12. Contemporary vascular smartphone medical applications.

    Science.gov (United States)

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    Science.gov (United States)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone

  14. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    Science.gov (United States)

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  15. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    Science.gov (United States)

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  16. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  17. Simulations of magnetic capturing of drug carriers in the brain vascular system

    Energy Technology Data Exchange (ETDEWEB)

    Kenjeres, S., E-mail: S.Kenjeres@tudelft.nl [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands); Righolt, B.W. [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Blood flow and magnetic particles distributions in the brain vascular system simulated. Black-Right-Pointing-Pointer Numerical mesh generated from raw MRI images. Black-Right-Pointing-Pointer Significant increase in local capturing of magnetic particles obtained. Black-Right-Pointing-Pointer Promising technique for localised non-invasive treatment of brain tumours. - Abstract: The present paper reports on numerical simulations of blood flow and magnetic drug carrier distributions in a complex brain vascular system. The blood is represented as a non-Newtonian fluid by the generalised power law. The Lagrangian tracking of the double-layer spherical particles is performed to estimate particle deposition under influence of imposed magnetic field gradients across arterial walls. Two situations are considered: neutral (magnetic field off) and active control (magnetic field on) case. The double-layer spherical particles that mimic a real medical drug are characterised by two characteristic diameters - the outer one and the inner one of the magnetic core. A numerical mesh of the brain vascular system consisting of multi-branching arteries is generated from raw MRI scan images of a patient. The blood is supplied through four main inlet arteries and the entire vascular system includes more than 30 outlets, which are modelled by Murray's law. The no-slip boundary condition is applied for velocity components along the smooth and rigid arterial walls. Numerical simulations revealed detailed insights into blood flow patterns, wall-shear-stress and local particle deposition efficiency along arterial walls. It is demonstrated that magnetically targeted drug delivery significantly increased the particle capturing efficiency in the pre-defined regions. This feature can be potentially useful for localised, non-invasive treatment of brain tumours.

  18. Perinatal development influences mechanisms of bradykinin-induced relaxations in pulmonary resistance and conduit arteries differently.

    Science.gov (United States)

    Boels, P J; Deutsch, J; Gao, B; Haworth, S G

    2001-07-01

    prostaglandin- and NO-synthesis whereas those to SP (at all ages) and ACH (in the adult) do not. In RPA, BYK-relaxations develop from being completely dependant on the sole release of NO (foetus) to being almost completely independent of it (adult), a situation mimicked partially by SP but not by ACH, which, in new-born RPA is completely dependent on NO. BYK-relaxations in postnatal RPA depend on the release of a hyperpolarising factor generated through an SKF525a-sensitive pathway in conjunction with NO. The mechanisms of endothelium-dependent BYK-relaxations in the pulmonary vascular bed undergo diverging alterations, depending on the stage of development and arterial size/function. These changes are specific for BYK as they differ from those obtained from ACH or SP.

  19. Nilai Rerata Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio Vascular Pedicle-Thoracic Ratio Orang Dewasa Normal Indonesia Studi di RS dr. Cipto Mangunkusomo

    Directory of Open Access Journals (Sweden)

    Rommy Zunera

    2016-03-01

    Full Text Available Vascular pedicle width (VPW adalah jarak tepi luar vena kava superior ke tepi luar arteri subklavia kiri. Pemeriksaan VPW di foto toraks bersifat non-invasif, cepat dan mudah untuk memprediksi hipervolemia.Penelitian ini bertujuan untuk mengetahui rerata nilai VPW orang dewasa normal Indonesia. VPW diukurdengan dua metode: pertama pengukuran VPW tunggal yang akurasinya terbatas di foto toraks digital karenarelatif tidak dipengaruhi faktor magnifikasi. Metode kedua untuk foto toraks nondigital yaitu pengukuranrasio:vascular pedicle-cardiac ratio (VPCR dan vascular pedicle-thoracic ratio (VPTR. Pengukuran serupadilakukan terhadap  topogram CT scan toraks AP terlentang dan CT scan toraks lalu dibandingkan akurasipengukuran di topogram dengan CT scan  toraks sebagai standar baku. Sampel terdiri atas 104 foto toraksPA subyek normal dan 103 CT scan  toraks subyek terpilih. Pada pemeriksaan toraks PA didapatkan rerata VPW 48,0±5,5mm, rerata VPCR 40,3±4,6%, dan rerata VPTR 17,2±1,7%. Pada pemeriksaan topogram CTscan didapatkan rerata VPW 50,3±6,2mm, rerata VPTR 45±5,1%, dan rerata VPTR 19,8±2,5%. Rerata VPWpada CT scan toraks 50,4±6,1mm. Pengukuran di foto toraks AP 10% lebih besar dibandingkan pada fototoraks PA dan pengukuranVPW di foto toraks terbukti memiliki akurasi  tinggi. Kata kunci: fototoraks, vascular pedicle width, vascular pedicle-cardiac ratio, vascular pedicle-thoracic ratio, hipervolemia.   The Mean Value of Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio,Vascular Pedicle-Thoracic Ratio of Normal Indonesian Adult Study In dr. Cipto Mangunkusomo Hospital Abstract Vascular pedicle width (VPW is the distance, from a perpendicular line at the takeoff point of the left subclavian artery off the aorta to the point at which the superior vena cava. Measurement of VPW on chestx-ray is relatively non-invasive, fast and easy technique as  hypervolemia predictor. The purpose of thisstudy is to know the mean VPW value of normal

  20. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  1. Detection of vascularity in wrist tenosynovitis: power doppler ultrasound compared with contrast-enhanced grey-scale ultrasound.

    Science.gov (United States)

    Klauser, Andrea S; Franz, Magdalena; Arora, Rohit; Feuchtner, Gudrun M; Gruber, Johann; Schirmer, Michael; Jaschke, Werner R; Gabl, Markus F

    2010-01-01

    We sought to assess vascularity in wrist tenosynovitis by using power Doppler ultrasound (PDUS) and to compare detection of intra- and peritendinous vascularity with that of contrast-enhanced grey-scale ultrasound (CEUS). Twenty-six tendons of 24 patients (nine men, 15 women; mean age ± SD, 54.4 ± 11.8 years) with a clinical diagnosis of tenosynovitis were examined with B-mode ultrasonography, PDUS, and CEUS by using a second-generation contrast agent, SonoVue (Bracco Diagnostics, Milan, Italy) and a low-mechanical-index ultrasound technique. Thickness of synovitis, extent of vascularized pannus, intensity of peritendinous vascularisation, and detection of intratendinous vessels was incorporated in a 3-score grading system (grade 0 to 2). Interobserver variability was calculated. With CEUS, a significantly greater extent of vascularity could be detected than by using PDUS (P < 0.001). In terms of peri- and intratendinous vessels, CEUS was significantly more sensitive in the detection of vascularization compared with PDUS (P < 0.001). No significant correlation between synovial thickening and extent of vascularity could be found (P = 0.089 to 0.097). Interobserver reliability was calculated to be excellent when evaluating the grading score (κ = 0.811 to 1.00). CEUS is a promising tool to detect tendon vascularity with higher sensitivity than PDUS by improved detection of intra- and peritendinous vascularity.

  2. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  3. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  4. Open and endovascular aneurysm repair in the Society for Vascular Surgery Vascular Quality Initiative.

    Science.gov (United States)

    Spangler, Emily L; Beck, Adam W

    2017-12-01

    The Society for Vascular Surgery Vascular Quality Initiative is a patient safety organization and a collection of procedure-based registries that can be utilized for quality improvement initiatives and clinical outcomes research. The Vascular Quality Initiative consists of voluntary participation by centers to collect data prospectively on all consecutive cases within specific registries which physicians and centers elect to participate. The data capture extends from preoperative demographics and risk factors (including indications for operation), through the perioperative period, to outcomes data at up to 1-year of follow-up. Additionally, longer-term follow-up can be achieved by matching with Medicare claims data, providing long-term longitudinal follow-up for a majority of patients within the Vascular Quality Initiative registries. We present the unique characteristics of the Vascular Quality Initiative registries and highlight important insights gained specific to open and endovascular abdominal aortic aneurysm repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. PanVascular medicine. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Lanzer, Peter (ed.) [Health Care Center Bitterfeld (Germany). Division of Cardiovascular Disease

    2015-06-01

    Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.

  6. PanVascular medicine. 2. ed.

    International Nuclear Information System (INIS)

    Lanzer, Peter

    2015-01-01

    Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.

  7. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  8. Measurement of nanosize etched pits in SiO2 optical fiber conduit using AFM

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Vazquez, C.; Fragoso, R.

    2003-01-01

    Fission fragment tracks from 252 Cf have been observed in SiO 2 optical fiber, using an atomic force microscope (AFM), after a very short chemical etching in hydrofluoric acid solution at normal temperature. The nuclear track starting and evolution process is followed by the AFM direct measurements on the material surface and beyond a fine layer of the surface material. The images of the scanned cones were determined observing the two predominant energies from 252 Cf fission fragments and the development of the tracks in the 150 μm diameter optical fiber conduit

  9. Clinical experience with an alloplastic stoma prosthesis (Biocarbon) for urinary conduits and cutaneous ureterostomy.

    Science.gov (United States)

    Månsson, W; Harzmann, R

    1988-01-01

    An alloplastic stoma prosthesis, Biocarbon, composed of 99.9% pure carbon in vitreous form, was used in six patients with conduit urinary diversion and in seven with cutaneous ureterostomy. The patients were thereafter observed for 2-86 months. Complications were subcutaneous infection, urinary fistula and ureteral stenosis, which necessitated removal of the prosthesis in most cases. The permanent stoma, without need for adhesive collecting device, was appreciated by the patients. Problems relating to biocompatibility remain to be solved before the place of the stoma prosthesis in urinary diversion can be determined.

  10. [The future of vascular medicine].

    Science.gov (United States)

    Kroeger, K; Luther, B

    2014-10-01

    In the future vascular medicine will still have a great impact on health of people. It should be noted that the aging of the population does not lead to a dramatic increase in patient numbers, but will be associated with a changing spectrum of co-morbidities. In addition, vascular medical research has to include the intensive care special features of vascular patients, the involvement of vascular medicine in a holistic concept of fast-track surgery, a geriatric-oriented intensive monitoring and early geriatric rehabilitation. For the future acceptance of vascular medicine as a separate subject area under delimitation of cardiology and radiology is important. On the other hand, the subject is so complex and will become more complex in future specialisations that mixing of surgery and angiology is desirable, with the aim to preserve the vascular surgical knowledge and skills on par with the medical and interventional measures and further develop them. Only large, interdisciplinary guided vascular centres will be able to provide timely diagnosis and therapy, to deal with the growing multi-morbidity of the patient, to perform complex therapies even in an acute emergency and due to sufficient number of cases to present with well-trained and experienced teams. These requirements are mandatory to decrease patients' mortality step by step. Georg Thieme Verlag KG Stuttgart · New York.

