WorldWideScience

Sample records for vascular aquatic plants

  1. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  2. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  3. Compiled data on the vascular aquatic plant program, 1975 - 1977. [for sewage lagoon

    Science.gov (United States)

    Wolverton, B. C.; Mcdonald, R.

    1977-01-01

    The performance of a single cell, facultative sewage lagoon was significantly improved with the introduction of vascular aquatic plants. Water hyacinth (Eichhornia crassipes) was the dominant plant from April to November; duckweed (Lemna spp.) and (Spirodela spp.) flourished from December to March. This 2 ha lagoon received approximately 475 cu m/day of untreated sewage and has a variable COD sub 5 loading rate of 22-30 kg/ha/day. During the first 14 months of operation with aquatic plants, the average influent BOD sub 5 was reduced by 95% from 110 mg/l to an average of 5 mg/l in the effluent. The average influent suspended solids were reduced by 90% from 97 mg/l to 10 mg/l in the effluent. Significant reductions in nitrogen and phosphorus were effected. The monthly kjeldahl nitrogen for influent and effluent averaged 12.0 and 3.4 mg/l, respectively, a reduction of 72%. The total phosphorus was reduced on an average of 56% from 3.7 mg/l influent to 1.6 mg/l effluent.

  4. Photosynthetic pathways of some aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Hough, R A [Wayne State Univ., Detroit; Wetzel, R G

    1977-12-01

    Over 40 species of aquatic angiosperms, including submersed, floating and emergent types, have been examined for photosynthetic status as part of a search for possible aquatic C/sub 4/ species. The C/sub 4/ system is viewed as potentially of adaptive value in certain aquatic situations, although evidence for its occurrence there is not conclusive. Emphasis was on plants from North-temperate softwater and hardwater lakes to explore both possibilities of CO/sub 2/ limitation, i.e., low total inorganic carbon in softwater vs. low free CO/sub 2/ in hardwater lakes. On the basis of leaf cross-section anatomy, all plants examined, with one exception, clearly did not show evidence of C/sub 4/ ''Krantz anatomy.'' In the submersed plant Potamogeton praelongus Wulf, large starch-producing chloroplasts were concentrated in cells surrounding vascular bundles and in a narrow band of cells between vascular bundles. The in situ photosynthetic rate of this plant was twice that of a related species, but other evidence including PEP carboxylase content and photorespiratory response to high O/sub 2/ did not confirm the presence of the C/sub 4/ photosynthesis.

  5. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  6. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  7. Distribution and functional traits of charophytes and vascular plants

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars

    rare species are specialists in particular environments, while the abundant species have traits such as broad salinity tolerance, tall shoots, vegetative reproduction and variable life form. Vascular plants, in contrast to charophytes, occupy the entire gradient from submerged to drained conditions......A large variety of plant species of very different evolutionary origin are found within and along the margins of aquatic ecosystems. These species have very different adaptations depending on the particular environmental condition under which they grow. This thesis examines the role...... of these adaptations or functional traits for the distribution on large scales and along specific environmental gradients. Characean algae (charophytes) are an ancient group of aquatic plants found in most aquatic ecosystems. I confirmed that they have declined markedly during the 20th century, most likely...

  8. Aquatic vascular plants as handicraft: a case study in southern Brazil

    Directory of Open Access Journals (Sweden)

    Mabel R. Báez-Lizarazo

    2017-11-01

    Full Text Available ABSTRACT This study aimed to evaluate knowledge about and the usage and importance of aquatic vascular plants (AVPs in the production of handicrafts by communities on the north coast of the state of Rio Grande do Sul in southern Brazil. The snowball technique was employed to locate people who use and have knowledge regarding the use of AVPs for handicrafts. Data were collected through semi-structured interviews and guided tours with 35 interviewees who were involved in artisanal activity at the time of the study. The data were analyzed using the importance value (IV index and the consensus value for the forms of use (CMU. The Spearman correlation test (rs was employed to determine the correlations of each social variable with the knowledge variables, and Mann-Whitney U tests to verify whether men and women exhibited differences in knowledge. The interviewees cited 16 AVPs that were employed in 17 types of handicrafts, among which the four main species were Schoenoplectus californicus, Typha domingensis, T. latifolia and Androtrichum giganteum. Interviewee age, residence time on site and time working with handicrafts were the main social parameters that described the level of knowledge and use of AVPs. These AVPs reflect cultural knowledge and complement family incomes.

  9. The vascular plant species of the Krugłe Bagno aquatic peatland complex (Łęczna – Włodawa Lakeland

    Directory of Open Access Journals (Sweden)

    Barbara Banach

    2014-09-01

    Full Text Available This paper presents the richness of vascular plant species of the Krugłe Bagno aquatic peatland complex and its structure. A field study was carried out in the growing seasons of 2008–2010. The aim of the study was to determine the species richness of the flora and its characteristics as well as to document changes in its composition taking place in successive years of the study. Based on the obtained results, it can be concluded that the stability of the qualitative and quantitative structure of the phytocoenoses and abiotic environmental factors bodes well for the maintenance of this aquatic peatland complex in good condition. However, due to the specificity of its species composition (a large proportion of stenobiontic species, it seems advisable to monitor regularly the biotic and abiotic conditions of this habitat.

  10. [Development characteristics of aquatic plants in a constructed wetland for treating urban drinking water source at its initial operation stage].

    Science.gov (United States)

    Zheng, Jun; Ma, Xin-Tang; Zhou, Lan; Zhou, Qing-Yuan; Wang, Zhong-Qiong; Wang, Wei-Dong; Yin, Cheng-Qing

    2011-08-01

    The development characteristics and improvement measures of aquatic plants were studied in Shijiuyang Constructed Wetland (SCW) at its initial operation stage. SCW was a large-scale wetland aiming to help relieve the source water pollution in Jiaxing City. A checklist of vascular plants in SCW was built, and species composition, life forms, biomass and association distributions were examined. Our objectives were to examine the diversity and community structure of aquatic plants in SCW at its initial operation stage, and to find out the possible hydrophyte improvement measures. The survey results showed that there were 49 vascular plant species belonging to 41 genera, 25 families in SCW, which greatly exceeded the artificially transplanted 13 species. The life forms of present aquatic plants in SCW were dominated by hygrophilous plants (20 species) and emerged plants (17 species), which accounted for 75.5% of the total number of aquatic plants. The aquatic plants transplanted artificially were dominated by emerged plants (accounted for 69.2%), while those naturally developed were predominated by hygrophilous plants (accounted for 47.2%). The horizontal distribution of aquatic plant community in SCW was mixed in the form of mosaics, which made up typical association complex. Except association Aeschynomene indica L., the dominant species of other associations were all those transplanted artificially. The naturally grown species scattered throughout the SCW and only occupied a small percentage. A marked difference was detected on the species and species richness of aquatic plants in different regions of SCW. Biomass of aquatic plant associations in SCW was 167.7 t. SCW has shown a trend of succession heading for quick increase of plant diversity at the primary operation stage. This trend provides a good material base for the future stable community of aquatic plants in SCW. According to the current status of aquatic plants, some suggestions were put forward on the

  11. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  12. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    NARCIS (Netherlands)

    Santamaria, L.

    2002-01-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick

  13. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  14. Journal of Aquatic Plant Management. Volume 36

    National Research Council Canada - National Science Library

    1998-01-01

    The U.S. Army Corps of Engineers (CE) Aquatic Plant Control Research Program (APCRP) is the Nation's only federally authorized research program directed to develop technology for the management of non-indigenous aquatic plant species...

  15. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    Science.gov (United States)

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  16. Plants in aquatic ecosystems: current trends and future directions

    NARCIS (Netherlands)

    O’Hare, Matthew T.; Aguiar, Francisca C.; Asaeda, Takashi; Bakker, Elisabeth S.; Chambers, Patricia A.; Clayton, John S.; Elger, Arnaud; Ferreira, Teresa M.; Gross, Elisabeth M.; Gunn, Iain D.M.; Gurnell, Angela M.; Hellsten, Seppo; Hofstra, Deborah E.; Li, Wei; Mohr, Silvia; Puijalon, Sara; Szoszkiewicz, Krzysztof; Willby, Nigel J.; Wood, Kevin A.

    2018-01-01

    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International

  17. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    .... This search for natural plant enemies (insects and fungal pathogens) has led researchers to the native ranges of noxious aquatic plants, located throughout the continents of Africa, Asia, Europe, and Australia...

  18. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  19. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  20. Beaver herbivory on aquatic plants.

    Science.gov (United States)

    Parker, John D; Caudill, Christopher C; Hay, Mark E

    2007-04-01

    Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard's tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard's tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard's tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard's tail leaves within 2 weeks. In contrast, leaf abundance increased by 73-93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard's tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and

  1. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  2. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Constraining Biomarkers of Dissolved Organic Matter Sourcing Using Microbial Incubations of Vascular Plant Leachates of the California landscape

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.

    2017-12-01

    Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.

  4. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  5. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  6. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    Science.gov (United States)

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  7. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  8. Effect of aquatic plants on 95Zr concentration in slightly polluted water

    International Nuclear Information System (INIS)

    Shi Jianjun; Yang Ziyin; Chen Hui

    2004-01-01

    Effect of three aquatic plants (Ceratophyllum demersum, Azolla caroliniana and Eichhornia crassipes) on 95 Zr concentration in slightly polluted water was studied by using isotope tracer techniques. The results showed that the aquatic plants had strong ability of 95 Zr concentration in water. The concentration factor (CF) were from 56.78 to 112.94, so three aquatic plants were suggested be bio-indicators for 95 Zr polluted water. The specific activity of 95 Zr in water decreased with time when the aquatic plants were put in slightly 95 Zr polluted water. The descent of specific activity of 95 Zr in water was very quick during the beginning period (0-3d). The time for the specific activity reduced to 50% was only 3 days, indicating that theres aquatic plants could be used to purge slightly 95 Zr polluted water. The effect of Eichhornia crassipes on purging 95 Zr in water was the best among the three aquatic plants. The specific activity of 95 Zr in bottom clay only decreased 5% after putting aquatic plants in water, indicating that desorption of 95 Zr from bottom clay was not easy. As the bottom clay had strong ability of adsorption and fixation to 95 Zr, the effect of aquatic plant on purging 95 Zr adsorbed by bottom clay was not visible

  9. A field guide to valuable underwater aquatic plants of the Great Lakes

    Science.gov (United States)

    Schloesser, Donald W.

    1986-01-01

    Underwater plants are a valuable part of the Great Lakes ecosystem, providing food and shelter for aquatic animals. Aquatic plants also help stabilize sediments, thereby reducing shoreline erosion. Annual fall die-offs of underwater plants provide food and shelter for overwintering small aquatic animals such as insects, snails, and freshwater shrimp.

  10. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  11. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of

  12. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  13. Research on accumulating the harmful elements in geothermal water with aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Bingbing; Guo, Licong; Peng, Yongqing [Institute of Energy Sources (China); The Institute of Biology (China))

    1988-11-10

    As a result of component analyses for geothermal water, environmental pollution potentialities with use of geothermal water were generally recognized with high mineral material and high content of F{sup -}in North China. Although injection methods are effective to eliminate the environment pollution of geothermal fluid, the technique and cost of injection are not practical at present yet for the technical level and financial capacity of China and other developing countries. Through the comparison of physical, chemical and biological methods, the biological method possesses low cost and great disposed quantity. After making the test for accumulating harmful elements in geothermal water with aquatic plants to find suitable one, nine kinds of aquatic plants, which can accumulate elements of Cl{sup -}, Na{sup +} and F{sup -}, were selected for further tests. As a test result, the aquatic plants which could comprehensively accumulate Na{sup +}, Cl{sup -} and F{sup -} were Ceratophyllum demersum, Mymphoides pettatum and Spirodela polyrrhiza, the aquatic plant which could comprehensively accumulate Na{sup +} and Cl{sup -} was Alternanthera philoxenoids, and the aquatic plant which could accumulate F{sup -} was Lemna minor. These aquatic plants were considered as the optimized plants for purifying geothermal water. 4 refs., 5 tabs.

  14. North Carolina Seagrass Submersed Rooted Vasculars 1990 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A GIS data set of polygon data interpreted from aerial photography taken by NOAA/NOS Photogrammetry Branch depicting areas of Aquatic Beds of Rooted Vascular Plants...

  15. North Carolina Seagrass Submersed Rooted Vasculars 1990 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A GIS data set of polygon data interpreted from aerial photography taken by NOAA/NOS Photogrammetry Branch depicting areas of Aquatic Beds of Rooted Vascular Plants...

  16. North Carolina Seagrass Submersed Rooted Vasculars 1990 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A GIS data set of polygon data interpreted from aerial photography taken by NOAA/NOS Photogrammetry Branch depicting areas of Aquatic Beds of Rooted Vascular Plants...

  17. Modeling of radiocesium transport kinetics in system water-aquatic plants

    International Nuclear Information System (INIS)

    Svadlenkova, M.

    1988-01-01

    Compartment models were used to describe the kinetics of the transport of radionuclides in the system water-biomass of aquatic plants. Briefly described are linear models and models with time variable parameters. The model was tested using data from a locality in the environs of the Bohunice nuclear power plant. Cladophora glomerata algae were the monitored plants, 137 Cs the monitored radionuclide. The models may be used when aquatic plants serve as bioindicators of the radioactive contamination of surface waters, for monitoring the transport of radionuclides in food chains. (M.D.). 10 refs

  18. Hydrologic alteration affects aquatic plant assemblages in an arid-land river

    Science.gov (United States)

    Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.

    2014-01-01

    We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.

  19. Propagation and Establishment of Native Plants for Vegetative Restoration of Aquatic Ecosystems

    Science.gov (United States)

    2013-06-01

    ERDC/EL TR-13-9 ii Abstract Aquatic plants are a vital, but often missing, component of shallow, freshwater systems. Manmade systems, such as... water quality problems; development of noxious algal blooms; and, often, susceptibility to invasion by harmful, non-native, aquatic weeds. If...emergent aquatic plants that we have successfully used in founder colony establishment in US water bodies. ............................................. 7

  20. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    Science.gov (United States)

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    seven transcription factor families related to vascular development, which was observed among four representative species of seed and non-seed vascular plants, and nonvascular land and aquatic plants. The deep RNA-seq study of S. moellendorffii discovered extensive new gene contents, including novel coding genes, lncRNAs, AS events, and refined gene models. Compared to flowering vascular plants, S. moellendorffii displayed a less complexity in both gene structure, alternative splicing, and regulatory elements of vascular development. The study offered important insight into the evolution of vascular plants, and the regulation mechanism of vascular development in a non-seed plant.

  1. Aquatic plants as potential sources of antimicrobial compounds ...

    African Journals Online (AJOL)

    Resistance of pathogens to common veterinary antibiotics hampers mastitis treatment and motivates the discovery of new antimicrobials. In this study, extracts from two aquatic plants, Salvinia auriculata and Hydrocleys nymphoides, were assayed against bovine mastitis pathogens. Selected parts of plants were extracted ...

  2. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  3. How do bryophytes govern generative recruitment of vascular plants?

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Graae, B.J.; Douma, J.C.; Grau, O.; Milbau, A.; Shevtsova, A.; Wolters, L.; Cornelissen, J.H.C.

    2011-01-01

    Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific

  4. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  5. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  6. Early vascular plants in the Czech Republic

    OpenAIRE

    Uhlířová, Monika

    2017-01-01

    Vascular plants are characterized as a group of plants, which are already fully adapted to live on the land. Their evolution is a result of a set of adaptations that have required the necessary changes at anatomical and morphological level. Some evidences about the rise of vascular plants appear in the fossil record from the Middle Ordovician in the form of spores and later also from the Early Silurian in the form of megafossils. The aim of the thesis is to briefly describe and discuss the mo...

  7. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Science.gov (United States)

    2010-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... CR CR TEP 1, 4, 5, 7 850.4150 Vegetative vigor CR CR CR TEP 1, 3, 4, 5, 7 850.4400850.5400 Aquatic... methods used to generate data must include the results of a successful confirmatory method trial by an...

  8. Origin and radiation of the earliest vascular land plants.

    Science.gov (United States)

    Steemans, Philippe; Hérissé, Alain Le; Melvin, John; Miller, Merrell A; Paris, Florentin; Verniers, Jacques; Wellman, Charles H

    2009-04-17

    Colonization of the land by plants most likely occurred in a stepwise fashion starting in the Mid-Ordovician. The earliest flora of bryophyte-like plants appears to have been cosmopolitan and dominated the planet, relatively unchanged, for some 30 million years. It is represented by fossilized dispersed cryptospores and fragmentary plant remains. In the Early Silurian, cryptospore abundance and diversity diminished abruptly as trilete spores appeared, became abundant, and underwent rapid diversification. This change coincides approximately with the appearance of vascular plant megafossils and probably represents the origin and adaptive radiation of vascular plants. We have obtained a diverse trilete spore occurrence from the Late Ordovician that suggests that vascular plants originated and diversified earlier than previously hypothesized, in Gondwana, before migrating elsewhere and secondarily diversifying.

  9. Internal and External Dispersal of Plants by Animals: An Aquatic Perspective on Alien Interference

    Directory of Open Access Journals (Sweden)

    Casper H. A. van Leeuwen

    2018-02-01

    Full Text Available Many alien plants use animal vectors for dispersal of their diaspores (zoochory. If alien plants interact with native disperser animals, this can interfere with animal-mediated dispersal of native diaspores. Interference by alien species is known for frugivorous animals dispersing fruits of terrestrial plants by ingestion, transport and egestion (endozoochory. However, less attention has been paid to possible interference of alien plants with dispersal of diaspores via external attachment (ectozoochory, epizoochory or exozoochory, interference in aquatic ecosystems, or positive effects of alien plants on dispersal of native plants. This literature study addresses the following hypotheses: (1 alien plants may interfere with both internal and external animal-mediated dispersal of native diaspores; (2 interference also occurs in aquatic ecosystems; (3 interference of alien plants can have both negative and positive effects on native plants. The studied literature revealed that alien species can comprise large proportions of both internally and externally transported diaspores. Because animals have limited space for ingested and adhering diaspores, alien species affect both internal and external transport of native diaspores. Alien plant species also form large proportions of all dispersed diaspores in aquatic systems and interfere with dispersal of native aquatic plants. Alien interference can be either negative (e.g., through competition with native plants or positive (e.g., increased abundance of native dispersers, changed disperser behavior or attracting additional disperser species. I propose many future research directions, because understanding whether alien plant species disrupt or facilitate animal-mediated dispersal of native plants is crucial for targeted conservation of invaded (aquatic plant communities.

  10. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    OpenAIRE

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate aquatic vegetation, but may not be able to consume exotic plants due to their more or less specialised nature of feeding. We experimentally tested the larval feeding of an aquatic insect, the moth Parap...

  11. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  12. Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants.

    Science.gov (United States)

    Mihaich, Ellen M; Friederich, Urs; Caspers, Norbert; Hall, A Tilghman; Klecka, Gary M; Dimond, Stephen S; Staples, Charles A; Ortego, Lisa S; Hentges, Steven G

    2009-07-01

    Bisphenol A (BPA, 4,4'-isopropylidine diphenol) is a commercially important chemical used primarily as an intermediate in the production of polycarbonate plastic and epoxy resins. Extensive effect data are currently available, including long-term studies with BPA on fish, amphibians, crustaceans, and mollusks. The aim of this study was to perform additional tests with a number of aquatic invertebrates and an aquatic plant. These studies include acute tests with the midge (Chironomus tentans) and the snail (Marisa cornuarietis), and chronic studies with rotifers (Brachionus calyciflorus), amphipods (Hyalella azteca), and plants (Lemna gibba). The effect data on different aquatic invertebrate and plant species presented in this paper correspond well with the effect and no-effect concentrations (NOECs) available from invertebrate studies in the published literature and are within the range found for other aquatic species tested with BPA.

  13. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Quantitative assessment of aquatic impacts of power plants

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Arnold, E.M.; Skalski, J.R.; Fickeisen, D.H.; Baker, K.S.

    1979-08-01

    Progress is reported in a continuing study of the design and analysis of aquatic environmental monitoring programs for assessing the impacts of nuclear power plants. Analysis of data from Calvert Cliffs, Pilgrim, and San Onofre nuclear power plants confirmed the generic applicability of the control-treatment pairing design suggested by McKenzie et al. (1977). Substantial progress was made on the simulation model evaluation task. A process notebook was compiled in which each model equation was translated into a standardized notation. Individual model testing and evaluating was started. The Aquatic Generalized Environmental Impact Simulator (AGEIS) was developed and will be tested using data from Lake Keowee, South Carolina. Further work is required to test the various models and perfect AGEIS for impact analyses at actual power plant sites. Efforts on the hydrologic modeling task resulted in a compendium of models commonly applied to nuclear power plants and the application of two well-received hydrodynamic models to data from the Surry Nuclear Power Plant in Virginia. Conclusions from the study of these models indicate that slight inaccuracies of boundary data have little influence on mass conservation and accurate bathymetry data are necessary for conservation of mass through the model calculations. The hydrologic modeling task provides valuable reference information for model users and monitoring program designers.

  15. Quantitative assessment of aquatic impacts of power plants

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Arnold, E.M.; Skalski, J.R.; Fickeisen, D.H.; Baker, K.S.

    1979-08-01

    Progress is reported in a continuing study of the design and analysis of aquatic environmental monitoring programs for assessing the impacts of nuclear power plants. Analysis of data from Calvert Cliffs, Pilgrim, and San Onofre nuclear power plants confirmed the generic applicability of the control-treatment pairing design suggested by McKenzie et al. (1977). Substantial progress was made on the simulation model evaluation task. A process notebook was compiled in which each model equation was translated into a standardized notation. Individual model testing and evaluating was started. The Aquatic Generalized Environmental Impact Simulator (AGEIS) was developed and will be tested using data from Lake Keowee, South Carolina. Further work is required to test the various models and perfect AGEIS for impact analyses at actual power plant sites. Efforts on the hydrologic modeling task resulted in a compendium of models commonly applied to nuclear power plants and the application of two well-received hydrodynamic models to data from the Surry Nuclear Power Plant in Virginia. Conclusions from the study of these models indicate that slight inaccuracies of boundary data have little influence on mass conservation and accurate bathymetry data are necessary for conservation of mass through the model calculations. The hydrologic modeling task provides valuable reference information for model users and monitoring program designers

  16. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Science.gov (United States)

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  17. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  18. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  19. Treatment with aquatic plants by a Bagdi tribal healer of Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohsina Mukti

    2013-01-01

    Full Text Available Context: Tribal healers mainly use land plants in their medicinal formulations; use of aquatic plants has been scarcely reported. Aims: The aim of the present study was to conduct an ethnomedicinal survey working with a Bagdi tribal healer of Rajbari District, Bangladesh. Settings and Design: The survey was carried out working with a Bagdi healer, who lived alone in the wetlands of Rajbari District and used primarily aquatic plants for treatment. Materials and Methods: Interview of the healer was carried out with the help of a semi-structured questionnaire and the guided field-walk method. Results: The Bagdi healer was observed to use seven different aquatic plant species coming from five plant families for treatment of ailments such as hemorrhoids, tonsillitis, heart disorders, burning sensations and pain in hands or legs, blurred vision, debility, sexual weakness in males, chronic dysentery, infertility in women, constipation, chronic leucorrhea, blackness and foul odor of menstrual blood, hair loss, graying of hair and to keep the head cool. One plant was used to treat what the healer mentioned as "evil eye", this refers to their belief in black-magic. Conclusions: This is the first reported instance of a Bagdi healer who primarily uses aquatic plants for treatment. Ethnomedicinal uses of a number of the plants used by the Bagdi healer have been reported for other places in India and Pakistan. Taken together, the various uses of the different plant species opens up scientific possibilities of new drug discoveries from the plants.

  20. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  1. Determining and Mapping the Probability of Aquatic Plant Colonization

    National Research Council Canada - National Science Library

    Balard, Jerrell

    1999-01-01

    ... at the Waterways Experiment Station. It is principally intended to be a forum whereby information pertaining to and resulting from the Corps of Engineers' nationwide Aquatic Plant Control Research Program (APCRP...

  2. Aquatic Plant Control Research Program. Volume A-00-1

    National Research Council Canada - National Science Library

    Kirk, James

    2000-01-01

    ... at the Waterways Experiment Station. It is principally intended to be a forum whereby information pertaining to and resulting from the Corps of Engineers' nationwide Aquatic Plant Control Research Program (APCRP...

  3. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    Science.gov (United States)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and

  4. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, E.M.; Bakker, E.S.

    2016-01-01

    Eutrophication and globalisation facilitate the dominance of exotic plants in aquatic ecosystems worldwide. Aquatic omnivores can provide biotic resistance to plant invasions, but little is known about whether obligate aquatic herbivores can do the same. Herbivores such as insects can decimate

  5. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  6. Effect of different water temperatures on growth of aquatic plants Salvinia natans and Ceratophyllum demersum

    Directory of Open Access Journals (Sweden)

    Khadija Kadhem Hreeb

    2016-12-01

    Full Text Available Objective: To evaluate the effect of some different water temperatures on growth of aquatic plants (Salvinia natans and Ceratophyllum demersum. Methods: The aquatic plants were brought from Shatt Al-Arab River in 2016. Equal weights of aquatic plants were aquacultured in aquaria, and were exposed to three different temperatures ( 12, 22 and 32 °C. Results: The results showed that the two plants did not show significant differences with respect to their effects on pH and electrical conductivity values. Time and temperature did not affect the values of pH and electrical conductivity. The values of dissolved oxygen was significantly influenced with variation of time and temperature, while the two plants did not have significant differences on dissolved oxygen values, nitrate ion concentration and was not significantly influenced with variation of plant species or temperature or time. Plant species and temperature significantly affected phosphate ion concentration, while the time did not significantly influence the concentration of phosphate ion. Chlorophyll a content and biomass were significantly influenced with the variation of plant species, and temperature . Conclusions: Aquatic plants has a species specific respond to temperatures change in their environment. Water plant, Ceratophyllum demersum is more tolerant to temperatures change than Salvinia natans.

  7. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species...... production (average 1.2-5.1%) than aquatic populations (2.9-17.3%), while the same plant dry mass was consumed per unit ground area. 3. Grazing loss increased linearly with leaf age apart from the youngest leaf stages. Grazing loss during the lifetime of leaves was therefore 2.4-3.1 times higher than mean...... apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down. 4. We conclude...

  8. Hydrothermal processing of biomass from invasive aquatic plants

    Science.gov (United States)

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt

    2008-01-01

    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  9. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions

    Czech Academy of Sciences Publication Activity Database

    Plachno, B.J.; Adamec, Lubomír; Kozieradzka-Kiszkurno, M.; Świątek, P.; Kamińska, I.

    2014-01-01

    Roč. 251, č. 6 (2014), s. 1449-1454 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : aquatic carnivorous plants * winter buds * storage functions Subject RIV: EF - Botanics Impact factor: 2.651, year: 2014

  10. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    Science.gov (United States)

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  11. Development of a Methodology for the Derivation of Aquatic Plant Water Quality Criteria

    Science.gov (United States)

    Aquatic plants form the base of most aquatic food chains, comprise biodiversity-building habitats and are functionally important in carbon assimilation and oxygen evolution. The USEPA, as stated in the Clean Water Act, establishes criterion values for various pollutants found in ...

  12. Culture Methodology for Experimental Investigations Involving Rooted Submersed Aquatic Plants.

    Science.gov (United States)

    1984-11-01

    stolons or runners are best planted as intact plants (Sculthorpe 1967). Many species can be propagated from seed in addition to the above methods...J. 1984. Growth response of Myriophyllwm spicatu and Hydrilla verticillata when exposed to continuous, low concentrations of fluridone . Tech. Rept. A...aquatic plants, water, and bottom sediments. Weed Sci. 20:482-486. Sastroutomo, S. S. 1980. Dormancy and germination in axillary turions of iijiilZla

  13. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review

    International Nuclear Information System (INIS)

    Zhang, Dongqing; Gersberg, Richard M.; Ng, Wun Jern; Tan, Soon Keat

    2014-01-01

    Pharmaceuticals and personal care products (PPCPs) in the aquatic environment are regarded as emerging contaminants and have attracted increasing concern. The use of aquatic plant-based systems such as constructed wetlands (CWs) for treatment of conventional pollutants has been well documented. However, available research studies on aquatic plant-based systems for PPCP removal are still limited. The removal of PPCPs in CWs often involves a diverse and complex set of physical, chemical and biological processes, which can be affected by the design and operational parameters selected for treatment. This review summarizes the PPCP removal performance in different aquatic plant-based systems. We also review the recent progress made towards a better understanding of the various mechanisms and pathways of PPCP attenuation during such phytoremediation. Additionally, the effect of key CW design characteristics and their interaction with the physico-chemical parameters that may influence the removal of PPCPs in functioning aquatic plant-based systems is discussed. -- Highlights: • Investigation of the removal performance of PPCPs in CW systems. • Investigation of the mechanisms and pathways contributing to PPCP removal in CWs. • Investigation of the effect of CW design parameters on PPCP removal. • Investigation of the correlation between physico-chemical parameters and PPCP removal. -- This review gives an overview of the present state of research on the removal of pharmaceutical and personal care products by means of constructed wetlands

  14. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  15. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.

    Science.gov (United States)

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M

    2017-04-01

    Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ 13 C) were measured among treatments ranging from 0 to 15000nmol/L-sucralose and 0-323nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ 13 C of L. minor at environmentally relevant concentrations. The increase of δ 13 C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor-a mixotrophic plant-can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly decreased L. minor root growth, daily growth rate, and asexual reproduction at 323nmol/L-fluoxetine; however, ambiguity remains regarding the mechanisms responsible and the applicability of these extreme concentrations unprecedented in the natural environment. To our knowledge, this was the

  16. Aquatic Plant Management Program current status and seasonal workplan

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.R.; Bates, A.L.; Webb, D.H.

    1993-07-01

    The objective of the TVA Aquatic Plant Management Program is to support in an environmentally and economically responsible manner, the balanced multiple uses of the water resource of the Tennessee Valley. This is accomplished by following an integrated approach to prevent introduction and spread of noxious species, documenting occurrence and spread of existing species, and suppressing or eliminating problems in designated high use areas. It is not the TVA objective, nor is it biologically feasible and prudent to eliminate all aquatic vegetation. Aerial photography, helicopter reconnaissance, and field surveys are used to assess distributions and abundance of various aquatic macrophytes. Water level fluctuations are supplemented by herbicide applications to control undesirable vegetation. Investigations are conducted to evaluate water level fluctuation schemes, as well as biological, mechanical, and alternative chemical control techniques which offer potential for more environmentally compatible and cost-effective management operations.

  17. Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata

    Directory of Open Access Journals (Sweden)

    MAHENDRA RAI

    2012-07-01

    Full Text Available Sable N, Gaikwad S, Bonde S, Gade A, Rai M. 2012. Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata. Nusantara Bioscience 4: 45-49. In the context of current drive to developed new green technology in nanomaterials, synthesis of nanoparticles is of considerable importance. There has been considerable work done in the field of nanoscience and nanotechnology during the last decade due to the introduction of various protocols for the synthesis of nanoparticles by using plants and microorganisms. Here we firstly report the extracellular phytosynthesis of silver nanoparticles (Ag-NPs using aquatic plants Hydrilla verticilata. The characterization of the phytosynthesized Ag-NPs was done with the help of UV-Vis spectroscopy, FTIR, Nanoparticle Tracking Analysis (NTA, Zeta potential and SEM. The SEM micrograph revealed the synthesis of polydispersed spherical nanoparticles, with the average size of 65.55 nm. The phytofabricated Ag-NPs can be used in the field of medicine and agriculture, due to their antimicrobial potential.

  18. Remote sensing of aquatic plants. [New York, Florida, Texas, Louisiana, Mississippi, South Carolina

    Science.gov (United States)

    Long, K. S.; Link, L. E., Jr.

    1977-01-01

    Various sensors were tested in terms of their ability to detect and discriminate among noxious aquatic macrophytes. A survey of researchers currently studying the problem and a brief summary of their work is included. Results indicated that the sensor types best suited to assessment of the aquatic environment are color, color infrared, and black-and-white infrared film, which furnish consistently high contrasts between aquatic plants and their surroundings.

  19. Physicochemical hydrodynamics of porous structures in vascular plants

    Science.gov (United States)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon

    2013-11-01

    Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  20. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    Science.gov (United States)

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  1. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  2. Modelling the development and arrangement of the primary vascular structure in plants.

    Science.gov (United States)

    Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano

    2014-09-01

    The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.

  3. Effects of long-term radiation exposure on the higher aquatic plants in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsova, N.; Gudkov, D. [Institute of Hydrobiology (Russian Federation)

    2014-07-01

    From the earliest years after the Chernobyl accident in 1986 the radioecological study on freshwater plant communities in the water-bodies within the Chernobyl exclusion zone (ChEZ) has been held. At first stages it was the research on plant species collection and radionuclide contamination of aquatic ecosystems. Now, it is the seasonal monitoring with several groups of data deals with different areas of plant communities investigation: (1) the data characterized the level of radionuclides contamination of the abiotic and biotic components of phyto-coenosis and connected absorbed dose rates for various species of aquatic plants; (2) indexes of plant reproduction, including productivity, sterility, seed germination indexes and different abnormalities of ontogenesis; (3) indexes of morphological deviations (radiomorphoses) of aquatic plant's reproduction organs such as panicle and seeds; (4) cytogenetic indexes including the rate and spectrum of chromosome aberrations in cells of apical root meristem of air-aquatic plants; (5) the group of indexes, connected with plant's immunity. The calculated absorbed dose rate for littoral emergent plants in sampling water bodies was varied from 0.7 to 1.4 Gy/year in dependence of radioactive contamination of bottom sediments, plant tissues and level of gamma-background. There were registered rather low rate of plant productivity (hundred times lower than normal), high percentage of sterility (20-80%), low germinating ability (14-48 %) and germinating power (40-50%) of seeds from all sampling water bodies within the ChEZ. Against the general suppressed background the effect of relative stimulation of more affected seeds was observed. With increase of internal absorbed dose in range of 0.2-5.3 mGy/year the number of germinated seeds was increased. At the same time the number of different abnormalities of seeds was increased as well. The highest rate of the morphological damages (up to 25 % of the total number of

  4. The aquatic habit and host plants of Paracles klagesi (Rothschild (Lepidoptera, Erebidae, Arctiinae in Brazil

    Directory of Open Access Journals (Sweden)

    Aurélio R. Meneses

    2013-09-01

    Full Text Available The aquatic habit and host plants of Paracles klagesi (Rothschild (Lepidoptera, Erebidae, Arctiinae in Brazil. The aquatic caterpillar Paracles klagesi (Rothschild, 1910 was collected from the headwaters of a stream in an ecotone between Cerrado and Babaçu forest in northeastern Brazil. The single caterpillar found was observed feeding on the macrophyte Tonina fluviatilis Aubl. (Eriocaulaceae and other aquatic plants of the family Nymphaeaceae present in the area, but also accepted as food Elodea canadensis Michx. (Hydrocharitaceae and Cabomba sp. (Cabombaceae under laboratory conditions.