  11. Vascular neurocognitive disorders and the vascular risk factors

    Directory of Open Access Journals (Sweden)

    Carmen V. Albu

    2018-04-01

    Full Text Available Dementias are clinical neurodegenerative diseases characterized by permanent and progressive transformation of cognitive functions such as memory, learning capacity, attention, thinking, language, passing judgments, calculation or orientation. Dementias represent a relatively frequent pathology, encountered at about 10% of the population of 65-year olds and 20% of the population of 80-year olds. This review presents the main etiological forms of dementia, which include Alzheimer form of dementia, vascular dementia, dementia associated with alpha-synucleionopathies, and mixed forms. Regarding vascular dementia, the risk factors are similar to those for an ischemic or hemorrhagic cerebrovascular accident: arterial hypertension, diabetes mellitus, dyslipidemia, smoking, obesity, age, alcohol consumption, cerebral atherosclerosis/ arteriosclerosis. Several studies show that efficient management of the vascular risk factors can prevent the expression and/ or progression of dementia. Thus, lifestyle changes such as stress reduction, regular physical exercise, decreasing dietary fat, multivitamin supplementation, adequate control of blood pressure and serum cholesterol, and social integration and mental stimulation in the elderly population are important factors in preventing or limiting the symptoms of dementia, a disease with significant individual, social, and economic implications.

  12. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs.

    Science.gov (United States)

    Cui, Yi; Yao, Yao; Zhao, Yannan; Xiao, Zhifeng; Cao, Zongfu; Han, Sufang; Li, Xing; Huan, Yong; Pan, Juli; Dai, Jianwu

    2018-05-01

    Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve

    Directory of Open Access Journals (Sweden)

    Pamela Lazar-Karsten

    2016-04-01

    Full Text Available Thoracic aortic dilation is the most common malformation of the proximal aorta and is responsible for 1%–2% of all deaths in industrialized countries. In approximately 50% of patients with a bicuspid aortic valve (BAV, dilation of any or all segments of the aorta occurs. BAV patients with aortic dilation show an increased incidence of cultured vascular smooth muscle cell (VSMC loss. In this study, VSMC, isolated from the ascending aorta of BAV, was treated with Simian virus 40 to generate a BAV-originated VSMC cell line. To exclude any genomic DNA or cross-contamination, highly polymorphic short tandem repeats of the cells were profiled. The cells were then characterized using flow cytometry and karyotyping. The WG-59 cell line created is the first reported VSMC cell line isolated from a BAV patient. Using an RT2 Profiler PCR Array, genes within the TGFβ/BMP family that are dependent on losartan treatment were identified. Endoglin was found to be among the regulated genes and was downregulated in WG-59 cells following treatment with different losartan concentrations, when compared to untreated WG-59 cells.

  14. [Recurrent vascular access trombosis associated with the prothrombin mutation G20210A in a adult patient in haemodialysis].

    Science.gov (United States)

    Quintana, L F; Coll, E; Monteagudo, I; Collado, S; López-Pedret, J; Cases, A

    2005-01-01

    Vascular access-related complications are a frequent cause of morbidity in haemodialysis patients and generate high costs. We present the case of an adult patient with end-stage renal disease and recurrent vascular access thrombosis associated with the prothrombin mutation G20210A and renal graft intolerance. The clinical expression of this heterozygous gene mutation may have been favoured by inflammatory state, frequent in dialysis patients. In this patient, the inflammatory response associated with the renal graft intolerance would have favored the development of recurrent vascular access thrombosis in a adult heterozygous for prothrombin mutation G20210A. In the case of early dysfunction of haemodialysis vascular access and after ruling out technical problems, it is convenient to carry out a screening for thrombophilia.

  15. Vascular regulation of glioma stem-like cells: a balancing act.

    Science.gov (United States)

    Brooks, Lucy J; Parrinello, Simona

    2017-12-01

    Glioblastoma (GBM) are aggressive and therapy-resistant brain tumours driven by glioma stem-like cells (GSCs). GSC behaviour is controlled by the microenvironment, or niche, in which the cells reside. It is well-established that the vasculature is a key component of the GSC niche, which drives maintenance in the tumour bulk and invasion at the margin. Emerging evidence now indicates that the specific properties of the vasculature within these two regions impose different functional states on resident GSCs, generating distinct subpopulations. Here, we review these recent findings, focusing on the mechanisms that underlie GSC/vascular communication. We further discuss how plasticity enables GSCs to respond to vascular changes by interconverting bidirectionally between states, and address the therapeutic implications of this dynamic response. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Social media in vascular surgery.

    Science.gov (United States)

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E

    2013-04-01

    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  17. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chang Hyun Byon

    2016-10-01

    Full Text Available Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS, which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2 exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.

  18. Vascular elastic photoacoustic tomography in humans

    Science.gov (United States)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  19. Diagnosis and management of vascular diseases

    International Nuclear Information System (INIS)

    Fan Xindong; Zheng Lianzhou

    2011-01-01

    Vascular disorders mainly include hemangiomas and vascular malformations, and constitute some of the most difficult diagnostic and therapeutic enigmas that can be encountered in the clinical practice. The clinical presentations are extremely variable and can range from an asymptomatic birthmark to life-threatening congestive heart failure. Attributing any of these extremely varied symptoms that a patients may present with to a vascular malformation may be a challenge to the most experienced clinical. This problem is compounded by the extreme rarity of these vascular lesions. If a clinician meets such a patient once every few years, it will be extremely difficult for the physicians to gain a steep learning curve. In such circumstances, it is difficult to formulate a standard of diagnosis and treatment for these vascular disorders. This paper aims to make a comprehensive and detailed description of the classification and diagnosis of the vascular disorders, the common used embolization agents, the concepts of interventional diagnosis and management and the therapies of various hemangiomas and vascular malformations. (authors)

  20. Norwood with right ventricle-to-pulmonary artery conduit is more effective than Norwood with Blalock-Taussig shunt for hypoplastic left heart syndrome: mathematic modeling of hemodynamics.

    Science.gov (United States)

    Mroczek, Tomasz; Małota, Zbigniew; Wójcik, Elżbieta; Nawrat, Zbigniew; Skalski, Janusz

    2011-12-01

    The introduction of right ventricle to pulmonary artery (RV-PA) conduit in the Norwood procedure for hypoplastic left heart syndrome resulted in a higher survival rate in many centers. A higher diastolic aortic pressure and a higher mean coronary perfusion pressure were suggested as the hemodynamic advantage of this source of pulmonary blood flow. The main objective of this study was the comparison of two models of Norwood physiology with different types of pulmonary blood flow sources and their hemodynamics. Based on anatomic details obtained from echocardiographic assessment and angiographic studies, two three-dimensional computer models of post-Norwood physiology were developed. The finite-element method was applied for computational hemodynamic simulations. Norwood physiology with RV-PA 5-mm conduit and Blalock-Taussig shunt (BTS) 3.5-mm shunt were compared. Right ventricle work, wall stress, flow velocity, shear rate stress, energy loss and turbulence eddy dissipation were analyzed in both models. The total work of the right ventricle after Norwood procedure with the 5-mm RV-PA conduit was lower in comparison to the 3.5-mm BTS while establishing an identical systemic blood flow. The Qp/Qs ratio was higher in the BTS group. Hemodynamic performance after Norwood with the RV-PA conduit is more effective than after Norwood with BTS. Computer simulations of complicated hemodynamics after the Norwood procedure could be helpful in establishing optimal post-Norwood physiology. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  1. Bioprinting of a functional vascularized mouse thyroid gland construct.

    Science.gov (United States)

    Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A

    2017-08-18

    Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.

  2. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  3. The vascular pattern in the flower of some Mesembryanthemaceae: Aptenia cordifolia and Dorotheanthus bellidiformis. The effect of an ontogenetical shifting on the vascular pattern and vascular conservatism

    NARCIS (Netherlands)

    Meulen-Bruijns, van der C.

    1976-01-01

    1. The vascular pattern in the flower at various stages of maturity of Aptenia cordifolia and Dorotheanthus bellidiformis is examined. 2. The vascular pattern of Dorotheanthus has been compared with that of Aptenia: typologically, Dorotheanthus is derived from Aptenia. 3. The vascular pattern of

  4. Targeted modulation of reactive oxygen species in the vascular endothelium.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-15

    'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

    Science.gov (United States)

    Lackington, William A; Raftery, Rosanne M; O'Brien, Fergal J

    2018-06-07

    Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60±13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate

  6. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy.

    Science.gov (United States)

    Barton, Matthias; Husmann, Marc; Meyer, Matthias R

    2016-05-01

    Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. VA Vascular Injury Study (VAVIS): VA-DoD extremity injury outcomes collaboration.

    Science.gov (United States)

    Shireman, Paula K; Rasmussen, Todd E; Jaramillo, Carlos A; Pugh, Mary Jo

    2015-02-03

    military settings to generate evidence-based treatment and care approaches to these injuries. It will identify areas where rehabilitation medicine and vascular specialty care or telehealth options are needed to allow for better planning, resource utilization, and improved DoD-to-VA care transitions.

  8. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    Science.gov (United States)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  9. Next-generation sequencing and a novel COL3A1 mutation associated with vascular Ehlers-Danlos syndrome with severe intestinal involvement: a case report.

    Science.gov (United States)

    Cortini, Francesca; Marinelli, Barbara; Seia, Manuela; De Giorgio, Barbara; Pesatori, Angela Cecilia; Montano, Nicola; Bassotti, Alessandra

    2016-10-31

    The vascular type of Ehlers-Danlos syndrome is an autosomal dominant connective tissue disorder caused by a mutation in the COL3A1 gene encoding pro-alpha1 chain of type III collagen. The vascular type of Ehlers-Danlos syndrome causes severe fragility of connective tissues with arterial and intestinal ruptures and complications in surgical and radiological treatments. We present a case of a 38-year-old Italian woman who was diagnosed as having the vascular type of Ehlers-Danlos syndrome. Genetic testing, conducted by Target Enrichment approach (Agilent Technologies), identified a new mutation c.1493G>A, p.G498D in exon 21 of COL3A1 gene (heterozygous state). This mutation disrupts the normal glycine-X-Y repetitions of type III procollagen by converting glycine to aspartic acid. We report a new genetic mutation associated with the vascular type of Ehlers-Danlos syndrome. We also describe clinical and genetic findings that are important to understand the genotype/phenotype correlation in patients with the vascular type of Ehlers-Danlos syndrome.

  10. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats.