  5. Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments

    OpenAIRE

    Verloove, F.

    2013-01-01

    Se propone correcciones taxonómicas y nomenclaturales respecto a 88 taxones no nativos de la lista de plantas vasculares de las Islas Canarias (España). Non-native vascular plants from Canary Islands (Spain): nomenclatural and taxonomical adjustments. Corrections and other adjustments are proposed for 88 non-native taxa from the checklist of vascular plants from the Canary Islands (Spain).

  6. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    Science.gov (United States)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2017-06-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  7. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae)

    Science.gov (United States)

    Introduction – The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloid...

  8. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China

    Science.gov (United States)

    Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants. PMID:27391239

  9. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Directory of Open Access Journals (Sweden)

    Liping Li

    Full Text Available With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM, the Uygur Medicine (UM, and the Kazak Medicine (KM for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1 medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2 medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3 CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1, in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2, for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  10. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Science.gov (United States)

    Li, Liping; Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  11. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o, closed-circuit (SMFC-c, aquatic plants with open-circuit (P-SMFC-o and aquatic plants with closed-circuit (P-SMFC-c. The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the

  12. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  13. Moss and vascular plant indices in Ohio wetlands have similar environmental predictors

    Science.gov (United States)

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Adams, Jean V.; Viau, Nick

    2016-01-01

    Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).

  14. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.

    Science.gov (United States)

    Hand, L H; Kuet, S F; Lane, M C; Maund, S J; Warinton, J S; Hill, I R

    2001-08-01

    Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.

  15. Influence of aquatic plants on the predation of Piaractus mesopotamicus larvae by Pantala flavescens - doi: 10.4025/actascibiolsci.v32i2.5167 Influence of aquatic plants on the predation of Piaractus mesopotamicus larvae by Pantala flavescens - doi: 10.4025/actascibiolsci.v32i2.5167

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Bento Fernandes

    2010-05-01

    Full Text Available The experiment aimed to study the influence of the aquatic plants E. najas, P. stratiotes and S. auriculata on the predation of P. mesopotamicus larvae by P. flavescens. One hundred and twenty larvae of P. mesopotamicus and 24 larvae of P. flavescens were placed in 24 aquariums with capacity of 12 L, with one Odonate per aquarium. Treatments were different regarding the species of aquatic plants E. najas, S. auriculata and P. stratiotes, with one control treatment without aquatic plants. One aquarium (12 L containing one Odonate and 30 P. mesopotamicus larvae was considered one experimental unit. After 18 hours, the Odonates were removed from the aquariums and fish larvae left (alive were counted in each experimental unit. The survival rate of P. mesopotamicus larvae in the treatment without aquatic plants (control was significantly lower than in the treatment with E. najas. However, the survival rates in the aquariums with floating aquatic plants did not differ from the control. The morphological characteristics of E. najas promoted higher structural complexity in the environment, offering more protection to the fish larvae, and increasing their survival. We concluded that the presence of the submerged aquatic plant E. najas promoted the reduction of predation of P. mesopotamicus larvae by Pantala flavescens. Larvae; Piaractus mesopotamicus; Pantala flavescens; predation; aquatic plantsThe experiment aimed to study the influence of the aquatic plants E. najas, P. stratiotes and S. auriculata on the predation of P. mesopotamicus larvae by P. flavescens. One hundred and twenty larvae of P. mesopotamicus and 24 larvae of P. flavescens were placed in 24 aquariums with capacity of 12 L, with one Odonate per aquarium. Treatments were different regarding the species of aquatic plants E. najas, S. auriculata and P. stratiotes, with one control treatment without aquatic plants. One aquarium (12 L containing one Odonate and 30 P. mesopotamicus larvae was

  16. Ecogenotoxicity testing of aquatic environment by comet assay in plants

    Directory of Open Access Journals (Sweden)

    Anita Mukherjee

    2015-05-01

    Full Text Available One of the goals of environmental monitoring is the detection of potentially hazardous compounds in water. We have set up a standard method to apply the Comet assay in aquatic plants that could be of great interest to evaluate cytotoxicity, genotoxicity and oxidative stress on the same species regarded as most sensitive to environmental pollutants. The aim of the present study was to set up of standardized procedure to evaluate genotoxicity in aquatic plants- Ceratophyllum demersum one that is submerged free floating and the other is Lemna minor - a fresh water floating plant by Comet assay. Electrophoresis and unwinding times were adapted to obtain minimum DNA migration evaluated as tail intensity % or tail moment in the control group and, at the same time maximum sensitivity for DNA damage with known genotoxicants. We further investigated the cytotoxicity and oxidative stress induced in the same species. Based on the repeatability of results obtained we suggest that Ceratophyllum, Lemna can serve as model species and Comet assay could be adopted to monitor the eco-genotoxicity of water pollutants.

  17. The effect of radioactive contamination of the Yenisei river on cytogenetic characteristics of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolsunovsky, A.; Medvedeva, M. [Institute of Biophysics SB Russian Academy of Sciences (Russian Federation); Muratova, E. [Institute of Forest SB Russian Academy of Sciences (Russian Federation)

    2014-07-01

    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by one of the Russian facilities producing weapons-grade plutonium (the Mining-and-Chemical Combine, MCC), which has been in operation for many years. Aquatic plants are an important component of water ecosystems, which can accumulate high levels of radionuclides and, thus, can be used in bio-monitoring and bioremediation. The purpose of the study was to assess levels of radionuclides and to evaluate the frequency of chromosomal aberrations in samples of submerged plants collected in different parts of the Yenisei River. The following species were studied: Fontinalis antipyretica, Batrachium kauffmanii, Myriophyllum spicatum, Elodea canadensis, Ceratophyllum demersum and various Potamogeton species. Samples were collected at positions in the vicinity of the MCC discharge point, at a distance of 330 km downstream of Krasnoyarsk, and upstream of the MCC, during sampling campaigns in 2003-2012. Detailed analysis of radioactive contamination of aquatic plants of the Yenisei River revealed large-scale contamination of aquatic plants as far as 250 km downstream of the MCC. Before the last MCC reactor was shut down in 2010, about 30 radionuclides, including uranium and transuranium elements, were detected in the biomass of aquatic plants. The highest concentration factors of the major radionuclides were obtained for Fontinalis antipyretica and Potamogeton lucens. Samples of the plants collected after the shutdown of the reactor contained considerably lower activity levels of artificial radionuclides, and their diversity was significantly decreased. Results of cytogenetic investigations of aquatic plants collected when the reactor was still operating (2003-2009) suggest that at the MCC discharge site and downstream the occurrence of chromosomal aberrations in ana-telophase and metaphase cells of the plants was considerably higher (up to 30%) than in the control

  18. Topical report on sources and systems for aquatic plant biomass as an energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.; Ryther, J.H.; Waaland, R.; Wilson, E.H.

    1977-10-21

    Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with light as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.

  19. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    Science.gov (United States)

    Sérandour, Julien; Reynaud, Stéphane; Willison, John; Patouraux, Joëlle; Gaude, Thierry; Ravanel, Patrick; Lempérière, Guy; Raveton, Muriel

    2008-10-08

    Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, insect relationships in aquatic eco-systems.

  20. Acute toxicity of birch tar oil on aquatic organisms

    Directory of Open Access Journals (Sweden)

    M. HAGNER

    2008-12-01

    Full Text Available Birch tar oil (BTO is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50 of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean, Lumbriculus variegatus (oligochaeta worm, Daphnia magna (crustacean, Lymnea sp. (mollusc, Lemna minor (vascular plant, Danio rerio (fish, Scenedesmus gracilis (algae, and Vibrio fischeri (bacterium were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

  1. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M., E-mail: danellelarson77@gmail.com

    2017-04-15

    Highlights: • Sucralose increased leaf area and photosynthetic capacity of Lemna minor. • Sucralose increased δ {sup 13}C of Lemna, indicating substantial uptake and assimilation. • 100 μg/L-fluoxetine decreased Lemna minor growth and asexual reproduction. - Abstract: Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ{sup 13}C) were measured among treatments ranging from 0 to 15000 nmol/L-sucralose and 0–323 nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ {sup 13}C of L. minor at environmentally relevant concentrations. The increase of δ {sup 13}C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor—a mixotrophic plant—can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine

  2. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor

    International Nuclear Information System (INIS)

    Amy-Sagers, Cherisse; Reinhardt, Keith; Larson, Danelle M.

    2017-01-01

    Highlights: • Sucralose increased leaf area and photosynthetic capacity of Lemna minor. • Sucralose increased δ "1"3C of Lemna, indicating substantial uptake and assimilation. • 100 μg/L-fluoxetine decreased Lemna minor growth and asexual reproduction. - Abstract: Pharmaceuticals and personal care products (PPCP) are prevalent in aquatic systems, yet the fate and impacts on aquatic plants needs quantification for many compounds. We measured and detected sucralose (an artificial sweetener), fluoxetine (an antidepressant), and other PPCP in the Portneuf River in Idaho, USA, where Lemna minor (an aquatic plant in the environment and used in ecotoxicology studies) naturally occurs. Sucralose was hypothesized to negatively affect photosynthesis and growth of L. minor because sucralose is a chlorinated molecule that may be toxic or unusable for plant metabolism. A priori hypotheses were not created for fluoxetine due to lack of previous studies examining its impacts on plants. We conducted laboratory ecotoxicological assessments for a large range of concentrations of sucralose and fluoxetine on L. minor physiology and photosynthetic function. Frond green leaf area, root length, growth rate, photosynthetic capacity, and plant carbon isotopic composition (discrimination relative to a standard; δ"1"3C) were measured among treatments ranging from 0 to 15000 nmol/L-sucralose and 0–323 nmol/L-fluoxetine. Contrary to our predictions, sucralose significantly increased green leaf area, photosynthetic capacity, and δ "1"3C of L. minor at environmentally relevant concentrations. The increase of δ "1"3C from sucralose amendments and an isotope-mixing model indicated substantial sucralose uptake and assimilation within the plant. Unlike humans who cannot break down and utilize sucralose, we documented that L. minor—a mixotrophic plant—can use sucralose as a sugar substitute to increase its green leaf area and photosynthetic capacity. Fluoxetine significantly

  3. Use of gold nanoparticles to detect water uptake in vascular plants.

    Science.gov (United States)

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  4. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  5. Nitrogen kinetics in aquatic plants in arctic Alaska

    International Nuclear Information System (INIS)

    McRoy, C.P.; Alexander, V.

    1975-01-01

    The kinetics of nitrogen in terms of ammonia uptake was measured for Carex aquatilis in arctic tundra ponds using 15 N tracer techniques. Nitrogen content of the leaves and primary productivity were measured throughout a growing season. The maximum uptake velocity for ammonia was 2.75 x 10 -2 % N/g dry weight per h with a Ksub(t) of 8.4-12.5 μgatoms/l. A second estimate of nitrogen uptake was made from the increase in nitrogen content throughout the season and from this a rate of 1.85 x 10 -2 % N/g dry weight per day was obtained for Carex aquatilis and 3.6 x 10 -2 % N/g dry weight per day for Arctophylla fulva. The total nitrogen concentration in the leaves was closely related to productivity, possible providing a new approach to productivity measurements for emergent vascular plants. Emergent vascular plants absorb ammonia across and translocate it to all portions of the plant. The ecological significance of this is considerable, since in many waters inorganic nitrogen content of sediment is much higher than that of the water surrounding the leaves and stems, and can provide a source of nitrogen

  6. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  7. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  9. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G.

    2004-01-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including 241 Am). 241 Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of 241 Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of 241 Am from the biomass. The content of 241 Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of 241 Am in the plants were in inverse proportion to their biomass. We obtained new data on release of 241 Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial 241 Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of 241 Am and retain americium for long periods of time in biomass. (author)

  10. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    Science.gov (United States)

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  11. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  12. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2004-07-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including {sup 241}Am). {sup 241}Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of {sup 241}Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of {sup 241}Am from the biomass. The content of {sup 241}Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of {sup 241}Am in the plants were in inverse proportion to their biomass. We obtained new data on release of {sup 241}Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial {sup 241}Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of {sup 241}Am and retain americium for long periods of time in biomass. (author)

  13. Diversity of vascular plants of Piestany and surroundings

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In the present work is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  14. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    Directory of Open Access Journals (Sweden)

    Mohammed Barznji Dana A.

    2015-03-01

    Full Text Available Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copper, lead, mercury, zinc, etc. Arsenic is one of the most severe toxic elements; it is widely distributed in the environment, usually found in combination with chloride, oxygen, sulphur and metal ions as a result of mineral dissolution from sedimentary or volcanic rocks and the dilution of geothermal water. The effluents from both industrial and agricultural sectors are also regarded as sources to contaminate water. From the accumulation point of view, several aquatic plants have been mentioned as good arsenic accumulators and their performance is evaluated using the green technology method. These include Spirodela polyrhiza, Wolffia globosa, Lemna gibba, L. minor, Eichhornia crassipes, Azolla caroliniana, Azolla filiculoides, Azolla pinnata, Ceratophyllum demersum and Pistia stratiotes. The up-to-date information illustrated in this review paper generates knowledge about the ability of some common aquatic plants around the globe to remediate arsenic from contaminated water.

  15. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Science.gov (United States)

    Liu, Yang; Wang, Bin; Cui, Peng; Li, Libo; Xue, Jia-Yu; Yu, Jun; Qiu, Yin-Long

    2012-01-01

    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  16. Accumulation and fluxes of mercury in terrestrial and aquatic food chains with special reference to Finland

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2013-03-01

    Full Text Available Mercury is known for its biomagnification especially in aquatic food chains and for its toxic effects on different organisms including man. In Finland mercury has formerly been used in industry and agriculture and in addition many anthropogenic activities may increase the mercury levels in ecosystems. Phenyl mercury was widely used as slimicide in the pulp and paper industry in the 1950s and 1960s. In the chlor-alkali industry metallic mercury was used as catalyst at three plants. The most toxic form of mercury, methyl mercury, may be formed in soils, water, sediments and organisms. Many factors, including microbial activity, temperature, oxygen status etc., affect the methylation rate. In the lake ecosystem bioaccumulation of methyl mercury is very strong. In early 1980s there was a restriction of fishing concerning approximately 4000 km2 of lakes and sea areas because of mercury pollution. In aquatic systems we still find elevated concentrations near former emission sources. Long-range atmospheric transport and mechanical operations like ditching and water regulation may cause increased levels of mercury in the aquatic ecosystems. In the Finnish agriculture organic mercury compounds were used for seed dressing until 1992. Although the amounts used were substantial the concentrations in agricultural soils have remained rather low. In terrestrial food chains bioaccumulation is normally weak with low or moderate concentration at all ecosystem levels. Due to a weak uptake through roots terrestrial, vascular plants normally contain only small amounts of mercury. There is a bidirectional exchange of mercury between vegetation and atmosphere. Contrary to vascular plants, there is a very wide range of concentrations in fungi. Mercury may pose a threat to human health especially when accumulated in aquatic food chains.

  17. The plant vascular system: Evolution, development and functions

    Science.gov (United States)

    William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo

    2013-01-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made...

  18. Proper survey methods for research of aquatic plant ecology and management

    Science.gov (United States)

    Proper survey methods are essential for objective, quantitative assessment of the distribution and abundance of aquatic plants as part of research and demonstration efforts. For research, the use of the appropriate method is an essential part of the scientific method, to ensure that the experimenta...

  19. Aboveground persistence of vascular plants in relationship to the levels of airborne nutrient deposition

    NARCIS (Netherlands)

    Hendriks, R.J.J.; Ozinga, W.A.; Berg, van den L.J.L.; Noordwijk, E.; Schaminee, J.H.J.; Groenendael, van J.M.

    2014-01-01

    This paper examines whether high atmospheric nitrogen deposition affects aboveground persistence of vascular plants. We combined information on local aboveground persistence of vascular plants in 245 permanent plots in the Netherlands with estimated level of nitrogen deposition at the time of

  20. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation

    International Nuclear Information System (INIS)

    Favas, Paulo J.C.; Pratas, João; Varun, Mayank; D'Souza, Rohan; Paul, Manoj S.

    2014-01-01

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n = 200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1217 μg L −1 . The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4979 mg kg −1 ) followed by Callitriche stagnalis (1963 mg kg −1 ), Callitriche hamulata (379 mg kg −1 ), Ranunculus peltatus subsp. saniculifolius (243 mg kg −1 ), Callitriche lusitanica (218 mg kg −1 ), and Ranunculus trichophyllus (65.8 mg kg −1 ). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg −1 ). Among the free-floating species, the highest U content (42.5 mg kg −1 ) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production. - Highlights: • Exploration of U contamination extent in uraniferous province of Central Portugal • A group of previously untested species with the ability to accumulate U was assessed • U accumulation patterns in the species indicate their potential in bioindication and phytoremediation of U-contaminated water

  1. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    Directory of Open Access Journals (Sweden)

    Julien Sérandour

    Full Text Available Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine, much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol, pyrimidines (uracil, thymine, and nucleosides (uridine, thymidine functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.

  2. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Favas, Paulo J.C., E-mail: pjcf@utad.pt [School of Life Sciences and the Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal); IMAR-CMA Marine and Environmental Research Centre, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); Pratas, João [Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); IMAR-CMA Marine and Environmental Research Centre, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); Varun, Mayank; D' Souza, Rohan; Paul, Manoj S. [Department of Botany, St. John' s College, Agra 282 002 (India)

    2014-02-01

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n = 200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1217 μg L{sup −1}. The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4979 mg kg{sup −1}) followed by Callitriche stagnalis (1963 mg kg{sup −1}), Callitriche hamulata (379 mg kg{sup −1}), Ranunculus peltatus subsp. saniculifolius (243 mg kg{sup −1}), Callitriche lusitanica (218 mg kg{sup −1}), and Ranunculus trichophyllus (65.8 mg kg{sup −1}). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg{sup −1}). Among the free-floating species, the highest U content (42.5 mg kg{sup −1}) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production. - Highlights: • Exploration of U contamination extent in uraniferous province of Central Portugal • A group of previously untested species with the ability to accumulate U was assessed • U accumulation patterns in the species indicate their potential in bioindication and phytoremediation of U-contaminated water.

  3. Temporal deconvolution of vascular plant signatures delivered to coastal sediments

    Science.gov (United States)

    Vonk, J.; Drenzek, N. J.; Hughen, K. A.; Stanley, R.; Montluçon, D. B.; McIntyre, C.; Southon, J. R.; Santos, G.; Andersson, A.; Sköld, M.; Eglinton, T. I.

    2017-12-01

    Presently, relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record. It is clear that there are multiple potential intermediate storage pools and transport trajectories that vascular plant carbon may experience, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here we use molecular-level radiocarbon (14C) analysis to develop down-core 14C profiles for higher plant leaf wax-derived fatty acids isolated from sediments from three sites across a 60-degrees latitudinal gradient (Cariaco Basin, Saanich Inlet, and Mackenzie Delta). The sediment profiles were used as a direct measure of the storage and transport times experienced by these biomolecular tracer compounds. Residence times are evaluated by comparing these records to the 14C history of atmospheric CO2. Using a modeling framework, we conclude that there is, in addition to a variable "young" pool, a millennial pool of compounds that consists of 49-78 % of the fractional contribution of organic carbon (OC) that exhibits variable ages for the different depositional settings. For the Mackenzie Delta sediments, we find a mean age of the millennial pool of 28 ky, suggesting pre-aging in permafrost soils, whereas the millennial pool in Saanich Inlet and Cariaco Basin sediments is younger with 7.9 and 2.4-3.2 ky, respectively, suggesting limited storage in terrestrial reservoirs. The "young" pool, conditionally defined as vascular plant C in deltaic and marine settings undergoes pre-aging in terrestrial reservoirs. The age distribution, reflecting storage and transport times, depends on landscape-specific factors such as local topography, hydrographic characteristics, and degree of soil build-up and preservation.

  4. Uptake of inorganic phosphorus by the aquatic plant Isoetes australis inhabiting oligotrophic vernal rock pools

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Pulido, Cristina; Pedersen, Ole

    2017-01-01

    The submerged aquatic freshwater macrophyte Isoetes australis S. Williams grows in rock pools situated in south-western Australia, an environment where dissolved inorganic phosphorus (Pi) availability possibly limits growth. In contrast to the two coexisting aquatic species, Glossostigma drummundii...... experiment revealed high amounts of Pi translocation internally in the plant which seemed to go from roots and oldest leaves to younger leaves. As a result of the high root to shoot ratio, high surface area, root uptake kinetics, and sediment Pi availability, roots accounted for 87% of plant Pi uptake...

  5. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. By which mechanism does prey capture enhance plant growth in aquatic carnivorous plants: Stimulation of shoot apex?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2011-01-01

    Roč. 178, č. 2 (2011), s. 171-176 ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plants * dark respiration * tissue N and P content Subject RIV: EF - Botanics Impact factor: 1.145, year: 2011

  7. [Diversity and distribution of the threatened medicinal vascular plants in Lancang].

    Science.gov (United States)

    Chi, Xiu-Lian; Yuan, Yi-Kai; Fang, Bo; Zhang, Xiao-Bo; Yang, Han-Yu; Zhao, Zhi-Ping; Li, Guo; Fu, Kai-Cong; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The rich diversity in medicinal plants provides an important material basic for the development of Traditional Chinese medicine in China. It is important to explore the present situation of medicinal plants within special regions in order to provide scientific instructions for their sustainable protection and exploitation and utilization. In this study, we carried out the field survey according to the guideline of national survey of Chinese material medica resources and the guideline of plant species diversity survey and estimation at county level with the line transect method. With the field surveyed data, we explored the diversity and distribution of the threatened medicinal vascular plants in Lancang. We found that there were 33 species of the threatened medicinal vascular plants in this county. These species were from 23 genera and 17 families, and were composed of one critical endangered, 10 endangered and 22 vulnerable species. They were widely distributed across the whole county and were most concentrated in the town of Nuozhadu, Fazhanhe, Nuofu and Zhutang, which were located in the southeastern, southwestern and western of Lancang, respectively. We also found that the plant species richness followed a unimodal pattern along elevation. In addition, we found that the areas of Nuozhadu Nature Reserve in Lancang only covered six threatened medicinal vascular plants, while most of the regions with high species richness were not well protected. Therefore, we proposed to make more efforts to improve the protection measurements in order to better protect and utilize the medicinal plants in Lancang. Copyright© by the Chinese Pharmaceutical Association.

  8. Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient

    NARCIS (Netherlands)

    Veen, G.F.; Sarneel, J.M.; Ravensbergen, Lone; Huig, N.; van Paassen, José; Rip, W.; Bakker, E.S.

    2013-01-01

    Summary The establishment of riparian plants is determined by abiotic conditions and grazing, although it is usually presumed that the former are most important. We tested the impact of aquatic grazers on the survival and growth of establishing riparian plants and whether the impact of grazing

  9. Role of algae and higher aquatic plants in decontamination of cyanide-containing waters

    International Nuclear Information System (INIS)

    Timofeeva, S.S.; Kraeva, V.Z.; Men'shikova, O.A.

    1986-01-01

    Cyanide compounds and especially free cyanides stand out among components of wastewaters of hydrometallurgy, electroforming, and other such enterprises with respect to toxicity and danger for man and fauna of water bodies. In this article data on a study of the regularities of decontamination of cyanide-containing wastewaters by hydrophytes are given, the mechanisms of this process are examined, and the results of testing the hydrobotanical method of treating wastewaters of a goldrecovery plant are examined. The experiments were carried out with hydrophytes from the Angara River, Lake Baikal, and small lakes and ponds in the vicinity of Irkutsk and Tashkent. The series of experiments established that algae and higher aquatic plants are resistant to cyanides. A table shows the kinetic parameters of the removal of cyanide by algae and higher aquatic plants collected in Baikal. Of the multitude of species investigated for detoxifying ability, the most resistant were detected in the experimental basins and the most suitable were charophytes

  10. Diversity of vascular plants of Piestany and surroundings (presentation)

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In this presentation is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  11. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  12. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States.

    Directory of Open Access Journals (Sweden)

    Doria R Gordon

    Full Text Available We tested the accuracy of an invasive aquatic plant risk assessment system in the United States that we modified from a system originally developed by New Zealand's Biosecurity Program. The US system is comprised of 38 questions that address biological, historical, and environmental tolerance traits. Values associated with each response are summed to produce a total score for each species that indicates its risk of invasion. To calibrate and test this risk assessment, we identified 39 aquatic plant species that are major invaders in the continental US, 31 species that have naturalized but have no documented impacts (minor invaders, and 60 that have been introduced but have not established. These species represent 55 families and span all aquatic plant growth forms. We found sufficient information to assess all but three of these species. When the results are compared to the known invasiveness of the species, major invaders are distinguished from minor and non-invaders with 91% accuracy. Using this approach, the US aquatic weed risk assessment correctly identifies major invaders 85%, and non-invaders 98%, of the time. Model validation using an additional 10 non-invaders and 10 invaders resulted in 100% accuracy for the former, and 80% accuracy for the latter group. Accuracy was further improved to an average of 91% for all groups when the 17% of species with scores of 31-39 required further evaluation prior to risk classification. The high accuracy with which we can distinguish non-invaders from harmful invaders suggests that this tool provides a feasible, pro-active system for pre-import screening of aquatic plants in the US, and may have additional utility for prioritizing management efforts of established species.

  13. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.

    Science.gov (United States)

    Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke

    2016-07-01

    The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.

  14. RELEVANCE OF ROOTED VASCULAR PLANTS AS INDICATORS OF ESTUARINE SEDIMENT QUALITY

    Science.gov (United States)

    Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment evaluations is largely unknown. For this reason, the toxicities of whole se...

  15. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    Science.gov (United States)

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  16. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  17. Levantamento de plantas aquáticas no reservatório de Salto Grande, Americana-SP Aquatic plant survey in Salto Grande reservoir in Americana-SP, Brazil

    Directory of Open Access Journals (Sweden)

    D. Martins

    2011-03-01

    Full Text Available O objetivo deste estudo foi determinar a frequência relativa e o nível de infestação de cada espécie da flora aquática presente no reservatório de Salto Grande, Americana-SP. O levantamento e a identificação das plantas aquáticas foram realizados percorrendo-se as margens do reservatório em uma embarcação. Ao longo dele foram estabelecidos 20 pontos de avaliação, sendo todos eles fotografados e georreferenciados. Foram atribuídos valores de 0 a 100% tanto para as espécies presentes como para os espaços livres de macrófitas aquáticas que eventualmente pudessem ocorrer dentro dos pontos amostrados. Com os dados referentes ao número de indivíduos e pontos avaliados, foi determinada a frequência relativa de cada espécie. Foram identificadas 13 espécies em todo o reservatório, sendo 12 vasculares e uma de alga-verde (Chlorella spp.. Entre as espécies vasculares, nove eram plantas emersas flutuantes, as quais poderiam estar ou não ancoradas no leito do reservatório: Alternanthera philoxeroides, Brachiaria subquadripara, Cyperus difformis, Echinochloa polystachia var. spectabilis, Eichhornia crassipes, Panicum rivulare, Pistia stratiotes, Salvinia auriculata e Typha angustifolia. Outras três espécies foram encontradas somente em solo firme alagado: Aeschynomene sensitiva, Hedychium coronarium e Mimosa pigra.The objectives of this work were to determine the relative frequency and infestation level of each species present in the Salto Grande Reservoir in Americana-SP. The survey and identification of the aquatic plants were carried out in the Salto Grande reservoir on a boat. Twenty evaluation sites were established along the reservoir, photographed and geo-referenced. Values from 0 to 100% were assigned for both the species present and for the aquatic plants that could possibly occur within the sampled sites. Based on the number of individuals and points evaluated, the relative frequency of each species was determined

  18. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change.

    Science.gov (United States)

    Gavazov, Konstantin; Albrecht, Remy; Buttler, Alexandre; Dorrepaal, Ellen; Garnett, Mark H; Gogo, Sebastien; Hagedorn, Frank; Mills, Robert T E; Robroek, Bjorn J M; Bragazza, Luca

    2018-03-23

    Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO 2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO 2 radiocarbon (bomb- 14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change. © 2018 John Wiley & Sons Ltd.

  19. Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available The work presented here is a part the on going study on the uraniferous geochemical province of Central Portugal in which, the use of aquatic plants as indicators of uranium contamination is being probed using aquatic plants emphasizing their potential use in the emerging phytotechnologies. Even though we have observed very low concentration of U in the fresh waters of the studied sites we found a set of vegetable species with the ability to accumulate U in concentrations which are orders of magnitude higher than the surrounding environment. We have observed that Apium nodiflorum, Callitriche stagnalis, Lemna minor and Fontinalis antipyretica accumulated significant amounts of uranium, whereas Oenanthe crocata excluded U. These results indicate substantial scope for proper radiophytoremediation and phytosociological investigation exploiting the native flora. These species show great potential for phytoremediation because they are endemic and easy to grow in their native conditions. A. nodiflorum and C. stagnalis have high bioproductivity and yield good biomass.

  20. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  1. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    OpenAIRE

    Mo Shuqing; Zhang Xiufeng; Tang Yali; Liu Zhengwen; Kettridge Nicholas

    2017-01-01

    Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aer...

  2. Aquatic fate of aerially applied hexazinone and terbuthylazine in a New Zealand planted forest

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary; Stefan Gous; Carol A. Rolando

    2015-01-01

    Herbicides are used to control competing vegetation during tree establishment, and are often critical to the productivity and economic viability of a planted forest crop. Despite increasing public concern over herbicide use in planted forests and potential impact on the environment, there is limited information on the aquatic fate of many of these herbicides when...

  3. Impact of power plants on aquatic systems: a social perspective

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1975-01-01

    Topics discussed are: aquatic effects of thermal electric power stations; legal aspects of water pollution; EPA provisions for levels of thermal discharges to assure protection and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in a body of water; cost benefit analysis of steam electric power effluents; cooling systems and siting of power plants; simulation modeling of population dynamics; and sociological aspects of water pollution

  4. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  5. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  6. The long-term persistence of phytoplankton resting stages in aquatic "seed banks"

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Ribeiro, Sofia

    2018-01-01

    to terrestrial seed beds of vascular plants, but are much less studied. It is therefore timely to review the phenomenon of long-term persistence of aquatic resting stages in sediment seed banks. Herein we compare function, morphology and physiology of phytoplankton resting stages to factors central...... for persistence of terrestrial seeds. We review the types of resting stages found in different groups of phytoplankton and focus on the groups for which long-term (multi-decadal) persistence has been shown: dinoflagellates, diatoms, green algae and cyanobacteria. We discuss the metabolism of long-term dormancy......In the past decade, research on long-term persistence of phytoplankton resting stages has intensified. Simultaneously, insight into life-cycle variability in the diverse groups of phytoplankton has also increased. Aquatic 'seed banks' have tremendous significance and show many interesting parallels...

  7. Uptake of cesium and cobalt radionuclides from simulated radioactive wastewater by Ludwigia stolonifera aquatic plant

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Bayoumi, T.A. [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Mahmoud, H.H. [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Central Laboratory for Elemental and Isotopic Analysis, Nuclear Research Center, Atomic Energy Authority (Egypt); Aglan, R.F. [Department of Analytical Chemistry, Hot Laboratories Center, Atomic Energy Authority, 13759 (Egypt)

    2017-04-15

    Highlights: • Radioactive contamination is a serious environmental problem. • Phytoremediation is a proper technique for soil and water decontamination. • Aquatic plant, Ludwigia stolonifera, for bioaccumulation of radionuclides. • Factors affecting uptake efficiency of {sup 137}Cs and {sup 60}Co radionuclides. - Abstract: The article reported herein was conducted as part of comprehensive study considered to evaluate the efficiency of Ludwigia stolonifera as a local aquatic plant located in the Egyptian environment for phytoremediation of hazardous toxic and radioactive elements dissolved in aqueous wastes dispersed from industrial and urban applications through the human activities. Ludwigia stolonifera was immersed in single and binary solution of {sup 60}Co and {sup 137}Cs. The specific uptake rate of plant was determined at various activity contents of radionuclides, multiplied masses of plant, lighting exposure and different pH values. Accumulation of {sup 60}Co and {sup 137}Cs in mixture was more than 95% and 65% respectively. pH was less effective than the other evaluated parameters.

  8. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  9. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  10. Influence of nonylphenol on the fatty acids and hydrocarbon composition of aquatic plants

    Directory of Open Access Journals (Sweden)

    І. О. Osinna

    2009-11-01

    Full Text Available Composition of surface lipids of aquatic plants Acorus calamus L., Typha latifolia L. and Carex acuta L. was investigated under the influence of nonylphenol strong solution. Experimental plants showed some significant changes in the surface lipids composition in comparison with a control. Change in the fatty acids composition, decrease of hydrocarbons content and biosynthetical disorder in the elongation processes of some certain components were revealed.

  11. Proceedings, Annual Meeting (27th), Aquatic Plant Control Research Program Held in Bellevue, Washington on 16-19 November 1992

    Science.gov (United States)

    1993-09-01

    both site conditions and Overview of HERBICIDE the properties of the aquatic herbicide formu- lation (Reinert and Rodgers 1987; Westerdahl Structure... Westerdahl , H. E., and Getsinger, K. D., ed. ment Station, Vicksburg, MS, 279-282. (1988). "Aquatic plant identification and herbicide use guide; Volume 1...plants remain exposed to given concentrations of the Materials and Methods herbicide (Green and Westerdahl 1990; Van and Conant 1988; Netherland, Green

  12. Aquatic plants: Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA

    Science.gov (United States)

    Phytotoxicity results from the publicly-available ECOTOX database were summarized for 20 chemicals and 188 aquatic plants to determine species sensitivities and the ability of a species-limited toxicity data set to serve as a surrogate for a larger data set. The lowest effect con...

  13. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Mo Shuqing

    2017-01-01

    Full Text Available Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aeruginosa and a combined treatment with both plants and snails were compared with controls to evaluate their effects on trophic state. The total nitrogen (TN, total phosphorus (TP and chlorophyll a (Chl a concentrations of planktonic and benthic algal samples were determined every two weeks, along with light intensity at the sediment surface. The plant-only treatment significantly reduced the TN levels and planktonic and benthic algal biomass and increased the light intensity at the sediment surface. The snail-only treatment reduced the concentrations of TN and reduced planktonic and benthic algal biomass. The combined treatment decreased the concentrations of TN and TP, reduced planktonic algal biomass and increased the light intensity on the sediment surface. The results indicate that while submerged plants and snails can both improve water quality, the most pronounced effect in aquatic ecosystems is achieved by their presence in combination. A combined reintroduction approach may provide enhanced benefits in restoring the eutrophic ecosystems, following the reduction of external nutrient loading.

  14. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  15. RAINBIO: a mega-database of tropical African vascular plants distributions

    Directory of Open Access Journals (Sweden)

    Dauby Gilles

    2016-11-01

    Full Text Available The tropical vegetation of Africa is characterized by high levels of species diversity but is undergoing important shifts in response to ongoing climate change and increasing anthropogenic pressures. Although our knowledge of plant species distribution patterns in the African tropics has been improving over the years, it remains limited. Here we present RAINBIO, a unique comprehensive mega-database of georeferenced records for vascular plants in continental tropical Africa. The geographic focus of the database is the region south of the Sahel and north of Southern Africa, and the majority of data originate from tropical forest regions. RAINBIO is a compilation of 13 datasets either publicly available or personal ones. Numerous in depth data quality checks, automatic and manual via several African flora experts, were undertaken for georeferencing, standardization of taxonomic names and identification and merging of duplicated records. The resulting RAINBIO data allows exploration and extraction of distribution data for 25,356 native tropical African vascular plant species, which represents ca. 89% of all known plant species in the area of interest. Habit information is also provided for 91% of these species.

  16. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  17. Flora of vascular plants in the Chilgapsan Provincial Park, Korea

    Directory of Open Access Journals (Sweden)

    Ro-Young Lee

    2014-09-01

    Full Text Available The flora of Chilgapsan Provincial Park in Cheongyang-gun (Chungcheongnam-do, Korea was surveyed from 2000 to 2014. In 19 field surveys, vascular plants were revealed 490 taxa belonging to 97 families, 309 genera, 433 species, four subspecies, 48 varieties, and five forms. Plants of various categories were discovered in this study. For the Korean endemic plants 15 taxa were recorded, and 11 taxa designated by the Korean Forest Service as rare plants were investigated in this region. The plants above the third degree among the floristic regional indicator plants designated by the Korean Ministry of Environment were 10 taxa. In addition, 33 taxa of naturalized and 73 taxa of cultivated plants were recorded.

  18. New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants.

    Science.gov (United States)

    Cagliari, Alexandro; Turchetto-Zolet, Andreia Carina; Korbes, Ana Paula; Maraschin, Felipe Dos Santos; Margis, Rogerio; Margis-Pinheiro, Marcia

    2014-01-01

    NF-Y is a conserved oligomeric transcription factor found in all eukaryotes. In plants, this regulator evolved with a broad diversification of the genes coding for its three subunits (NF-YA, NF-YB and NF-YC). The NF-YB members can be divided into Leafy Cotyledon1 (LEC1) and non-LEC1 types. Here we presented a comparative genomic study using phylogenetic analyses to validate an evolutionary model for the origin of LEC-type genes in plants and their emergence from non-LEC1-type genes. We identified LEC1-type members in all vascular plant genomes, but not in amoebozoa, algae, fungi, metazoa and non-vascular plant representatives, which present exclusively non-LEC1-type genes as constituents of their NF-YB subunits. The non-synonymous to synonymous nucleotide substitution rates (Ka/Ks) between LEC1 and non-LEC1-type genes indicate the presence of positive selection acting on LEC1-type members to the fixation of LEC1-specific amino acid residues. The phylogenetic analyses demonstrated that plant LEC1-type genes are evolutionary divergent from the non-LEC1-type genes of plants, fungi, amoebozoa, algae and animals. Our results point to a scenario in which LEC1-type genes have originated in vascular plants after gene expansion in plants. We suggest that processes of neofunctionalization and/or subfunctionalization were responsible for the emergence of a versatile role for LEC1-type genes in vascular plants, especially in seed plants. LEC1-type genes besides being phylogenetic divergent also present different expression profile when compared with non-LEC1-type genes. Altogether, our data provide new insights about the LEC1 and non-LEC1 evolutionary relationship during the vascular plant evolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Biogas production from Eichhornia crassipes aquatic plant; Producao de biogas a partir da planta aquatica Eichhornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Silva, Jose Goncalves da; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: rbmelo@light.com.br

    2004-07-01

    Virtually all plants and waste plants and animals may in some way be used as an energy source. The anaerobic digestion of these materials is an option, resulting in the biogas. Besides the gas obtained in the process, is produced, inside the biodigester, an excellent fertilizer. The aquatic plant Eichhornia crassipes is found in large quantities in various water bodies, such as reservoirs, lakes and ponds, becoming mostly often a big problem and it is necessary its systematic removal of water. The bench biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced, and a reservoir to monitor the production of biogas. The reactor is located within a receptacle containing water that can be heated by an electrical resistance, with the purpose of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor made in a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity, show a percentage of 50% of methane in the biogas. The process of biodigestion of aquatic plant Eichhornia crassipes shows potential to obtain biogas, with considerable levels of methane in order to make its exploitation. Also, were analyzed the biomass in the biodigester for determination of humid, total organic matter, mineral and organic carbon residue.

  20. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    Science.gov (United States)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  1. Indicator value of certain aquatic organisms for radioactive substances in the sea areas off the Loviisa and Ilkiluoto nuclear power plants (Finland)[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Klemola, S.; Ikaeheimonen, T.K.; Vartti, V.P.; Mattila, J. [STUK - radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The results of the marine radioecology studies carried out in 2000-2001 in the sea areas off the Loviisa and Olkiluoto Nuclear Power Plants (South and West coast of Finland) are reported. Extensive regular monitoring programmes of environmental radioactivity have been carried out already for about 30 years in these areas. The aim of the present study was to compare the indicator value of the various members of the aquatic ecosystem with respect to environmental monitoring. Samples were taken from 27 species including phytoplankton (9 samples), zooplankton (9 samples), periphyton (12 samples), macroalgae and vascular plants (16 samples), benthic animals (8 samples), fish (20 samples) and birds (6). Special attention was paid to different tissues and organs of fish and birds, such as flesh, liver, entrails, bones, milt, spawn, eggs, egg shells etc. (in total 64 samples), because there has been a lot of debate among the opponents of nuclear power in the course of time about the role these objects in the environmental monitoring of the power plants. The samples were taken from relatively small areas both in Loviisa and Olkiluoto, which makes the results well comparable inside each of the sites. (au)

  2. Indicator value of certain aquatic organisms for radioactive substances in the sea areas off the Loviisa and Olkiluoto nuclear power plants (Finland)[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Klemola, S.; Ikaeheimonen, T.K.; Vartti, V.P.; Mattila, J. [STUK - radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The results of the marine radioecology studies carried out in 2000-2001 in the sea areas off the Loviisa and Olkiluoto Nuclear Power Plants (South and West coast of Finland) are reported. Extensive regular monitoring programmes of environmental radioactivity have been carried out already for about 30 years in these areas. The aim of the present study was to compare the indicator value of the various members of the aquatic ecosystem with respect to environmental monitoring. Samples were taken from 27 species including phytoplankton (9 samples), zooplankton (9 samples), periphyton (12 samples), macroalgae and vascular plants (16 samples), benthic animals (8 samples), fish (20 samples) and birds (6). Special attention was paid to different tissues and organs of fish and birds, such as flesh, liver, entrails, bones, milt, spawn, eggs, egg shells etc. (in total 64 samples), because there has been a lot of debate among the opponents of nuclear power in the course of time about the role these objects in the environmental monitoring of the power plants. The samples were taken from relatively small areas both in Loviisa and Olkiluoto, which makes the results well comparable inside each of the sites. (au)

  3. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae).

    Science.gov (United States)

    Boppré, Michael; Colegate, Steven M

    2015-01-01

    The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plant's invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic

  4. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    Science.gov (United States)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  5. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Biogeochemical features of aquatic plants in the Selenga River delta

    Science.gov (United States)

    Shinkareva, Galina; Lychagin, Mikhail

    2014-05-01

    The Selenga River system provides more than a half of the Lake Baikal total inflow. The river collects a significant amount of pollutants (e.g. heavy metals) from the whole basin. These substances are partially deposited within the Selenga delta, and partially are transported further to the lake. A generous amount of aquatic plants grow in the delta area according to its favorable conditions. This vegetation works as a specific biofilter. It accumulates suspended particles and sorbs some heavy metals from the water. The study aimed to reveal the species of macrophytes which could be mostly important for biomonitoring according to their chemical composition. The field campaign took place in the Selenga River delta in July-August of 2011 (high water period) and in June of 2012 (low water period). 14 species of aquatic plants were collected: water starwort Callitriche hermaphroditica, small yellow pond lily Nuphar pumila, pondweeds Potamogeton crispus, P. pectinatus, P. friesii, broadleaf cattail Typha latifolia, hornwort or coontail Ceratophyllum demersum, arrowhead Sagittaria natans, flowering rush (or grass rush) Butomus umbellatus, reed Phragmites australis, parrot's feather Myriophyllum spicatum, the common mare's tail Hippuris vulgaris, Batrachium trichophyllum, canadian waterweed Elodea canadensis. The samples were dried, grinded up and digested in a mixture of HNO3 and H2O2. The chemical composition of the plant material was defined using ICP-MS and ICP-AES methods. Concentrations of Fe, Mn, Cr, Ni, Cu, B, Zn, V, Co, As, Mo, Pb, and U were considered. The study revealed that Potamogeton pectinatus and Myriophyllum spicatum concentrate elements during both high and low water periods. Conversely the Butomus umbellatus and Phragmites australis contain small amount of heavy metals. The reed as true grasses usually accumulates fewer amounts of elements than other macrophytes. To compare biogeochemical specialization of different species we suggest to use

  7. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-01-01

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  8. The Root-Associated Microbial Community of the World’s Highest Growing Vascular Plants

    Czech Academy of Sciences Publication Activity Database

    Angel, R.; Conrad, R.; Dvorský, Miroslav; Kopecký, Martin; Kotilínek, M.; Hiiesalu, Inga; Schweingruber, F. H.; Doležal, Jiří

    2016-01-01

    Roč. 72, č. 2 (2016), s. 394-406 ISSN 0095-3628 Institutional support: RVO:67985939 Keywords : vascular plants * upward migration * subnival soil * plant-associated bacteria Subject RIV: EF - Botanics Impact factor: 3.630, year: 2016

  9. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  10. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  11. Influence of cooling water discharges from Kaiga Nuclear Power Plant on aquatic ecology of the Kadra reservoir

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Zargar, S.; Kulkarni, A.V.

    2007-01-01

    The alterations induced in the ambient temperature can lead to wide manifestations in species distribution and community structure. In general, elevated water temperature causes changes in species composition, species dominance, standing crop and productivity of biota including phytoplankton communities in any aquatic ecosystem. Thus warm water discharges from power plants into the receiving water bodies may adversely affect aquatic ecology. In the absence of exhaustive data on the response of aquatic organisms and ecosystems in the tropics to elevated temperatures, the only option is to draw inferences, from the experiences in the subtropical and temperature areas. Since, sufficient data on similar line are not available in tropical environment, present paper delineates certain aspects of aquatic ecology of the Kadra reservoir where cooling water is discharged. The study suggests the heated effluents from Kaiga Nuclear Power plant caused changes in dissolved oxygen and pH of water, heterotrophic bacterial population, sediment biogeochemical cycles related biochemical processes, species composition, species dominance, standing crop and productivity of biota including phytoplankton communities within 500 m from End of Discharge Canal point of Kadra reservoir when two units are running in full capacity. (author)

  12. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    Science.gov (United States)

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes. © 2011 Phycological Society of America.

  14. Distributions of vascular plants in the Czech Republic. Part 3

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Zdeněk; Danihelka, Jiří; Lepší, M.; Lepší, P.; Ekrt, L.; Chrtek, Jindřich; Kocián, J.; Prančl, Jan; Kobrlová, L.; Hroneš, M.; Šulc, Václav

    2016-01-01

    Roč. 88, č. 4 (2016), s. 459-544 ISSN 0032-7786 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : distribution * vascular plants * Czech Republic Subject RIV: EF - Botanics Impact factor: 3.000, year: 2016

  15. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...

  16. Database of Vascular Plants of Canada (VASCAN): a community contributed taxonomic checklist of all vascular plants of Canada, Saint Pierre and Miquelon, and Greenland.

    Science.gov (United States)

    Desmet, Peter; Brouillet, Luc

    2013-01-01

    The Database of Vascular Plants of Canada or VASCAN (http://data.canadensys.net/vascan) is a comprehensive and curated checklist of all vascular plants reported in Canada, Greenland (Denmark), and Saint Pierre and Miquelon (France). VASCAN was developed at the Université de Montréal Biodiversity Centre and is maintained by a group of editors and contributors. For every core taxon in the checklist (species, subspecies, or variety), VASCAN provides the accepted scientific name, the accepted French and English vernacular names, and their synonyms/alternatives in Canada, as well as the distribution status (native, introduced, ephemeral, excluded, extirpated, doubtful or absent) of the plant for each province or territory, and the habit (tree, shrub, herb and/or vine) of the plant in Canada. For reported hybrids (nothotaxa or hybrid formulas) VASCAN also provides the hybrid parents, except if the parents of the hybrid do not occur in Canada. All taxa are linked to a classification. VASCAN refers to a source for all name, classification and distribution information. All data have been released to the public domain under a CC0 waiver and are available through Canadensys and the Global Biodiversity Information Facility (GBIF). VASCAN is a service to the scientific community and the general public, including administrations, companies, and non-governmental organizations.

  17. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  18. Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology

    NARCIS (Netherlands)

    Bal, K.D.; Bouma, T.J.; Buis, K.; Struyf, E.; Jonas, S.; Backx, H.; Meire, P.

    2011-01-01

    1. Macrophytes in running waters experience an often dynamic and harsh environment. To avoid breakage, plants have to reduce the experienced drag force. However, by reducing leaf area, photosynthetic production is less. Aquatic plants therefore have to find a balance between reducing drag and

  19. Uranium removal from water by five aquatic plants

    International Nuclear Information System (INIS)

    Hu Nan; Ding Dexin; Li Guangyue; Wang Yongdong; Li Le; Zheng Jifang

    2012-01-01

    Hydroponic solution culture experiments were conducted on the growth of Eichhornia crassipes, Lemna minor L, Azolla imbircata, Potamogeton crispus, and Alligator alternanthera Herb in water with 0.15, 1.50 and 15.00 mg . L -1 concentrations of uranium, and on the uranium removal from the water by the aquatic plants. For the 21 days of hydroponic solution culture experiments, Azolla imbircata exhibited the strongest resistance to uranium and its growth inhibition rates induced by the water with 0.15, 1.50 and 15.00 mg · L -1 concentrations of uranium were 4.56%, 2.48%, 6.79%, respectively, and the uranium removal rates from the water by the plant amounted to 94%, 97% and 92%, respectively. Further experiments revealed that the most uranium removal could be achieved when 7.5 g Azolla imbircata was grown in 1 L of water, and the time required for the plant to reduce the uranium concentration in water with 1.25, 2.50, 5.00 and 10.00 mg · L -l concentrations of uranium below that stipulated in the national emission standards of China were 17, 19, 23 and 25 days, respectively. The results have laid foundation for further studies of phytoremediation of uranium contaminated water. (authors)

  20. Sphagnum modifies climate-change impacts on subarctic vascular bog plants.

    NARCIS (Netherlands)

    Dorrepaal, E.; Aerts, R.; Cornelissen, J.H.C.; van Logtestijn, R.S.P; Callaghan, T.V.

    2006-01-01

    1. Vascular plant growth forms in northern peatlands differ in their strategies to cope with the harsh climate, low nutrient availability and progressively increasing height of the Sphagnum carpet in which they grow. Climate change may therefore affect growth forms differentially, both directly and

  1. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    Science.gov (United States)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  2. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus.

    Science.gov (United States)

    Kim, Juhyun; Joo, Youngsung; Kyung, Jinseul; Jeon, Myeongjune; Park, Jong Yoon; Lee, Ho Gyun; Chung, Doo Soo; Lee, Eunju; Lee, Ilha

    2018-02-01

    Ranunculus trichophyllus is an amphibious plant that produces thin and cylindrical leaves if grown under water but thick and broad leaves if grown on land. We found that such heterophylly is widely controlled by two plant hormones, abscisic acid (ABA) and ethylene, which control terrestrial and aquatic leaf development respectively. Aquatic leaves produced higher levels of ethylene but lower levels of ABA than terrestrial leaves. In aquatic leaves, their distinct traits with narrow shape, lack of stomata, and reduced vessel development were caused by EIN3-mediated overactivation of abaxial genes, RtKANADIs, and accompanying with reductions of STOMAGEN and VASCULAR-RELATED NAC-DOMAIN7 (VDN7). In contrast, in terrestrial leaves, ABI3-mediated activation of the adaxial genes, RtHD-ZIPIIIs, and STOMAGEN and VDN7 established leaf polarity, and stomata and vessel developments. Heterophylly of R.trichophyllus could be also induced by external cues such as cold and hypoxia, which is accompanied with the changes in the expression of leaf polarity genes similar to aquatic response. A closely-related land plant R. sceleratus did not show such heterophyllic responses, suggesting that the changes in the ABA/ethylene signaling and leaf polarity are one of key evolutionary steps for aquatic adaptation.

  3. The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline.

    Science.gov (United States)

    Piombino, Aldo

    2016-01-01

    Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.

  4. Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same?

    Czech Academy of Sciences Publication Activity Database

    Ellison, A. M.; Adamec, Lubomír

    2011-01-01

    Roč. 120, č. 11 (2011), 1721-1731 ISSN 0030-1299 Institutional research plan: CEZ:AV0Z60050516 Keywords : terrestrial and aquatic carnivorous plants * photosynthesis * mineral nutrition Subject RIV: EF - Botanics Impact factor: 3.061, year: 2011

  5. Aquatic plants are open flexible structures - a reply to Sukhodolov

    DEFF Research Database (Denmark)

    Sand-Jensen, K.

    2005-01-01

    1. Aquatic plant stands are flexible, mesh-like open structures that undergo modification in shape and experience a cascade of declining flow velocities and micro-scale Reynolds numbers with increasing distance into the stands. It is not possible to define or measure the frontal area of this open...... other problems. Relating drag coefficients to macro-scale Reynolds numbers would result in exactly the same form of relationship as to water velocity because macro-scale Reynolds numbers changed in direct proportion to water velocity in the experiments, while kinematic viscosity and characteristic...

  6. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration...... photorespiration was evident at a range of O2 concentrations, including values below air equilibrium. At a high O2 concentration of 2.2-fold the atmospheric equilibrium concentration, net photosynthesis was reduced substantially and, although it remained positive in leaves containing high malate concentrations...... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...

  7. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  8. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    ... (Mydophyllum spice turn) and hydrilla (Hyddlla verticfflata). These species, which account for more that two thirds of all noxious aquatic weed acreage in the United States, have similar characteristics...

  9. Replacement of cowdung by fermentation of aquatic and terrestrial plants for use as fuel, fertilizer and biogas plant feed

    Energy Technology Data Exchange (ETDEWEB)

    Das, C. R.; Ghatnekar, S. D.

    1979-01-01

    With 85% of the entire Indian population living in villages and 98% of the household energy requirement of the rural population demanded for cooking, research was undertaken on the supply of biomass for those Indians who do not have cattle. This research was carried out on the fermentation of aquatic and terrestrial plants for use in biogas generation. The plants utilized for biogas generation are: water hyacinth, water lettuce, African payal, duck weed, water spinach, cattail ramban, ipil-ipil, morning glory, paragrass, purple nutsedge, and durva grass.

  10. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?

    Czech Academy of Sciences Publication Activity Database

    Sirová, D.; Šantrůček, Jiří; Adamec, Lubomír; Bárta, J.; Borovec, Jakub; Pech, J.; Owens, S.M.; Šantrůčková, H.; Schaeufele, R.; Štorchová, Helena; Vrba, Jaroslav

    2014-01-01

    Roč. 114, č. 1 (2014), s. 125-133 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:60077344 ; RVO:67985939 ; RVO:61389030 Keywords : Aldrovanda vesiculosa * aquatic carnivorous plants * Utricularia vulgaris * nitrogen fixation Subject RIV: CE - Biochemistry; EF - Botanics (BU-J); EF - Botanics (UEB-Q) Impact factor: 3.654, year: 2014

  11. Effect of Aquatic Plants on Phosphorus Removal and Electrical Conductivity Decrease in Municipal Effluent

    OpenAIRE

    Sara Samimi Loghmani; Ali Abbaspour

    2014-01-01

    Phosphorus (P) is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa) and duck weed (lemna minor) with four treatments and three...

  12. Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams

    Energy Technology Data Exchange (ETDEWEB)

    Baattrup-Pedersen, Annette, E-mail: abp@bios.au.dk [Department of Bioscience, Aarhus University, Vejlsøvej 25, P.O. Box 314, DK-8600 Silkeborg (Denmark); Göthe, Emma [Department of Bioscience, Aarhus University, Vejlsøvej 25, P.O. Box 314, DK-8600 Silkeborg (Denmark); Riis, Tenna [Department of Bioscience, Aarhus University, Ole Worms Allé 1, Building 1135, Room 217, DK-8000 Aarhus C (Denmark); O' Hare, Matthew T. [Centre for Ecology and Hydrology, Bush Estate, Penicuik EH26 0QB (United Kingdom)

    2016-02-01

    Historically, close attention has been paid to negative impacts associated with nutrient loads to streams and rivers, but today hydromorphological alterations are considered increasingly implicated when lowland streams do not achieve good ecological status. Here, we explore if trait-abundance patterns of aquatic plants change along gradients in hydromorphological degradation and eutrophication in lowland stream sites located in Denmark. Specifically, we hypothesised that: i) changes in trait-abundance patterns occur along gradients in hydromorphological degradation and ii) trait-abundance patterns can serve to disentangle effects of eutrophication and hydromorphological degradation in lowland streams reflecting that the mechanisms behind changes differ. We used monitoring data from a total of 147 stream reaches with combined data on aquatic plant species abundance, catchment land use, hydromorphological alterations (i.e. planform, cross section, weed cutting) and water chemistry parameters. Traits related to life form, dispersal, reproduction and survival together with ecological preference values for nutrients and light (Ellenberg N and L) were allocated to 41 species representing 79% of the total species pool. We found clear evidence that habitat degradation (hydromorphological alterations and eutrophication) mediated selective changes in the trait-abundance patterns of the plant community. Specific traits could distinguish hydromorphological degradation (free-floating, surface; anchored floating leaves; anchored heterophylly) from eutrophication (free-floating, submerged; leaf area). We provide a conceptual framework for interpretation of how eutrophication and hydromorphological degradation interact and how this is reflected in trait-abundance patterns in aquatic plant communities in lowland streams. Our findings support the merit of trait-based approaches in biomonitoring as they shed light on mechanisms controlling structural changes under environmental

  13. Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams

    International Nuclear Information System (INIS)

    Baattrup-Pedersen, Annette; Göthe, Emma; Riis, Tenna; O'Hare, Matthew T.

    2016-01-01

    Historically, close attention has been paid to negative impacts associated with nutrient loads to streams and rivers, but today hydromorphological alterations are considered increasingly implicated when lowland streams do not achieve good ecological status. Here, we explore if trait-abundance patterns of aquatic plants change along gradients in hydromorphological degradation and eutrophication in lowland stream sites located in Denmark. Specifically, we hypothesised that: i) changes in trait-abundance patterns occur along gradients in hydromorphological degradation and ii) trait-abundance patterns can serve to disentangle effects of eutrophication and hydromorphological degradation in lowland streams reflecting that the mechanisms behind changes differ. We used monitoring data from a total of 147 stream reaches with combined data on aquatic plant species abundance, catchment land use, hydromorphological alterations (i.e. planform, cross section, weed cutting) and water chemistry parameters. Traits related to life form, dispersal, reproduction and survival together with ecological preference values for nutrients and light (Ellenberg N and L) were allocated to 41 species representing 79% of the total species pool. We found clear evidence that habitat degradation (hydromorphological alterations and eutrophication) mediated selective changes in the trait-abundance patterns of the plant community. Specific traits could distinguish hydromorphological degradation (free-floating, surface; anchored floating leaves; anchored heterophylly) from eutrophication (free-floating, submerged; leaf area). We provide a conceptual framework for interpretation of how eutrophication and hydromorphological degradation interact and how this is reflected in trait-abundance patterns in aquatic plant communities in lowland streams. Our findings support the merit of trait-based approaches in biomonitoring as they shed light on mechanisms controlling structural changes under environmental

  14. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata

    Directory of Open Access Journals (Sweden)

    Ahmad Farid Abu Bakar

    2013-01-01

    Full Text Available The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2% and zinc (93.7% and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8% compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5% and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  15. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata)

    Science.gov (United States)

    Yusoff, Ismail; Fatt, Ng Tham; Othman, Faridah; Ashraf, Muhammad Aqeel

    2013-01-01

    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water. PMID:24102060

  16. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  17. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems

    NARCIS (Netherlands)

    Petruzella, A.; Grutters, B.M.C.; Thomaz, S.M.; Bakker, E.S.

    2017-01-01

    Invasions of tropical and subtropical aquatic plants threaten biodiversity and cause ecological and economic impacts worldwide. An urgent question is whether native herbivores are able to inhibit the spread of these alien species thus providing biotic resistance. The potential for biotic resistance

  18. Extraction of 14C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO)

    International Nuclear Information System (INIS)

    Filbin, G.J.; Hough, R.A.

    1984-01-01

    DMSO was tested as a solvent to extract 14 C-labeled photosynthate from three species of aquatic plants in photosynthesis measurements and compared with the dry oxidation method for plant radioassay. Extraction of ca. 300 mg of fresh or rehydrated dry plant tissue samples in 10 ml of reagent-grade DMSO for 8h at 65 0 C resulted in a stable, nonviscous solution with excellent liquid scintillation counting characteristics. Extraction efficiency was in the range of 96-99% of fixed 14 C, and precision was comparable to, or better than, that obtained with dry oxidation. The method is simple and inexpensive, and for fresh tissue the same sample extracts can be used for chlorophyll analyses

  19. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, puranium concentration in plant and the substrate (r=0.88, puranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (puranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient.

    Science.gov (United States)

    Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D

    2010-04-01

    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.

  1. Field growth analysis of Utricularia stygia and U. intermedia-two aquatic carnivorous plants with dimorphic shoots

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2010-01-01

    Roč. 49, č. 2 (2010), s. 241-251 ISSN 0079-2047 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plant s * Lentibulariaceae * dystrophic water Subject RIV: EF - Botanics Impact factor: 0.462, year: 2010

  2. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants.

    Science.gov (United States)

    Mackuľak, Tomáš; Mosný, Michal; Škubák, Jaroslav; Grabic, Roman; Birošová, Lucia

    2015-03-01

    In this study we analyzed and characterized 29 psychoactive remedies, illicit drugs and their metabolites in single stages of wastewater treatment plants in the capital city of Slovakia. Psychoactive compounds were present within all stages, and tramadol was detected at a very high concentration (706 ng/L). Significant decreases of codeine, THC-COOH, cocaine and buprenorphine concentration were observed in the biological stage. Consequently, we were interested in the possibility of alternative tertiary post-treatment of effluent water with the following aquatic plants: Cabomba caroliniana, Limnophila sessiliflora, Egeria najas and Iris pseudacorus. The most effective plant for tertiary cleansing was I. pseudacorus which demonstrated the best pharmaceutical removal capacity. After 48 h codeine and citalopram was removed with 87% efficiency. After 96 h were all analyzed compounds were eliminated with efficiencies above 58%. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.

    Science.gov (United States)

    Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V

    2015-12-01

    The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Environmental Behavior and Fate of Explosives in Groundwater from the Milan Army Ammunition Plant in Aquatic and Wetland Plants. Fate of TNT and RDX

    National Research Council Canada - National Science Library

    Best, Elly

    1998-01-01

    The present study was performed to elucidate the environmental behavior and fate of TNT and RDX in aquatic and wetland plants collected from a field-scale wetland demonstration deployed at Milan Army...

  5. Vascular Plant and Vertebrate Inventory of Chiricahua National Monument

    Science.gov (United States)

    Powell, Brian F.; Schmidt, Cecilia A.; Halvorson, William L.; Anning, Pamela

    2009-01-01

    This report summarizes the results of the first comprehensive inventory of vascular plants and vertebrates at Chiricahua National Monument (NM) in Arizona. This project was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in the Sonoran Desert Network of parks in Arizona and New Mexico. In 2002, 2003, and 2004 we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Chiricahua NM to document the presence of species within the boundaries of the monument. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the monument. This report is also the first summary of previous research from the monument and therefore it provides an important overview of survey efforts to date. We used data from our inventory and previous research to compile complete species lists for the monument and to assess inventory completeness. We recorded a total of 424 species, including 37 not previously found at the monument (Table 1). We found 10 species of non-native plants and one non-native mammal. Most non-native plants were found along the western boundary of the monument. Based on a review of our inventory and past research at the monument, there have been a total of 1,137 species of plants and vertebrates found at the monument. We believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network. The mammal community at the monument had the highest species richness (69 species) and the amphibian and reptile community was among the lowest species richness (33 species) of any park in the Sonoran Desert Network. Species richness of the plant and bird communities was intermediate. Among the important determinants of species richness for all groups is the geographic location of the monument

  6. Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia

    Czech Academy of Sciences Publication Activity Database

    Masi, E.; Ciszak, M.; Colzi, I.; Adamec, Lubomír; Mancuso, S.

    2016-01-01

    Roč. 6, e24989 (2016), s. 1-11 ISSN 2045-2322 Institutional support: RVO:67985939 Keywords : electrophysiology * multielectrode array * aquatic carnivorous plants Subject RIV: ED - Physiology Impact factor: 4.259, year: 2016

  7. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  8. Interactions between soil phototrophs and vascular plants in Himalayan cold deserts

    Czech Academy of Sciences Publication Activity Database

    Řeháková, Klára; Čapková, Kateřina; Dvorský, Miroslav; Kopecký, Martin; Altman, Jan; Šmilauer, P.; Doležal, Jiří

    2017-01-01

    Roč. 115, dec 2017 (2017), s. 568-578 ISSN 0038-0717 R&D Projects: GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : microbial communities * vascular plants * interactions Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.857, year: 2016

  9. Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint.

    Science.gov (United States)

    Mosyakin, S L; Bezusko, L G; Mosyakin, A S

    2007-01-01

    The article provides an overview of the problem of origin of the only native vascular plants of Antarctica, Deschampsia antartica (Poaceae) and Colobanthus quitensis (Caryophyllaceae), from the viewpoint of modern historical phytogeography and related fields of science. Some authors suggested the Tertiary relict status of these plants in Antarctica, while others favour their recent Holocene immigration. Direct data (fossil or molecular genetic ones) for solving this controversy is still lacking. However, there is no convincing evidence supporting the Tertiary relict status of these plants in Antarctica. Most probably D. antarctica and C. quitensis migrated to Antarctica in the Holocene or Late Pleistocene (last interglacial?) through bird-aided long-distance dispersal. It should be critically tested by (1) appropriate methods of molecular phylogeography, (2) molecular clock methods, if feasible, (3) direct paleobotanical studies, (4) paleoclimatic reconstructions, and (5) comparison with cases of taxa with similar distribution/dispersal patterns. The problem of the origin of Antarctic vascular plants is a perfect model for integration of modern methods of molecular phylogeography and phylogenetics, population biology, paleobiology and paleogeography for solving a long-standing enigma of historical plant geography and evolution.

  10. Optimization of methodology by X-ray fluorescence for the metals determination in aquatic plants of the high course of the Lerma river

    International Nuclear Information System (INIS)

    Albino P, E.

    2015-01-01

    The high course of the Lerma river has a pollution problem in its hydrological system due to discharges of urban wastewater and industrial areas; the pollutants that affect the hydrological system are metals, which are absorbed by living organisms and probably incorporated into the food chain. For this reason in this work the technique of X-ray fluorescence total reflection was applied in six species of aquatic plants that grow in the high course of the Lerma river: Arroyo Mezapa (Eichhornia crassipes, Juncus efusus, Hydrocotyle, Schoenoplectus validus) Ameyalco river (Lemna gibba) and Atarasquillo river (Berula erecta) in order to evaluate the metals concentration (Cr, Mn, Fe, Ni, Cu, Zn and Pb) as well as the translocation factor and bioaccumulation factor for each aquatic species. According to the results, was observed that the highest concentration of metals is located in the deeper parts; metals which present a significant concentration are Mn and Fe in the six species of aquatic plants. According to the translocation factor the species having a higher translocation of metals are: Juncus efusus in Mn (1.19 mg/L) and Zn (1.31 mg/L), Hydrocotyle (1.14 mg/L), the species Eichhornia crassipes not show translocation. For bioaccumulation factor, was observed that the most bioaccumulation of metals is found in the soluble fraction of the six species of aquatic plants, especially Fe followed of Cu and Zn. Also was considered that the Berula erecta plant had a higher bioaccumulation of metals such as Cr, Mn, Fe, Cu and Zn so it can be considered as a hyper-accumulating species of these elements. With the results can be considered that the technique of X-ray fluorescence total reflection is 95% reliable to determine the concentration of metals within the structures of the aquatic plants used for this study. (Author)

  11. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    Science.gov (United States)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  12. Radiocontamination patterns of vascular plants in a forest ecosystem

    International Nuclear Information System (INIS)

    Nimis, P.L.; Bolognini, G.; Giovani, C.

    1994-01-01

    This study is based on measurements of radiocesium and potassium-40 in leaves, stems and roots of 48 vascular plants in a natural beech forest in the Carnic Alps (NE Italy). The data have been submitted to numerical classification, and the main results are: (a) radiocontamination patterns and ecology of the species are well related, (b) three main groups of species with different radiocontamination can be distinguished: plants in clearings, forest plants rooting in the organic soil layer, forest plants rooting in the mineral layer; (c) radiocesium tends to be retained in the roots, especially in plants in the clearings; (d) Pteridophytes, contrary to all other plants, are able to discriminate between cesium and potassium at leaf level; (e) for all other species, cesium and potassium, once taken up by the plant, exhibit a similar behaviour; (f) total contamination by radiocesium is related to the depth of the root systems, and to the unequal distribution of radiocesium in the soil profile. Species-specific mechanisms of differential absorption are not evident in the investigated forest; the radiocontamination of plants can be easily explained in ecological terms. Radiocontamination on a water basis (Bq/l) is suggested as being much more appropriate for solving certain radioecological problems

  13. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  14. Microbial community dynamics and transformation of vascular plant detritus in two wetland ecosystems

    International Nuclear Information System (INIS)

    Moran, M.A.