    Science.gov (United States)

    Giusti, Guilherme; Lee, Joo-Yup; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T; Shin, Alexander Y

    2016-02-01

    Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft. © 2014

  11. A new cable-in-conduit conductor magnet with insulated strands

    International Nuclear Information System (INIS)

    Yamaguchi, Satarou; Yamamoto, Junya; Motojima, Osamu.

    1995-09-01

    Many studies have used cable-in-conduit conductor (CICC) coils in trying to develop an AC superconducting magnet because of its enormous potential if AC losses were low and insulation voltage was high. The strands in the most recent CICC magnets are coated with chromium or another metal with high electrical resistance to order to induce current re-distribution among the strands and to avoid a quench caused by a current imbalance. Current re-distribution is highly complex and very difficult to analyze because the conditions of the strand surfaces and the contact areas vary greatly with the operation of the conductor. If, however, the cable currents were well-balanced, insulating the strands would be the best way to reduce AC losses. We propose a new CICC magnet structure featuring a current lead that balances the strand currents via its resistance. Having calculated current balances, we find that strand currents are well within the present parameters for nuclear fusion experiments and superconducting magnet energy storages. (author)

  12. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    Science.gov (United States)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by

  13. Myectomy and LA-to-LV Conduit for Severe Calcific Mitral Stenosis and Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Meghji, Zahara; Nguyen, Anita; Geske, Jeffrey B; Schaff, Hartzell V

    2018-02-26

    Severe calcific mitral valve stenosis can rarely occur concomitantly with obstructive hypertrophic cardiomyopathy. In these patients, surgical decalcification of the stenotic mitral valve followed by mitral valve replacement carries significant operative risk and may result in paravalvular leakage, atrioventricular groove disruption, and excessive bleeding. We report the first 2 cases of obstructive hypertrophic cardiomyopathy with severe calcific mitral valve stenosis successfully treated with concomitant transaortic septal myectomy and bypass of the stenotic mitral valve using a valved left atrium to left ventricular conduit. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

    Directory of Open Access Journals (Sweden)

    Haley D O'Brien

    Full Text Available Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica and white-tailed deer (Odocoileus virginianus were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.

  15. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system

    Science.gov (United States)

    Kamb, Barclay

    1987-08-01

    viscous heat dissipation in the flow of water through the orifices is treated in detail under the assumption of local heat transfer, which guarantees that the heating effects are not underestimated. This treatment brings to light a melting-stability parameter Ξ that provides a measure of the influence of viscous heating on orifice cavitation, similar but distinct for step and wave orifices. Orifice shapes and the amounts of roof meltback are determined by Ξ. When Ξ ≳ 1, so that the system is "viscous-heating-dominated," the orifices are unstable against rapid growth in response to a modest increase in water pressure or in orifice size over their steady state values. This growth instability is somewhat similar to the jökulhlaup-type instability of tunnels, which are likewise heating-dominated. When Ξ ≲ 1, the orifices are stable against perturbations of modest to even large size. Stabilization is promoted by high sliding velocity ν, expressed in terms of a ν-½ and ν-1 dependence of Ξ for step and wave cavities. The relationships between basal water pressure and water flux transmitted by linked cavity models of step and wave orifice type are calculated for an empirical relation between water pressure and sliding velocity and for a particular, reasonable choice of system parameters. In all cases the flux is an increasing function of the water pressure, in contrast to the inverse flux-versus-pressure relation for tunnels. In consequence, a linked cavity system can exist stably as a system of many interconnected conduits distributed across the glacier bed, in contrast to a tunnel system, which must condense to one or at most a few main tunnels. The linked cavity model gives basal water pressures much higher than the tunnel model at water fluxes ≳1 m3/s if the bed roughness features that generate the orifices have step heights or wave amplitudes less than about 0.1 m. The calculated basal water pressure of the particular linked cavity models evaluated is about 2

  16. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  17. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.

    Science.gov (United States)

    Mahou, Redouan; Zhang, David K Y; Vlahos, Alexander E; Sefton, Michael V

    2017-07-01

    Injectable hydrogels are suitable for local cell delivery to the subcutaneous space, but the lack of vasculature remains a limiting factor. Previously we demonstrated that biomaterials containing methacrylic acid promoted vascularization. Here we report the preparation of a semi-interpenetrating polymer network (SIPN), and its evaluation as an injectable carrier to deliver cells and generate blood vessels in a subcutaneous implantation site. The SIPN was prepared by reacting a blend of vinyl sulfone-terminated polyethylene glycol (PEG-VS) and sodium polymethacrylate (PMAA-Na) with dithiothreitol. The swelling of SIPN was sensitive to the PMAA-Na content but only small differences in gelation time, permeability and stiffness were noted. SIPN containing 20 mol% PMAA-Na generated a vascular network in the surrounding tissues, with 2-3 times as many vessels as was obtained with 10 mol% PMAA-Na or PEG alone. Perfusion studies showed that the generated vessels were perfused and connected to the host vasculature as early as seven days after transplantation. Islets embedded in SIPN were viable and responsive to glucose stimulation in vitro. In a proof of concept study in a streptozotocin-induced diabetic mouse model, a progressive return to normoglycemia was observed and the presence of insulin positive islets was confirmed when islets were embedded in SIPN prior to delivery. Our approach proposes a biomaterial-mediated strategy to deliver cells while enhancing vascularization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Improved vascularization of planar membrane diffusion devices following continuous infusion of vascular endothelial growth factor.

    Science.gov (United States)

    Trivedi, N; Steil, G M; Colton, C K; Bonner-Weir, S; Weir, G C

    2000-01-01

    Improving blood vessel formation around an immunobarrier device should improve the survival of the encapsulated tissue. In the present study we investigated the formation of new blood vessels around a planar membrane diffusion device (the Baxter Theracyte System) undergoing a continuous infusion of vascular endothelial growth factor through the membranes and into the surrounding tissue. Each device (20 microl) had both an inner immunoisolation membrane and an outer vascularizing membrane. Human recombinant vascular endothelial growth factor-165 was infused at 100 ng/day (low dose: n = 6) and 500 ng/day (high dose: n = 7) for 10 days into devices implanted s.c. in Sprague-Dawley rats; noninfused devices transplanted for an identical period were used as controls (n = 5). Two days following the termination of VEGF infusion, devices were loaded with 20 microl of Lispro insulin (1 U/kg) and the kinetics of insulin release from the lumen of the device was assessed. Devices were then explanted and the number of blood vessels (capillary and noncapillary) was quantified using morphometry. High-dose vascular endothelial growth factor infusion resulted in two- to threefold more blood vessels around the device than that obtained with the noninfused devices and devices infused with low-dose vascular endothelial growth factor. This increase in the number of blood vessels was accompanied by a modest increase in insulin diffusion from the device in the high-dose vascular endothelial growth factor infusion group. We conclude that vascular endothelial growth factor can be used to improve blood vessel formation adjacent to planar membrane diffusion devices.

  19. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  20. Pediatric interventional radiology: vascular interventions

    International Nuclear Information System (INIS)

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2016-01-01

    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery. (author)

  1. Laparoscopic ischemic conditioning of the stomach increases neovascularization of the gastric conduit in patients undergoing esophagectomy for cancer.

    Science.gov (United States)

    Pham, Thai H; Melton, Shelby D; McLaren, Patrick J; Mokdad, Ali A; Huerta, Sergio; Wang, David H; Perry, Kyle A; Hardaker, Hope L; Dolan, James P

    2017-09-01

    Gastric ischemic preconditioning has been proposed to improve blood flow and reduce the incidence of anastomotic complications following esophagectomy with gastric pull-up. This study aimed to evaluate the effect of prolonged ischemic preconditioning on the degree of neovascularization in the distal gastric conduit at the time of esophagectomy. A retrospective review of a prospectively maintained database identified 30 patients who underwent esophagectomy. The patients were divided into three groups: control (no preconditioning, n = 9), partial (short gastric vessel ligation only, n = 8), and complete ischemic preconditioning (left and short gastric vessel ligation, n = 13). Microvessel counts were assessed, using immunohistologic analysis to determine the degree of neovascularization at the distal gastric margin. The groups did not differ in age, gender, BMI, pathologic stage, or cancer subtype. Ischemic preconditioning durations were 163 ± 156 days for partial ischemic preconditioning, compared to 95 ± 50 days for complete ischemic preconditioning (P = 0.2). Immunohistologic analysis demonstrated an increase in microvessel counts of 29% following partial ischemic preconditioning (P = 0.3) and 67% after complete ischemic preconditioning (P gastric conduit. © 2017 Wiley Periodicals, Inc.

  2. Enhancement of Median Nerve Regeneration by Mesenchymal Stem Cells Engraftment in an Absorbable Conduit: Improvement of Peripheral Nerve Morphology with Enlargement of Somatosensory Cortical Representation.

    Directory of Open Access Journals (Sweden)

    Julia Teixeira Oliveira

    2014-10-01

    Full Text Available We studied the morphology and the cortical representation of the median nerve (MN, 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL conduit with or without bone marrow-derived mesenchymal stem cell (MSC transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1, electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in 3 groups: MN Intact (n=4, PCL-Only (n=3 and PCL+MSC (n=3. Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group or without (PCL-Only group injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to 5 animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383±390 fibers; 2.3 mm2, respectively than the PCL-Only group (2,226±575 fibers; 1.6 mm2. In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  3. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth. Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of

  4. Histological study of right ventricle-pulmonary artery valved conduit implantation (RPVC) in dogs with pulmonic stenosis.

    Science.gov (United States)

    Saida, Yuuto; Tanaka, Ryou; Fukushima, Ryuji; Hira, Satoshi; Hoshi, Katsuichiro; Soda, Aiko; Iizuka, Tomoya; Ishikawa, Taisuke; Nishimura, Taiki; Yamane, Yoshihisa

    2009-04-01

    We examined whether right ventricle-pulmonary artery valved conduit (RPVC) implantation can overcome the disadvantages of current procedures for pulmonic stenosis (PS). We histologically evaluated the feasibility of RPVC using a homograft in PS model dogs. Eight dogs underwent pulmonary artery banding (PAB) and then 12 weeks later were assigned to PAB (n=4) or PAB+RPVC (n=4) groups. Dogs in the PAB group received no treatment throughout the experimental period, whereas the PAB+RPVC group underwent RPVC. At 1 year after PAB, hearts and conduits were explanted from euthanized dogs and histologically evaluated. The ratios (%) of myocardial fibrosis on right ventricle (RV) epicardial, median and endocardial layers were significantly lower in the PAB+RPVC, than in the PAB group. The ratio of myocardial fibrosis on left ventricular (LV) epicardial and endocardial layers were significantly lower in the PAB+RPVC, than in the PAB group. Neo-intimal thickness in the anastomosis areas of the Denacol and PAB+RPVC groups was 42.77 +/- 30.19 and 88.30 +/- 27.24 microm, respectively, with no significant differences between the groups. Calcification and neo- intima hypertrophy were not obvious in the valve area. Immunohistological staining showed that the internal surface of the anastomosis and intermediate areas were positive for endothelial cells. We concluded that RPVC using a bioprosthetic graft can apparently overcome the disadvantages of current procedures for pulmonic stenosis.