    1987-01-01

    The microbial ecology of two wetland ecosystems in southeastern Georgia, USA, was studied with respect to microbial community dynamics and microbially-mediated transformations of vascular plant detritus. In the Okefenokee Swamp, biomass of microorganisms in the water column and sediments was generally lower in winter months and higher during spring and summer. Biomass and activity (measured as 14 C-lignocellulose mineralization) differed significantly among five habitats within the Okefenokee, and also among locations within each habitat. Significant heterogeneity in the structure of Okefenokee microbial communities was found at scales from 30 cm to 150 m. In field and laboratory studies of vascular plant decomposition in the Okefenokee and a salt marsh on Sapelo Island, the mathematical model which best describes decomposition kinetics is the decaying coefficient model

  15. Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform - A case study in Wild Duck Lake Wetland, Beijing, China

    Science.gov (United States)

    Jing, Ran; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Deng, Lei

    2017-12-01

    Above-bottom biomass (ABB) is considered as an important parameter for measuring the growth status of aquatic plants, and is of great significance for assessing health status of wetland ecosystems. In this study, Structure from Motion (SfM) technique was used to rebuild the study area with high overlapped images acquired by an unmanned aerial vehicle (UAV). We generated orthoimages and SfM dense point cloud data, from which vegetation indices (VIs) and SfM point cloud variables including average height (HAVG), standard deviation of height (HSD) and coefficient of variation of height (HCV) were extracted. These VIs and SfM point cloud variables could effectively characterize the growth status of aquatic plants, and thus they could be used to develop a simple linear regression model (SLR) and a stepwise linear regression model (SWL) with field measured ABB samples of aquatic plants. We also utilized a decision tree method to discriminate different types of aquatic plants. The experimental results indicated that (1) the SfM technique could effectively process high overlapped UAV images and thus be suitable for the reconstruction of fine texture feature of aquatic plant canopy structure; and (2) an SWL model based on point cloud variables: HAVG, HSD, HCV and two VIs: NGRDI, ExGR as independent variables has produced the best predictive result of ABB of aquatic plants in the study area, with a coefficient of determination of 0.84 and a relative root mean square error of 7.13%. In this analysis, a novel method for the quantitative inversion of a growth parameter (i.e., ABB) of aquatic plants in wetlands was demonstrated.

  16. Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas.

    Science.gov (United States)

    Durães, Nuno; Bobos, Iuliu; Ferreira da Silva, Eduardo; Dekayir, Abdelilah

    2015-02-01

    The ability of aquatic (Juncus effusus L., Scirpus holoschoenus L., Thypha latifolia L. and Juncus sp.) and land (Cistus ladanifer L., Erica andevalensis C.-R., Nerium oleander L., Isatis tinctoria L., Rosmarinus officinalis L., Cynodon dactylon L. and Hordeum murinum L.) plants from Portugal (Aljustrel, Lousal and São Domingos) and Morocco (Tighza and Zeida) mining areas to uptake, translocate and tolerate heavy metals (Cu, Zn and Pb) was evaluated. The soils (rhizosphere) of the first mining area are characterized by high acidity conditions (pH 2-5), whereas from the second area, by alkaline conditions (pH 7.0-8.5). Physicochemical parameters and mineralogy of the rhizosphere were determined from both areas. Chemical analysis of plants and the rhizosphere was carried out by inductively coupled plasma emission spectrometry. The sequential chemical extraction procedure was applied for rhizosphere samples collected from both mining areas. In the acid conditions, the aquatic plants show a high capacity for Zn bioaccumulation and translocation and less for Pb, reflecting the following metal mobility sequence: Zn > Cu > Pb. Kaolinite detected in the roots by infrared spectroscopy (IR) contributed to metal fixation (i.e. Cu), reducing its translocation to the aerial parts. Lead identified in the roots of land plants (e.g. E. andevalensis) was probably adsorbed by C-H functional groups identified by IR, being easily translocated to the aerial parts. It was found that aquatic plants are more efficient for phytostabilization than bioaccumulation. Lead is more bioavailable in the rhizosphere from Morocco mining areas due to scarcity of minerals with high adsorption ability, being absorbed and translocated by both aquatic and land plants.

  17. Cold shock to aquatic organisms: guidance for power-plant siting, design, and operation

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1977-01-01

    Problems of cold-shock damages to aquatic organisms have arisen at some condenser cooling-water discharges of thermal power stations when the warm-water releases have suddenly terminated. The basis for such damage lies in the exposure of resident organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and often leads to death. Although some spectacular fish kills from cold shock have occurred, the present knowledge of the hydraulic and biological processes involved can provide guidance for the siting, design, and operation of power-plant cooling systems to minimize the likelihood of significant cold-shock effects. Preventing cold-shock damages is one consideration in minimizing overall environmental impacts of power-plant cooling and in balancing plant costs with environmental benefits

  18. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2015-01-01

    Full Text Available The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs and nickel(II oxide as bulk (NiO-Bulk. Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS formation, especially at high concentration (1000 mg/L. These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.

  19. The avoidance strategy of environmental constraints by an aquatic plant Potamogeton alpinus in running waters.

    Science.gov (United States)

    Robionek, Alicja; Banaś, Krzysztof; Chmara, Rafał; Szmeja, Józef

    2015-08-01

    Aquatic plants anchored in streams are under pressure from various constraints linked to the water flow and display strategies to prevent their damage or destruction. We assume that the responses of aquatic plants to fast-water flow are a manifestation of a trade-off consisting in either maximizing the resistance to damage (tolerance strategy) in minimizing the hydrodynamic forces (avoidance strategy), or both. Our main hypothesis was that Potamogeton alpinus demonstrate the avoidance strategy. We analyzed architecture traits of the modules of this clonal plant from slow- and fast-flowing streams. In fast-flowing waters, the avoidance strategy of P. alpinus is reflected by the following: (1) the presence of floating leaves that stabilize the vertical position of the stem and protect the inflorescence against immersion; (2) elongation of submerged leaves (weakens the pressure of water); and (3) shoot diameter reduction and increase in shoot density (weakens the pressure of water, increases shoot elasticity), and by contrast in slow-water flow include the following: (4) the absence of floating leaves in high intensity of light (avoiding unnecessary outlays on a redundant organ); (5) the presence of floating leaves in low intensity of light (avoidance of stress caused by an insufficient assimilation area of submerged leaves).

  20. New Chorological Data for Rare Vascular Plants from Romania

    Directory of Open Access Journals (Sweden)

    Anastasiu Paulina

    2015-11-01

    Full Text Available New chorological data about seven rare vascular plant taxa are reported in the present paper: Conringia austriaca, Jurinea multiflora, Linaria arvensis, Nonea pallens, Ophrys apifera, Ophrys scolopax subsp. cornuta, Saponaria officinalis. For Linaria arvensis, previously considered doubtful in the absence of the herbarium material, we confirm its presence in Romania. The report of Nonea pallens is the first for Dobrogea, while the report of Jurinea multiflora is the first for Muntenia region of Romania.

  1. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation

    OpenAIRE

    Malmer, Nils; Albinsson, C; Svensson, B M; Wallén, Bo

    2003-01-01

    The interference between vascular plants and peat mosses with respect to nitrogen and phosphorus was studied in a fertilization experiment and with respect to competition for light in a removal experiment in poor fens with either soligenous or topogenous hydrology using Narthecium ossifragum (L.) Huds. and three species of Sphagnum sect. Sphagnum as targets. Adding fertilizer either on the moss surface or below it confirmed the hypotheses of an asymmetric competition for nutrients, viz. that ...

  2. Activated carbon derived from harmful aquatic plant for high stable supercapacitors

    Science.gov (United States)

    Li, Jiangfeng; Wu, Qingsheng

    2018-01-01

    Considering cost and environmental protection, the harmful aquatic plant altemanthera philoxeroides derived carbon material with super high specific surface area (2895 m2 g-1) is an ideal electrode material for supercapacitor. The structure and composition of these carbon materials were characterized by SEM, EDS, XPS and BET measurements. The obtained material exhibits a maximum specific capacitance of 275 F g-1 at 0.5 A g-1 and retains a capacitance of 210 F g-1 even at 50 A g-1. In addition, it also shows excellent capacity retention of 5000 cycles at 10 A g-1.

  3. Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

    NARCIS (Netherlands)

    Klosterman, S.J.; Subbarao, K.V.; Kang, S.; Veronese, P.; Gold, S.E.; Thomma, B.P.H.J.; Chen, Z.J.; Henrissat, B.; Lee, Y.H.; Park, J.; Garcia-Pedrajas, M.D.; Barbara, D.J.; Anchieta, A.; Jonge, de R.; Santhanam, P.; Maruthachalam, K.; Atallah, Z.; Amyotte, S.G.; Paz, Z.; Inderbitzin, P.; Hayes, R.J.; Heiman, D.I.; Young, S.; Zeng, Q.; Engels, R.; Galagan, J.; Cuomo, C.; Dobinson, K.F.; Ma, L.J.

    2011-01-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in

  4. Dataset of herbarium specimens of threatened vascular plants in Catalonia.

    Science.gov (United States)

    Nualart, Neus; Ibáñez, Neus; Luque, Pere; Pedrol, Joan; Vilar, Lluís; Guàrdia, Roser

    2017-01-01

    This data paper describes a specimens' dataset of the Catalonian threatened vascular plants conserved in five public Catalonian herbaria (BC, BCN, HGI, HBIL and MTTE). Catalonia is an administrative region of Spain that includes large autochthon plants diversity and 199 taxa with IUCN threatened categories (EX, EW, RE, CR, EN and VU). This dataset includes 1,618 records collected from 17 th century to nowadays. For each specimen, the species name, locality indication, collection date, collector, ecology and revision label are recorded. More than 94% of the taxa are represented in the herbaria, which evidence the paper of the botanical collections as an essential source of occurrence data.

  5. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2014-08-01

    A growing body of evidence suggests that aquatic plants can mitigate the toxicity of insecticides to sensitive aquatic animals. The current paradigm is that this ability is driven primarily by insecticide sorption to plant tissues, especially for hydrophobic compounds. However, recent work shows that submerged plants can strongly mitigate the toxicity of the relatively hydrophilic insecticide malathion, despite the fact that this compound exhibits a slow sorption rate to plants. To examine this disparity, we tested the hypothesis that the mitigating effect of submerged plants on malathion's toxicity is driven primarily by the increased water pH from plant photosynthesis causing the hydrolysis of malathion, rather than by sorption. To do this, we compared zooplankton (Daphnia magna) survival across five environmentally relevant malathion concentrations (0, 1, 4, 6, or 36 μg L(-1)) in test containers where we chemically manipulated water pH in the absence of plants or added the submerged plant (Elodea canadensis) but manipulated plant photosynthetic activity via shading or no shading. We discovered that malathion was equally lethal to Daphnia at all concentrations tested when photosynthetically inactive (i.e. shaded) plants were present (pH at time of dosing=7.8) or when pH was chemically decreased (pH=7.7). In contrast, when photosynthetically active (i.e. unshaded) plants were present (pH=9.8) or when pH was chemically increased (pH=9.5), the effects of 4 and 6 μg L(-1) of malathion on Daphnia were mitigated strongly and to an equal degree. These results demonstrate that the mitigating effect of submerged plants on malathion's toxicity can be explained entirely by a mechanism of photosynthesizing plants causing an increase in water pH, resulting in rapid malathion hydrolysis. Our findings suggest that current ecotoxicological models and phytoremediation strategies may be overlooking a critical mechanism for mitigating pesticides. Copyright © 2014 Elsevier Ltd

  6. Concentration of heavy metals in brook trout in comparison to aquatic plants and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Rady, M.D.

    1983-01-01

    From 1974 to 1977 the heavy metal content of river water, fishes (Salmo trutta fario), three aquatic plants (Cladophora glomerata, Potamogeton pectinatus, Zannichellia palustris), one river-bank plant (Phalaris arundinacea), and sediments (clay fraction) taken from the River Leine, up and downstream of Goettingen, were determined. Galvanic-bath sewage containing heavy metals caused an increase (11-60%) in the concentration of nine elements in the water. The average level of heavy metals in the river water corresponded to that of the Ems, Elbe and Weser, but was lower than that of the Neckar, Rhine and Danube. It was also below the European Community Guidelines (1975) on the quality of water used for the artificial recharging of ground water. River water upstream of the city has been used for this recharging for many years. There is a good correlation between the metal content in the investigated samples and in the water. In the muscles, only Cd, Co and Mn, in the liver Cd, Co, Cr. Hg, Mn and Zn, and in the total fish Cd, Co, Cr, Cu and Zn had increased significantly. In contrast to all other elements, Cr shows the highest concentration in the muscles. A previous accumulation of Cr in the liver is not a prerequisite for the accumulation in the muscles. Mercury shows the highest accumulation in the muscles, apparently because of the high retention rate of this element. Muscles also are a good monitor for this element. The impact of heavy metals on the Leine water was reflected in aquatic plants, which showed an increase in concentration up to 95-fold (according to metal or plant) - but not in river-bank plants. C. glomerata has the remarkable capability of accumulating all ten elements. Since P. arundinacea cannot reflect the different load of heavy metals it is therefore less suitable as a biological monitor for these metals.

  7. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-04-01

    details on piercers that feed on vascular plants by cutting or piercing the tissue using sharp or chewing mouth parts and consume plant liquids. We also provide a list of families of aquatic insects in Latin America, with an initial assignment to FFGs. We recommended caution when assigning FFGs based on gut contents, as it can provide misleading information. Overall, FFG is a very useful tool to understand the role of aquatic macroinvertebrates in stream ecosystems and comparisons among studies will benefit from consistency in their use. Rev. Biol. Trop. 62 (Suppl. 2: 155-167. Epub 2014 April 01.

  8. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  9. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India.

    Science.gov (United States)

    Lenka, M; Panda, K K; Panda, B B

    1992-02-01

    In situ aquatic and terrestrial plants including a few vegetable and crop plants growing in and around a chloralkali plant at Ganjam, India were analyzed for concentrations of root and shoot mercury. The aquatic plants found to bioconcentrate mercury to different degrees included Marsilea spp., Spirodela polyrhiza, Jussiea repens, Paspalum scrobiculatam, Pistia stratiotes, Eichhornia crassipes, Hygrophila schulli, Monochoria hastata and Bacopa monniera. Among wild terrestrial plants Chloris barbata, Cynodon dactylon, Cyperus rotundus and Croton bonplandianum were found growing on heavily contaminated soil containing mercury as high as 557 mg/kg. Analysis of mercury in root and shoot of these plants in relation to the mercury levels in soil indicated a significant correlation between soil and plant mercury with the exception of C. bonplandianum. Furthermore, the tolerance to mercury toxicity was highest with C. barbata followed by C. dactylon and C. rotundus, in that order. The rice plants analyzed from the surrounding agricultural fields did not show any significant levels of bioconcentrated mercury. Of the different vegetables grown in a contaminated kitchen garden with mercury level at 8.91 mg/kg, the two leafy vegetables, namely cabbage (Brassica oleracea) and amaranthus (Amaranthus oleraceous), were found to bioconcentrate mercury at statistically significant levels. The overall study indicates that the mercury pollution is very much localized to the specific sites in the vicinity of the chloralkali plant.

  10. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  11. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.

    Science.gov (United States)

    Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G

    2011-05-11

    Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Microbial plant litter decomposition in aquatic and terrestrial boreal systems along a natural fertility gradient

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2017-04-01

    Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal

  13. Bibliographical survey of radiostrontium uptake capacity and processes in aquatic plants

    International Nuclear Information System (INIS)

    Pally, M.; Foulquier, L.

    1983-09-01

    This report covers 302 articles published between 1949 and 1980 on the contamination of freshwater and marine aquatic plants by radioactive strontium. For the marine and continental environments, the results of laboratory experiments on the dynamics of radiostrontium buildup and localization, concentration factors, elimination processes, the effects of biological factors and of the environment, the activity levels and concentration factors measured in areas directly and indirectly affected by waste discharges, discrimination factors and the role of plants as radiation indicators, are examined. The radioactive strontium uptake potentials are higher for freshwater plants -especially mosses and characeae- than for marine plants. In zones not directly affected by waste discharges, the maximum activity measured is 82 pCi/kg wet weight, compared with 750 pCi/kg for freshwater plants. The peak values were observed in 1964-1965. In zones directly affected by waste discharges, the activity levels range from 15 to 1700 pCi of 90 Sr per kilogram of wet weight in the marine environment, and from 20 to 207000 pCi/kg in fresh water. This work underlines the need for greater accuracy in allowing for the ecological characteristics of each site when assessing the impact of nuclear facilities, and for thoroughly correlating field observations with laboratory experiments in order to obtain a prospective view of the potentials for radioactive strontium uptake by plants according to the activity levels present in the liquid effluents [fr

  14. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    Science.gov (United States)

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed.

    Science.gov (United States)

    Runnie, I; Salleh, M N; Mohamed, S; Head, R J; Abeywardena, M Y

    2004-06-01

    In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.

  16. 33 CFR Appendix C to Part 273 - Information Requirements for Aquatic Plant Control Program Environmental Impact Statements

    Science.gov (United States)

    2010-07-01

    ... Aquatic Plant Control Program Environmental Impact Statements C Appendix C to Part 273 Navigation and... Environmental Impact Statements 1. Description of the problem. a. Pests. Identify the pest to be controlled by.... Relationship to environmental situation. Non-target organisms and integrated pest management programs. 2...

  17. Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants

    NARCIS (Netherlands)

    Verhofstad, M.J.J.M.; Poelen, M.D.M.; Van Kempen, M.M.L.; Bakker, E.S.; Smolders, A.J.P.

    2017-01-01

    Water quality is still poor in many freshwater ecosystems around the world as a result of anthropogenic nutrient loading. Constructed wetlands can be used to remove excess nutrients. In these wetlands, helophytes or free floating aquatic plants are traditionally used to absorb the nutrients. The

  18. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  19. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    Science.gov (United States)

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Reconstructing relative genome size of vascular plants through geological time.

    Science.gov (United States)

    Lomax, Barry H; Hilton, Jason; Bateman, Richard M; Upchurch, Garland R; Lake, Janice A; Leitch, Ilia J; Cromwell, Avery; Knight, Charles A

    2014-01-01

    The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    pollution of the Ase-creek. Metal concentrations in the fish species and aquatic plants in this study .... analysis of water, fishes and aquatic plants samples from Ase-Creek in the Niger .... Speciation in the Environment. Blackie A and P, New.

  2. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  3. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    Science.gov (United States)

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  5. Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment.

    Science.gov (United States)

    Bayer, Anne; Asner, Robert; Schüssler, Walter; Kopf, Willi; Weiß, Klaus; Sengl, Manfred; Letzel, Marion

    2014-09-01

    Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L(-1), respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.

  6. Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory.

    Science.gov (United States)

    Turull, Marta; Grmanova, Gabriela; Dago, Àngela; Ariño, Cristina; Díez, Sergi; Díaz-Cruz, José Manuel; Esteban, Miquel

    2017-06-01

    The effects of mercury (Hg) released from a chlor-alkali factory in aquatic plants along the Ebro River basin (NE Spain) were analysed considering the phytochelatins (PC n ) and their isoforms content in these plants. These compounds were analyzed using HPLC with amperometric detection, and the macrophytes species Ceratophyllum demersum and Myriopyllum spicatum were collected in two sampling campaigns, autumn and spring, respectively. To correlate the PC n content in macrophytes with the Hg contamination, analysis of total Hg (THg) content in plants and suspended particulate matter, as well as the dissolved-bioavailable fraction of Hg in water measured by the diffusive gradient in thin film (DGT) technique were done. The results confirm the presence of PC 2 -Ala in extracts of C. demersum and PC 2 -desGly in M. spicatum, and the concentration of these thiol compounds depends clearly on the distance between the hot spot and the downstream sites: the higher the levels are, the closer the hot spot is. Since most of the Hg is hypothesized to be associated with SPM and transported downstream, our results of the DGT suggest that trace amounts of Hg in water can be released as free metal ions yielding a certain accumulation in plants (reaching the ppb level) that are enough for activation of induction of PCs. A few PCs species have been determined, at different seasons, indicating that they can be used as good indicators of the presence of bioavailable Hg in aquatic media throughout the year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  8. Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.

    Science.gov (United States)

    Peña, Maria J; Darvill, Alan G; Eberhard, Stefan; York, William S; O'Neill, Malcolm A

    2008-11-01

    Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.

  9. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?

    Science.gov (United States)

    Riis, Tenna; Lambertini, Carla; Olesen, Birgit; Clayton, John S.; Brix, Hans; Sorrell, Brian K.

    2010-01-01

    Background and Aims The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions. Methods Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified. Key Results For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics. Conclusions The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained

  10. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    Science.gov (United States)

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  11. [Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia].

    Science.gov (United States)

    Schmidt-Mumm, Udo; Vargas Ríos, Orlando

    2012-03-01

    Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia. High Andean paramo ecosystems are an important water resource for many towns, and major cities in this region. The aquatic and wetland vegetation of different paramo lakes, pond, swamps and bogs was studied according to the classical phytosociological approach, which is based on homogenous stands, but excludes any border phenomena or transitional zone. The present research aimed at determining the aquatic and wetland vegetation along different moisture gradients. A total of 89 species in 30 transects were reported, of which Crassula venezuelensis, Carex honplandii, Callitriche nubigena, Eleocharis macrostachya, Ranunculus flagelliformis, R. nubigenus, Eleocharis stenocarpa, Galium ascendens y Alopecurus aequalis were present in more than one third of the transects. Numerical classification and indicator species analysis resulted in the definition of the next 18 communities: 1) Calamagrostis effusa, 2) Sphagnum cuspidatum, 3) Cyperus rufus, 4) Eleocharis stenocarpa, 5) Carex acutata, 6) Poa annua,7) Valeriana sp., 8) Ranunculus flagelliformis, 9) Carex bonplandii, 10) Festuca andicola. 11) Muhlenbergia fustigiata, 12) Elatine paramoana, 13) Isoëtes palmeri, 14) Crassula venezuelensis, 15) Lilaeopsis macloviana, 16) Callitriche nubigena, 17) Potamogeton paramoanus and 18) Potamogeton illinoensis. The ordination of communities reveals the presence of three different aquatic-terrestrial gradients which are related to the life form structure of species that characterized the various communities. We concluded that patchiness and heterogeneity of the vegetation is mainly the result of alterations caused by human activities (burning, cattle raise and material extraction for road and dam construction).

  12. Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management.

    Directory of Open Access Journals (Sweden)

    Kevin A Wood

    Full Text Available Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i food quantity, (ii food quality, and (iii the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems.

  13. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  14. Design and analysis of aquatic monitoring programs at nuclear power plants

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Kannberg, L.D.; Gore, K.L.; Arnold, E.M.; Watson, D.G.

    1977-11-01

    This report addresses some of the problems of designing, conducting, and analyzing aquatic environmental monitoring programs for impact assessment of nuclear power plants. The concepts discussed are applicable to monitoring the effects of chemical, radioactive, or thermal effluents. The concept of control and treatment station pairs is the fundamental basis for the experimental method proposed. This concept is based on the hypothesis that the relationship between the two stations forming the pair can be estimated from the preoperational period and that this relationship holds during the operational period. Any changes observed in this relationship during the operational period are assumed to be the result of the power plant impacts. Thus, it is important that station pairs are selected so it can be assumed that they respond to natural environmental changes in a manner that maintains that relationship. The major problem in establishing the station pairs will be the location of the control station. The universal heterogeneity in the environment will prevent the establishment of identical station pairs. The requirement that the control station remain unaffected by the operation of the power plant dictates a spacial separation with its associated differences in habitat. Thus, selection of the control station will be based upon balancing the following two criteria: (1) far enough away from the plant site to be beyond the plant influence, and (2) close enough to the treatment station that the biological communities will respond to natural environmental changes consistently in the same manner

  15. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    Science.gov (United States)

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  16. Impact of Boron pollution to Biota Marine aquatic

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto-SBS; Imam Hamzah; Fepriadi

    2003-01-01

    Power plants and industrial facilities can release potentially harmful chemicals, like boron through direct aqueous discharges or cycling of cooling water to aquatic ecosystems environmental at plant surrounding. Boron is an essential trace element for the growth of marine biota, but can be toxic in excessive amount. Therefore will adversely affect of growth, reproduction or survival. Toxicity to aquatic organism, including vertebrates, invertebrates and plants can vary depending on the organism's life stage and environment. It is recommended that the maximum concentration of total boron for the protection of marine aquatic life should not exceed 1,2 mg B/L. Early stages of life cycle are more sensitive to boron than later ones, and the use of reconstituted water shows higher toxicity in lower boron concentrations than natural waters. (author)

  17. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  18. Biodigestion of the aquatics plants mixtures and biogas production; Biodigestao de misturas de plantas aquaticas e producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Abreu, Fernando Luiz Barbuda de; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil). Gerencia de Estudos e Gestao de Geracao]. E-mail: rbmelo@light.com.br

    2004-07-01

    Several systems of generating electricity using water storage reservoirs. One problem that occurs constantly in these reservoirs is the accumulation of aquatic plants, such as Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes and Salvinia that may cause serious problems for the system. Periodically, the biomass must be removed and disposed of appropriate form, so that does not cause contamination of soil, groundwater or allowing the proliferation of vectors. One possible destination is the use of biomass in a process of biodigestion, resulting in biogas. The bench of biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced and a reservoir for the monitoring the production of biogas. The reactor is located inside a container containing water that can be heated by an electrical resistance, with the aim of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor was obtained using a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity. These results show a percentage of 50% of methane in the biogas. Also, were analyzed the biomass in the biodigester for determination of humidity, total organic matter, waste mineral and organic carbon. The process of biodigestion of the mixture of aquatic plants: Eichhornia crassipes, Eichhornia azurea and Pistia stratiotes and Salvinia shows potential for obtaining biogas, with considerable levels of methane, in order to facilitate its recovery.

  19. An updated checklist of aquatic plants of Myanmar and Thailand

    Directory of Open Access Journals (Sweden)

    Yu Ito

    2014-01-01

    Full Text Available The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras.

  20. Groundwater interactions with Lobelia lakes- effects on the aquatic plant, Littorella uniflora

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    Lake Hampen is representative of a group of lakes called Lobelia lakes. These are oligotrophic, clear water lakes which tend to have a low alkalinity. These lakes are termed “Lobelia lakes” due to the characteristic isoetid species which thrive in these conditions. Isoetids are small, evergreen...... aquatic plants whose leaves grow in a rosette form and have a large root base. The large root system enables the plants to better assimilate nutrients from the sediments, and the uptake of CO2 which is used for photosynthesis, and to release O2 into otherwise anoxic sediments. Lake Hampen is situated high...... up in the Jylland ridge and lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant, sometimes the groundwater flows from the aquifer into the lake (discharge) and other times it flows from the lake into the aquifer (recharge...

  1. Aquatic CAM photosynthesis: a brief history of its discovery

    Science.gov (United States)

    Keeley, Jon E.

    2014-01-01

    Aquatic CAM (Crassulacean Acid Metabolism) photosynthesis was discovered while investigating an unrelated biochemical pathway concerned with anaerobic metabolism. George Bowes was a significant contributor to this project early in its infancy. Not only did he provide me with some valuable perspectives on peer review rejections, but by working with his gas exchange system I was able to take our initial observations of diel fluctuations in malic acid to the next level, showing this aquatic plant exhibited dark CO2 uptake. CAM is universal in all aquatic species of the worldwide Lycophyta genus Isoetes and non-existent in terrestrial Isoetes. Outside of this genus aquatic CAM has a limited occurrence in three other families, including the Crassulaceae. This discovery led to fascinating adventures in the highlands of the Peruvian Andes in search of Stylites, a terrestrial relative of Isoetes. Stylites is a plant that is hermetically sealed from the atmosphere and obtains all of its carbon from terrestrial sources and recycles carbon through CAM. Considering the Mesozoic origin of Isoetes in shallow pools, coupled with the fact that aquatic Isoetes universally possess CAM, suggests the earliest evolution of CAM photosynthesis was most likely not in terrestrial plants.

  2. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  3. Potential accumulation of estrogenic substances in biofilms and aquatic plants collected in sewage treatment plant (STP) and receiving water

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, T.; Kuch, B.; Kern, A.; Metzger, J.W. [Inst. for Sanitary Engineering, Water Quality and Solid Waste Management ISWA, Stuttgart Univ. (Germany)

    2004-09-15

    During the past years the estrogenic potency of natural (e.g. estrone and 17{beta}-estradiol E2) and synthetic hormones (e.g. ethinylestradiol EE2) and xenoestrogens (e.g. pesticides, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dioxins (PCDDs) and furans (PCDFs), alkylphenolic compounds or bisphenol A (BPA)) has attracted increasing scientific attention. Especially the occurrence and behaviour of these substances in waste water of sewage treatment plants (STPs) were often investigated. Andersen et al. found steroid estrogen concentrations in the effluent of a municipal STP always below the limit of quantification of 1 ng/l. However, Aerni et al. detected E2 and EE2 concentrations up to 6 ng/l and 2 ng/l, and alkylphenols, alkylphenolmonoand diethoxylates even at {mu}g/l concentrations in the effluent of a wastewater treatment plant with a significant industrial impact3. In activated and digested sewage sludge concentrations of estrone and E2 up to 37 ng/g and 49 ng/g, of the synthetic EE2 up to 17 ng/g were observed4. In river sediments the concentrations detected were lower with up to 2 ng/g estrone and 0,9 ng/g EE24. In the meantime many studies exist about raw and treated water in STPs, but there is little knowledge about the influence of estrogenic active substances on aquatic plants so far. In this study we investigated therefore the potency of estrogenic substances to accumulate in the duckweed Lemna minor from STP in comparison to the estrogenicity of duckweed from a natural pond, biofilms in drain and microsieve of the STP by the in vitro E-Screen- and LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). In addition, we tested the estrogenic activity of moss-like aquatic plants collected at different sites of the receiving water and analyzed the concentrations of four phenolic xenoestrogens in the effluent by GC/MS.

  4. Aquatic Plant Control Research Program. Biological Control of Pistia stratiotes L. (Waterlettuce) Using Neohydronomus affinis Hustache (Coleoptera: Curculionidae).

    Science.gov (United States)

    1992-07-01

    plant must also be examined for herbivores attacking the weed. This ensures that time and money are not wasted by importing insects already present in...Agricultural Research Service Aquatic Weed Research Laboratory in Fort Lauder - dale, FL, from quarantine tacilities in Gainesville, FL, on 11 February

  5. Distribution of C, N, P in aquatic plants of some lakes in the middle of Yangtze river

    International Nuclear Information System (INIS)

    Huang Liang; Wu Ying; Zhou Juzhen; Zhang Jing; Li Wei

    2003-01-01

    By analyzing three elements (C, N, P, 13 C) in the ten aquatic plants of nine lakes in the middle of Yangtze River, the concentrations of C, N and δ 13 C in leaves of aquatic macrophytes depend on the environment where they live in. The concentration of C and N in leaves of submerged macrophytes is significantly lower than that of leaves of floating and emergent macrophytes because of limitation of inorganic carbon; And at the same time, because δ 13 C of inorganic carbon in water is higher than that of CO 2 in air, δ 13 C of leaves of submerged macrophytes is higher than that of leaves of floating and emergent macrophytes. (authors)

  6. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we......Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  7. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study

    Directory of Open Access Journals (Sweden)

    Anastasiia I. Evkaikina

    2014-02-01

    Full Text Available Plasmodesmata (PD serve for the exchange of information in form of miRNA, proteins and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (inability to form secondary PD is manifested in the symplastic organization of the shoot apical meristem (SAM which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplastic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

  8. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments

    NARCIS (Netherlands)

    Boedeltje, G; ter Heerdt, GNJ; Bakker, JP

    Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings

  9. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants.

    Science.gov (United States)

    Vera-Sirera, Francisco; De Rybel, Bert; Úrbez, Cristina; Kouklas, Evangelos; Pesquera, Marta; Álvarez-Mahecha, Juan Camilo; Minguet, Eugenio G; Tuominen, Hannele; Carbonell, Juan; Borst, Jan Willem; Weijers, Dolf; Blázquez, Miguel A

    2015-11-23

    Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  11. on the use of selected aquatic plants in tracing of some heavy metal pollutants

    International Nuclear Information System (INIS)

    Hammad, D.M.; Tawfik, T.A.

    2004-01-01

    three aquatic macrophyte plants namely; Cyperus Rotundus (emergent plant), Phragmits Australis (emergent plant) and Echhornia crassipes (floating plant) were selected to measure their ability for uptake of heavy metal pollutants from their ambient environments and to decide the possibility of using such plants in practical applications of water and sediment purity monitoring and decontamination . these plants with the corresponding water and sediment samples were collected from El-rayah El-menoufy (comparable site), near El- kanater El- khayria which receives its water directly from the River Nile (Dommietta branch) and from two drains namely. El remal drain (sewage drain), which receives its water from Abu-rawash waste water treatment plant and El-tibeen drain (mixed agricultural and industrial drain), located at the right bank of the River Nile and surrounded by huge industrial factories and receives its water from El-khashab canal. the water, sediment and plant samples collected from the selected areas were analyzed for anions, cations and heavy metal contents. studying and comparing the accumulative capacity of the emergent and floating plants to measure their ability in phytoremediatic applications and heavy metal pollution studies were performed . the correlations between the heavy metal concentrations in plants and in their ambient environments were calculated and the potential of the examined plants for pollution monitoring was estimated . in addition, the natural radioactivity of the environmental sediments was evaluated for K-40, Th -232 and Ra-226. the results obtained were compared with the international reference values

  12. Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants.

    Science.gov (United States)

    Dvorský, Miroslav; Chlumská, Zuzana; Altman, Jan; Čapková, Kateřina; Řeháková, Klára; Macek, Martin; Kopecký, Martin; Liancourt, Pierre; Doležal, Jiří

    2016-04-13

    Vascular plants in the western Tibetan Plateau reach 6000 m--the highest elevation on Earth. Due to the significant warming of the region, plant ranges are expected to shift upwards. However, factors governing maximum elevational limits of plant are unclear. To experimentally assess these factors, we transplanted 12 species from 5750 m to 5900 m (upper edge of vegetation) and 6100 m (beyond range) and monitored their survival for six years. In the first three years (2009-2012), there were plants surviving beyond the regional upper limit of vegetation. This supports the hypothesis of dispersal and/or recruitment limitation. Substantial warming, recorded in-situ during this period, very likely facilitated the survival. The survival was ecologically a non-random process, species better adapted to repeated soil freezing and thawing survived significantly better. No species have survived at 6100 m since 2013, probably due to the extreme snowfall in 2013. In conclusion, apart from the minimum heat requirements, our results show that episodic climatic events are decisive determinants of upper elevational limits of vascular plants.

  13. Utilizing next generation sequencing to characterize microsatellite loci in a tropical aquatic plant species Cryptocoryne cordata var. cordata (Araceae)

    DEFF Research Database (Denmark)

    Rosazlina, Rusly; Jacobsen, Niels; Ørgaard, Marian

    2015-01-01

    Abstract Cryptocoryne cordata var. cordata (2n = 34) is an aquatic plant species distributed from the southern part of Peninsular Thailand through the Malay Peninsula. It propagates both sexually and asexually via stolons. The current study is aimed at developing nuclear microsatellite markers...

  14. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  15. The French Muséum national d'histoire naturelle vascular plant herbarium collection dataset

    Science.gov (United States)

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-02-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments.

  16. The French Muséum national d’histoire naturelle vascular plant herbarium collection dataset

    Science.gov (United States)

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-01-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d’histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments. PMID:28195585

  17. Fungal root symbionts of high-altitude vascular plants in the Himalayas.

    Science.gov (United States)

    Kotilínek, Milan; Hiiesalu, Inga; Košnar, Jiří; Šmilauerová, Marie; Šmilauer, Petr; Altman, Jan; Dvorský, Miroslav; Kopecký, Martin; Doležal, Jiří

    2017-07-26

    Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) form symbiotic relationships with plants influencing their productivity, diversity and ecosystem functions. Only a few studies on these fungi, however, have been conducted in extreme elevations and none over 5500 m a.s.l., although vascular plants occur up to 6150 m a.s.l. in the Himalayas. We quantified AMF and DSE in roots of 62 plant species from contrasting habitats along an elevational gradient (3400-6150 m) in the Himalayas using a combination of optical microscopy and next generation sequencing. We linked AMF and DSE communities with host plant evolutionary history, ecological preferences (elevation and habitat type) and functional traits. We detected AMF in elevations up to 5800 m, indicating it is more constrained by extreme conditions than the host plants, which ascend up to 6150 m. In contrast, DSE were found across the entire gradient up to 6150 m. AMF diversity was unimodally related to elevation and positively related to the intensity of AMF colonization. Mid-elevation steppe and alpine plants hosted more diverse AMF communities than plants from deserts and the subnival zone. Our results bring novel insights to the abiotic and biotic filters structuring AMF and DSE communities in the Himalayas.

  18. Ash characteristics and plant nutrients in some aquatic biomasses

    Science.gov (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    Aquatic biomasses are explored as potential fuel source for direct combustion because of their faster growth and no land requirement. The energy density and the ash characteristics of the aquatic biomasses are to be evaluated for their suitability for energy extraction. In the study, four aquatic plant samples namely Eichornia crassipes, Hydrilla verticilleta, Lemna minor, Spirogyra spp were collected from a pond in Digwadih Campus of Central Institute of Mining and Fuel Research, Dhanbad. The biomasses were air dried, powdered and ashed at different temperatures. Volatile C was relatively lower in Spirogyra and Hydrilla (53 %) than Eichornia (62.6 %) or Lemna (59.7 %), whereas fixed C was higher for Eichornia and Lemna (about 10 %) and lower for Hydrilla (1 %). Ultimate analysis showed that the carbon content was in the order Eichornia > Lemna > Spirogyra > Hydrilla. The IR spectra of each raw biomass is compared to their respective ashes obtained at different temperatures (500-900°C). With increase in ashing temperature from 500-900°C there is gradual breakdown of the cellulosic structure hence, peaks around 2900-2800cm-1 caused by aliphatic C-H vibration tends to disappear slowly in ash. More number of peaks appears at lower wavenumbers in ashes of all the biomass samples indicating towards increased percentage of inorganic ion species. Considerable enrichment of SiO2 is validated with prominent peaks at 1100-900 cm-1 in all the ashes. Lemna and Spirogyra has a similar ash composition (Si > Al > Ca > K), whereas, Ca was higher in Hydrilla (Si > Ca > K > Al). Eichornia (Si > K > Ca > Al) has higher K and Ca than Al. SiO2 and Al2O3 were higher in Spirogyra, while SiO2 and CaO in Eichornia and Hydrilla. K first increased from 500-700/800⁰C, and then decreased from 800-900⁰C. Cl is lost slowly in ash from 500-700/800⁰C and then by a drastic reduction from 800-900⁰C. S is enhanced in ash at all temperatures although the change is quite small. Most of the Cl

  19. Aquatic arsenic: Phytoremediation using floating macrophytes

    OpenAIRE

    Azizur Rahman, Mohammad; Hasegawa, Hiroshi

    2011-01-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated ...

  20. Effect of Aquatic Plants on Phosphorus Removal and Electrical Conductivity Decrease in Municipal Effluent

    Directory of Open Access Journals (Sweden)

    Sara Samimi Loghmani

    2014-05-01

    Full Text Available Phosphorus (P is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa and duck weed (lemna minor with four treatments and three replications. Data were analyzed in a factorial completely randomized design. Treatments included effluent with and without the plants, and effluent diluted (dilution grade 1/2 with and without the plants. Total dissolved P, electrical conductivity (EC and pH value were measured after 8, 16 and 24 days in effluent samples. The results showed that pH value decreased up to 0.2 units during of 24 days of the experiment, but there was found no significant difference (p≤0.05 in pH values among the treatments. Both plants decreased EC about 7 % relative to the control (without plant after 24 days. The plants were also effective in reducing total dissolved phosphorus, so that duck weed and elodea decreased total dissolved P in the effluent about 49 and 7%, respectively. It is concluded that duck weed is more effective in the P removal from the effluent than the other plant.

  1. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  2. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    International Nuclear Information System (INIS)

    Lintott, D.R.; Goudey, J.S.; Wilson, J.; Swanson, S.; Drury, C.

    1997-01-01

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs

  3. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.R.; Goudey, J.S. [HydroQual Consultants, Inc., Calgary, AB (Canada); Wilson, J.; Swanson, S. [Golder Associates, Calgary, AB (Canada); Drury, C. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    1997-12-31

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs.

  4. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  5. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the ice-free corridor of western Canada

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, G.M.; Beukens, R.P.; Kieser, W.E.; Vitt, D.H.

    1987-09-01

    In order to assess the reliability of aquatic moss for radiocarbon dating, /sup 14/C analyses were performed on a stratigraphic series of terrestrial plant macrofossils and samples of Drepanocladus crassicostatus from a small, hard-water lake (pH = 8.2) in the ice-free corridor of Alberta. All /sup 14/C dating was done by using accelerator mass spectrometry. Mazama Ash provided an independent chronological control. The aquatic bryophyte samples consistently produced /sup 14/C ages significantly older than the terrestrial macrofossils. The relation between the radiocarbon dates from the macrofossils and the moss was not linear, and age differences ranged from approximately 1400 to 6400 yr. The /sup 14/C content of D. crassicostatus growing in the lake at present was less than 85% modern. Despite the apparent inability to take up /sup 14/C-deficient carbon by the direct incorporation of bicarbonate, the bryophytes clearly do not provide reliable material /sup 14/C dating. The /sup 14/C deficiency of aquatic mosses may be explained by the generation of /sup 14/C-deficient CO/sub 2/ through isotopic exchange, the formation of CO/sub 2/ from bicarbonate by chemical processes, and metabolic CO/sub 2/ production. These results demonstrate the potential unreliability of /sup 14/C dates from aquatic mosses and raise serious concerns about the deglaciation dates from the ice-free corridor that were obtained from aquatic Drepanocladus.

  6. New records of alien vascular plants from Marion and Prince Edward Islands, sub-Antarctic

    NARCIS (Netherlands)

    Gremmen, N.J.M.; Smith, V.

    1999-01-01

    A survey was made of the distribution of introduced vascular plants on Marion and Prince Edward Islands. The results of this survey were compared to results of previous surveys (1965/66, 1975, 1981, 1989). Four new introductions to Marion Island have taken place, three of which involved species that

  7. Screening potential genotoxic effect of aquatic plant extracts using the mussel micronucleus test

    Directory of Open Access Journals (Sweden)

    Bettina Eck-Varanka

    2016-01-01

    Full Text Available Objective: To assess the genotoxic potential of selected aquatic macrophytes: Ceratophyllum demersum L. (hornwort, family Ceratophyllaceae, Typha angustifolia L. (narrowleaf cattail, family Typhaceae, Stratiotes aloides L. (water soldier, family Butomaceae, and Oenanthe aquatica (L. Poir. (water dropwort, family Umbelliferae. Methods: For genotoxicity assessment, the mussel micronucleus test was applied. Micronucleus frequency was determined from the haemolymph of Unio pictorum L. (painter’s mussel. In parallel, total and hydrolisable tannin contents were determined. Results: All plant extracts elucidated significant mutagenic effect. Significant correlation was determined between tannin content and mutagenic capacity. Conclusions: The significant correlation between genotoxicity as expressed by micronucleus frequency and tannin content (both total and hydrolisable tannins indicate that tannin is amongst the main compounds being responsible for the genotoxic potential. It might be suggested that genotoxic capacity of these plants elucidate a real ecological effect in the ecosystem.

  8. Species and biogeochemical cycles of organic phosphorus in sediments from a river with different aquatic plants located in Huaihe River Watershed, China.

    Science.gov (United States)

    Yuan, He Zhong; Pan, Wei; Ren, Li Jun; Liu, Eeng Feng; Shen, Ji; Geng, Qi Fang; An, Shu Qing

    2015-01-01

    The results of phosphorus fractionation in the sediments from a contaminated river containing different aquatic plants, analyzed by solution 31P-NMR for Organic Phosphorus, showed that the concentration of Inorganic Phosphorus dominated in all species and Organic Phosphorus accounted for over 20% of Total Phosphorus. In general, orthophosphate was dominant in all the sampling sites. The proportion of Organic Phosphorus accounting for the Total Phosphorus in the sediments with different plant decreased in the following order: Paspalum distichum>Typha orientalis>Hydrilla verticillata. Phosphorus-accumulation ability of Paspalum distichum was obviously stronger than Typha orientalis and Hydrilla verticillata. The Organic Phosphorus was in aquatic plants dominated by humic-associated P (Hu-P), which converted to Inorganic Ohosphorus more significantly in submerged plants than in emerged plants. The sediment dominated by Paspalum distichum abundantly accumulated Organic Phosphorus in the orthophosphate monoester fraction. The degradation and mineralization of orthophosphate monoester was the important source of high Inorganic Phosphorus concentration and net primary productivity in Suoxu River. The Organic Phosphorus derived from Typha orientalis and Hydrilla verticillata was dramatically converted to Inorganic Phosphorus when the environmental factors varied.

  9. Effects of reindeer density on vascular plant diversity on North Scandinavian mountains

    Directory of Open Access Journals (Sweden)

    Johan Olofsson

    2005-04-01

    Full Text Available We studied the effects of reindeer grazing on species richness and diversity of vascular plants on dolomite influenced low alpine sites in the species rich northern part of the Scandes using 8 sites with different reindeer densities. Two sites were situated inside Malla Strict Nature Reserve, where reindeer grazing have been totally prohibited since 1981, and strongly restricted since 1950s. The six other sites were located in other species rich hotspot sites standardized to be as similar to the dolomite-influenced sites in Malla Strict Reserve as possible but varying in reindeer densities commonly found in the Fennoscandian mountain chain. Each site with a habitat complex especially rich in rare vascular plants (the Dryas heath – low herb meadow complex was systematically sampled in four plots of 2 m x 10 m. The plots were divided to 20 squares of 1 m x 1 m, and complete species lists of vascular plants were compiled for each of the squares. The first DCA (detrended correspondence analysis axis was strongly related to an index of reindeer grazing, indicating that grazing has a strong impact on the composition of the vegetation. None of the characteristics indices of biodiversity (species richness, evenness or Shannon-Wiener H’ was correlated with reindeer density. The local abundances of categories consisting of relatively rare plants (Ca favored plants and red listed plants of Finland showed significant, positive correlation with the intensity of reindeer grazing. We conclude that even though the density of reindeer has no influence on the total species richness or diversity of vascular plants, reindeer may still be important for regional biodiversity as it seems to favour rare and threatened plants. Moreover, our results imply that standard diversity indices may have limited value in the context of conservation biology, as these indices are equally influenced by rarities and by trivial species.Abstract in Swedish / Sammandrag: Vi

  10. Vascular plants of the Nevada Test Site and Central-Southern Nevada: ecologic and geographic distributions

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1976-01-01

    The physical environment of the Nevada Test Site and surrounding area is described with regard to physiography, geology, soils, and climate. A discussion of plant associations is given for the Mojave Desert, Transition Desert, and Great Basin Desert. The vegetation of disturbed sites is discussed with regard to introduced species as well as endangered and threatened species. Collections of vascular plants were made during 1959 to 1975. The plants, belonging to 1093 taxa and 98 families are listed together with information concerning ecologic and geographic distributions. Indexes to families, genera, and species are included. (HLW)

  11. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005)

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Baumier, D.; Fourre, E.; Dapoigny, A.; Clavel, B.

    2007-01-01

    The Creys-Malville nuclear plant, located on the left bank of the Rhone, was shut down in 1998. The facilities are currently in their initial stage of dismantling. In order to establish a baseline for tritium in the vicinity of the site prior to the main dismantling phase, we carried out a monitoring program between 2002 and 2005 in the main terrestrial and aquatic compartments of the local environment. Tritium levels in the groundwaters and in the Rhone waters correspond to the regional tritium concentration in precipitation. The data obtained for the terrestrial environment are also in good agreement with the regional background and do not show any specific signature linked to the nuclear plant. The various aquatic compartments of the Rhone (fish, plant, sediment) are significantly enriched in tritium both upstream and downstream of the power plant: although Tissue-Free Water Tritium concentrations are in equilibrium with the river water, the non-exchangeable fraction of organic bound tritium in plants and fishes shows values which outpace the river water background by one to two orders of magnitude, and up to four to five orders of magnitude in the sediments. This tritium anomaly is not related to the nuclear plant, as it is already present at the Swiss border 100 km upstream of the site. Although fine particles of tritiated polystyrene entering the composition of the luminous paints used by the clock industry have been suspected on several occasions, the exact nature and the origin of this tritium source remain unknown and require further investigations

  12. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...

  13. Investigating water transport through the xylem network in vascular plants.

    Science.gov (United States)

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  14. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada.

    Science.gov (United States)

    Braukmann, Thomas W A; Kuzmina, Maria L; Sills, Jesse; Zakharov, Evgeny V; Hebert, Paul D N

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  15. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John

    2017-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  16. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  17. Investigation of tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Cohen, L.K.

    1977-01-01

    The behavior, cycling and distribution of tritium in an aquatic ecosystem was studied in the field and in the laboratory from 1969 through 1971. Field studies were conducted in the Hudson River Estuary, encompassing a 30 mile region centered about the Indian Point Nuclear Plant. Samples of water, bottom sediment, rooted emergent aquatic plants, fish, and precipitation were collected over a year and a half period from more than 15 locations. Specialized equipment and systems were built to combust and freeze-dry aquatic media to remove and recover the loose water and convert the bound tritium into an aqueous form. An electrolysis system was set up to enrich the tritium concentrations in the aqueous samples to improve the analytical sensitivity. Liquid scintillation techniques were refined to measure the tritium activity in the samples. Over 300 samples were analyzed during the course of the study

  18. Aquatic worms eating waste sludge in a continuous system

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2009-01-01

    Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes

  19. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program

  20. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  1. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  2. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes

    DEFF Research Database (Denmark)

    Epp, L. S.; Gussarova, C.; Boessenkool, S.

    2015-01-01

    temperatures. Lake sediments contain DNA paleorecords of the surrounding ecosystems and can be used to retrieve a variety of organismal groups from a single sample. In this study, we analyzed vascular plant, bryophyte, algal (in particular diatom) and copepod DNA retrieved from a sediment core spanning...... phases, and distinct temporal changes in plant presence were recovered. The plant DNA was mostly in agreement with expected vegetation history, but very early occurrences of vascular plants, including the woody Empetrum nigrum, document terrestrial vegetation very shortly after glacial retreat. Our study...... core. Our DNA record was stratigraphically coherent, with no indication of leaching between layers, and our cross-taxon comparisons were in accordance with previously inferred local ecosystem changes. Authentic ancient plant DNA was retrieved from nearly all layers, both from the marine and the limnic...

  3. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    Science.gov (United States)

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Plant pigment types, distributions, and influences on shallow water submerged aquatic vegetation mapping

    Science.gov (United States)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert

    2004-11-01

    Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.

  5. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    Science.gov (United States)

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    The pH of lake water is often inversely correlated with concentrations of trace metals in the water column. Concentrations of Al, Cd, Ca, Cu, Fe, Hg, Pb, Mg, Mn, Ni, P, and Zn were compared in water, plants, and aquatic insects from three acidified (pH 5.0) and three nonacidified (pH 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicate that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threaten egg production and development of young.

  6. Migratory Waterfowl Habitat Selection in Relation to Aquatic Vegetation

    National Research Council Canada - National Science Library

    Dick, Gary

    2004-01-01

    This technical note describes studies of environmental conditions and habitat quality of replicated pond ecosystems dominated by populations of exotic plants or mixed communities of native aquatic plants...

  7. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions.

    Science.gov (United States)

    Pontigo, Sofía; Ribera, Alejandra; Gianfreda, Liliana; de la Luz Mora, María; Nikolic, Miroslav; Cartes, Paula

    2015-07-01

    So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.

  8. Vascular Plant and Vertebrate Inventory of Organ Pipe Cactus National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Halvorson, William L.

    2007-01-01

    Executive Summary We summarized inventory and monitoring efforts for plants and vertebrates at Organ Pipe Cactus National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 1,031 species of plants and vertebrates observed at the monument. Most of the species on the list are documented by voucher specimens. There are 59 non-native species established in the monument: one mammal, three birds, and 55 non-native plants. Most non-native plant species were first recorded along roads. In each taxon-specific chapter, we highlight areas that contribute disproportionately to species richness or that have unique species for the monument. Of particular importance are Quitobaquito Springs and Pond, which are responsible for the monument having one of the highest number of bird species in the Sonoran Desert Network of parks. Quitobaquito also contains the only fish in the monument, the endangered Quitobaquito pupfish (Cyprinodon eremus). Other important resources for the plants and vertebrates include the xeroriparian washes (e.g., Alamo Canyon) and the Ajo Mountains. Based on the review of past studies, we believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network.

  9. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  10. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  11. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T&E) vascular plant species on the Oak Ridge Reservation (ORR). T&E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T&E plant species found on or near the U.S. Department of Energy`s (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T&E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T&E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, {open_quotes}T&E species{close_quotes} include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T&E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their long-term survival.

  12. Survey of protected vascular plants on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Awl, D.J.; Pounds, L.R.; Rosensteel, B.A.; King, A.L.; Hamlett, P.A.

    1996-06-01

    Vascular plant surveys were initiated during fiscal year 1992 by the environmentally sensitive areas program to determine the baseline condition of threatened and endangered (T ampersand E) vascular plant species on the Oak Ridge Reservation (ORR). T ampersand E species receive protection under federal and state regulations. In addition, the National Environmental Policy Act (NEPA) requires that federally-funded projects avoid or mitigate impacts to listed species. T ampersand E plant species found on or near the U.S. Department of Energy's (DOE) Oak Ridge Reservation (ORR) are identified. Twenty-eight species identified on the ORR are listed by the Tennessee Department of Environment and Conservation as either endangered, threatened, or of special concern. Four of these have been under review by the U.S. Fish and Wildlife Service for possible listing (listed in the formerly-used C2 candidate category). Additional species listed by the state occur near and may be present on the ORR. A range of habitats support the rare taxa on the ORR: river bluffs, sinkholes, calcareous barrens, wetlands, utility corridors, and forests. The list of T ampersand E plant species and their locations on the ORR should be considered provisional because the entire ORR has not been surveyed, and state and federal status of all species continues to be updated. The purpose of this document is to present information on the listed T ampersand E plant species currently known to occur on the ORR as well as listed species potentially occurring on the ORR based on geographic range and habitat availability. For the purpose of this report, open-quotes T ampersand E speciesclose quotes include all federal- and state-listed species, including candidates for listing, and species of special concern. Consideration of T ampersand E plant habitats is an important component of resource management and land-use planning; protection of rare species in their natural habitat is the best method of ensuring their

  13. Quantifying the Relative Importance of Climate and Habitat on Structuring the Species and Taxonomic Diversity of Aquatic Plants in a Biodiversity Hotspot of Tropical Asia

    International Nuclear Information System (INIS)

    Chen, Y.

    2015-01-01

    It has not been well known how climate and habitat variables will influence the distribution of plant species to some extents at mesoscale. In this report, by using the distribution of aquatic plants in Western Ghats, a biodiversity hotspot in tropical Asian region, I quantify the relative importance of climate and habitat variables on structuring spatially species richness and taxonomic diversity patterns using structural equation modeling. All the sampling qudrats in the region used for the study has a spatial resolution of 0.5 latitude x 0.5 longitude. The results showed that species richness is high in both northern and southern part of the region, while low in the middle part. In contrast, taxonomic distinctiveness is relatively homogeneous over all the sampling quadrats in the region. Structural equation modeling suggested that taxonomic distinctiveness patterns of aquatic plants in the region follow temperature (partial regression coefficient=0.31, p<0.05) and elevational (partial regression coefficient=0.31, p<0.05) gradients, while richness patterns cannot be explained by any of the currently used variables. In conclusion, environmental variables that are related to taxonomic distinctiveness would not be related to richness, given the fact that these two quantities are orthogonal more or less. Both climate and habitat are equally influential on taxonomic distinctiveness patterns for aquatic plants in Western Ghats of India. (author)

  14. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  15. Vascular plants of Mt. Dosolsan in the Demilitarized Zone Civilian Control Line

    Directory of Open Access Journals (Sweden)

    Jong Bin An

    2018-06-01

    Full Text Available This study is aimed at identifying the distribution of vascular plants growing at Mt. Dosolsan in Yanggu-gun, Gangwon-do. Field surveys were conducted for each season from March 2014 to November 2016. The flora of study area is found to consist of 516 taxa, 91 families, 296 genus, 455 species, four subspecies, 50 varieties, and seven forma. Rare plants were found to be of 31 taxa. Among them, rare plant species consisted of critically endangered species (CR degree: 2 (Lilium dauricum Ker Gawl., Cypripedium macranthos Sw., endangered species (EN degree: 5 (Loranthus tanakae Franch. & Sav. etc., vulnerable species (VU degree: 7 (Dryopteris laeta (Kom. C.Chr. etc., and least concerned (LC degree: 17 (Botrychium virginianum (L. Sw. etc.. In all the surveyed areas, a total of 20 taxa (Pseudostellaria setulosa Ohwi etc. were found to be endemic to Korea. The floristic special plants found in the surveyed areas were two taxa of grade V, 24 taxa of grade IV, and 31 taxa of grade III. The naturalized plants were identified as 15 taxa and included Chenopodium album L., Lotus corniculatus L., Robinia pseudoacacia L. etc.

  16. Assessment of macro and microelement accumulation capability of two aquatic plants

    International Nuclear Information System (INIS)

    Baldantoni, Daniela; Alfani, Anna; Di Tommasi, Paul; Bartoli, Giovanni; De Santo, Amalia Virzo

    2004-01-01

    The concentrations of four macroelements (C, N, P, S) and eight trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) were measured in the leaves and roots of the emergent plant, Phragmites communis Trin., and in the shoots and roots of the submersed Najas marina L., taken from Lake Averno (Naples, Italy). Phragmites communis leaves showed higher concentrations of carbon, nitrogen and phosphorus than roots, while the roots exhibited significantly higher concentrations of sulphur and trace metals. Najas marina roots also showed higher concentrations of sulphur and trace metals than shoots, but these differences were less marked than in Phragmites communis except for sulphur. Sulphur was the only macronutrient to show the highest concentrations in the roots. Phragmites communis roots had higher values of Cr, Cu, Fe, Mn and Ni than Najas marina roots. By contrast, Cd, Cr, Fe, Ni, Pb and Zn concentrations were higher in Najas marina shoots than in Phragmites communis leaves. Phragmites communis, available through the year, showing high capability to accumulate trace metals in the roots, appears a good monitor of lake contamination, better than Najas marina. - Element accumulation in roots and shoots of aquatic plants was used as a criteria for selecting useful biomonitors

  17. Dynamic analysis on cavitation and embolization in vascular plants under tension

    Science.gov (United States)

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin; Lee, Sang Joon

    2014-11-01

    Plants can transport sap water from the soil to the tip of their leaves using the tensile forces created by leaf transpiration without any mechanical pumps. However, the high tension adversely induces a thermodynamically metastable state in sap water with negative pressure and gas bubbles are prone to be formed in xylem vessels. Cavitation easily breaks down continuous water columns and grows into embolization, which limits water transport through xylem vessels. Meanwhile, the repair process of embolization is closely related to water management and regulation of sap flow in plants. In this study, the cavitation and embolization phenomena of liquid water in vascular plants and a physical model system are experimentally and theoretically investigated in detail under in vivo and in vitro conditions. This study will not only shed light on the understanding of these multiphase flows under tension but also provide a clue to solve cavitation problems in micro-scale conduits and microfluidic network systems. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  18. Aquatic insect populations in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Rozilah Ismail; Ahyaudin Ali

    2002-01-01

    Periodic sampling of aquatic insects was carried out in an experimental plot of the Muda rice agroecosystem. The study which was conducted from August to December 1995, investigated the impact of the pesticides Broadox and Trebon on aquatic insect populations during the rice growing period. The results indicated that there was no significant difference in abundance and diversity of aquatic insects between the treated and non-treated area. The four dominant aquatic insects were from the families; Chironomidae, Dysticidae, Corixidae and Belostomatidae. Water temperature and dissolved oxygen showed changes throughout the rice growing season and the values of these parameters decreased gradually towards the end of the rice growing season in January when the rice plants were maturing. (Author)

  19. The study of distribution characteristics of vascular and naturalized plants in Dokdo, South Korea

    Directory of Open Access Journals (Sweden)

    Su-Young Jung

    2014-06-01

    Full Text Available This study was performed to investigate the distribution of vascular plants and the characteristics of naturalized plants in Dokdo Island, South Korea. The survey was conducted a total of 5 times from June 2012 to September 2013. The number of plants confirmed in this study was 60 taxa in total: 29 families, 49 genera, 55 species, 2 subspecies and 3 varieties. To classify them by regional groups, 53 taxa were confirmed in the Dongdo and 38 taxa were confirmed in the Seodo. Among them, the distribution of Stellaria neglecta Weihe and Puccinellia nipponica Ohwi was first discovered in this study. The naturalized plants distributed in Dokdo was 7 taxa: Chenopodium album L., Sonchus asper (L. Hill, Sonchus oleraceus L., Ipomoea purpurea Roth, Brassica juncea (L. Czern., etc. Overall, concerns over the naturalized plants in Dokdo are high regardless of the scale of their distribution and the appearance frequency.

  20. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Peixoto, Raquel S; Cury, Juliano C; Sul, Woo Jun; Pellizari, Vivian H; Tiedje, James; Rosado, Alexandre S

    2010-08-01

    The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.

  1. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs.

    Science.gov (United States)

    Chávez Montes, Ricardo A; de Fátima Rosas-Cárdenas, Flor; De Paoli, Emanuele; Accerbi, Monica; Rymarquis, Linda A; Mahalingam, Gayathri; Marsch-Martínez, Nayelli; Meyers, Blake C; Green, Pamela J; de Folter, Stefan

    2014-04-23

    Small RNAs are pivotal regulators of gene expression that guide transcriptional and post-transcriptional silencing mechanisms in eukaryotes, including plants. Here we report a comprehensive atlas of sRNA and miRNA from 3 species of algae and 31 representative species across vascular plants, including non-model plants. We sequence and quantify sRNAs from 99 different tissues or treatments across species, resulting in a data set of over 132 million distinct sequences. Using miRBase mature sequences as a reference, we identify the miRNA sequences present in these libraries. We apply diverse profiling methods to examine critical sRNA and miRNA features, such as size distribution, tissue-specific regulation and sequence conservation between species, as well as to predict putative new miRNA sequences. We also develop database resources, computational analysis tools and a dedicated website, http://smallrna.udel.edu/. This study provides new insights on plant sRNAs and miRNAs, and a foundation for future studies.

  2. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  3. Vascular Plant and Vertebrate Inventory of Casa Grande Ruins National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Schmidt, Cecilia A.; Halvorson, William L.; Anning, Pamela; Docherty, Kathleen

    2006-01-01

    Executive Summary This report summarizes results of the first comprehensive biological inventory of Casa Grande Ruins National Monument (NM) in southern Arizona. Surveys at the monument were part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In 2001 and 2002 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Casa Grande Ruins NM to document the presence, and in some cases relative abundance, of species. By using repeatable study designs and standardized field techniques, which included quantified survey effort, we produced inventories that can serve as the basis for a biological monitoring program. Of the National Park Service units in the region, no other has experienced as much recent ecological change as Casa Grande Ruins NM. Once situated in a large and biologically diverse mesquite bosque near the perennially flowing Gila River, the monument is now a patch of sparse desert vegetation surrounded by urban and commercial development that is rapidly replacing agriculture as the dominant land use in the area. Roads, highways, and canals surround the monument. Development, and its associated impacts, has important implications for the plants and animals that live in the monument. The plant species list is small and the distribution and number of non-native plants appears to be increasing. Terrestrial vertebrates are also being impacted by the changing landscape, which is increasing the isolation of these populations from nearby natural areas and thereby reducing the number of species at the monument. These observations are alarming and are based on our review of previous studies, our research in the monument, and our knowledge of the biogeography and ecology of the Sonoran Desert. Together, these data suggest that the monument has lost a significant portion of its historic complement of species and these changes will likely intensify as

  4. Bioavailability and distribution and of ceria nanoparticles in simulated aquatic ecosystems, quantification with a radiotracer technique

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Zhang Peng; He Xiao; Ma Yuhui; Lu Kai; Zhao Yuliang

    2014-01-01

    Although the presence of manufactured nanoparticles in the aquatic environment is still largely undocumented, their release could certainly occur in the future, particularly via municipal treatment plant effluents of cities supporting nano-industries. To get an initial estimate of the environmental behavior of nanomaterials, we investigated the distribution and accumulation of ceria nanoparticles in simulated aquatic ecosystems which included aquatic plant, shellfish, fish, water, and sediment using a radiotracer technique. Radioactive ceria ( 141 CeO 2 ) nanoparticles with a diameter of ca. 7 nm were synthesized by a precipitation method and added to the simulated aquatic ecosystems. The results indicate that the concentration of ceria nanoparticles in water decreased to a steady-state value after 3 days; meanwhile, the concentrations of ceria nanoparticles in the aquatic plant and sediment increased to their highest values. The distribution and accumulation characteristics of ceria nanoparticles in various aquatic organisms were different. Ceratophyllum demersum showed a high ability of accumulation of ceria nanoparticles from water. (authors)

  5. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    International Nuclear Information System (INIS)

    Khataee, Alireza; Movafeghi, Ali; Nazari, Fatemeh; Vafaei, Fatemeh; Dadpour, Mohammad Reza; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract

  6. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, Alireza, E-mail: ar_khataee@yahoo.com [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Movafeghi, Ali [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Nazari, Fatemeh [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Vafaei, Fatemeh [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Dadpour, Mohammad Reza [University of Tabriz, Department of Horticultural Science, Faculty of Agriculture (Iran, Islamic Republic of); Hanifehpour, Younes; Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [Yeungnam University, School of Mechanical Engineering (Korea, Republic of)

    2014-12-15

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract.

  7. Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment

    Science.gov (United States)

    Zhao, Liangyuan; Guo, Weijie; Li, Qingyun; Li, Huan; Zhao, Weihua; Cao, Xiaohuan

    2017-01-01

    Sediments are regarded as the ultimate sink of pentachlorophenol(PCP) in aquatic environment, and capabilities of seven species of aquatic macrophytes for remediating PCP contaminated sediment were investigated. Seven species of aquatic macrophytes could significantly accelerate the degradation of PCP in sediments. Among all, canna indica L., Acorus calamus L. and Iris tectorum Maxim. can be used as efficient alternative plants for remediation of PCP contaminated sediment, which attained 98%, 92% and 88% of PCP removal in sediments, respectively. PCP was detected only in root tissues and the uptake was closely related to the root lipid contents of seven plants. The presence of seven aquatic macrophytes significantly increased microbial populations and the activities of dehydrogenase compared with control sediments, indicating that rhizosphere microorganism played important role in the remediation process. In conclusion, seven species of aquatic macrophytes may act as promising tools for the PCP phytoremediation in aquatic environment, especially Canna indica L., Acorus calamus L. and Iris tectorum Maxim.

  8. Checklist of the Aquatic Macrophytes

    African Journals Online (AJOL)

    Professor, Department of Plant Science, Obafemi Awolowo University, Ile Ife, Osun State. 3. Professor, Department of Botany, Obafemi Awolowo University, Ile Ife, Osun State. (Received: October, 2010; Accepted: May, 2011). The occurrence and diversity of aquatic macrophytes on Jebba Lake were documented during the ...

  9. An unusual case of seed dispersal in an invasive aquatic; yellow flag iris (Iris pseudacorus)

    Science.gov (United States)

    Understanding reproductive mode of invasive plants can help managers plan more efficacious control. Invasive aquatics typically reproduce primarily through vegetative means. Yellow flag iris is an invasive plant species often growing as an emergent aquatic. There have been contradictory reports of i...

  10. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change

    Directory of Open Access Journals (Sweden)

    Zoltán Bátori

    2014-01-01

    Full Text Available Limestone (karst surfaces in Hungary are rich in dolines, in which many endangered vascular plant species occur. To date, the majority of studies dealing with doline vegetation have focused on the local rather than the landscape level, without using comparative data from other areas. However, in this study we aimed to compare the vegetation pattern and species composition of dolines under different climate regimes of Hungary with regard to regional species pools. The fieldwork was carried out between 2005 and 2012. Twenty dolines were selected in the Mecsek Mountains (southern Hungary and nine dolines in the Aggtelek Karst area (northern Hungary. More than 900 vascular plants and more than 2000 plots were included in the study. The moving split window (MSW technique, nestedness analysis and principal coordinates analysis (PCoA were used to reveal the vegetation patterns in dolines. Although we found remarkable differences between the species composition of the two regions, dolines of both regions play a similar role in the preservation of different groups of species. Many plants, in particular mountain species, are restricted to the bottom of dolines where appropriate environmental conditions exist. In addition, depending on the doline geometry, many species of drier and warmer forests have colonized the upper slopes and rims. Thus, we can conclude that karst dolines of Hungary can be considered as reservoirs for many vascular plant species, therefore they are particularly important from a conservation point of view. Moreover, these dolines will likely become increasingly indispensable refugia for biodiversity under future global warming.

  11. Convergent evolution of vascular optimization in kelp (Laminariales).

    Science.gov (United States)

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  12. Vascular Plant and Vertebrate Inventory of Coronado National Memorial

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Swann, Don E.; Halvorson, William L.

    2007-01-01

    We conducted inventories for amphibians and reptiles, birds, and mammals; and summarized past inventories for vascular plants at Coronado National Memorial (NM) in Arizona. We used our data as well as data from previous research to compile species lists for the memorial, assess inventory completeness, and make suggestions on future monitoring efforts. There have been 940 species of plants and vertebrates recorded at Coronado NM (Table 1), of which 46 (5%) are non-native. The species richness of the memorial is one of the highest in the Sonoran Desert Network of park units, third only to park units that are two and one-half (Chiricahua National Monument), 19 (Saguaro National Park) and 70 (Organ Pipe Cactus National Monument) times larger in area. The high species diversities are due to the large elevational gradient, overlap of bigeographical regions, wide range of geology and soils, and diverse vegetation communities present at the memorial. Changes in species composition have occurred at the memorial over the last 20 years in all major taxonomic groups. These changes are likely due to increases in grassy plant species (both native and non-native) at the lower elevations of the memorial. We suspect that grassy plant cover has increased because of changes in grazing intensity, introduction of some non-native species, and a recent fire. All recent vertebrate inventories have yielded grassland obligate species not previously recorded at the memorial. Based on the review of past studies, we believe the inventory for most taxa, except bats, is nearly complete, though some rare or elusive species will likely be added with additional survey effort.