  5. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  6. Renal posttransplant's vascular complications

    Directory of Open Access Journals (Sweden)

    Bašić Dragoslav

    2003-01-01

    Full Text Available INTRODUCTION Despite high graft and recipient survival figures worldwide today, a variety of technical complications can threaten the transplant in the postoperative period. Vascular complications are commonly related to technical problems in establishing vascular continuity or to damage that occurs during donor nephrectomy or preservation [13]. AIM The aim of the presenting study is to evaluate counts and rates of vascular complications after renal transplantation and to compare the outcome by donor type. MATERIAL AND METHODS A total of 463 kidneys (319 from living related donor LD and 144 from cadaveric donor - CD were transplanted during the period between June 1975 and December 1998 at the Urology & Nephrology Institute of Clinical Centre of Serbia in Belgrade. Average recipients' age was 33.7 years (15-54 in LD group and 39.8 (19-62 in CD group. Retrospectively, we analyzed medical records of all recipients. Statistical analysis is estimated using Hi-squared test and Fischer's test of exact probability. RESULTS Major vascular complications including vascular anastomosis thrombosis, internal iliac artery stenosis, internal iliac artery rupture obliterant vasculitis and external iliac vein rupture were analyzed. In 25 recipients (5.4% some of major vascular complications were detected. Among these cases, 22 of them were from CD group vs. three from LD group. Relative rate of these complications was higher in CD group vs. LD group (p<0.0001. Among these complications dominant one was vascular anastomosis thrombosis which occurred in 18 recipients (17 from CD vs. one from LD. Of these recipients 16 from CD lost the graft, while the rest of two (one from each group had lethal outcome. DISCUSSION Thrombosis of renal allograft vascular anastomosis site is the most severe complication following renal transplantation. In the literature, renal allograft thrombosis is reported with different incidence rates, from 0.5-4% [14, 15, 16]. Data from the

  7. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    Science.gov (United States)

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  8. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  9. Radial Artery as a Coronary Artery Bypass Conduit: 20-Year Results.

    Science.gov (United States)

    Gaudino, Mario; Tondi, Paolo; Benedetto, Umberto; Milazzo, Valentina; Flore, Roberto; Glieca, Franco; Ponziani, Francesca Romana; Luciani, Nicola; Girardi, Leonard N; Crea, Filippo; Massetti, Massimo

    2016-08-09

    There is a lack of evidence for the choice of the second conduit in coronary surgery. The radial artery (RA) is a possible option, but few data on very-long-term outcomes exist. This study describes 20-year results of RA grafts used for coronary artery bypass grafting and the effects of RA removal on forearm circulation. We report the results of the prospective 20-year follow-up of the first 100 consecutive patients who received the RA as a coronary bypass conduit at our institution. Follow-up was 100% complete. There were 64 deaths, 23 (35.9%) from cardiovascular causes. Kaplan-Meier 20-year survival was 31%. Of the 36 survivors, 33 (91.6%) underwent RA graft control at a mean of 19.0 ± 2.5 years after surgery. The RA was found to be patent in 24 cases (84.8% patency). In the overall population, probability of graft failure at 20 years was 19.0 ± 0.2% for the left internal thoracic artery (ITA), 25.0 ± 0.2% for the RA, and 55.0 ± 0.2% for the saphenous vein (p = 0.002 for RA vs. saphenous vein, 0.11 for RA vs. ITA, and p 90%, but not location of distal anastomosis, significantly influenced long-term RA graft patency. No patients reported hand or forearm symptoms. The ulnar artery diameter was increased in the operated arm (2.44 ± 0.43 mm vs. 2.01 ± 0.47 mm; p 90% stenosis. RA harvesting does not lead to hand or forearm symptoms, even at a very-long-term follow-up. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Overview of vascular disease

    International Nuclear Information System (INIS)

    Bisset, G.S. III

    1998-01-01

    Vascular disease in the pediatric population is a poorly understood process which is often underestimated in its incidence. The common beginnings of such ubiquitous diseases as atherosclerosis manifest themselves at a cellular level shortly after birth. Other common systemic disorders, including congestive heart failure and sepsis, are also intricately associated with dysfunctional vasculature. Progress in the understanding of normal and pathophysiologic processes within the vascular system begins with the 'control center' - the endothelial cell. The purpose of this review is to consolidate a body of knowledge on the processes that occur at the cellular level within the blood vessel wall, and to simplify the understanding of how imbalances in these physiologic parameters result in vascular disease. (orig.)

  11. Peripheral vascular effects on auscultatory blood pressure measurement.

    Science.gov (United States)

    Rabbany, S Y; Drzewiecki, G M; Noordergraaf, A

    1993-01-01

    Experiments were conducted to examine the accuracy of the conventional auscultatory method of blood pressure measurement. The influence of the physiologic state of the vascular system in the forearm distal to the site of Korotkoff sound recording and its impact on the precision of the measured blood pressure is discussed. The peripheral resistance in the arm distal to the cuff was changed noninvasively by heating and cooling effects and by induction of reactive hyperemia. All interventions were preceded by an investigation of their effect on central blood pressure to distinguish local effects from changes in central blood pressure. These interventions were sufficiently moderate to make their effect on central blood pressure, recorded in the other arm, statistically insignificant (i.e., changes in systolic [p cooling experiments was statistically significant (p < 0.001). Moreover, both measured systolic (p < 0.004) and diastolic (p < 0.001) pressure decreases during the reactive hyperemia experiments were statistically significant. The findings demonstrate that alteration in vascular state generates perplexing changes in blood pressure, hence confirming experimental observations by earlier investigators as well as predictions by our model studies.

  12. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    Science.gov (United States)

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the

  13. Neural network based inspection of voids and karst conduits in hydro-electric power station tunnels using GPR

    Science.gov (United States)

    Kilic, Gokhan; Eren, Levent

    2018-04-01

    This paper reports on the fundamental role played by Ground Penetrating Radar (GPR), alongside advanced processing and presentation methods, during the tunnel boring project at a Dam and Hydro-Electric Power Station. It identifies from collected GPR data such issues as incomplete grouting and the presence of karst conduits and voids and provides full details of the procedures adopted. In particular, the application of collected GPR data to the Neural Network (NN) method is discussed.

  14. Three-dimensional fluid mechanics of particulate two-phase flows in U-bend and helical conduits

    Science.gov (United States)

    Tiwari, Prashant; Antal, Steven P.; Podowski, Michael Z.

    2006-04-01

    The results of numerous studies performed to date have shown that the performance of various hydraulic systems can be significantly improved by using curved conduit geometries instead of straight tubes. In particular, the formation of Dean vortices, which enhance the development of centrifugal instabilities, has been identified as a factor behind reducing the near-wall concentration buildup in particulate flow devices (e.g., in membrane filtration modules). Still, several issues regarding the effect of conduit curvature on local multidimensional phenomena governing fluid flow still remain open. A related issue is concerned with the impact that conduit geometry makes on the concentration distribution of a dispersed phase in two-phase flows in general, and in particulate flows (solid/liquid or solid/gas suspensions) in particular. It turns out that only very limited efforts have been made in the past to understand the fluid mechanics of such flows via advanced computer simulations. The purpose of this paper is to present the results of full three-dimensional (3D) theoretical and numerical analyses of single- and two-phase dilute particle/liquid flows in U-bend and helical curved conduits. The numerical analysis is based on computational fluid dynamics (CFD) simulations performed using a state-of-the-art multiphase flow computer code, NPHASE. The major issues discussed in the first part of the paper are concerned with the effect of curved/coiled geometry on the evolution of flow field and the associated wall shear. It has been demonstrated that the primary curvature (a common factor for both the U-bend and helix geometries) may cause a substantial asymmetry in the radial distribution of the main flow velocity. This, in turn, leads to a significant, albeit highly nonuniform, increase in the wall shear stress. Specifically, the wall shear around the outer half of tube circumference may become twice the corresponding value for a straight tube, and gradually decrease to

  15. Detection of the normal zone with cowound sensors in cable-in conduit conductors

    International Nuclear Information System (INIS)

    Martovetsky, N.N.; Chaplin, M.R.

    1996-01-01

    Tokamaks in the future will use superconducting cable-in-conduit- conductors (CICC) in all poloidal field (PF) and toroidal field (TF) magnets. Conventional quench detection, the measurement of small resistive normal zone voltages ( 4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL has been designed to evaluate which internal locations will produce the best inductive- noise cancellation, and provide us with experimental data for comparison with previously developed theory. The details of the experiments and resulting data are presented and analyzed

  16. Alexis Carrel (1873-1944): visionary vascular surgeon and pioneer in organ transplantation.

    Science.gov (United States)

    Aida, Lai

    2014-08-01

    Alexis Carrel was a French surgeon in the 20th century. He made significant contributions to many advances in the fields of vascular surgery, cardiothoracic surgery and organ transplantation. He demonstrated that blood vessels can be united end-to-end and pioneered the triangulation suturing technique in vascular anastomosis. The methods he developed are still in use to this day. He insisted on the importance of absolute asepsis in vascular surgery when such practices were almost unheard of. He was also considered the father of solid organ transplantation. He was awarded the Nobel Prize in recognition of his work. Together with Charles Lindbergh, he developed the extracorporeal perfusion pump to keep organs alive outside the human body. His contribution to medicine also extended to tissue culture and wound management. He was one of the most controversial figures of his generation, believing in the idea of genetic superiority and eugenics and he was associated with fascism in the 1930s. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. C3 toxin and poly-DL-lactide-ε-caprolactone conduits in the critically damaged peripheral nervous system: a combined therapeutic approach.

    Science.gov (United States)

    Leibig, Nico; Boyle, Veronika; Kraus, Daniel; Stark, Gerhard Bjoern; Penna, Vincenzo

    2015-03-01

    Peripheral nerve regeneration over longer distances through conduits is limited. In the presented study, critical size nerve gap bridging with a poly-DL-lactide-ε-caprolactone (PLC) conduit was combined with application of C3 toxin to facilitate axonal sprouting. The PLC filled with fibrin (n = 10) and fibrin gel loaded with 1-μg C3-C2I and 2-μg C2II (n = 10) were compared to autologous nerve grafts (n = 10) in a 15-mm sciatic nerve gap lesion model of the rat. Functional and electrophysiological analyses were performed before histological evaluation. Evaluation of motor function and nerve conduction velocity at 16 weeks revealed no differences between the groups. All histological parameters and muscle weight were significantly elevated in nerve graft group. No differences were observed in both PLC groups. The PLCs are permissive for nerve regeneration over a 15-mm defect in rats. Intraluminal application of C3 toxin did not lead to significant enhancement of nerve sprouting.

  18. Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct.

    Science.gov (United States)

    Arkudas, Andreas; Beier, Justus Patrick; Pryymachuk, Galyna; Hoereth, Tobias; Bleiziffer, Oliver; Polykandriotis, Elias; Hess, Andreas; Gulle, Heinz; Horch, Raymund E; Kneser, Ulrich

    2010-12-01

    We invented an automatic observer-independent quantitative method to analyze vascularization using micro-computed tomography (CT) along with three-dimensional (3D) reconstruction in a tissue engineering model. An arteriovenous loop was created in the medial thigh of 30 rats and was placed in a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix, filled with fibrin (10 mg/mL fibrinogen and 2 IU/mL thrombin) without (group A) or with (group B) application of fibrin-gel-immobilized angiogenetic growth factors vascular endothelial growth factor (VEGF¹⁶⁵) and basic fibroblast growth factor (bFGF). The explantation intervals were 2, 4, and 8 weeks. Specimens were investigated by means of micro-CT followed by an automatic 3D analysis, which was correlated to histomorphometrical findings. In both groups, the arteriovenous loop led to generation of dense vascularized connective tissue with differentiated and functional vessels inside the matrix. Quantitative analysis of vascularization using micro-CT showed to be superior to histological analysis. The micro-CT analysis also allows the assessment of different other, more complex vascularization parameters within 3D constructs, demonstrating an early improvement of vascularization by application of fibrin-gel-immobilized VEGF¹⁶⁵ and bFGF. In this study quantitative analysis of vascularization using micro-CT along with 3D reconstruction and automatic analysis exhibit to be a powerful method superior to histological evaluation of cross sections.

  19. Brain vascular image segmentation based on fuzzy local information C-means clustering

    Science.gov (United States)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  20. GRECOS project. The use of genetics to predict the vascular recurrence after stroke

    Science.gov (United States)

    Fernández-Cadenas, Israel; Mendióroz, Maite; Giralt, Dolors; Nafria, Cristina; Garcia, Elena; Carrera, Caty; Gallego-Fabrega, Cristina; Domingues-Montanari, Sophie; Delgado, Pilar; Ribó, Marc; Castellanos, Mar; Martínez, Sergi; Freijo, Mari Mar; Jiménez-Conde, Jordi; Rubiera, Marta; Alvarez-Sabín, José; Molina, Carlos A.; Font, Maria Angels; Olivares, Marta Grau; Palomeras, Ernest; de la Ossa, Natalia Perez; Martinez-Zabaleta, Maite; Masjuan, Jaime; Moniche, Francisco; Canovas, David; Piñana, Carlos; Purroy, Francisco; Cocho, Dolores; Navas, Inma; Tejero, Carlos; Aymerich, Nuria; Cullell, Natalia; Muiño, Elena; Serena, Joaquín; Rubio, Francisco; Davalos, Antoni; Roquer, Jaume; Arenillas, Juan Francisco; Martí-Fábregas, Joan; Keene, Keith; Chen, Wei-Min; Worrall, Bradford; Sale, Michele; Arboix, Adrià; Krupinski, Jerzy; Montaner, Joan

    2017-01-01

    Background and Purpose Vascular recurrence occurs in 11% of patients during the first year after ischemic stroke (IS) or transient ischemic attack (TIA). Clinical scores do not predict the whole vascular recurrence risk, therefore we aimed to find genetic variants associated with recurrence that might improve the clinical predictive models in IS. Methods We analyzed 256 polymorphisms from 115 candidate genes in three patient cohorts comprising 4,482 IS or TIA patients. The discovery cohort was prospectively recruited and included 1,494 patients, 6.2% of them developed a new IS during the first year of follow-up. Replication analysis was performed in 2,988 patients using SNPlex or HumanOmni1-Quad technology. We generated a predictive model using Cox regression (GRECOS score), and generated risk groups using a classification tree method. Results The analyses revealed that rs1800801 in the MGP gene (HR: 1.33, p= 9×10−03), a gene related to artery calcification, was associated with new IS during the first year of follow-up. This polymorphism was replicated in a Spanish cohort (n=1.305), however it was not significantly associated in a North American cohort (n=1.683). The GRECOS score predicted new IS (p= 3.2×10−09) and could classify patients, from low risk of stroke recurrence (1.9%) to high risk (12.6%). Moreover, the addition of genetic risk factors to the GRECOS score improves the prediction compared to previous SPI-II score (p=0.03). Conclusions The use of genetics could be useful to estimate vascular recurrence risk after IS. Genetic variability in the MGP gene was associated with vascular recurrence in the Spanish population. PMID:28411264

  1. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    Science.gov (United States)

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  2. Small GTP-Binding Protein Rac Is an Essential Mediator of Vascular Endothelial Growth Factor-Induced Endothelial Fenestrations and Vascular Permeability

    DEFF Research Database (Denmark)

    Eriksson, A.; Cao, R.; Tritsaris, K.

    2003-01-01

    fenestrated endothelium, a feature linked with increased vascular permeability. A cell-permeable Rac antagonist (TAT-RacN17) converted VEGF-induced, leaky vascular plexuses into well-defined vascular networks. In addition, this Rac mutant blocked formation of VEGF-induced endothelial fenestrations...... in mediation of VEGF-induced vascular permeability but less so in neovascularization. This may have conceptual implications for applying Rac antagonists in treatment and prevention of VEGF-induced vascular leakage and edema in connection with ischemic disorders....

  3. Complicação vascular de osteocondroma: relato de caso Vascular complication of osteochondroma: case report

    Directory of Open Access Journals (Sweden)

    Fábio André Tornquist

    2007-03-01

    Full Text Available Osteocondromas ou exostoses são os tumores benignos mais comuns do tecido ósseo. Eles surgem durante o período de crescimento e, raramente, são responsáveis por complicações vasculares. No presente relato, reportamos um caso de paciente com osteocondroma no membro inferior e complicação vascular provocada pela compressão da artéria poplítea. O paciente apresentava queixas de dor em membro inferior direito quando foi investigado com angiografia e radiografia, que identificaram a lesão vascular e a tumoração óssea. Os tratamentos cirúrgicos simultâneos de ambas as lesões foram realizados com boa evolução pós-operatória.Osteochondromas or exostoses are the most common benign tumors of the bone. They occur during the growth period and are rarely responsible for vascular complications. We report a case of a patient with osteochondroma in the lower limb and vascular complication caused by compression of the popliteal artery. The patient complained of pain at the right lower limb during angiography and radiography screening, which identified the vascular lesion and the bone tumor. A simultaneous surgical treatment of both lesions was performed with good postoperative evolution.

  4. Effect of x irradiation on the vascularization of experimental animal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Y; Ogawa, F; Nishiguchi, H; Tanaka, N; Murakami, K [Kyoto Prefectural Univ. of Medicine (Japan)

    1975-03-01

    The authors studied the effect of ionizing radiation on blood vessels and tumor growth in two animal tumor systems: a third generation isoplants of a mammary cancer and a spontaneously arising squamous cell carcinoma. Single cell suspensions were transplanted into a C3H and a C3Hf mouse respectively. They were irradiated once with 2000 rad when the tumors reached about 8 mm in diameter. Microangiography was performed at a constant temperature and pressure, and a contrast medium containing lead-oxide and gelatin was flushed the vena cava for 10 min. at 120 mmHg. Tumor shrinkage was followed by continuous regrowth. The basic vasculature of the mammary carcinoma consisted of abundant large and fine blood vessels corkscrewed or stretched from the periphery of the tumor to its center in complex reticular networks. One day after irradiation there were small scattered avascular areas which, by the third day formed a large central necrosis. Supervascularization was also observed, indicating that some hypoxic tumor cells could be reoxygenized. In 5 days vascularization was similar to that of a nonirradiated tumor. Conversely, The squamous cell carcinoma showed peripheral and central vascularization with abundant vascular and avascular areas and extravasion in the large avascular area. Two days after irradiation the vessels were dilated. At 3 days peripheral fine vessels were damaged but the central vasculature remained intact. Unlike the mammary carcinoma, supervascularization was not the typical finding. At 5 days, vascularization was similar to that of a nonirradiated tumor.

  5. Vascular retraction driven by matrix softening

    Science.gov (United States)

    Valentine, Megan

    We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).

  6. Effects of ouabain on vascular reactivity

    Directory of Open Access Journals (Sweden)

    Vassallo D.V.

    1997-04-01

    Full Text Available Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension

  7. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    Science.gov (United States)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  8. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  9. The vascular secret of Klotho

    DEFF Research Database (Denmark)

    Lewin, Ewa; Olgaard, Klaus

    2015-01-01

    Klotho is an evolutionarily highly conserved protein related to longevity. Increasing evidence of a vascular protecting effect of the Klotho protein has emerged and might be important for future treatments of uremic vascular calcification. It is still disputed whether Klotho is locally expressed ...

  10. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease.

    Science.gov (United States)

    Kranenburg, Guido; Spiering, Wilko; de Jong, Pim A; Kappelle, L Jaap; de Borst, Gert Jan; Cramer, Maarten J; Visseren, Frank L J; Aboyans, Victor; Westerink, Jan

    2017-10-01

    Inter-arm systolic blood pressure difference (SBPD) is an easily obtained patient characteristic which relates to vascular disease. We aimed to identify determinants of large inter-arm SBPD and to investigate the relation between inter-arm SBPD and vascular events in patients with and without manifest vascular disease. In a cohort of 7344 patients with manifest vascular disease or vascular risk factors alone enrolled in the Second Manifestations of ARTerial disease (SMART) study, single bilateral non-simultaneous blood pressure measurements were performed. Logistic and Cox regression was used to identify determinants of large inter-arm SBPD (≥15mmHg) and to investigate the relation between inter-arm SBPD and vascular events (composite of non-fatal myocardial infarction, stroke, and vascular mortality) and all-cause mortality. In all patients the median inter-arm SBPD was 7mmHg (IQR 3-11) and 1182 (16%) patients had inter-arm SBPD ≥15mmHg. Higher age, higher systolic blood pressure, diabetes mellitus, peripheral artery disease, carotid artery stenosis, higher carotid intima-media thickness, and lower ankle-brachial indices were related to large inter-arm SBPD (≥15mmHg). Each 5mmHg increase in inter-arm SBPD was related to a 12% higher risk of vascular events in patients without manifest vascular disease (HR 1.12; 95% CI 1.00-1.27), whereas no relation was apparent in patients with manifest vascular disease (HR 0.98; 95% CI 0.93-1.04, interaction p-value 0.036). Inter-arm SBPD was not related to all-cause mortality (HR 1.05; 95% CI 0.93-1.19). Inter-arm SBPD relates to a higher risk of vascular events in patients without manifest vascular disease, whereas this relation is not apparent in patients with manifest vascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting.