  13. Proceedings of the Subcontractors' Review Meeting: Aquatic Species Program

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Aquatic Species Program (ASP) addresses the utilization of plant biomass that naturally occurs in wetland or submerged areas. Processes are being developed through this program to make use of such aquatic species, capitalizing on their inherent capacity for rapid growth as well as their extraordinary chemical compositions.

  14. Vitality of aquatic plants and microbial activity of sediment in an oligotrophic lake (Lake Bohinj, Slovenia

    Directory of Open Access Journals (Sweden)

    Tatjana SIMČIČ

    2011-08-01

    Full Text Available The vitality of eight macrophyte species and the microbial activity of sediment in an oligotrophic lake (Lake Bohinj, Slovenia were studied via the terminal electron transport system (ETS activity of mitochondria. The levels of ETS activity of vascular plants were as follows: Ranunculus circinatus, Myriohpyllum spicatum, Potamogeton alpinus, P. perfoliatus, P. lucens. Fontinalis antipyretica exhibited the highest ETS activity of the non-vascular plants, followed by charales Chara delicatula and C. aspera. High values enable R. circinatus, an amphibious species with rapid growth, to survive under conditions in which the water level changes throughout the season. M. spicatum, a species with broad ecological tolerance, also exhibited high ETS activity. The ETS activity of the microbial community in sediment was affected by temperature and/or the amount and origin of the organic matter. A positive correlation between the ETS activity of the sediment and that of M. spicatum and R. circinatus was measured, while negative correlations or no correlation were observed for mosses and macroalgae. The high ETS activity in sediment indicates rapid mineralization of organic matter and, in turn, sufficient nutrients for growth of macrophytes.

  15. Studies on distribution pattern of 14C-assimilates in relation to vascular pattern derived from phyllotaxis of tomato plants

    International Nuclear Information System (INIS)

    Shishido, Y.; Seyama, N.; Hori, Y.

    1988-01-01

    The association of distribution of photosynthetic assimilates in tomato with phyllotaxis and arrangement of the vascular system was studied. To ascertain the phyllotaxis of tomato plants, which was alternate with four orthostichies with devergence of 90° (270°) and 180°, the vascular system was revealed by methylene blue (0.5%), eothine (1.0%) and fuchsin (1.0%) from leaf petioles and the distribution of photosynthetic assmilates was measured by 14 C. The vascular system of tomato basically consisted of four orthostichies with two vascular bundles from each leaf. The arrangement of the vascular systems evidently affected the movement of 14 C-assimilates to sinks. Such movement from each leaf was affected by the degree of connection of the vascular bundles. Since tomato has a sympodial branching system, the leaf which is apparently situated just above the inflorescence differentiated before the inflorescence. The vascular bundles of the leaf of the sympodial branch around the inflorescence developed between the inflorescence and the leaf just above it. This results in a comparatively small proportion of distribution to the inflorescence from the leaf just above it

  16. Vascular plant flora in the Cytadela cemeteries in Poznań (Poland

    Directory of Open Access Journals (Sweden)

    Aneta Czarna

    2016-12-01

    Full Text Available The paper presents the spontaneous vascular flora and the flora originating from old or contemporary plantations found in all six currently existing cemeteries located in immediate vicinity on the slopes of the Cytadela Park in Poznań. These studies were carried out in the years 2011–2014. Over this period, 255 species of vascular plants were found. The most interesting species include: Chionodoxa luciliae, Rumex rugosus, Aegopodium podagraria ‘Variegatum’, Ficaria verna f. plenifolia, Galanthus nivalis f. pleniflora, Ornithogalum boucheanum, Ranunculus repens ‘Plena’, and hybrids: Dactylis ×intercedens, Gagea ×pomeranica, Ornithogalum boucheanum × O. nutans, Viola cyanea × V. odorata. A great number of spring geophytes, namely 31 species, was also found. Among species occurring spontaneously outside the graves, some were new for Poland, e.g., Chionodoxa luciliae, Ornithogalum boucheanum × O. nutans, Viola cyanea × V. odorata, while others were new for the Wielkopolska region: Rumex rugosus, Dactylis ×intercedens, Gagea ×pomeranica, as well as new for Poznań: Erigeron ramosus, Lilium bulbiferum, Muscari armeniacus, M. neglectum, Pimpinella nigra, Poa subcaerulea, and Veronica hederifolia s. s.

  17. Vascular Plant and Vertebrate Inventory of Gila Cliff Dwellings National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Docherty, Kathleen; Anning, Pamela

    2006-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Gila Cliff Dwellings National Monument (NM) in western New Mexico. This project was part of a larger effort to inventory plants and vertebrates in eight National Park Service units in Arizona and New Mexico. Our surveys address many of the objectives that were set forth in the monument's natural resource management plan almost 20 years ago, but until this effort, those goals were never accomplished. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Gila Cliff Dwellings NM to document presence of species within the boundaries of the monument. For all taxonomic groups that we studied, we collected 'incidental' sightings on U.S. Forest Service lands adjacent to the monument, and in a few cases we did formal surveys on those lands. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a biological monitoring program for Gila Cliff Dwellings NM and surrounding lands. We recorded 552 species at Gila Cliff Dwellings NM and the surrounding lands (Table 1). We found no non-native species of reptiles, birds, or mammals, one non-native amphibian (American bullfrog), and 33 non-native plants. Particularly on lands adjacent to the monument we found that the American bullfrog was very abundant, which is a cause for significant management concern. Species of non-native plants that are of management concern include red brome, bufflegrass, and cheatgrass. For a park unit of its size and geographic location, we found the plant and vertebrate communities to be fairly diverse; for each taxonomic group we found representative species from a wide range of taxonomic orders and/or families. The monument's geographic location, with influences from the Rocky Mountain, Chihuahuan Desert, and Madrean ecological provinces, plays an important role in determining

  18. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, V.K.; Upadhyaya, A.R.; Pandey, S.K.; Tripathi, B.D. [Banaras Hindu University, Varanasi (India)

    2008-03-15

    Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.

  19. Floristic inventory of vascular plant in Nam Ha National Biodiversity Conservation Area, Lao People's Democratic Republic

    Directory of Open Access Journals (Sweden)

    Jeong Ho Park

    2018-06-01

    Full Text Available The floristic inventory of vascular plants in Nam Ha National Biodiversity Conservation Area was conducted to understand the plant diversity in the northern area of Lao People's Democratic Republic. From the joint field surveys between Korean and Laos experts conducted during 2015–2017, it was found that there are 64 families, 145 genera, and 189 species distributed in the Nam Ba National Biodiversity Conservation Area, and a total of 56 families, 117 genera, and 148 species which comprise more than 78% of the total species were identified as endemic plants to the Lao People's Democratic Republic. Considering the usage of the plants, there are 91 species of medicinal plants, 33 species of ornamental plants, eight species of edible plants, and 16 species of economic plants. In addition, it was found out that Dalbergia balansae and Cinnamomum macrocarpum are categorized as vulnerable in the International Union for Conservation of Nature (IUCN Red list, and 13 more species are categorized as the least concern.

  20. Identifying the plant-associated microbiome across aquatic and terrestrial environments: the effects of amplification method on taxa discovery

    Energy Technology Data Exchange (ETDEWEB)

    Jackrel, Sara L. [Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street Chicago IL 60637 USA; Owens, Sarah M. [Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont IL 60439 USA; Gilbert, Jack A. [Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue Lemont IL 60439 USA; The Microbiome Center, Department of Surgery, The University of Chicago, 5841 S Maryland Ave Chicago IL 60637 USA; Pfister, Catherine A. [Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street Chicago IL 60637 USA

    2017-01-25

    Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free-living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host-associated sequences. We assessed the efficacy of chloroplast and mitochondria-blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robust method for assessing animal-associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast-blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14-bp sequence in the Proteobacteria that matches the 17-bp chloroplast-blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14-bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle-blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n-mer oligonucleotides of each PNA sequence.

  1. The evolution of development of vascular cambia and secondary growth

    Science.gov (United States)

    Andrew Groover; Rachel Spicer

    2010-01-01

    Secondary growth from vascular cambia results in radial, woody growth of stems. The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, woody lianas. We present examples of the extensive phylogenetic variation in secondary vascular growth and discuss current...

  2. Mapping the Distribution and Biomass of Emergent Aquatic Plants in the Sacramento-San Joaquin River Delta of California Using Landsat Imagery Analysis

    Science.gov (United States)

    Potter, Christopher

    2015-01-01

    This study evaluated the cost-effective and timely use of Landsat imagery to map and monitor emergent aquatic plant biomass and to filter satellite image products for the most probable locations of water hyacinth coverage in the Delta based on field observations collected immediately after satellite image acquisition.

  3. Proceedings, 15th Annual Meeting, Aquatic Plant Control Research Planning and Operations Review, held 17-20 November 1980, Savannah, Georgia.

    Science.gov (United States)

    1981-10-01

    Overview by Howard E. Westerdahl ... ............ . 240 Development of Controlled-Release Herbicide Technology Using Polymers by Frank W. Harris and... Westerdahl ...... ................... ... 496 𔃾 - .,e-7 -,- . .. .o. *’ ATTENDEES 35th ANNUAL MEETING U. S. ARMY CORPS OF ENGINEERS AQUATIC PLANT...West USAE Waterways Experiment Station P. 0. Box 631 Vicksburg, MS 39180 Howard Westerdahl USAE Waterways Experiment Station P. O. Box 631 Vicksburg

  4. Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes1[W][OPEN

    Science.gov (United States)

    Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila

    2014-01-01

    Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347

  5. Biomechanical tactics of chiral growth in emergent aquatic macrophytes

    Science.gov (United States)

    Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian

    2015-01-01

    Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724

  6. Investigating the molecular basis for heterophylly in the aquatic plant Potamogeton octandrus (Potamogetonaceae with comparative transcriptomics

    Directory of Open Access Journals (Sweden)

    Dingxuan He

    2018-02-01

    Full Text Available Many plant species exhibit different leaf morphologies within a single plant, or heterophylly. The molecular mechanisms regulating this phenomenon, however, have remained elusive. In this study, the transcriptomes of submerged and floating leaves of an aquatic heterophyllous plant, Potamogeton octandrus Poir, at different stages of development, were sequenced using high-throughput sequencing (RNA-Seq, in order to aid gene discovery and functional studies of genes involved in heterophylly. A total of 81,103 unigenes were identified in submerged and floating leaves and 6,822 differentially expressed genes (DEGs were identified by comparing samples at differing time points of development. KEGG pathway enrichment analysis categorized these unigenes into 128 pathways. A total of 24,025 differentially expressed genes were involved in carbon metabolic pathways, biosynthesis of amino acids, ribosomal processes, and plant-pathogen interactions. In particular, KEGG pathway enrichment analysis categorized a total of 70 DEGs into plant hormone signal transduction pathways. The high-throughput transcriptomic results presented here highlight the potential for understanding the molecular mechanisms underlying heterophylly, which is still poorly understood. Further, these data provide a framework to better understand heterophyllous leaf development in P. octandrus via targeted studies utilizing gene cloning and functional analyses.

  7. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

    Science.gov (United States)

    Angel, Roey; Conrad, Ralf; Dvorsky, Miroslav; Kopecky, Martin; Kotilínek, Milan; Hiiesalu, Inga; Schweingruber, Fritz; Doležal, Jiří

    2016-08-01

    Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

  8. Effects of CO 2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.

  9. Tropical dermatology: marine and aquatic dermatology.

    Science.gov (United States)

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  10. Taxonomic and phylogenetic diversity of vascular plants at Ma'anling volcano urban park in tropical Haikou, China: Reponses to soil properties.

    Science.gov (United States)

    Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng

    2018-01-01

    Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.

  11. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    Science.gov (United States)

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents.

  12. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones.

    Directory of Open Access Journals (Sweden)

    Liang Xu

    Full Text Available Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets.

  13. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones.

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2016-01-01

    Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets.

  14. Relationship between the shoot characteristics and plant resistance to vascular-streak dieback on cocoa

    Directory of Open Access Journals (Sweden)

    Agung Wahyu Soesilo

    2014-12-01

    Full Text Available Vascular-streak dieback (Oncobasidium theobromae is a serious disease on cocoa damaging the vegetative tissue especially on the branches and leaves. This research was aimed to identify the relationship between characteristics of sprouting ability and VSD resistance to confirm the response of cocoa to pruning treatment on VSD control and developing criteria for selection. Trial was carried out at Kaliwining Experimental Station of ICCRI, a VSD-endemic area by using 668 plants of hybrid populayion which were derivated from intercrossing among seven clones performing different response to VSD. The resistance was evaluated by scoring the plant damage with the scale of 0-6 on drought season in the year of 2009 and 2011. The characteristics of sprouting ability was assessed by recording the pruned trees for the variables of the number of re-growth shoot, shoot height, number of new shoot per pruned branches, shoot diameter and number of leaves per shoot. It was analyzed that the variables of the number of shoot per pruned branches, shoot diameter, shoot height and number of leaves per shoot were not significantly correlated to the score of VSD damage. Grouping of the resistance also performed similar results whereas mean of the sprouting variables were not different among group but the percentage of sprouted branches tend to be higher with the higher of the resistance (lower score. This result confirmed any mechanism of tolerance on VSD resistance by accelerating shoot rejuvenation on resistant plant. Key words : vascular-streak diaback, cocoa, resistance, characteristics of sprouting

  15. Evaluating bio environmental effects of Bushehr Nuclear Power Plant on water and aquatic organism of Persian Gulf

    International Nuclear Information System (INIS)

    Ayatti, F.

    2000-01-01

    The operation of nuclear power plants is always subjected to emission of some radioactive materials in the form of gaseous, liquids and solids in the environment. The heat from condenser coolant discharged to the sea can have some adverse effects on biological systems as thermal pollution. In this project, the radiation and thermal effects on Bushehr Nuclear Power Plants on aquatic animals in Persian Gulf were studied. The mathematical models for atmospheric dispersion of pollutant and pathways of radioactive materials from air to sea water and from sea to animals and human bodies were considered. some environmental samples from Persian Gulf were measured for radioactivity using high-purity Ge/Li detectors and Gamma-spectroscopy. The results indicates that the erection of B usher Nuclear Power Plants and its operation in the normal operation can have no adverse effects on environment, and also its thermal pollution is of no importance due to low area for coolant discharges

  16. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    Science.gov (United States)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  17. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  18. Modeling the element cycle of aquatic plants

    International Nuclear Information System (INIS)

    Asaeda, Takashi

    2007-01-01

    Aquatic plants play an important role in element cycles in wetlands and the efficiency of the process is extremely related to their proportional biomass allocation to above- and belowground organs. Therefore, the framework of most macrophyte productivity models is usually similar with a mass-balance approach consisting of gross production, respiration and mortality losses and the translocation between organs. These growth models are incorporated with decomposition models to evaluate the annual cycle of elements. Perennial emergent macrophytes with a relatively large biomass have a particularly important role in element cycles. Their phenological stages, such as the beginning of hibernation of belowground rhizome systems, emergence of new shoots in spring with resources stocked in the rhizomes, flowering, downward translocation of photosynthetic products later on and then the mortality of the aboveground system in late autumn, depend on the environmental conditions, basically the nutrients, water depth, climatic variations, etc. Although some species retain standing dead shoots for a long time, dead shoots easily fall into water, starting to decompose in the immediate aftermath. However, their decomposition rates in the water are relatively low, causing to accumulate large amounts of organic sediments on the bottom. Together with the deposition of allochthonous suspended matters in the stand, this process decreases the water depth, transforming wetlands gradually into land. The depth of penetration of roots into the sediments to uptake nutrients and water is extremely site specific, however, in water-logged areas, the maximum penetrable depth may be approximately estimated by considering the ability of oxygen transport into the rhizome system. The growth of perennial submerged plants is also estimated by a process similar to that of emergent macrophytes. However, compared with emergent macrophytes, the root system of submerged macrophytes is weaker, and the nutrient

  19. Studies on distribution pattern of {sup 14}C-assimilates in relation to vascular pattern derived from phyllotaxis of tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Y. [National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan); Seyama, N.; Hori, Y.

    1988-12-15

    The association of distribution of photosynthetic assimilates in tomato with phyllotaxis and arrangement of the vascular system was studied. To ascertain the phyllotaxis of tomato plants, which was alternate with four orthostichies with devergence of 90° (270°) and 180°, the vascular system was revealed by methylene blue (0.5%), eothine (1.0%) and fuchsin (1.0%) from leaf petioles and the distribution of photosynthetic assmilates was measured by {sup 14}C. The vascular system of tomato basically consisted of four orthostichies with two vascular bundles from each leaf. The arrangement of the vascular systems evidently affected the movement of {sup 14}C-assimilates to sinks. Such movement from each leaf was affected by the degree of connection of the vascular bundles. Since tomato has a sympodial branching system, the leaf which is apparently situated just above the inflorescence differentiated before the inflorescence. The vascular bundles of the leaf of the sympodial branch around the inflorescence developed between the inflorescence and the leaf just above it. This results in a comparatively small proportion of distribution to the inflorescence from the leaf just above it.

  20. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis

    Science.gov (United States)

    Nichols, S.A.; Shaw, B.H.

    1986-01-01

    The life histories of Myriophyllum spicatum L., Elodea canadensis Michx., and Potamogeton crispus L., serious aquatic nuisances in many regions of the world, are reviewed to provide insights into the life style of successful aquatic nuisance plants. Specifically, their distribution and spread in North America; their life cycle, productive and reproductive potential; and their ecosystem relationships are reviewed. Hopefully this review will improve a manager's ability to deal with aquatic nuisance problems. It also provides suggestions for basic research needed to develop more effective management practices. It was found that all three species possess a number of adaptations, including an ability to rapidly propagate vegetatively, an opportunistic nature for obtaining nutrients, a life cycle that favors cool weather, and a number of mechanisms which enhance photosynthetic efficiency, which allow them to proliferate. These three species do provide benefits to the ecosystem through their roles in materials cycling and energy flow. Therefore, management of these species should take an integrated approach which recognizes these benefits. The life history information available about the three species varies tremendously; however, a better understanding of resource gain and allocation is needed to manage all three species. Specifically, more research is needed to provide a better understanding of: 1) the role bicarbonate plays in photosynthesis, 2) the role roots play in supplying CO2 to the plabts, 3) resource accumulation and allocation under different temperature and light regimes, 4) resource allocation on a seasonal basis, and 5) nutrient cycling under different management regimes. ?? 1986 Dr W. Junk Publishers.

  1. Convergent evolution of vascular optimization in kelp (Laminariales)

    DEFF Research Database (Denmark)

    Drobnitch, Sarah Tepler; Jensen, Kaare Hartvig; Prentice, Paige

    2015-01-01

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric...... (Phaeophyceae) are one such group—as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy...... and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong...

  2. Aquatic Habitats, Level 4-9.

    Science.gov (United States)

    Weigel, Margaret

    Designed to acquaint students in grades 4-9 with aquatic plants and animals, this guide provides materials which can be used in preparation for field trips or laboratory work, for individual projects, as supplemental activities for a unit, or for learning center projects. Teacher background notes and an answer key for the student activites are…

  3. Vascular Plant and Vertebrate Inventory of Tuzigoot National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, E.W.; Halvorson, William Lee; Schmidt, Cecilia A.; Anning, P.; Docherty, K.

    2005-01-01

    Executive Summary From 2002 to 2004, we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tuzigoot National Monument (NM) and adjacent areas in Arizona. This was the first effort of its kind in the area and was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In addition to our own surveys, we also compiled a complete list of species that have been found by previous studies. We found 330 species, including 142 that had not previously been recorded at the monument (Table 1). We found 39 species of non-native plants, 11 non-native fishes, three non-native birds, and one non-native species each of amphibian and mammal. Based on our work and that of others, there have been 597 species of plants and vertebrates found at the monument. The bird community at the monument had the highest species richness of any national park unit in central and southern Arizona. We found all other taxa to have intermediate species richness compared to other park units in the region. This extraordinary species richness observed for birds, as well as for some other taxa, is due primarily to Tavasci Marsh and the Verde River, two critical sources of perennial water, which provide habitat for many regionally rare or uncommon species. The location of the monument at the northern edge of the Sonoran Desert and at the southern edge of the Mogollon Rim also plays an important role in determining the distribution and community composition of the plant and vertebrate communities. Based on our findings, we believe the high number of non-native species, especially fish and plants, should be of particular management concern. We detail other management challenges, most notably the rapid increase in housing and associated commercial development near the monument, which will continue to impact the plant and vertebrate communities. Based on our data and a review of past studies, we believe the

  4. Insertional mutagenesis in the vascular wilt pathogen Verticillium dahliae

    NARCIS (Netherlands)

    Santhanam, P.

    2014-01-01

    Vascular wilt diseases caused by soil-borne pathogens are among the most

    devastating plant diseases worldwide. The ascomycete fungus Verticillium dahliae

    causes vascular wilt diseases in hundreds of dicotyledonous plant species, including

    important crops such as eggplant,

  5. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments.

    Science.gov (United States)

    Bergman, Brenda Gail; Bump, Joseph K

    2014-05-01

    Mercury (Hg) is a leading contaminant across U.S. water bodies, warranting concern for wildlife species that depend upon food from aquatic systems. The risk of Hg toxicity to large herbivores is little understood, even though some large herbivores consume aquatic vascular plants (macrophytes) that may hyper-accumulate Hg. We investigated whether total Hg and methylmercury (MeHg) in aquatic forage may be of concern to moose (Alces alces) and beaver (Castor canadensis) by measuring total Hg and MeHg concentrations, calculating sediment-water bioconcentration factors for macrophyte species these herbivores consume, and estimating herbivore daily Hg consumption. Abiotic factors impacting macrophyte Hg were assessed, as was the difference in Hg concentrations of macrophytes from glacial lakes and those created or expanded by beaver damming. The amount of aquatic-derived Hg that moose move from aquatic to terrestrial systems was calculated, in order to investigate the potential for movement of Hg across ecosystem compartments by large herbivores. Results indicate that the Hg exposure of generalist herbivores may be affected by macrophyte community composition more so than by many abiotic factors in the aquatic environment. Mercury concentrations varied greatly between macrophyte species, with relatively high concentrations in Utricularia vulgaris (>80 ng g(-1) in some sites), and negligible concentrations in Nuphar variegata (~6 ng g(-1)). Macrophyte total Hg concentration was correlated with water pH in predictable ways, but not with other variables generally associated with aquatic Hg concentrations, such as dissolved organic carbon. Moose estimated daily consumption of MeHg is equivalent to or below human reference levels, and far below wildlife reference levels. However, estimated beaver Hg consumption exceeds reference doses for humans, indicating the potential for sub-lethal nervous impairment. In regions of high moose density, moose may be ecologically important

  6. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants.

    Science.gov (United States)

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D

    2014-01-28

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8-3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.

  7. Residues and accumulation of molinate in rice crops and aquatic weeds in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Sabri Junoh; Nuriati Nurdin; Ramli Ishak

    2002-01-01

    Plant and soil residue levels and its accumulation in rice crops and rice aquatic weed plants were studied. Molinate residue levels in rice, weeds and soil were not significantly different between the recycled and the non-recycled area, even though they were higher in the non-recycled area. In the rice plant, the residue level at 10 DAT (days after treatment) was significantly higher than 30 DAT in the recycled area. In rice aquatic weed plants, the residue level was significantly higher at 10 DAT as compared to 30 DAT in the non-recycled area. Molinate residue levels in soil at 10 DAT and 30 DAT were similar. Molinate accumulated (ratio of molinate concentration in plant over soil) more in the rice crop as compared to rice aquatic weeds at 10 DAT, in both the recycled and the non-recycled areas. (Author)

  8. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  9. Does extensive agriculture influence the concentration of trace elements in the aquatic plant Veronica anagallis-aquatica?

    Science.gov (United States)

    Kroflič, Ana; Germ, Mateja; Golob, Aleksandra; Stibilj, Vekoslava

    2018-04-15

    The present study describes the influence of extensive agriculture on the concentrations of As, Cr, Cu, Cd, Se, Pb and Zn in sediments and in the aquatic plant Veronica anagallis-aquatica. The investigation, spanning 4 years, was conducted on three watercourses in Slovenia (Pšata, Lipsenjščica and Žerovniščica) flowing through agricultural areas. The different sampling sites were chosen on the basis of the presence of different activities in these regions: dairy farming, stock raising and extensive agriculture. The concentrations of the selected elements in sediments and V. anagallis-aquatica were below the literature background values. The distribution of the selected elements among different plant parts (roots, stems and leaves) were also investigated. The majority of the studied elements, with the exception of Zn and Cu, were accumulated mainly in root tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Linear-motion tattoo machine and prefabricated needle sets for the delivery of plant viruses by vascular puncture inoculation

    Science.gov (United States)

    Vascular puncture inoculation (VPI) of plant viruses previously has been conducted either manually or by use of a commercial engraving tool and laboratory-fabricated needle arrays. In an effort to improve this technique, a linear-motion tattoo machine driving industry-standard needle arrays was tes...

  11. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption.

  12. Resource Assessment for Microalgal/Emergent Aquatic Biomass Systems in the Arid Southwest: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, B. W.; Arthur, M. F.; Taft, L. G.; Wagner, C. K.; Lipinsky, E. S.; Litchfield, J. H.; McCandlish, C. D.; Clark, R.

    1982-12-23

    This research project has been designed to facilitate the eventual selection of biomass production systems using aquatic species (microalgal and emergent aquatic plant species (MEAP) which effectively exploit the potentially available resources of the Southwest.

  13. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada.

    Science.gov (United States)

    Kuzmina, Maria L; Braukmann, Thomas W A; Fazekas, Aron J; Graham, Sean W; Dewaard, Stephanie L; Rodrigues, Anuar; Bennett, Bruce A; Dickinson, Timothy A; Saarela, Jeffery M; Catling, Paul M; Newmaster, Steven G; Percy, Diana M; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R; Zakharov, Evgeny V; Hebert, Paul D N

    2017-12-01

    Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

  14. Invertebrates and Plants

    Science.gov (United States)

    Wendell R. Haag; Robert J. Distefano; Siobhan Fennessy; Brett D. Marshall

    2013-01-01

    Invertebrates and plants are among the most ubiquitous and abundant macroscopic organisms in aquatic ecosystems; they dominate most habitats in both diversity and biomass and play central roles in aquatic food webs. Plants regulate and create habitats for a wide array of organisms (Cooke et al. 2005). Snail grazing and bivalve filtering profoundly alter habitats and...

  15. Exploitation of Aquatic Resources in Ahanve, Badagry, south-western Nigeria

    Directory of Open Access Journals (Sweden)

    Orijemie, Emuobosa Akpo

    2014-11-01

    Full Text Available The Badagry Cultural Area (BCA is one of the significant socio-cultural places in coastal south-western Nigeria. Palynological and archaeological studies at Ahanve, a settlement in the BCA were undertaken recently to improve the understanding of past human exploitation of aquatic resources. Collected data revealed contrasts in the availability and utilisation of aquatic resources between a first occupation phase (9th-17th centuries AD and a second occupation phase (17th century AD to present. The environment during the first phase was characterised by secondary forest and freshwater swamp. During this period, the inhabitants consumed cat-fish (Clariidae and bivalves (Anodonta sp., and engaged in salt production. The salt was produced from brine obtained from the Atlantic Ocean. Aquatic food resources were supplemented with terrestrial animal and plant foods. During the second occupation phase, aquatic resources (cat-fish and bivalves declined and subsequently disappeared; salt production was discontinued while terrestrial foods, particularly plant-based types, increased significantly. These events coincided with the arrival of European travellers. Oral sources suggest that the decline in the exploitation of aquatic resources was in part due to the fear of being taken captive while on fishing expeditions, restrictions by Europeans who controlled the water-ways, and the massive importation of salt which replaced local production.

  16. Science to support aquatic animal health

    Science.gov (United States)

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  17. Proceedings of Annual Meeting (26th) Aquatic Plant Control Research Program, Held in Dallas, Texas on 18-22 November, 1991

    Science.gov (United States)

    1992-06-01

    Reinert and Rodgers 1987, Transformation Westerdahl and Getsinger 1988). Failure to Processes Input Requirements consider the effects i -at major transfer...Miscel- Westerdahl , H. E., and Getsinger, K. D., eds. laneous Paper A-88-5. 176-183. Vicks- 1988. Aquatic plant identification and burg. MS: US Army...billion Results and Discussion (g/L) instead of parts per million (mg/L). Hall, Westerdahl , and Stewart (1984) re- Triclopyr is auxin-type systemic

  18. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Science.gov (United States)

    Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel

    2018-04-01

    We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  19. Seasonal dynamics in the relative density of aquatic flora along some coastal areas of the Red Sea, Tabuk, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abid Ali Ansari

    2016-09-01

    Full Text Available Plants are the producers of all autotrophic ecosystems’ and are the base of the food chain taking energy from the sun and converting it into food for all other organisms through photosynthesis. Plants grow in certain places and seasons when the environmental factors are suitable for their germination, growth and developments that influence their diversity. Environmental factors can include abiotic factors such as temperature, light, moisture, soil nutrients; or biotic factors like competition from other plants or grazing by animals. Anthropogenic perturbations can also influence distribution patterns. Monitoring of ecological habitats and diversity of some aquatic flora along some coastal areas of Red Sea has been done to understand the dynamics of aquatic plants influenced by prevailing environmental and anthropogenic perturbations The results of this research showed that the summer season is the most suitable period for the study of aquatic plant diversity along the coastal sites of Red Sea. The aquatic flora had high relative density and diversity in April, May, June and July and these four months of the summer season are best for collection of aquatic plants from the selected coastal areas of Red Sea for medicinal purposes and ecological studies.

  20. Aquatic Species Program Review: Proceedings of the March 1983 Principal Investigators Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The Aquatic Species Program (ASP) addresses the utilization of plant biomass that naturally occurs in wetland or submerged areas. Processes are being developed through this program to make use of such aquatic species, capitalizing on their inherent capacity for rapid growth as well as their extraordinary chemical compositions.

  1. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  2. Exploring the Spatial-Seasonal Dynamics of Water Quality, Submerged Aquatic Plants and Their Influencing Factors in Different Areas of a Lake

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-09-01

    Full Text Available The degradation of water quality in lakes and its negative effects on freshwater ecosystems have become a serious problem worldwide. Exploring the dynamics in the associated factors is essential for water pollution management and control. GIS interpolation, principal component analysis (PCA and multivariate statistical techniques were used to identify the main pollution sources in different areas of Honghu Lake. The results indicate that the spatial distribution of the concentrations of total nitrogen (TN, total phosphate (TP, ammonia nitrogen (NH4+–N, and permanganate index (CODMn have similar characteristics and that their values gradually increased from south to north during the three seasons in Honghu Lake. The major influencing factors of water quality varied across the different areas and seasons. The relatively high concentrations of TN and TP, which might limit the growth of submerged aquatic plants, were mainly caused by anthropogenic factors. Our work suggests that spatial analyses combined with PCA are useful for investigating the factors that influence water quality and submerged aquatic plant biomass in different areas of a lake. These findings provide sound information for the future water quality management of the lake or even the entire lake basin.

  3. Combination of aquatic species and safeners improves the remediation of copper polluted water.

    Science.gov (United States)

    Panfili, Ivan; Bartucca, Maria Luce; Ballerini, Eleonora; Del Buono, Daniele

    2017-12-01

    In the last decades, many anthropogenic activities have resulted in heavy metal contamination of freshwaters and surrounding environments. This poses serious threats to human health. Phytoremediation is a cost-effective technology which is useful for remediating polluted soils and water. Recently, the use of aquatic free-floating plants has been proposed to remediate polluted water. In this context, a study on the capacity of two aquatic plants, Lemna minor (duckweed) and Salvinia auriculata (salvinia), to remediate Cu +2 (Cu) polluted water was carried out. Initially, the species were exposed to different copper concentrations (1, 5, 10, 20 and 50μmolL -1 ) in order to assess Cu +2 toxicity to the plants. In addition, plants were treated with two safeners (benoxacor and dichlormid), with the aim of pointing out any safening effect of these compounds on the aquatic species. Toxicity tests showed that safened plants had a greater Cu resistance, especially at the higher Cu doses. Finally, unsafened and safened plants were tested in the decontamination of water polluted by copper (1.2mgL -1 ). In general, duckweed removed higher amounts of Cu from polluted water than salvinia, and, surprisingly, for both the species the safeners significantly increased the plants' capacity to remove the metal from the polluted waters. Lastly, an HPLC-based method was developed and standardized to monitor the residual amounts of the two safeners in the water. While dichlormid was completely absorbed by duckweed within few days after the treatments, some residual amounts of both safeners were found in salvinia vegetated water after two weeks. In conclusion, the results of this research show that the use of aquatic species in combination with safeners is an attractive and reliable tool to make plants more effective in phytoremediation of water polluted with metals (or other toxic compounds). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Directory of Open Access Journals (Sweden)

    Zhao Guangyu

    2018-01-01

    Full Text Available We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  5. Phytoremediation potential of aquatic herbs from steel foundry effluent

    Directory of Open Access Journals (Sweden)

    N. Aurangzeb

    2014-12-01

    Full Text Available Discharge of industrial effluents in aquatic environments is a serious threat to life due to toxic heavy metals. Plants can be used as cheap phytoremedients in comparison to conventional technologies. The present study was conducted to check the phytoremediation capability of two free-floating plants, i.e., Pistia stratiotes and Eichhornia crassipes, for the removal of heavy metals from steel effluent by using Atomic Absorption Spectrophotometry. P. stratiotes was able to remove some of the heavy metals, showing the highest affinity for Pb and Cu with 70.7% and 66.5% efficiency, respectively, while E. crassipes proved to be the best phytoremediant for polluted water as its efficiency was greatest progressively for Cd, Cu, As, Al and Pb, i.e., 82.8%, 78.6%, 74%, 73% and 73%, respectively. In conclusion, aquatic plants can be a better candidate for phytoextraction from industrial effluents due to cost effectiveness.

  6. 14CO2 labeling. A reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants

    International Nuclear Information System (INIS)

    Bhupinder Singh; Sumedha Ahuja; Renu Pandey; Singhal, R.K.

    2014-01-01

    Root release of organic compounds and rate of the vascular sap flow are important for understanding the nutrient and the source-sink dynamics in plants, however, their determination is procedurally cumbersome and time consuming. We report here a simple method involving 14 C labeling for rapid and reliable measurement of root exudates and vascular sap flow rate in a variable groundnut population developed through seed gamma irradiation using a cobalt source ( 60 Co). An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  7. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants.