    Science.gov (United States)

    Madhavan, Krishna; Frid, Maria G; Hunter, Kendall; Shandas, Robin; Stenmark, Kurt R; Park, Daewon

    2018-01-01

    The optimization of biomechanical and biochemical properties of a vascular graft to render properties relevant to physiological environments is a major challenge today. These critical properties of a vascular graft not only regulate its stability and integrity, but also control invasion of cells for scaffold remodeling permitting its integration with native tissue. In this work, we have synthesized a biomimetic scaffold by electrospinning a blend of a polyurea, poly(serinol hexamethylene urea) (PSHU), and, a polyester, poly-ε-caprolactone (PCL). Mechanical properties of the scaffold were varied by varying polymer blending ratio and electrospinning flow rate. Mechanical characterization revealed that scaffolds with lower PSHU content relative to PCL content resulted in elasticity close to native mammalian arteries. We also found that increasing electrospinning flow rates also increased the elasticity of the matrix. Optimization of elasticity generated scaffolds that enabled vascular smooth muscle cells (SMCs) to adhere, grow and maintain a SMC phenotype. The 30/70 scaffold also underwent slower degradation than scaffolds with higher PSHU content, thereby, providing the best option for in vivo remodeling. Further, Gly-Arg-Gly-Asp-Ser (RGD) covalently conjugated to the polyurea backbone in 30/70 scaffold resulted in significantly increased clotting times. Reducing surface thrombogenicity by the conjugation of RGD is critical to avoiding intimal hyperplasia. Hence, biomechanical and biochemical properties of a vascular graft can be balanced by optimizing synthesis parameters and constituent components. For these reasons, the optimized RGD-conjugated 30/70 scaffold electrospun at 2.5 or 5 mL/h has great potential as a suitable material for vascular grafting applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 278-290, 2018. © 2017 Wiley Periodicals, Inc.

  12. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene

    OpenAIRE

    Seandel, Marco; Butler, Jason M.; Kobayashi, Hideki; Hooper, Andrea T.; White, Ian A.; Zhang, Fan; Vertes, Eva L.; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V.; Hackett, Neil R.; Rabbany, Sina; Boyer, Julie L.; Rafii, Shahin

    2008-01-01

    Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates orga...

  13. Adiposity, adipocytokines & microvesicles in the etiology of vascular disease

    NARCIS (Netherlands)

    Kanhai, D.A.N.I.S.

    2013-01-01

    Vascular disease, in this thesis the terms vascular and cardiovascular are used interchangeably, is the number 1 cause of death worldwide. In 2008, 30% of all mortality had a vascular origin. Vascular mortality rates after a first manifestation of vascular disease are decreasing in Western society,

  14. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Science.gov (United States)

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  15. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  16. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  17. Relaxation of microparticles exposed to hydrodynamic forces in microfluidic conduits.

    Science.gov (United States)

    Janča, Josef; Halabalová, Věra; Polášek, Vladimír; Vašina, Martin; Menshikova, Anastasia Yu

    2011-02-01

    The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.

  18. Activation of Transient Receptor Potential Melastatin Subtype 8 Attenuates Cold-Induced Hypertension Through Ameliorating Vascular Mitochondrial Dysfunction.

    Science.gov (United States)

    Xiong, Shiqiang; Wang, Bin; Lin, Shaoyang; Zhang, Hexuan; Li, Yingsha; Wei, Xing; Cui, Yuanting; Wei, Xiao; Lu, Zongshi; Gao, Peng; Li, Li; Zhao, Zhigang; Liu, Daoyan; Zhu, Zhiming

    2017-08-02

    Environmental cold-induced hypertension is common, but how to treat cold-induced hypertension remains an obstacle. Transient receptor potential melastatin subtype 8 (TRPM8) is a mild cold-sensing nonselective cation channel that is activated by menthol. Little is known about the effect of TRPM8 activation by menthol on mitochondrial Ca 2+ homeostasis and the vascular function in cold-induced hypertension. Primary vascular smooth muscle cells from wild-type or Trpm8 -/- mice were cultured. In vitro, we confirmed that sarcoplasmic reticulum-resident TRPM8 participated in the regulation of cellular and mitochondrial Ca 2+ homeostasis in the vascular smooth muscle cells. TRPM8 activation by menthol antagonized angiotensin II induced mitochondrial respiratory dysfunction and excess reactive oxygen species generation by preserving pyruvate dehydrogenase activity, which hindered reactive oxygen species-triggered Ca 2+ influx and the activation of RhoA/Rho kinase pathway. In vivo, long-term noxious cold stimulation dramatically increased vasoconstriction and blood pressure. The activation of TRPM8 by dietary menthol inhibited vascular reactive oxygen species generation, vasoconstriction, and lowered blood pressure through attenuating excessive mitochondrial reactive oxygen species mediated the activation of RhoA/Rho kinase in a TRPM8-dependent manner. These effects of menthol were further validated in angiotensin II-induced hypertensive mice. Long-term dietary menthol treatment targeting and preserving mitochondrial function may represent a nonpharmaceutical measure for environmental noxious cold-induced hypertension. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Dynamic adaption of vascular morphology

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  20. Dynamics of nephron-vascular network

    DEFF Research Database (Denmark)

    Postnov, Dmitry; Postnov, D E; Marsh, D J

    2012-01-01

    The paper presents a modeling study of the spatial dynamics of a nephro-vascular network consisting of individual nephrons connected via a tree-like vascular branching structure. We focus on the effects of nonlinear mechanisms that are responsible for the formation of synchronous patterns in order...

  1. Diagnostic criteria for vascular dementia

    NARCIS (Netherlands)

    Scheltens, P.; Hijdra, A. H.

    1998-01-01

    The term vascular dementia implies the presence of a clinical syndrome (dementia) caused by, or at least assumed to be caused by, a specific disorder (cerebrovascular disease). In this review, the various sets of criteria used to define vascular dementia are outlined. The various sets of criteria

  2. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  3. Image Quality in Vascular Radiology

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.

    2005-01-01

    In vascular radiology, the radiologists use the radiological image to diagnose or treat a specific vascular structure. From literature, we know that related doses are high and that large dose variability exists between different hospitals. The application of the optimization principle is therefore necessary and is obliged by the new legislation. So far, very little fieldwork has been performed and no practical instructions are available to do the necessary work. It's indisputable that obtaining quantitative data is of great interest for optimization purposes. In order to gain insight into these doses and the possible measures for dose reduction, we performed a comparative study in 7 hospitals. Patient doses will be measured and calculated for specific procedures in vascular radiology and evaluated against their most influencing parameters. In view of optimization purposes, a protocol for dose audit will be set-up. From the results and conclusions in this study, experimentally based guidelines will be proposed, in order to improve clinical practice in vascular radiology

  4. Hypoglossal-Facial Nerve Reconstruction Using a Y-Tube-Conduit Reduces Aberrant Synkinetic Movements of the Orbicularis Oculi and Vibrissal Muscles in Rats

    Directory of Open Access Journals (Sweden)

    Yasemin Kaya

    2014-01-01

    Full Text Available The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex and vibrissal (whisking musculature. The abdominal aorta plus its bifurcation was harvested (N = 12 for Y-tube conduits. Animal groups comprised intact animals (Group 1, those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2, and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3. Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone.

  5. Hypoglossal-facial nerve reconstruction using a Y-tube-conduit reduces aberrant synkinetic movements of the orbicularis oculi and vibrissal muscles in rats.

    Science.gov (United States)

    Kaya, Yasemin; Ozsoy, Umut; Turhan, Murat; Angelov, Doychin N; Sarikcioglu, Levent

    2014-01-01

    The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis) which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex) and vibrissal (whisking) musculature. The abdominal aorta plus its bifurcation was harvested (N = 12) for Y-tube conduits. Animal groups comprised intact animals (Group 1), those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2), and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3). Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone.

  6. Current distribution in Cable-In-Conduit Conductors

    International Nuclear Information System (INIS)

    Ferri, M.A.

    1994-05-01

    A numerical study of the current distribution in Cable-In-Conduit Conductors (CICC's) experiencing linearly ramping transport currents and transverse magnetic fields was conducted for both infinitely long, periodic cables and finite length cables terminated in low resistance joints. The goal of the study was to gain insight into the phenomenon known as Ramp Rate Limitation, an as yet unexplained correspondence between maximum attainable current and the ramp time taken to reach that current in CICC superconducting magnets. A discrete geometric model of a 27 strand multiply twisted CICC was developed to effectively represent the flux linkages, mutual inductances, and resistive contact points between the strands of an experimentally tested cable. The results of the numerical study showed that for fully periodic cables, the current imbalances due to ramping magnetic fields and ramping transport currents are negligible in the range of experimentally explored operating conditions. For finite length, joint terminated cables, however, significant imbalances can exist. Unfortunately, quantitative results are limited by a lack of knowledge of the transverse resistance between strands in the joints. Nonetheless, general results are presented showing the dependency of the imbalance on cable length, ramp time, and joint resistance for both ramping transverse magnet fields and ramping transport currents. At the conclusion of the study, it is suggested that calculated current imbalances in a finite length cable could cause certain strands to prematurely ''quench'' -- become non-superconducting --thus leading to an instability for the entire cable. This numerically predicted ''current imbalance instability'' is compared to the experimentally observed Ramp Rate Limitation for the 27 strand CICC sample

  7. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.