    Science.gov (United States)

    Mânzatu, Carmen; Nagy, Boldizsár; Ceccarini, Alessio; Iannelli, Renato; Giannarelli, Stefania; Majdik, Cornelia

    2015-12-30

    The aim of this study was to investigate the concentrations and pollution levels of heavy metals, organochlorine pesticides, and polycyclic aromatic hydrocarbons in marine sediments from the Leghorn Harbor (Italy) on the Mediterranean Sea. The phytoextraction capacity of three aquatic plants Salvinia natans, Vallisneria spiralis, and Cabomba aquatica was also tested in the removal of lead and copper, present in high concentration in these sediments. The average detectable concentrations of metals accumulated by the plants in the studied area were as follows: >3.328 ± 0.032 mg/kg dry weight (DW) of Pb and 2.641 ± 0.014 mg/kg DW of Cu for S. natans, >3.107 ± 0.034 g/kg DW for V. spiralis, and >2.400 ± 0.029 mg/kg DW for C. aquatica. The occurrence of pesticides was also analyzed in the sediment sample by gas chromatography coupled with mass spectrometry (GC/MS). Due to its metal and organic compound accumulation patterns, S. natans is a potential candidate in phytoextraction strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Traditional ecological knowledge among Sami reindeer herders in northern Sweden about vascular plants grazed by reindeer

    Directory of Open Access Journals (Sweden)

    Berit Inga

    2013-03-01

    Full Text Available Traditional knowledge about how reindeer utilize forage resources was expected to be crucial to reindeer herders. Seventeen Sami reindeer herders in four reindeer herding communities in Sweden (“samebyar” in Swedish were interviewed about plants species considered to be important reindeer food plants in scientific literature. Among 40 plant species, which the informants were asked to identify and indicate whether and when they were grazed by reindeer, they identified a total of 21 plant taxa and five plant groups. They especially recognised species that were used as human food by the Sami themselves, but certain specific forage plants were also identified. Detailed knowledge of vascular plants at the species level was surprisingly general, which may indicate that knowledge of pasture resources in a detailed species level is not of vital importance. This fact is in sharp contradiction to the detailed knowledge that Sami people express for example about reindeer (as an animal or snow (as physical element. The plausible explanation is that observations of individual plant species are unnecessarily detailed information in large-scale reindeer pastoralism, because the animals graze freely under loose herding and border surveillance.

  9. Physical model of a floating trash boom to control aquatic weeds at the TVA Widows Creek Fossil Plant

    International Nuclear Information System (INIS)

    Hopping, P.N.

    1991-01-01

    This paper reports that the Tennessee Valley Authority (TVA) Widows Creek Fossil plant seasonally encounters adverse accumulations of aquatic weeds at the intakes of the condenser cooling water pumps. To reduce the accumulations, a floating trash boom has been proposed for the intakes. To evaluate the hydraulic feasibility of a boom, a physical model of the intakes has been built at the TVA Engineering Laboratory. The model was used to determine the boom alignment and depth of skimming needed to successfully deflect weeds away from the intakes and provide self-cleaning

  10. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology

    OpenAIRE

    Arts, G.; Davies, J.; Dobbs, M.; Ebke, P.; Hanson, M.; Hommen, U.; Knauer, K.; Loutseti, S.; Maltby, L.; Mohr, S.; Poovey, A.; Poulsen, V.

    2010-01-01

    \\ud Introduction and background\\ud \\ud Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species be...

  11. Tourism and recreation listed as a threat for a wide diversity of vascular plants: a continental scale review.

    Science.gov (United States)

    Rankin, Benjamin Luke; Ballantyne, Mark; Pickering, Catherine Marina

    2015-05-01

    Tourism and recreation are diverse and popular activities. They may also contribute to the risk of extinction for some plants because of the range and severity of their impacts, including in protected areas: but which species, where and how? To evaluate the extent to which tourism and recreation may be threatening process for plants, we conducted a continental level review of listed threats to endangered vascular plants using data from Australia. Of the 659 vascular plant species listed as critically endangered or endangered by the Australian Government, tourism and recreation were listed as a threat(s) for 42%. This is more than those listed as threatened by climate change (26%) and close to the proportion listed as threatened by altered fire regimes (47%). There are plant species with tourism and recreation listed threats in all States and Territories and from all but one bioregion in Australia. Although more than 45 plant families have species with tourism and recreation listed as threats, orchids were the most common species listed as at risk from these threats (90 species). The most common types of threats listed were visitors collecting plants in protected areas (113 species), trampling by hikers and others (84 species), damage from recreational vehicles (59 species) and road infrastructure (39 species). Despite the frequency with which tourism and recreation were listed as threats in Australia, research quantifying these threats and methods to ameliorate their impacts are still limited. Although this lack of information contributes to the challenge of managing tourism and recreation, impacts from visitors will often be easier to manage within natural areas than those from larger scale threats such as altered fire regimes and climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis.

    Science.gov (United States)

    Mal, Tarun K; Adorjan, Peter; Corbett, Andrea L

    2002-01-01

    Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.

  13. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    Science.gov (United States)

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  14. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  15. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.

    Science.gov (United States)

    Uchida, Naoyuki; Tasaka, Masao

    2013-12-01

    Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.

  16. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada1

    Science.gov (United States)

    Kuzmina, Maria L.; Braukmann, Thomas W. A.; Fazekas, Aron J.; Graham, Sean W.; Dewaard, Stephanie L.; Rodrigues, Anuar; Bennett, Bruce A.; Dickinson, Timothy A.; Saarela, Jeffery M.; Catling, Paul M.; Newmaster, Steven G.; Percy, Diana M.; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P.; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Premise of the study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Results: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Discussion: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa. PMID:29299394

  17. The behavior of 89Sr and tritium water (HTO) in a model terrestrial-aquatic ecosystem

    International Nuclear Information System (INIS)

    Zhang Yongxi; Wang Shouxiang; Chen Chuangqun; Sun Zhiming; Huang Dan; Hu Bingmin

    1993-08-01

    The effect of land polluted by 89 Sr on water body and the immigration of HTO from water body to land were studied in a modelling terrestrial-aquatic ecosystem. The results are as follows: (1) The 89 Sr in soil quickly migrated to common bean plants and its concentration in common bean plants was increasing with the time, but the concentration of 89 Sr in soil was exponentially declining with the depth. About 5% of 89 Sr was migrated to water body by rainfall then distributed to other components, and it can be concentrated by aquatics in a certain degree. (2) when HTO entered into the water body, it would migrate to other components of the ecosystem. and the HTO in the pool was linearly decreasing with the time. However, the concentration of HTO in the sediments and aquatics would firstly increase then reached the peak and went down. The tritium of HTO was existed in two forms in the sediments and aquatics, free water (HTO) and bound tritium. HTO was also migrated to the adjacent land soil and absorbed by land crop plants, within one and half months the land system contained 24% of the total tritium in the aquatic system

  18. Fifty-five new records of vascular plants, and other discoveries for the flora of Santa Catarina, southern Brazil

    DEFF Research Database (Denmark)

    Funez, Luís A.; Hassemer, Gustavo; Ferreira, João Paulo R.

    2017-01-01

    The flora of Santa Catarina is the best known in Brazil, and yet considerable knowledge gaps remain. Aiming at filling these gaps, we present here 55 new records of vascular plants for this Brazilian state, and the re-collection of four species after more than 50 years. About 50% of new records...

  19. Rare and endangered plant species and associations in the Moravica river (Serbia

    Directory of Open Access Journals (Sweden)

    Ljevnaić-Mašić Branka B.

    2016-01-01

    Full Text Available The Moravica is a river in the southeast of Banat (Vojvodina Province, Serbia. This relatively small river is characterised by great floristic richness. A total of 87 taxa were found in the Moravica River. It is a sanctuary for some plant species that are rare and endangered both in Serbia and in Europe. Fifty-five species are on the IUCN Red List of Threatened Species and forty-five species are on the European Red List of Vascular Plants. Species Acorus calamus L., Alisma gramineum Gmel., Iris pseudacorus L., Marsilea quadrifolia L., Potamogeton fluitans Roth. and Utricularia vulgaris L. are protected or strictly protected by law in Serbia. Some of these rare species form stands of aquatic and semiaquatic vegetation rare both in Banat and in Serbia in general, such as: Lemnetum (minori - trisulcae Den Hartog 1963, Potametum nodosi Soó (1928 1960, Segal 1964, Acoreto - Glycerietum aquaticae Slavnić 1956, Rorippo - Oenanthetum (Soó 1927 Lohm. 1950, Pop 1968, and Bolboschoenetum maritimi continentale Soó (1927 1957 subass. marsiletosum quadrifoliae Ljevnaić-Mašić (2010. Because of its great diversity of flora and vegetation, the Moravica River could be a potential Important Plant Area (IPA in the future. Unfortunately, strong anthropogenic influence is a threat to this unique flora and vegetation, so appropriate and timely measures for protecting the aquatic ecosystem need to be implemented.

  20. Variabilidade no conteúdo calórico de plantas vasculares em dois reservatórios do Estado do Paraná - DOI: 10.4025/actascibiolsci.v26i2.1611 Variability in the caloric content of vascular plants in two Paraná State reservoirs - DOI: 10.4025/actascibiolsci.v26i2.1611

    Directory of Open Access Journals (Sweden)

    Danielle Peretti

    2004-04-01

    Full Text Available Com o intuito de quantificar o conteúdo calórico das plantas vasculares de dois reservatórios do Estado do Paraná, bem como sua variabilidade espacial e entre grupos ecológicos, foram realizadas amostragens em dezembro de 2002, nas zonas fluvial, de transição e lacustre dos reservatórios Mourão e Rosana. Foram amostradas, ao acaso, folhas maduras de plantas aquáticas e da vegetação ripária de diferentes indivíduos (n = 5, pertencentes à mesma espécie. Para obtenção do conteúdo calórico, em cal.g-1 de peso seco, as amostras foram maceradas em moinho de bola e submetidas à combustão em bomba calorimétrica PARR. Os dados foram submetidos a uma ANOVA modelo nulo, utilizando-se o programa EcoSim versão 7.44. Foi constatado que as plantas vasculares analisadas apresentaram ampla variabilidade calórica. Além disso, foram significativas as variabilidades espacial e entre os grupos ecológicos, não sendo recomendável o uso de um único valor calórico para estes produtores primários em modelos de fluxo de energia, sendo necessária, uma inspeção preliminar da amplitude e dos fatores que são determinantes de tal variaçãoThe present research aimed to quantify the vascular plants caloric content in two reservoirs in Paraná, as well as the spatial and ecological group variabilities. The sampling was done in December 2002, in the fluvial, transition and lacustrine zones in Rosana and Mourão reservoirs. Aquatic macrophytes and riparian vegetation mature leaves, from different individuals (n=5, belonging to the same species, were randomly sampled. In order to obtain the caloric content, in cal.g-1 dry weight, the samples were pulverized in a ball mill and subjected to combustion in a PARR calorimetric bomb. The data were treated with a null model ANOVA (EcoSim 7.44 program. A wide caloric variability was verified in the vascular plants analysed. Besides, the spatial and ecological group variabilities were significant, so it

  1. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  2. Development of aquatic life criteria for nitrobenzene in China

    International Nuclear Information System (INIS)

    Yan Zhenguang; Zhang Zhisheng; Wang Hong; Liang Feng; Li Ji; Liu Hongling; Sun Cheng; Liang Lijun; Liu Zhengtao

    2012-01-01

    Nitrobenzene is a toxic pollutant and was the main compound involved in the Songhuajiang accident in 2007, one of the largest water pollution accidents in China in the last decade. No aquatic life criteria for nitrobenzene have previously been proposed. In this study, published toxicity data of nitrobenzene to Chinese aquatic species were gathered, and six resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for nitrobenzene. Seventeen genuses mean acute values, three genuses mean chronic values to freshwater aquatic animals, and six genus toxicity values to aquatic plants were collected in total. A criterion maximum concentration of 0.018 mg/L and a criterion continuous concentration of 0.001 mg/L were developed based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in the determination of water quality standard of nitrobenzene. - Highlights: ► China is embarking on development of national water quality criteria system. ► Nitrobenzene is a valuable case in development of water quality criteria in China. ► Several Chinese resident aquatic organisms were chosen to be tested. ► The aquatic life criteria for nitrobenzene were developed. - An acute criterion of 0.018 mg/L and a chronic criterion of 0.001 mg/L for nitrobenzene in China were developed according to the U.S. Environmental Protection Agency (USEPA) guidelines.

  3. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications

    OpenAIRE

    Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    Background: Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. Res...

  4. Vascular Plant and Vertebrate Inventory of Tumacacori National Historical Park

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Anning, Pamela; Docherty, Kathleen

    2005-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Tumacacori National Historical Park (NHP) in southern Arizona. These surveys were part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. From 2000 to 2003 we surveyed for vascular plants and vertebrates (fish, amphibians, reptiles, birds, and mammals) at Tumacacori NHP to document presence of species within the administrative boundaries of the park's three units. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a long-term monitoring program. We recorded 591 species at Tumacacori NHP, significantly increasing the number of known species for the park (Table 1). Species of note in each taxonomic group include: * Plants: second record in Arizona of muster John Henry, a non-native species that is ranked a 'Class A noxious weed' in California; * Amphibian: Great Plains narrow-mouthed toad; * Reptiles: eastern fence lizard and Sonoran mud turtle; * Birds: yellow-billed cuckoo, green kingfisher, and one observation of the endangered southwestern willow flycatcher; * Fishes: four native species including an important population of the endangered Gila topminnow in the Tumacacori Channel; * Mammals: black bear and all four species of skunk known to occur in Arizona. We recorded 79 non-native species (Table E.S.1), many of which are of management concern, including: Bermudagrass, tamarisk, western mosquitofish, largemouth bass, bluegill, sunfish, American bullfrog, feral cats and dogs, and cattle. We also noted an abundance of crayfish (a non-native invertebrate). We review some of the important non-native species and make recommendations to remove them or to minimize their impacts on the native biota of the park. Based on the observed species richness, Tumacacori NHP possesses high biological diversity of plants, fish

  5. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis

    Energy Technology Data Exchange (ETDEWEB)

    Mal, T.K.; Adorjan, Peter; Corbett, A.L

    2002-12-01

    Elodea canadensis may be a good biomonitor for copper, but not a good bioaccumulator. - Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.

  6. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis

    International Nuclear Information System (INIS)

    Mal, T.K.; Adorjan, Peter; Corbett, A.L.

    2002-01-01

    Elodea canadensis may be a good biomonitor for copper, but not a good bioaccumulator. - Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment

  7. The biology and in vitro propagation of the ornamental aquatic plant, Aponogeton ulvaceus.

    Science.gov (United States)

    Kam, Melissa Yit Yee; Chai, Li Chin; Chin, Chiew Foan

    2016-01-01

    Aponogeton ulvaceus Baker (Aponogetonaceae) is a commercially important ornamental aquatic plant species with traditional medicinal uses. Due to the low survival rate of seedlings, propagation by conventional means has been met with many difficulties. In this study, botanical aspects of A. ulvaceus were examined with regards to the morphology, anatomy and physiology of the plant and an efficient protocol for its in vitro propagation using immature tuber explants has been established. The existence of glandular trichomes on the leaves was discovered and the occurrence of circumnutation in A. ulvaceus has been demonstrated. Immature tuber segments with meristems were cultured on MS medium supplemented with various combinations (0, 1, 2, and 3 mg/L) of BAP and NAA for callus induction. The highest percentage of callus production (100 %) was obtained in two different treatments: 1 mg/L BAP and 3 mg/L NAA, and 2 mg/L BAP and 3 mg/L NAA. For shoot and root organogenesis, the combination of 1 mg/L BAP and 1 mg/L NAA was shown to be significant for A. ulvaceus regeneration when compared to control, which yields a mean shoot and root number of 22.50 and 29.50 respectively. The current protocol is the first reported successful establishment of in vitro clonal propagation of A. ulvaceus .

  8. Uranium accumulation by aquatic macrophyte, Pistia stratiotes

    International Nuclear Information System (INIS)

    Bhainsa, K.C.; D'Souza, S.F.

    2012-01-01

    Uranium accumulation by aquatic macrophyte, Pistia stratiotes from aqueous solution was investigated in laboratory condition. The objective was to evaluate the uranium accumulation potential and adopt the plant in uranium containing medium to improve its uptake capacity. The plant was found to tolerate and grow in the pH range of 3-7. Accumulation of uranium improved with increasing pH and the plant could remove 70% uranium from the medium (20 mg/L) within 24 hours of incubation at pH 5-6. Uptake of uranium on either side of this pH range decreased

  9. Vascular plants promote ancient peatland carbon loss with climate warming.

    Science.gov (United States)

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.

  10. Vascular Plant and Vertebrate Inventory of Tonto National Monument

    Science.gov (United States)

    Albrecht, Eric W.; Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.

    2007-01-01

    This report summarizes the results of the first biological inventory of plants and vertebrates at Tonto National Monument (NM). From 2001 to 2003, we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tonto NM to record species presence. We focused most of our efforts along the Cave Springs riparian area, but surveyed other areas as well. We recorded 149 species in the riparian area, and 369 species overall in the monument, including 65 plant species and four bird species that were previously unrecorded for the monument. We recorded 78 plant species in the riparian area that previous studies had not indicated were present there. Several species of each taxonomic group were found only in the riparian area, suggesting that because of their concentration in this small area these populations are vulnerable to disturbance and may be of management concern. Four of the bird species that we recorded (Bell's vireo, yellow warbler, summer tanager, and Abert's towhee) have been identified as riparian 'obligate' species by other sources. Bird species that are obligated to riparian areas are targets of conservation concern due to widespread degradation of riparian areas in the desert southwest over the last century. The flora and fauna of the riparian area would benefit from continued limited public access. The dependence of the riparian area on the spring and surface flow suggests monitoring of this resource per se would benefit management of the riparian area's flora and fauna as well. The monument would benefit from incorporating monitoring protocols developed by the Sonoran Desert Network Inventory and Monitoring program rather than initiating a separate program for the riparian area. Park managers can encourage the Inventory and Monitoring program to address the unique monitoring challenges presented by small spatial areas such as this riparian area, and can request specific monitoring recommendations. We suggest that repeat

  11. Nutrition, illness, and injury in aquatic sports.

    Science.gov (United States)

    Pyne, David B; Verhagen, Evert A; Mountjoy, Margo

    2014-08-01

    In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of illness and injury. Aquatic athletes are encouraged to consume a well-planned diet with sufficient calories, macronutrients (particularly carbohydrate and protein), and micronutrients (particularly iron, zinc, and vitamins A, D, E, B6, and B12) to maintain health and performance. Ingesting carbohydrate via sports drinks, gels, or sports foods during prolonged training sessions is beneficial in maintaining energy availability. Studies of foods or supplements containing plant polyphenols and selected strains of probiotic species are promising, but further research is required. In terms of injury, intake of vitamin D, protein, and total caloric intake, in combination with treatment and resistance training, promotes recovery back to full health and training.

  12. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Pagès, Jordi F.; Arthur, Rohan; Alcoverro, Teresa

    2016-01-01

    While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2)

  13. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  14. Research of aquatic organism addition influence on the reproduction of yeast cells in the dough

    Directory of Open Access Journals (Sweden)

    Дмитро Павлович Крамаренко

    2016-12-01

    Full Text Available The analysis of the research results of influence of various amounts of aquatic organism additions on the reproduction of yeast cells is given. A positive impact of aquatic organism addition of animal and plant origin in investigated quantities on the reproduction of yeast cells is revealed. The influence of the chemical composition of the aquatic organism additives on the reproduction of yeast cells is proved

  15. Herbarium of vascular plants collection of the university of extremadura (Spain).

    Science.gov (United States)

    Espinosa, Marta; López, Josefa

    2013-01-01

    The herbarium of University of Extremadura (UNEX Herbarium) is formed by 36451 specimens of vascular plants whose main origin is the autonomous region of Extremadura (Spain) and Portugal, although it also contains a smaller number of specimens from different places, including the rest of peninsular Spain, the Baleares Islands, the Macaronesian region (Canary Islands, Madeira and Azores), northwest of Africa (Morocco) and Brazil. 98% of the total records are georeferenced. It is an active collection in continuous growth. Its data can be accessed through the GBIF data portal at http://data.gbif.org/datasets/resource/255 and http://www.eweb.unex.es/eweb/botanica/herbario/. This paper describes the specimen associated data set of the UNEX Herbarium, with an objective to disseminate the data contained in a data set with potential users, and promote the multiple uses of the data.

  16. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.

    Science.gov (United States)

    Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre

    2015-07-01

    Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    Science.gov (United States)

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy

  18. Nuclear microprobe study of heavy metal uptake and transport in aquatic plant species

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Kocsar, I.; Szikszai, Z.; Lakatos, Gy.

    2005-01-01

    Complete text of publication follows. In aquatic ecosystems water contamination by trace metals is one of the main types of pollution that may stress the biotic community. Although some metals are needed as micronutrients for autotrophic organisms, they can have toxic effects at higher concentration. Aquatic plants can take up large quantities of nutrients and metals from the environment, they can live under extreme environmental conditions therefore they are being increasingly used in remediation processes to reduce contamination. Besides the usually applied bulk analytical techniques quantitative micro-PIXE investigation of the macro, micro and trace element distribution within the root can lead to a better understanding of the heavy metal up-take, transport and detoxification mechanisms of the plants and thus helps to select the proper species for the remedial activity, or possibly to increase the efficiency of the remediation. In this work we determined the elemental distributions in root cross sections and along the roots of reed (Phragmaties australis), bulrush (Typha angustifolia) and sea club-rush (Bolboschoemus maritimus) using the Debrecen nuclear microprobe. The plants originate from the dried units of the wastewater sedimentation pond system of the tannery of Kunszentmarton. 1500 m 3 waste water containing lime, sodium-salts, ammonium-salts, chromium-salts, sodium, chlorine and magnesium ions, sulphur and organic material was released to the pond system every day till 1988. The chosen species are the dominant species of the area, composing 85-90% of the green plant covering. This heavily contaminated area has been regularly monitored by the colleagues of the Dept. of Applied Ecology of the Univ. of Debrecen since 1998. They focused their work the potentially toxic heavy metal chromium. In order to conserve the samples in the living state, the roots were frozen in liquid nitrogen. 16-20 μm thick cross sections were made with cryo-microtome, and all the

  19. Radioactive contamination of aquatic ecosystems following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1995-01-01

    The dynamics of radioactive contamination of aquatic ecosystems (1986-1990) is considered on the basis of observational data in the near and distant zones of the Chernobyl fallout (the Chernobyl Nuclear Power Plant (CNPP) cooling pond, the Pripyat River, the Dnieper reservoirs, and the Kopor inlet of the Gulf of Finland). Radionuclide accumulation in aquatic biota is analyzed. The results obtained indicate that the radioecological conditions in the water bodies under investigation were in a state of non-equilibrium over a long period of time following the Chernobyl accident. Reduction in the 137 Cs concentration proceeded slowly in most of the aquatic ecosystems. The effect of trophic levels which consisted of increased accumulation of radiocaesium by predatory fish was observed in various parts of the contaminated area. (author)

  20. Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants

    DEFF Research Database (Denmark)

    Frost-Christensen, Henning; Jørgensen, Lise Bolt; Floto, Franz

    2003-01-01

    oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants......oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants...

  1. Seasonal and interspecific nutrient mitigation comparisons of three emergent aquatic macrophytes

    Science.gov (United States)

    The purpose of this experiment was to measure both summer and winter nutrient mitigation efficiencies of three aquatic plants found in agricultural drainage ditches in the lower Mississippi River Basin. Mesocosms (1.25 x 0.6 x 0.8 m) were filled with sediment and planted with monocultures of one of...

  2. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  3. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    Science.gov (United States)

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  4. Investigation on concentration of elements in wetland sediments and aquatic plants

    Directory of Open Access Journals (Sweden)

    H. Janadeleh

    2016-01-01

    Full Text Available The major aim of the present study was to investigate element (Fe, Ni, Pb, V, Zn concentrations in sediment and different tissues of Phragmities australis and Typha latifolia in Hor al-Azim Wetland Southwest Iran. Sampling of sediments and aquatic plants was carried out during spring and summer 2014. Results showed that the mean  concentrations of elements in Phragmities australis  in root and stem-leaf were as follows: Iron:4448 mg/kg, Nickel: 28 mg/kg, Lead:8 mg/kg, Vanadium:10 mg/kg  and Zinc 15.5 mg/kg in root and: Fe:645 mg/kg, Ni:15 mg/kg, Pb:4 mg/kg, V:4 mg/kg and Zinc 16 mg/kg respectively. Also, the mean concentrations of Fe, Ni, Pb, V and Zn in roots of Typha latifolia were 8696 mg/kg, 34 mg/kg, 5 mg/kg, 19 mg/kg and 27 mg/kg respectively. The mean concentrations of Fe, Ni, V, Pb, Zn in stem-leaves of Typha latifolia were as follows: 321 mg/kg, 3 mg/kg, 7 mg/kg, 2 mg/kg and 14 mg/kg respectively. The mean concentrations of Fe, Ni, V, Pb and zinc were as: 40991 mg/kg, 65 mg/kg, 60 mg/kg, 31 mg/kg, 60 mg/kg respectively in surface sediment of study area. Concentration pattern of elements in sediment were as: Fe>Ni>Zn>V>Pb. The highest concentration of elements in the plant was seen in the roots. Also, Typha latifolia can uptake more concentration of elements than Phragmities australis. Based on the enrichment factor, Ni in summer had the highest EF values among the elements studied and it has a moderate enrichment.

  5. Impact on the aquatic environment of hydro-peaking in hydroelectric plants

    International Nuclear Information System (INIS)

    Sabaton, C.; Lauters, F.; Valentin, S.

    1996-01-01

    There are a number of types of hydroelectric installations on French rivers. Some of these intermittently turbine water stored in dammed reservoirs, in order to use available reserves at the most opportune moment for power generation. These plants, run under 'hydro-peaking' management procedures, cause variations in discharge in river sections downstream of the restitution, on a daily or weekly scale. To answer questions concerning the impact of such variations in discharge on the aquatic environment, EDF launched a research program aimed at describing and better understanding the physical and biological phenomena related to hydro-peaking and assessing the possible impact of this type of plant management on French streams. Seven sites subjects to hydro-peaking were studied on rivers with mean flow rates lower than 20 m 3 /s (which corresponds to over 65 % of EDF hydro-peaking sites). Four themes in particular were examined: hydraulic characterization of hydro-peaking, modifications in thermal regime and water quality, response of benthic invertebrates and response of fish populations to hydro-peaking. For fish as well as for invertebrates, the role of the base discharge - in the absence of peaking flow - and that of the morphology of the river bed (and, in particular, the presence of shelter for fish) during periods of strong discharge were clearly highlighted. Impact assessment requires a precise diagnosis of the state of biocenoses. To carry out such a diagnosis, one must reason in terms of species, life phase (particularly the most sensitive phases) and population structure as well as the type of stream and the faunizone involved. A risk assessment is possible by means of simultaneous study of the morphology of the river bed and the response of the signal generated by hydro-peaking in terms of hydrology and physical characteristics downstream of the restitution. (authors)

  6. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  7. A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes.

    Science.gov (United States)

    Fuentes, Sara; Pires, Nuno; Østergaard, Lars

    2010-08-01

    The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.

  8. The distribution of submersed aquatic vegetation and water lettuce in the fresh and oligohaline tidal Potomac River, 2007

    Science.gov (United States)

    Campbell, Sarah Hunter; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Surveys documenting the composition of species of submersed aquatic vegetation (SAV) have been conducted in the Potomac River for decades. These surveys can help managers assess the proportion of native and exotic plants in the river or can be used to determine relationships between native and exotic plants, environmental conditions, and wildlife. SAV coverage increased from 2005 to 2007 throughout the fresh and oligohaline study area. The 2007 survey documented here determined that eleven species of SAV were present. The abundance of the exotic species Hydrilla verticillata (hydrilla) was relatively low, and species diversity was relatively high compared to previous years. The survey also revealed a new population of the invasive, floating aquatic plant Pistia stratiotes (water lettuce). In 2007, water lettuce, the latest exotic aquatic plant to be found in the fresh to oligohaline portion of the Potomac River, was most abundant in Mattawoman Creek, Charles County, Maryland. However, it was not observed in the fresh to oligohaline portion of the Potomac River in the summer of 2008. An understanding of the distribution of SAV species and factors governing the abundance of native and invasive aquatic species is enhanced by long-term surveys.

  9. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.

    Science.gov (United States)

    Nemie-Feyissa, Dugassa; Królicka, Adriana; Førland, Nina; Hansen, Margarita; Heidari, Behzad; Lillo, Cathrine

    2013-05-01

    Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg(2+) contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.

    Science.gov (United States)

    Hassi, Ummehani; Hossain, Md Tawhid; Huq, S M Imamul

    2017-10-10

    Dangers of arsenic contamination are well known in human civilization. The threat increases when arsenic is accumulated in food and livestock through irrigated crops or animal food. Hence, it is important to mitigate the effects of arsenic as much as possible. This paper discusses a process for reducing the level of arsenic in different parts of rice plants with an aquatic fern, Marsilea minuta L. A pot experiment was done to study the possibility of using Marsilea minuta as a phytoremediator of arsenic. Rice and Marsilea minuta were allowed to grow together in soils. As a control, Marsilea minuta was also cultured alone in the presence and absence of arsenic (applied at 1 mg/L as irrigation water). We did not find any significant change in the growth of rice due to the association of Marsilea minuta, though it showed a reduction of approximately 58.64% arsenic accumulation in the roots of rice grown with the association of fern compared to that grown without fern. We measured a bioaccumulation factor (BF) of > 5.34, indicating that Marsilea minuta could be a good phytoremediator of arsenic in rice fields.

  11. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    International Nuclear Information System (INIS)

    Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

    1993-01-01

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE's requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  12. Improvements in the use of aquatic herbicides and establishment of future research directions

    Science.gov (United States)

    Getsinger, K.D.; Netherland, M.D.; Grue, C.E.; Koschnick, T.J.

    2008-01-01

    Peer-reviewed literature over the past 20 years identifies significant changes and improvements in chemical control strategies used to manage nuisance submersed vegetation. The invasive exotic plants hydrilla (Hydrilla verticillata L.f. Royle) and Eurasian watermilfoil (Myriophyllum spicatum L.) continue to spread and remain the plant species of greatest concern for aquatic resource managers at the national scale. Emerging exotic weeds of regional concern such as egeria (Egeria densa Planch.), curlyleaf pondweed (Potamogeton crispus L.), and hygrophila (Hygrophila polysperma (Roxb.) T. Anders), as well as native plants such as variable watermilfoil (Myriophyllum heterophyllum Michx), and cabomba (Cabomba caroliniana Gray) are invasive outside their home ranges. In addition, there is always the threat of new plant introductions such as African elodea (Lagarosiphon major (Ridley) Moss) or narrow-leaf anacharis (Egeria najas Planchon). The registration of the bleaching herbicide fluridone in the mid 1980s for whole-lake and large-scale management stimulated numerous lines of research involving reduction of use rates, plant selectivity, residue monitoring, and impacts on fisheries. In addition to numerous advances, the specificity of fluridone for a single plant enzyme led to the first documented case of herbicide resistance in aquatic plant management. The resistance of hydrilla to fluridone has stimulated a renewed interest by industry and others in the registration of alternative modes of action for aquatic use. These newer chemistries tend to be enzyme-specific compounds with favorable non-target toxicity profiles. Registration efforts have been facilitated by increased cooperation between key federal government agencies that have aquatic weed control and research responsibilities, and regulators within the U.S. Environmental Protection Agency (USEPA). We reviewed past and current research efforts to identify areas in need of further investigation and to establish

  13. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas.

    Science.gov (United States)

    Jiang, Yanbin; Fan, Miao; Hu, Ronggui; Zhao, Jinsong; Wu, Yupeng

    2018-05-29

    Mosses and leaves of vascular plants have been used as bioindicators of environmental contamination by heavy metals originating from various sources. This study aims to compare the metal accumulation capabilities of mosses and vascular species in urban areas and quantify the suitability of different taxa for monitoring airborne heavy metals. One pleurocarpous feather moss species, Haplocladium angustifolium , and two evergreen tree species, Cinnamomum bodinieri Osmanthus fragrans , and substrate soil were sampled in the urban area of different land use types in Wuhan City in China. The concentrations of Ag, As, Cd, Co, Cr, Cu, Mn, Mo, Ni, V, Pb, and Zn in these samples were analyzed by inductively coupled plasma mass spectrometry. The differences of heavy metals concentration in the three species showed that the moss species was considerably more capable of accumulating heavy metals than tree leaves (3 times to 51 times). The accumulated concentration of heavy metals in the moss species depended on the metal species and land use type. The enrichment factors of metals for plants and the correlations of metals in plants with corresponding metals in soil reflected that the accumulated metals in plants stemmed mostly from atmospheric deposition, rather than the substrate soil. Anthropogenic factors, such as traffic emissions from automobile transportation and manufacturing industries, were primarily responsible for the variations in metal pollutants in the atmosphere and subsequently influenced the metal accumulation in the mosses. This study elucidated that the moss species H. angustifolium is relatively more suitable than tree leaves of C. bodinieri and O. fragrans in monitoring heavy metal pollution in urban areas, and currently Wuhan is at a lower contamination level of atmospheric heavy metals than some other cities in China.

  14. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  15. Preliminary comparison of the uptake of chromium-51 and zinc-65 by three species of aquatic plants from Louisiana

    International Nuclear Information System (INIS)

    Sklar, F.H.

    1980-01-01

    Accumulation of radionuclides was much greater for duckweed (Spirodela punctata) than for larger aquatic plants of slower growth (Bacopa caroliniana and Elodea canadensis). Higher specific activity (dpm/gm) was recorded in leaves than in stems. Chromium-51 accumulation factors ranged from a low of 66 for stems of E. canadensis to a high of 436 for S. punctata fronds. Zinc-65 accumulation factors were much higher: 142 for stems of B. caroliniana and 18,118 for fronds of S. punctata. Significant reductions in zinc-65 activity in the water surrounding growing S. punctata was detected within 10 minutes

  16. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  17. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  18. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Science.gov (United States)

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  19. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  20. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada: an annotated checklist of an Arctic flora

    Directory of Open Access Journals (Sweden)

    Jeffery M. Saarela

    2017-01-01

    Full Text Available The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa, a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata, seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium

  1. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera.