    Science.gov (United States)

    Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud

    2017-11-01

    Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This

  8. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  9. Progenitor cells in pulmonary vascular remodeling

    Science.gov (United States)

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  10. Congenital vascular malformations in scintigraphic evaluation

    International Nuclear Information System (INIS)

    Pilecki, Stanisław; Gierach, Marcin; Gierach, Joanna; Świętaszczyk, Cyprian; Junik, Roman; Lasek, Władysław

    2014-01-01

    Congenital vascular malformations are tumour-like, non-neoplastic lesions caused by disorders of vascular tissue morphogenesis. They are characterised by a normal cell replacement cycle throughout all growth phases and do not undergo spontaneous involution. Here we present a scintigraphic image of familial congenital vascular malformations in two sisters. A 17-years-old young woman with a history of multiple hospitalisations for foci of vascular anomalies appearing progressively in the upper and lower right limbs, chest wall and spleen. A Parkes Weber syndrome was diagnosed based on the clinical picture. Due to the occurrence of new foci of malformations, a whole-body scintigraphic examination was performed. A 12-years-old girl reported a lump in the right lower limb present for approximately 2 years, which was clinically identified as a vascular lesion in the area of calcaneus and talus. Phleboscintigraphy visualized normal radiomarker outflow from the feet via the deep venous system, also observed in the superficial venous system once the tourniquets were released. In static and whole-body examinations vascular malformations were visualised in the area of the medial cuneiform, navicular and talus bones of the left foot, as well as in the projection of right calcaneus and above the right talocrural joint. People with undiagnosed disorders related to the presence of vascular malformations should undergo periodic follow-up to identify lesions that may be the cause of potentially serious complications and to assess the results of treatment. Presented scintigraphic methods may be used for both diagnosing and monitoring of disease progression

  11. Vascular associated gene variants in patients with preeclampsia

    DEFF Research Database (Denmark)

    Lykke, Jacob A; Bare, Lance A; Olsen, Jørn

    2012-01-01

    Preeclampsia has been linked to subsequent vascular disease with many shared predisposing factors. We investigated the association between severe preeclampsia, and its subtypes, and specific vascular-related polymorphisms.......Preeclampsia has been linked to subsequent vascular disease with many shared predisposing factors. We investigated the association between severe preeclampsia, and its subtypes, and specific vascular-related polymorphisms....

  12. Vascular-targeted therapies for Duchenne muscular dystrophy

    Science.gov (United States)

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and an X-linked recessive, progressive muscle wasting disease caused by the absence of a functional dystrophin protein. Dystrophin has a structural role as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. Dystrophin also serves a signaling role through mechanotransduction of forces and localization of neuronal nitric oxide synthase (nNOS), which produces nitric oxide (NO) to facilitate vasorelaxation. In DMD, the signaling defects produce inadequate tissue perfusion caused by functional ischemia due to a diminished ability to respond to shear stress induced endothelium-dependent dilation. Additionally, the structural defects seen in DMD render myocytes with an increased susceptibility to mechanical stress. The combination of both defects is necessary to generate myocyte damage, which induces successive rounds of myofiber degeneration and regeneration, loss of calcium homeostasis, chronic inflammatory response, fibrosis, and myonecrosis. In individuals with DMD, these processes inevitably cause loss of ambulation shortly after the first decade and an abbreviated life with death in the third or fourth decade due to cardio-respiratory anomalies. There is no known cure for DMD, and although the culpable gene has been identified for more than twenty years, research on treatments has produced few clinically relevant results. Several recent studies on novel DMD therapeutics are vascular targeted and focused on attenuating the inherent functional ischemia. One approach improves vasorelaxation capacity through pharmaceutical inhibition of either phosphodiesterase 5 (PDE5) or angiotensin-converting enzyme (ACE). Another approach increases the density of the underlying vascular network by inducing angiogenesis, and this has been accomplished through either direct delivery of vascular endothelial growth factor (VEGF) or by downregulating the VEGF decoy

  13. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  14. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Schindhelm, R.K.; Diamant, M.; Bakker, S.J.L.; Dijk, van R.A.; Scheffer, P.G.; Teerlink, T.; Kostense, P.J.; Heine, R.J.

    2005-01-01

    and -0.31 [-0.58 to -0.03] respectively). Conclusions In metabolically well-controlled patients with DM2, ALT levels are related to decreased insulin-sensitivity and an impaired conduit vessel vascular function. Eur J Clin Invest 2005; 35(6): 369 -374

  15. Williams syndrome predisposes to vascular stiffness modified by antihypertensive use and copy number changes in NCF1.

    Science.gov (United States)

    Kozel, Beth A; Danback, Joshua R; Waxler, Jessica L; Knutsen, Russell H; de Las Fuentes, Lisa; Reusz, Gyorgy S; Kis, Eva; Bhatt, Ami B; Pober, Barbara R

    2014-01-01

    Williams syndrome is caused by the deletion of 26 to 28 genes, including elastin, on human chromosome 7. Elastin insufficiency leads to the cardiovascular hallmarks of this condition, namely focal stenosis and hypertension. Extrapolation from the Eln(+/-) mouse suggests that affected people may also have stiff vasculature, a risk factor for stroke, myocardial infarction, and cardiac death. NCF1, one of the variably deleted Williams genes, is a component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex and is involved in the generation of oxidative stress, making it an interesting candidate modifier for vascular stiffness. Using a case-control design, vascular stiffness was evaluated by pulse wave velocity in 77 Williams cases and matched controls. Cases had stiffer conducting vessels than controls (PWilliams syndrome. Pulse wave velocity increased with age at comparable rates in cases and controls, and although the degree of vascular stiffness varied, it was seen in both hypertensive and normotensive Williams participants. Use of antihypertensive medication and extension of the Williams deletion to include NCF1 were associated with protection from vascular stiffness. These findings demonstrate that vascular stiffness is a primary vascular phenotype in Williams syndrome and that treatment with antihypertensives or agents inhibiting oxidative stress may be important in managing patients with this condition, potentially even those who are not overtly hypertensive.

  16. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    Science.gov (United States)

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  17. Postoperative radiographic evaluation of vascularized fibular grafts

    International Nuclear Information System (INIS)

    Manaster, B.J.; Coleman, D.A.; Bell, D.A.

    1989-01-01

    This paper reports on thirty-five patients with free vascularized fibular grafts examined postoperatively with plain radiography. Early graft incorporation is seen as a fuzziness of the cortex at the site of its insertion into the host bone. Causes of failure in grafting for bone defects include graft fracture, hardware failure, and infection. A high percentage of complications or at least delayed unions occurred when vascularized fibular grafts were used to fill defects in the lower extremity. Conversely, upper extremity defects bridged by vascularized grafts heal quickly and hypertrophy. Vascularized grafts placed in the femoral head and neck for a vascular necrosis incorporate early on their superior aspect. The osseous tunnel in which they are placed is normally wider than the graft and often becomes sclerotic; this appearance does not represent nonunion

  18. A first vascularized skin equivalent as an alternative to animal experimentation.

    Science.gov (United States)

    Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.

  19. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.

    Science.gov (United States)

    Wang, Kai; Zhu, Meifeng; Li, Ting; Zheng, Wenting; Li, Li; Xu, Mian; Zhao, Qiang; Kong, Deling; Wang, Lianyong

    2014-08-01

    The less-than-ideal cell infiltration resulting from inherently small pore size limits the application of electrospinning scaffold in tissue engineering and regeneration medicine. The present study aims to develop a porogenic method which can significantly increase pore size in electrospinning scaffold and enhance cell migration. With this method, composite scaffolds consisting of poly(epsilon-caprolactone) (PCL) fibers and poly(ethylene oxide) (PEO) microparticles were prepared by simultaneously electrospinning and electrospraying. Removal of the PEO microparticles from the composites generated large pores. In vitro culture of NIH3T3 cells and in vivo subcutaneous implantation both demonstrated that the porogenic scaffolds markedly facilitated cell infiltration. With the same technique, vascular grafts with alternative dense and loose layers were prepared by turning on or off electrospraying PEO. SEM showed that there was no a clear delamination between the loose and dense layers. The mechanical strength and burst pressure of these vascular grafts could meet the requirements of vascular implantation. In conclusion, electrospinning PCL fibers with electrospraying PEO microparticles may be an effective and controllable method to increase pore size in electrospinning scaffold and provides a useful tool for the fabrication of vascular grafts that meets the need of blood vessel replacement.

  20. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

    Science.gov (United States)

    Wang, Jianglin; Yang, Mingying; Zhu, Ye; Wang, Lin; Tomsia, Antoni P; Mao, Chuanbin

    2014-08-06

    A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sirtuins, Cell Senescence, and Vascular Aging.

    Science.gov (United States)

    Kida, Yujiro; Goligorsky, Michael S

    2016-05-01

    The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. [Vascular aging, arterial hypertension and physical activity].

    Science.gov (United States)

    Schmidt-Trucksäss, A; Weisser, B

    2011-11-01

    The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  4. Vascular lumen formation.

    Science.gov (United States)

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  5. 14CO2 labeling: a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crops

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Ahuja, Sumedha; Pandey, Renu; Singhal, R.K.

    2014-01-01

    Ability of roots to release organic compounds in its rhizosphere is known to improve plant available nutrients and reduces heavy metal toxicity by immobilization. It is regarded as an important determinant of micro nutrient deficiency tolerance in plants. Uptake of nutrients and translocation of photoassimilates, on the other hand are governed by the strength of the transpiration stream and sink demand respectively. Measurement of vascular sap flow, thus, is critical for understanding of the translocation efficiency and consequently the sink demand that keeps changing during the crop growth cycle. Measurement of the root exudation capacity and the vascular sap flow is cumbersome and time consuming. Since, the exudates released by the roots and the photosynthates translocated between the source and the sink are essentially carbon compounds, use of labeled carbon as tag could potentially be exploited for a rapid and reliable measurement of exudation and vascular sap flow in crop plants. We report here the experimental results involving 14 C labeling of groundnut, a legume crop, as 14 CO 2 generated by acidification of sodium bicarbonate. An additional factor of seed gamma irradiation was used to generate variability in the root exudation and the sap flow. The 14 C release by the roots was compared against the 14 C transport in the vascular sap. An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  6. Lipidomics in vascular health: current perspectives.

    Science.gov (United States)

    Kolovou, Genovefa; Kolovou, Vana; Mavrogeni, Sophie

    2015-01-01

    Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.

  7. [Vascular access guidelines for hemodialysis].

    Science.gov (United States)

    Rodríguez Hernández, J A; González Parra, E; Julián Gutiérrez, J M; Segarra Medrano, A; Almirante, B; Martínez, M T; Arrieta, J; Fernández Rivera, C; Galera, A; Gallego Beuter, J; Górriz, J L; Herrero, J A; López Menchero, R; Ochando, A; Pérez Bañasco, V; Polo, J R; Pueyo, J; Ruiz, Camps I; Segura Iglesias, R

    2005-01-01

    Quality of vascular access (VA) has a remarkable influence in hemodialysis patients outcomes. Dysfunction of VA represents a capital cause of morbi-mortality of these patients as well an increase in economical. Spanish Society of Neprhology, aware of the problem, has decided to carry out a revision of the issue with the aim of providing help in comprehensión and treatment related with VA problems, and achieving an homogenization of practices in three mayor aspects: to increase arteriovenous fistula utilization as first vascular access, to increment vascular access monitoring practice and rationalise central catheters use. We present a consensus document elaborated by a multidisciplinar group composed by nephrologists, vascular surgeons, interventional radiologysts, infectious diseases specialists and nephrological nurses. Along six chapters that cover patient education, creation of VA, care, monitoring, complications and central catheters, we present the state of the art and propose guidelines for the best practice, according different evidence based degrees, with the intention to provide help at the professionals in order to make aproppiate decissions. Several quality standars are also included.

  8. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  9. Early decision-analytic modeling - a case study on vascular closure devices.

    Science.gov (United States)

    Brandes, Alina; Sinner, Moritz F; Kääb, Stefan; Rogowski, Wolf H

    2015-10-27

    As economic considerations become more important in healthcare reimbursement, decisions about the further development of medical innovations need to take into account not only medical need and potential clinical effectiveness, but also cost-effectiveness. Already early in the innovation process economic evaluations can support decisions on development in specific indications or patient groups by anticipating future reimbursement and implementation decisions. One potential concept for early assessment is value-based pricing. The objective is to assess the feasibility of value-based pricing and product design for a hypothetical vascular closure device in the pre-clinical stage which aims at decreasing bleeding events. A deterministic decision-analytic model was developed to estimate the cost-effectiveness of established vascular closure devices from the perspective of the Statutory Health Insurance system. To identify early benchmarks for pricing and product design, three strategies of determining the product's value are explored: 1) savings from complications avoided by the new device; 2) valuation of the avoided complications based on an assumed willingness-to-pay-threshold (the efficiency frontier approach); 3) value associated with modifying the care pathways within which the device would be applied. Use of established vascular closure devices is dominated by manual compression. The hypothetical vascular closure device reduces overall complication rates at higher costs than manual compression. Maximum cost savings of only about €4 per catheterization could be realized by applying the hypothetical device. Extrapolation of an efficiency frontier is only possible for one subgroup where vascular closure devices are not a dominated strategy. Modifying care in terms of same-day discharge of patients treated with vascular closure devices could result in cost savings of €400-600 per catheterization. It was partially feasible to calculate value-based prices for the

  10. Differences in Pre and Post Vascular Patterning of Retinas from ISS Crew Members and HDT Subjects by VESGEN Analysis

    Science.gov (United States)

    Murray, M. C.; Vizzeri, G.; Taibbi, G.; Mason, S. S.; Young, M. H.; Zanello, S. B.; Parsons-Wingerter, P. A.

    2018-01-01

    Accelerated research by NASA [1] has investigated the significant risks for visual and ocular impairments Spaceflight Associated Neuro-Ocular Syndrome /Visual Impairment/Intracranial Pressure (SANS/VIIP) incurred by microgravity spaceflight, especially long-duration missions. Our study investigates the role of blood vessels in the incidence and etiology of SANS/VIIP within the retinas of Astronaut crewmembers pre-and post-flight to the International Space Station (ISS) by NASA's VESsel GENeration Analysis (VESGEN). The response of retinal vessels in crewmembers to microgravity was compared to that of retinal vessels to Head-Down Tilt (HDT) in subjects undergoing 70-Day Bed Rest. The study tests the proposed hypothesis that cephalad fluid shifts missions, resulting in ocular and visual impairments, are necessarily mediated in part by retinal blood vessels, and are therefore accompanied by significant remodeling of retinal vasculature.Vascular patterns in the retinas of crew members and HDTBR subjects extracted from 30° infrared (IR) Heidelberg Spectralis® images collected pre/postflight and pre/post HDTBR, respectively, were analyzed by VESGEN (patent pending). a mature, automated software developed as a research discovery tool for progressive vascular diseases in the retina and other tissues [2]. The weighted, multi-parametric VESGEN analysis generates maps of branching arterial and venous trees and quantification by parameters such as the fractal dimension (Df, a modern measure of vascular space-filling capacity), vessel diameters, and densities of vessel length and number classified into specific branching generations by vascular physiological branching rules [2,3]. The retrospective study approved by NASA’s Institutional Review Board included six HDT subjects (NASA Flight Analogs Research Unit [FARU] Campaign 11; for example, [4]) and eight ISS crewmembers monitored by routine occupational surveillance who provided their study consents to NASA’s Lifetime

  11. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection–diffusion equation

    Directory of Open Access Journals (Sweden)

    C. Cholet

    2017-07-01

    Full Text Available The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection–diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection–diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space – between the two reaches located in the unsaturated zone (R1, and in the zone that is both unsaturated and saturated (R2 – as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions and localized infiltration in the secondary conduit network (tributaries in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit–matrix exchanges, inducing a complex water mixing effect

  12. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    Science.gov (United States)

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  13. Effects of serum phosphorus on vascular calcification in a healthy, adult population: A systematic review.

    Science.gov (United States)

    Sheridan, Kristin; Logomarsino, John V

    2017-09-01

    Cardiovascular disease has been associated with elevated serum phosphorus levels, which have been associated with cardiovascular mortality. This is commonly seen in the chronic kidney disease (CKD) population where studies have shown that high phosphorus levels cause coronary artery calcification. Although studies have independently associated vascular stiffness and serum phosphorus in those with and without CKD, there are fewer data in individuals without CKD. Therefore, the aim of this systematic review was to analyze whether serum phosphorus levels are associated with cardiovascular calcification in healthy individuals. A systematic review of the literature that was conducted revealed 10 articles, all cross-sectional studies, that met eligibility criteria. These criteria were peer-reviewed studies on a healthy, adult population written in the English language. Studies lacking data on serum phosphorus and measured to assess its association with vascular calcification were excluded. Studies on subjects with CKD, other chronic diseases, or on children were also excluded. Of the 10 studies located, 8 indicated an association between serum phosphorus and vascular calcification. One study did not indicate an association. One study indicated a statistically significant association between serum phosphorus and vascular calcification prevalence, but not incidence. Studies were limited since no randomized controlled trials were available. This systematic review generates gaps in research. Due to considerable amounts of phosphorus additives in the food supply, there may be a connection to dietary phosphorus and vascular calcification. Additionally, phosphorus binders may assist in the prevention of vascular calcification but have not been studied in a healthy population. Further study on both dietary phosphorus restriction and phosphorus binders is needed. While 8 out of 10 cross-sectional studies found an association in this systematic review, the topic of vascular

  14. Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors.

    NARCIS (Netherlands)

    Green, D.J.; Eijsvogels, T.M.; Bouts, Y.M.; Maiorana, A.J.; Naylor, L.H.; Scholten, R.R.; Spaanderman, M.E.; Pugh, C.J.; Sprung, V.S.; Schreuder, T.H.; Jones, H.; Cable, T.; Hopman, M.T.E.; Thijssen, D.H.J.

    2014-01-01

    The objectives of our study were to examine 1) the proportion of responders and nonresponders to exercise training in terms of vascular function; 2) a priori factors related to exercise training-induced changes in conduit artery function, and 3) the contribution of traditional cardiovascular risk

  15. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function.

    NARCIS (Netherlands)

    Scholten, R.R.; Spaanderman, M.E.A.; Green, D.J.; Hopman, M.T.E.; Thijssen, D.H.J.

    2014-01-01

    Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this

  16. Adiposity, adipocytokines & microvesicles in the etiology of vascular disease

    OpenAIRE

    Kanhai, D.A.N.I.S.

    2013-01-01

    Vascular disease, in this thesis the terms vascular and cardiovascular are used interchangeably, is the number 1 cause of death worldwide. In 2008, 30% of all mortality had a vascular origin. Vascular mortality rates after a first manifestation of vascular disease are decreasing in Western society, which is attributable to better disease awareness, better preventive strategies and better healthcare systems. As mortality rates are decreasing, the number of patients surviving their first vascul...

  17. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    Science.gov (United States)

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Subclinical hypothyroidism after vascular complicated pregnancy

    NARCIS (Netherlands)

    Zanden, M. van der; Hop-de Groot, R.J.; Sweep, F.C.; Ross, H.A.; Heijer, M. den; Spaanderman, M.E.A.

    2013-01-01

    OBJECTIVE: Women with a history of vascular complicated pregnancy are at risk for developing remote cardiovascular disease. It is associated with underlying cardiovascular risk factors both jeopardizing trophoblast and vascular function. Subclinical hypothyroidism may relate to both conditions.

  19. Neural-differentiated mesenchymal stem cells incorporated into muscle stuffed vein scaffold forms a stable living nerve conduit.

    Science.gov (United States)

    Hassan, Nur Hidayah; Sulong, Ahmad Fadzli; Ng, Min-Hwei; Htwe, Ohnmar; Idrus, Ruszymah B H; Roohi, Sharifah; Naicker, Amaramalar S; Abdullah, Shalimar

    2012-10-01

    Autologous nerve grafts to bridge nerve gaps have donor site morbidity and possible neuroma formation resulting in development of various methods of bridging nerve gaps without using autologous nerve grafts. We have fabricated an acellular muscle stuffed vein seeded with differentiated mesenchymal stem cells (MSCs) as a substitute for nerve autografts. Human vein and muscle were both decellularized by liquid nitrogen immersion with subsequent hydrolysis in hydrochloric acid. Human MSCs were subjected to a series of treatments with a reducing agent, retinoic acid, and a combination of trophic factors. The differentiated MSCs were seeded on the surface of acellular muscle tissue and then stuffed into the vein. Our study showed that 35-75% of the cells expressed neural markers such as S100b, glial fibrillary acidic protein (GFAP), p75 NGF receptor, and Nestin after differentiation. Histological and ultra structural analyses of muscle stuffed veins showed attachment of cells onto the surface of the acellular muscle and penetration of the cells into the hydrolyzed fraction of muscle fibers. We implanted these muscle stuffed veins into athymic mice and at 8 weeks post-implantation, the acellular muscle tissue had fully degraded and replaced with new matrix produced by the seeded cells. The vein was still intact and no inflammatory reactions were observed proving the biocompatibility and biodegradability of the conduit. In conclusion, we have successfully formed a stable living nerve conduit which may serve as a substitute for autologous nerves. Copyright © 2012 Orthopaedic Research Society.

  20. Vascular lesions following radiation

    International Nuclear Information System (INIS)

    Fajardo, L.F.; Berthrong, M.

    1988-01-01

    The special radiation sensitivity of the vascular system is mainly linked to that of endothelial cells, which are perhaps the most radiation-vulnerable elements of mesenchymal tissues. Within the vascular tree, radiation injures most often capillaries, sinusoids, and small arteries, in that order. Lesions of veins are observed less often, but in certain tissues the veins are regularly damaged (e.g., intestine) or are the most affected structures (i.e., liver). Large arteries do suffer the least; however, when significant damage does occur in an elastic artery (e.g., thrombosis or rupture), it tends to be clinically significant and even fatal. Although not always demonstrable in human tissues, radiation vasculopathy generally is dose and time dependent. Like other radiation-induced lesions, the morphology in the vessels is not specific, but it is characteristic enough to be often recognizable. Vascular injury, especially by therapeutic radiation is not just a morphologic marker. It is a mediator of tissue damage; perhaps the most consistent pathogenetic mechanism in delayed radiation injury