    Science.gov (United States)

    Erhard, Daniela; Pohnert, Georg; Gross, Elisabeth M

    2007-08-01

    The submersed macrophyte Elodea nuttallii (Hydrocharitaceae) is invasive in Europe and frequently found in aquatic plant communities. Many invertebrate herbivores, such as larvae of the generalist aquatic moth, Acentria ephemerella (Lepidoptera, Pyralidae), avoid feeding on E. nuttallii and preferably consume native species. First instar larvae exhibited a high mortality on E. nuttallii compared to the native macrophyte Potamogeton perfoliatus. Mortality of older larvae was also high when fed E. nuttallii exposed to high light intensities. Growth of older larvae was strongly reduced on E. nuttallii compared to pondweeds (Potamogeton lucens). Neither differences in nitrogen nor phosphorus content explained the different performance on these submerged macrophytes, but plants differed in their flavonoid content. To investigate whether plant-derived allelochemicals from E. nuttallii affect larval performance in the same way as live plants, we developed a functional bioassay, in which Acentria larvae were reared on artificial diets. We offered larvae Potamogeton leaf disks coated with crude Elodea extracts and partially purified flavonoids. Elodea extracts deterred larvae from feeding on otherwise preferred Potamogeton leaves, and yet, unknown compounds in the extracts reduced growth and survival of Acentria. The flavonoid fraction containing luteolin-7-O-diglucuronide, apigenin-7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide strongly reduced feeding of larvae, but did not increase mortality. The concentrations of these compounds in our assays were 0.01-0.09% of plant dry mass, which is in the lower range of concentrations found in the field (0.02-1.2%). Chemical defense in E. nuttallii thus plays an ecologically relevant role in this aquatic plant-herbivore system.

  2. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?

    Science.gov (United States)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.

    2015-11-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  3. Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Murphy, Joseph E; Beckmen, Kimberlee B; Johnson, Julie K; Cope, Rhian B; Lawmaster, Todd; Beasley, Val R

    2002-08-01

    Declines of amphibians have been attributed to many factors including habitat degradation. The introduction of grass carp (Ctenopharyngodon idella) as a biological agent for aquatic plant control in ponds and lakes managed narrowly for human recreation has likely contributed to amphibian declines through massive plant removal and associated habitat simplification and thus degradation. This research examined the interactions among grass carp and three Midwestern aquatic plants (Jussiaea repens, Ranunculus longirostris, and R. flabellaris) that may be of value in rehabilitation of habitats needed by amphibians. The feeding preference study found that C. idella avoided eating both J. repens and R. longirostris. Ranunculus species studied to date contain a vesicant toxin called ranunculin that is released upon mastication. The study that compared the effects of R. flabellaris, J. repens and a control food administered by tube feeding to C. idella found significant lesions only in the mucosal epithelium of the individuals exposed to R.flabellaris. The avoidance by C. idella of J. repens and R. longirostris in the feeding preference study, and the significant toxicity of R. flabellaris demonstrated by the dosing study, indicate these plants warrant further examination as to their potential effectiveness in aquatic amphibian habitat rehabilitation.

  4. Evaluating MERIS-Based Aquatic Vegetation Mapping in Lake Victoria

    NARCIS (Netherlands)

    Cheruiyot, E.K.; Mito, C.; Menenti, M.; Gorte, B.G.H.; Koenders, R.; Akdim, N.

    2014-01-01

    Delineation of aquatic plants and estimation of its surface extent are crucial to the efficient control of its proliferation, and this information can be derived accurately with fine resolution remote sensing products. However, small swath and low observation frequency associated with them may be

  5. Incidence and Management Costs of Freshwater Aquatic Nuisance Species at Projects Operated by the U.S. Army Corps of Engineers

    Science.gov (United States)

    2010-07-01

    the occurrence of ANS impacts (Yes or No) from freshwater algae, large aquatic plants, fish, zebra mussels, Asiatic clams, water fleas, crayfish...2005. Freshwater aquatic nuisance species impacts and management costs and benefits at federal water resources projects. ERDC/TN ANSRP-06-3...ER D C/ EL T R- 10 -1 3 Aquatic Nuisance Species Research Program Incidence and Management Costs of Freshwater Aquatic Nuisance Species

  6. Disentangling the influence of environmental and anthropogenic factors on the distribution of endemic vascular plants in Sardinia.

    Science.gov (United States)

    Fois, Mauro; Fenu, Giuseppe; Cañadas, Eva Maria; Bacchetta, Gianluigi

    2017-01-01

    Due to the impelling urgency of plant conservation and the increasing availability of high resolution spatially interpolated (e.g. climate variables) and categorical data (e.g. land cover and vegetation type), many recent studies have examined relationships among plant species distributions and a diversified set of explanatory factors; nevertheless, global and regional patterns of endemic plant richness remain in many cases unexplained. One such pattern is the 294 endemic vascular plant taxa recorded on a 1 km resolution grid on the environmentally heterogeneous island of Sardinia. Sixteen predictors, including topographic, geological, climatic and anthropogenic factors, were used to model local (number of taxa inside each 1 km grid cell) Endemic Vascular Plant Richness (EVPR). Generalized Linear Models were used to evaluate how each factor affected the distribution of local EVPR. Significant relationships with local EVPR and topographic, geological, climatic and anthropogenic factors were found. In particular, elevation explained the larger fraction of variation in endemic richness but other environmental factors (e.g. precipitation seasonality and slope) and human-related factors (e.g. the Human Influence Index (HII) and the proportion of anthropogenic land uses) were, respectively, positively and negatively correlated with local EVPR. Regional EVPR (number of endemic taxa inside each 100 m elevation interval) was also measured to compare local and regional EVPR patterns along the elevation gradient. In contrast to local, regional EVPR tended to decrease with altitude partly due to the decreasing area covered along altitude. The contrasting results between local and regional patterns suggest that local richness increases as a result of increased interspecific aggregation along altitude, whereas regional richness may depend on the interaction between area and altitude. This suggests that the shape and magnitude of the species-area relationship might vary with

  7. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China

    International Nuclear Information System (INIS)

    Yang Suwen; Yan Zhenguang; Xu Fanfan; Wang Shengrui; Wu Fengchang

    2012-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. It has been detected in the environment and has shown to high toxicity to aquatic organisms. To date no aquatic life criteria for TBBPA have been proposed. This work compiled all literature toxicity data of TBBPA on Chinese aquatic species. Eight resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for TBBPA. Ten genera mean acute values and three genera mean chronic values to freshwater aquatic animals, as well as two genera toxicity values to aquatic plants were collected. A criterion maximum concentration of 0.1475 mg/L and a criterion continuous concentration of 0.0126 mg/L were derived based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in risk assessment of TBBPA in the ambient water environment. - Highlights: ► We collected all the published toxicity data of TBBPA to aquatic organisms. ► We performed acute and chronic toxicity testes with eight Chinese resident aquatic species. ► The acute and chronic water quality criteria of TBBPA were developed and validated. ► This work is valuable to predict the risks posed by TBBPA in ambient water environment. - An acute water quality criterion of 0.1475 mg/L and a chronic water quality criterion of 0.0126 mg/L for TBBPA in China were developed according to USEPA guidelines.

  8. Cross-scale modelling of alien and native vascular plant species richness in Great Britain: where is geodiversity information most relevant?

    Science.gov (United States)

    Bailey, Joseph; Field, Richard; Boyd, Doreen

    2016-04-01

    We assess the scale-dependency of the relationship between biodiversity and novel geodiversity information by studying spatial patterns of native and alien (archaeophytes and neophytes) vascular plant species richness at varying spatial scales across Great Britain. Instead of using a compound geodiversity metric, we study individual geodiversity components (GDCs) to advance our understanding of which aspects of 'geodiversity' are most important and at what scale. Terrestrial native (n = 1,490) and alien (n = 1,331) vascular plant species richness was modelled across the island of Great Britain at two grain sizes and several extent radii. Various GDCs (landforms, hydrology, geology) were compiled from existing national datasets and automatically extracted landform coverage information (e.g. hollows, valleys, peaks), the latter using a digital elevation model (DEM) and geomorphometric techniques. More traditional predictors of species richness (climate, widely-used topography metrics, land cover diversity, and human population) were also incorporated. Boosted Regression Tree (BRT) models were produced at all grain sizes and extents for each species group and the dominant predictors were assessed. Models with and without geodiversity data were compared. Overarching patterns indicated a clear dominance of geodiversity information at the smallest study extent (12.5km radius) and finest grain size (1x1km), which substantially decreased for each increase in extent as the contribution of climatic variables increased. The contribution of GDCs to biodiversity models was chiefly driven by landform information from geomorphometry, but hydrology (rivers and lakes), and to a lesser extent materials (soil, superficial deposits, and geology), were important, also. GDCs added significantly to vascular plant biodiversity models in Great Britain, independently of widely-used topographic metrics, particularly for native species. The wider consideration of geodiversity alongside

  9. Contrasts between bryophyte and vascular plant synecological responses in an SO/sub 2/-stressed white spruce association in Central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Winner, W.E.; Bewley, J.D.

    1978-01-01

    Canopy coverage analysis was used to examine the synecological changes exhibited by vascular plants and terrestrial mosses in a white spruce association exposed to SO/sub 2/ fumigation. Both these understory components were found to decline in coverage as SO/sub 2/ stress increased, but mosses were more sensitive to SO/sub 2/ in the more heavily stressed areas. This was observed along both an angle-dependent and a distance-dependent gradient of pollution stress. Diversity steadily declined with increasing SO/sub 2/ stress along the angle-dependent gradient but some localized increases in diversity occurred with increasing stress along the distance-dependent gradient. This was due to invasion of openings resulting from attrition of SO/sub 2/-sensitive species by weedy angiosperms and by vegetative growth of moss species more tolerant of pollution stress. Conclusions have been drawn about the productive strategy of vascular plants and mosses subjected to increasing concentrations of SO/sub 2/. We have elucidated the ecological consequences for community structure of the systematic removal of pollution-sensitive understory species from an otherwise stable vegetation unit.

  10. Does cross-taxon analysis show similarity in diversity patterns between vascular plants and bryophytes? Some answers from a literature review.

    Science.gov (United States)

    Bagella, Simonetta

    2014-04-01

    The objective of this study was to clarify the taxon surrogacy hypothesis relative to vascular plants and bryophytes. A literature review was conducted to obtain papers that met the following criteria: (i) they examined species richness values; or (ii) they evaluated the species richness within the same study sites, or under the same spatial variation conditions. Twenty-seven papers were accessed. The richness of the two taxa, compared in 32 cases, positively co-varied in about half of the comparisons. The response to the spatial variation in environmental or human-induced factors of the two taxa in terms of species richness was rather variable. Based on current knowledge, the main documented findings regard forest habitats and nival gradients. In forest habitats, co-variation in species richness is likely when similar environments are analysed and seems to be strengthened for boreal forests. Along the nival gradient, a different response in terms of richness of the two taxa suggests that vascular plants cannot be considered good surrogates for bryophytes. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. An assessment of pollution in aquatic environment using bioindicators

    African Journals Online (AJOL)

    This review highlights the importance of biological indicators in monitoring presence of pollution in aquatic environment. This assessment involves the use of living organisms (macro or microorganisms and plants or animals) as bioindicators of pollution in water bodies. These organisms are believed to show higher ...

  12. Oxygen penetration around burrows and roots in aquatic sediments

    DEFF Research Database (Denmark)

    Meysman, Filip J.R.; Galaktionov, O.S.; Glud, Ronnie N.

    2010-01-01

    Diffusion is the dominant physical mechanism for the transfer of oxygen into fine-grained aquatic sediments. This diffusive uptake occurs at the sediment-water interface, but also at internal interfaces, such as along ventilated burrows or O2 releasing plant roots. Here, we present a systematic...

  13. The development of a classification system for inland aquatic ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... 6Department of Plant Sciences, University of the Free State, Qwaqwa Campus, Private .... classification systems for wetlands and other inland aquatic ... of vegetation, soil, inundation and landform features that are ... nised as the fundamental drivers that determine the existence ...... Earth Obs. Remote Sens.

  14. Ecobiophysical Aspects on Nanosilver Biogenerated from Citrus reticulata Peels, as Potential Biopesticide for Controlling Pathogens and Wetland Plants in Aquatic Media

    Directory of Open Access Journals (Sweden)

    Marcela Elisabeta Barbinta-Patrascu

    2017-01-01

    Full Text Available In recent years, a considerable interest was paid to ecological strategies in management of plant diseases and plant growth. Metallic nanoparticles (MNPs gained considerable interest as alternative to pesticides due to their interesting properties. Green synthesis of MNPs using plant extracts is very advantageous taking into account the fact that plants are easily available and eco-friendly and possess many phytocompounds that help in bioreduction of metal ions. In this research work, we phytosynthesized AgNPs from aqueous extract of Citrus reticulata peels, with high antioxidant, antibacterial, and antifungal potential. These “green” AgNPs were characterized by modern biophysical methods (absorption and FTIR spectroscopy, AFM, and zeta potential measurements. The nanobioimpact of Citrus-based AgNPs on four invasive wetland plants, Cattail (Typha latifolia, Flowering-rush (Butomus umbellatus, Duckweed (Lemna minor, and Water-pepper (Polygonum hydropiper, was studied by absorption spectroscopy, by monitoring the spectral signature of chlorophyll. The invasive plants exhibited different behavior under AgNP stress. Deep insights were obtained from experiments conducted on biomimetic membranes marked with chlorophyll a. Our results pointed out the potential use of Citrus-based AgNPs as alternative in controlling pathogens in aqueous media and in management of aquatic weeds growth.

  15. Role of endophytic fungi in the migration of the radionuclides in the vascular plants of the Ukrainian Polesye sphagniopratum

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Sokolova, E.V.; Kurchenko, I.N.; Orlov, A.A.

    2002-01-01

    It is known that the specific activity of 137 Cs in vegetative phytomass of cranberry and sphagnum in oligotrophic conditions of Ukrainian Polessye forest sphagniopratum amounts 5000 - 10000 Bq/kg of air-dry weight. Roots of cranberry in natural conditions never run up to peat and mainly are located in top layer of the sphagnum top which is sodden by a water, but specific activity of the radionuclide in swamp water is low (2 - 10 Bq/l). It was supposed that mycorrhizal and endophytic micromycetes take an essential part in transferring the mineral substances and 137 Cs from sphagnum mosses to ericoid plants under oligotrophic swamp conditions. Endophytic fungi from vascular plants were not investigated in Ukraine. The article is devoted to the estimation of distribution of endophytic fungi in plants which are dominants of the plant cover of sphagniopratum. 47 species of micromycetes which belong to 27 genera were identified. For moss and ericoid plants five mutual species of endophytic fungi was detected

  16. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  17. Characterization of three acid strip mine lakes in Grundy County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Master, W. A.

    1979-09-01

    Three small lakes with acid water and one with circumneutral water at an abandoned strip mine site were characterized to identify factors limiting biological productivity. Dissolved oxygen, specific conductance, and temperature profiles were determined. Water samples were analyzed for 23 parameters, and the lakes were examined for the presence of aquatic vascular plants and benthic inhabitants. The acid lakes ranged from 0.9 ha to 2.7 ha in surface area and from 3.1 m to 6.7 m in maximum depth. The mean pH of the acid lakes ranged from 3.1 to 3.9. Chemicals found at concentrations higher than Illinois surface water standards or federal criteria for the protection of aquatic life included Cd, Cu, Fe, Mn, SO/sub 4/=, and Zn. A number of these chemicals were at sufficiently high concentrations to limit the survival and productivity of most aquatic fauna. The lake with the poorest water quality had the least diversity of aquatic vascular plants and benthic invertebrates, while the circumneutral lake had the greatest diversity of species.

  18. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.

    Science.gov (United States)

    Raven, John A; Giordano, Mario; Beardall, John; Maberly, Stephen C

    2011-09-01

    species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity.

  19. Carbon 14 in the aquatic food chain

    International Nuclear Information System (INIS)

    Mueller, H.; Fischer, E.

    1983-01-01

    In the links of the food chain consisting of water, water plants, and fish from 6 several aquatic ecosystems, the specific C-14 activity of the carbon was determined from 1979 to 1981 and compared with values of the terrestrial food chain. The mean values obtained from the specific acitivities of the links were between 203 and 321 mBq/g C (5.5 and 8.7 pCi/g C). Four of the six mean values differ from the values for the terrestrial food chain of 260 to 240 mBg/g C (7.0 to 6.5 pCi/g C) investigated for 1979 to 1980. The specific-acitivity model is valid for the aquatic food chain only if atmosphere and man are not included as chain links. (orig.) [de

  20. Measurements for modeling radionuclide transfer in the aquatic environment

    International Nuclear Information System (INIS)

    Kahn, B.

    1976-01-01

    Analytical methods for measuring radionuclides in the aquatic environment are discussed for samples of fresh water and seawater, fish and shellfish, biota such as algae, plankton, seaweed, and aquatic plants, and sediment. Consideration is given to radionuclide collection and concentration, sample preservation, radiochemical and instrumental analysis, and quality assurance. Major problems are the very low environmental levels of the radionuclides of interest, simultaneous occurrence of radionuclides in several chemical and physical forms and the numerous factors that affect radionuclide levels in and transfers among media. Some radionuclides of importance in liquid effluents from nuclear power stations are listed, and sources of radiochemical analytical methods are recommended

  1. Functional characteristics of traps of aquatic carnivorous Utricularia species

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2011-01-01

    Roč. 95, č. 3 (2011), 226-233 ISSN 0304-3770 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plants * trap thickness measurements * water pumping Subject RIV: EF - Botanics Impact factor: 1.516, year: 2011

  2. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  3. Metal concentrations in aquatic macrophytes as influenced by soil and acidification

    Science.gov (United States)

    Sparling, D.W.; Lowe, T.P.

    1998-01-01

    Bioavailability of metals to aquatic plants is dependent on many factors including ambient metal concentration, pH of soil or water, concentration of ligands, competition with other metals for binding sites, and mode of exposure. Plants may be exposed to metals through water, air, or soil, depending on growth form. This paper examines the influence of soil type under two regimens of water acidification on metal uptake by four species of aquatic macrophytes: smartweed (Polygonum sagittatum), burreed (Sparganium americanum), pondweed (Potamogeton diversifolius), and bladderwort (Utricularia vulgaris) in constructed, experimentally acidified wetlands. Soil types consisted of a comparatively high-metal clay or a lower-metal sandy loam. Each pond was either acidified to pH ca. 4.85.3 or allowed to remain circumneutral. Metal concentrations tended to be higher in the submerged bladderwort and pondweed than in the emergent burreed and smartweed. Soils were important to plant metal concentrations in all species, but especially in the emergents. Acidification influenced plant concentrations of some metals and was especially important in the submerged pondweed. Bioaccumulation of metals occurred for Mn, B, Sr, Ba, and Zn, compared to soil concentrations.

  4. Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot.

    Science.gov (United States)

    Molina-Venegas, Rafael; Aparicio, Abelardo; Pina, Francisco José; Valdés, Benito; Arroyo, Juan

    2013-10-01

    We determined the environmental correlates of vascular plant biodiversity in the Baetic-Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic-Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi-partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic-Rifan hotspot. In the Baetic range, elevation was the most significant driver of nonendemic species beta diversity, while lithology and elevation were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities - especially in their western ranges - due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic-Rifan hotspot. Determinants

  5. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    SMG

    The effect of green sponges on the abundance of aquatic mycotal ... The distribution of plant and animal hydrobionts in water ecosystems of a lake ... inhabitants of the town as a beach. ... phytoplankton in accordance with the general principles of the techniques. ..... Influence on mycotal species diversity by different stem ...

  6. Concentration and distribution of 14C in aquatic environment around Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Wang Zhongtang; Guo Qiuju; Hu Dan; Xu Hong

    2015-01-01

    In order to study the concentration and distribution of 14 C in aquatic environment in the vicinity of Qinshan Nuclear Power Plant (NPP) after twenty years' operation, an apparatus extracting dissolved inorganic carbon from water was set up and applied to pretreat the water samples collected around Qinshan NPP. The 14 C concentration was measured by accelerator mass spectrometer (AMS). The results show that the 14 C specific activities in surface seawater samples range from 196.8 to 206.5 Bq/kg 203.4 ± 5.6) Bq/kg in average), which are close to the background. The 14 C concentrations in cooling water discharged from Qinshan NPP are close to the 14 C values in near shore seawater samples out of liquid radioactive effluent discharge period. It can be further concluded that the 14 C discharged previously is diluted and diffused well, and no 14 C enrichment in seawater is found. Also, no obvious increment in the 14 C specific activities of surface water and underground water samples are found between Qinshan NPP region and the reference region. (authors)

  7. African Journal of Aquatic Science - Vol 30, No 2 (2005)

    African Journals Online (AJOL)

    Fish migrations in two seasonal streams in Zimbabwe · EMAIL FULL TEXT EMAIL FULL TEXT ... The predatory impact of invasive alien smallmouth bass, Micropterus dolomieu ... Assessing the true status of the fish species Labeo cylindricus (Peters 1868) (Teleostei: ... Aquaculture: Farming Aquatic Animals and Plants

  8. Chromosomal abnormalities in roots of aquatic plant Elodea canadensis as a tool for testing genotoxicity of bottom sediments.

    Science.gov (United States)

    Zotina, Tatiana; Medvedeva, Marina; Trofimova, Elena; Alexandrova, Yuliyana; Dementyev, Dmitry; Bolsunovsky, Alexander

    2015-12-01

    Submersed freshwater macrophytes are considered as relevant indicators for use in bulk bottom sediment contact tests. The purpose of this study was to estimate the validity of endpoints of aquatic plant Elodea canadensis for laboratory genotoxicity testing of natural bottom sediments. The inherent level of chromosome abnormalities (on artificial sediments) in roots of E. canadensis under laboratory conditions was lower than the percentage of abnormal cells in bulk sediments from the Yenisei River. The percentage of abnormal cells in roots of E. canadensis was more sensitive to the presence of genotoxic agents in laboratory contact tests than in the natural population of the plant. The spectra of chromosomal abnormalities that occur in roots of E. canadensis under natural conditions in the Yenisei River and in laboratory contact tests on the bulk bottom sediments from the Yenisei River were similar. Hence, chromosome abnormalities in roots of E. canadensis can be used as a relevant and sensitive genotoxicity endpoint in bottom sediment-contact tests. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Can aquatic macrophytes be biofilters for gadolinium based contrasting agents?

    Science.gov (United States)

    Braun, Mihály; Zavanyi, Györgyi; Laczovics, Attila; Berényi, Ervin; Szabó, Sándor

    2018-05-15

    The use of gadolinium-based contrasting agents (GBCA) is increasing because of the intensive usage of these agents in magnetic resonance imaging (MRI). Waste-water treatment does not reduce anthropogenic Gd-concentration significantly. Anomalous Gd-concentration in surface waters have been reported worldwide. However, removal of GBCA-s by aquatic macrophytes has still hardly been investigated. Four aquatic plant species (Lemna gibba, Ceratophyllum demersum, Elodea nuttallii, E. canadensis) were investigated as potential biological filters for removal of commonly used but structurally different GBCA-s (Omniscan, Dotarem) from water. These plant species are known to accumulate heavy metals and are used for removing pollutants in constructed wetlands. The Gd uptake and release of the plants was examined under laboratory conditions. Concentration-dependent infiltration of Gd into the body of the macrophytes was measured, however significant bioaccumulation was not observed. The tissue concentration of Gd reached its maximum value between day one and four in L. gibba and C. demersum, respectively, and its volume was significantly higher in C. demersum than in L. gibba. In C. demersum, the open-chain ligand Omniscan causes two-times higher tissue Gd concentration than the macrocyclic ligand Dotarem. Gadolinium was released from Gd-treated duckweeds into the water as they were grown further in Gd-free nutrient solution. Tissue Gd concentration dropped by 50% in duckweed treated by Omniscan and by Dotarem within 1.9 and 2.9 days respectively. None of the macrophytes had a significant impact on the Gd concentration of water in low and medium concentration levels (1-256 μg L -1 ). Biofiltration of GBCA-s by common macrophytes could not be detected in our experiments. Therefore it seems that in constructed wetlands, aquatic plants are not able to reduce the concentration of GBCA-s in the water. Furthermore there is a low risk that these plants cause the

  10. Aquatic Species Project report, FY 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M.; Sprague, S.

    1992-01-01

    This report summarizes the progress and research accomplishments of the Aquatic Species Project. The four articles included are summaries of individual research projects and are entered into the EDB as such. The goal of the Aquatic Species Project is to develop the technology base for large-scale production of oil-rich microalgae. The project is also developing methods to convert the microalgal lipids into liquid fuels needed for industry and transportation. Researchers in the Aquatics Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels such as diesel. It is important for the United States to develop alternative renewable oil sources because 42% of the current energy market in the United States is for liquid fuels, and 38% of these fuels are imported. In 1979, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) initiated the Aquatic Species Project as part of the overall effort in biofuels. The project began to focus exclusively on fuels from microalgae in 1982. Estimates show that the technology being developed by the project can provide as much as 7% of the total current energy demand. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  11. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Drost, Charles A.; Halvorson, William Lee

    2006-01-01

    Executive Summary We summarize past inventory efforts for vascular plants and vertebrates at Montezuma Castle National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 784 species recorded at Montezuma Castle NM, of which 85 (11%) are non-native. In each taxon-specific chapter we highlight areas of resources that contributed to species richness or unique species for the monument. Of particular importance are Montezuma Well and Beaver and Wet Beaver creeks and the surrounding riparian vegetation, which are responsible for the monument having one of the highest numbers of bird species in the Sonoran Desert Network of park units. Beaver Creek is also home to populations of federally-listed fish species of concern. Other important resources include the cliffs along the creeks and around Montezuma Well (for cliff and cave roosting bats). Based on the review of past studies, we believe the inventory for most taxa is nearly complete, though some rare or elusive species will be added with additional survey effort. We recommend additional inventory, monitoring and research studies.

  12. Temporal changes of aquatic macrophytes vegetation in a Iowland groundwater feed eutrophic course (Klátovské rameno, Slovakia

    Directory of Open Access Journals (Sweden)

    Helena Oťahel'ová

    2011-01-01

    Full Text Available Klátovské rameno is the lowland slow-flowing groundwater feed eutrophic tributary of the Malý Dunaj River (Danube Plain, where our study of temporal changes of aquatic macrophytes vegetation was realised in 1999 and 2005. For survey of aquatic vascular macrophytes the Kohler’s method (Janauer 2003 was used, which is compliant with European standard EN 14184. Altogether 35 aquatic macrophyte species were recorded during the survey. Nuphar lutea persisted as the most dominant species in 1996 and 2005. Species diversity increased slightly after the nine years: ten species immigrated to the watercourse. The changes in species abundance have shown weak differences, however the abundance of Sparganium emersum has increased markedly. Alien species Elodea canadensis and both S. emersum and Hydrocharis morsus-ranae significantly enlarged their distribution in the stream. The ecological quality of the river, based on the aquatic macrophytes assessment criteria, was slightly impaired after nine years, but still 90% of its studied course has a high or good ecological status.

  13. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    Directory of Open Access Journals (Sweden)

    Jianzhu Wang

    Full Text Available Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish at an upstream constricted-channel site (Luoqi, a midstream estuarine site (Huanghua and a near dam limnetic site (Maoping of the TGD were collected for stable isotope (δ13C and δ15N and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping, particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  14. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  15. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran.

    Science.gov (United States)

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-06-01

    Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies.

  16. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Science.gov (United States)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2017-05-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth ( Eichhornia crassipes) and two algae ( Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to arsenic by 40-50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  17. Optimization of methodology by X-ray fluorescence for the metals determination in aquatic plants of the high course of the Lerma river; Optimizacion de la metodologia por fluorescencia de rayos X para la determinacion de metales en plantas acuaticas del curso alto del Rio Lerma

    Energy Technology Data Exchange (ETDEWEB)

    Albino P, E.

    2015-07-01

    The high course of the Lerma river has a pollution problem in its hydrological system due to discharges of urban wastewater and industrial areas; the pollutants that affect the hydrological system are metals, which are absorbed by living organisms and probably incorporated into the food chain. For this reason in this work the technique of X-ray fluorescence total reflection was applied in six species of aquatic plants that grow in the high course of the Lerma river: Arroyo Mezapa (Eichhornia crassipes, Juncus efusus, Hydrocotyle, Schoenoplectus validus) Ameyalco river (Lemna gibba) and Atarasquillo river (Berula erecta) in order to evaluate the metals concentration (Cr, Mn, Fe, Ni, Cu, Zn and Pb) as well as the translocation factor and bioaccumulation factor for each aquatic species. According to the results, was observed that the highest concentration of metals is located in the deeper parts; metals which present a significant concentration are Mn and Fe in the six species of aquatic plants. According to the translocation factor the species having a higher translocation of metals are: Juncus efusus in Mn (1.19 mg/L) and Zn (1.31 mg/L), Hydrocotyle (1.14 mg/L), the species Eichhornia crassipes not show translocation. For bioaccumulation factor, was observed that the most bioaccumulation of metals is found in the soluble fraction of the six species of aquatic plants, especially Fe followed of Cu and Zn. Also was considered that the Berula erecta plant had a higher bioaccumulation of metals such as Cr, Mn, Fe, Cu and Zn so it can be considered as a hyper-accumulating species of these elements. With the results can be considered that the technique of X-ray fluorescence total reflection is 95% reliable to determine the concentration of metals within the structures of the aquatic plants used for this study. (Author)

  18. Radioactive contamination of aquatic organisms of the Yenisei river in the area affected by the activity of a Russian plutonium complex

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Sukovaty, A.

    2005-01-01

    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by a Russian facility producing weapons-grade plutonium, which has been in operation for many years. The aim of the study conducted between 1997 and 2003 was to investigate accumulation of artificial radionuclides by aquatic organisms of the Yenisei River and to estimate the exposure dose rates to organisms from various sources. The aquatic plants sampled were of three species: Potamogeton lucens, Fontinalis antipyretica, and Ceratophyllum demersum. The gamma-spectrometric and radiochemical analysis of the samples of aquatic plants for artificial radionuclides has revealed more than 20 long-lived and short-lived radionuclides, including plutonium isotopes. The aquatic animal Phylolimnogammarus viridis and diatoms also contain artificial radionuclides. For most aquatic organisms under study, the dose received from the artificial irradiation is an order of magnitude higher than the dose received from natural irradiation. As Fontinalis antipyretica features the highest capacity to accumulate artificial radionuclides, it accumulates the largest artificial exposure does among the study aquatic organisms (up to 39 μGy/day)

  19. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  20. Metabolic patterns of 14C incorporation by selected vascular plants following field incubations with acetate-2-14C in two plant successional stages in Glacier Bay, Alaska

    International Nuclear Information System (INIS)

    Wu, Pei-Hsing Lin

    1975-01-01

    Metabolic patterns of some vascular plants (Dryas sp., Vaccinium sp., Salix sp., Alnus sp., Epilobium sp.), occurring in successional habitats, following acetate-2- 14 C incubations in the field were demonstrated for the first time. Relative radioactivity within the alcoholic soluble fraction of each species reflects its distribution in successional communities. A high level of 14 C-sugars was present in the plants of the pioneer community; on the other hand a high level of 14 C-organic acids was present in the plants of the forest community. Three patterns, based on the relative activities of the sugar- and organic acid-pools were noted which correspond to the range and the frequency of occurrence of each species in the successional stages. Only two types of 14 C-amino acid levels were noted corresponding to the range of distribution. Plants having less than 10% relative radioactivity in amino acid-pools had a limited range of distribution and reside in only one habitat; plants having more than 10% radioactivity showed wider ranges of distribution occurring in at least two habitats. (auth.)

  1. Application of the Red List Index for conservation assessment of Spanish vascular plants.

    Science.gov (United States)

    Saiz, Juan Carlos Moreno; Lozano, Felipe Domínguez; Gómez, Manuel Marrero; Baudet, Ángel Bañares

    2015-06-01

    The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain. We assigned retrospective IUCN categories of threat to 98 species included in the Spanish Red List of 2010 but absent in the Spanish Red List of 2000. In addition, we tested the effect of different random and taxonomic and spatial Spanish samples on the overall RLI value. From 2000 to 2010, the IUCN categories of 768 species changed (10% of Spanish flora), mainly due to improved knowledge (63%), modifications in IUCN criteria (14%), and changes in threat status (12%). All measured national and subnational RLI values decreased during this period, indicating a general decline in the conservation status of the Spanish vascular flora. The Canarian RLI value (0.84) was the lowest, although the fastest deterioration in conservation status occurred on peninsular Spain (from 0.93 in 2000 to 0.92 in 2010). The RLI values based on subsamples of the Spanish Red List were not representative of RLI values for the entire country, which would discourage the use of small areas or small taxonomic samples to assess general trends in the endangerment of national biotas. The role of the RLI in monitoring of changes in biodiversity at the global and regional scales needs further reassessment because additional areas and taxa are necessary to determine whether the index is sufficiently sensitive for use in assessing temporal changes in species' risk of extinction. © 2015 Society for Conservation Biology.

  2. Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants.

    Science.gov (United States)

    Tripathi, Preeti; Dwivedi, Sanjay; Mishra, Aradhana; Kumar, Amit; Dave, Richa; Srivastava, Sudhakar; Shukla, Mridul Kumar; Srivastava, Pankaj Kumar; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2012-05-01

    Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.

  3. Evaluation of invasions and declines of submersed aquatic macrophytes

    Science.gov (United States)

    Chambers, P.A.; Barko, J.W.; Smith, C.S.

    1993-01-01

    During the past 60 yr, sightings of aquatic macrophyte species in geographic regions where they had previously not been found have occurred with increasing frequency, apparently due to both greater dispersal of the plants as a result of human activities as well as better documentation of plant distribution. Intercontinental invasions, such as Myriophyllum spicatum and Hydrilla into North America, Elodea canadensis into Europe and Elodea nuttallii, Egeria densa and Cabomba caroliniana into Japan, have generally been well documented. However, the spread of an exotic species across a continent after its initial introduction (e.g., Potamogeton crispus in North America) or the expansion of a species native to a continent into hitherto unexploited territory (e.g.,the expansion of the North American native Myriophyllum heterophyllum into New England) have received little attention. Natural declines in aquatic macrophyte communities have also received little scientific study although there are many accounts of macrophyte declines. The best-documented example comes from the marine literature where extensive declines of eelgrass (Zostera) occurred in the 1930s along the Atlantic coast due to a pathogenic marine slime mold (''wasting disease''). The aim of this workshop was to identify examples of invasions or natural declines of aquatic macrophyte species throughout the world and assess the importance of environmental factors in their control. Forty-five scientists and aquatic plant managers from ten countries participated in the workshop. Eleven of the participants contributed written evaluations of species invasions and declines in their geo-graphic region. These were distributed to registered participants prior to the meeting and served as the starting-point of workshop discussions. To address the topics raised in the working papers, the participants divided into four working groups to evaluate: 1. Environmental controls of species invasions. 2. Biotic controls of species

  4. Enzyme production in the traps of aquatic Utricularia species

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír; Sirová, Dagmara; Vrba, J.; Rejmánková, E.

    2010-01-01

    Roč. 65, č. 2 (2010), s. 273-278 ISSN 0006-3088 R&D Projects: GA ČR GP206/05/P520 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60170517 Keywords : aquatic carnivorous plants * extracellular enzyme activity * phosphatase Subject RIV: EF - Botanics Impact factor: 0.609, year: 2010

  5. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log K ow ) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log K ow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  7. The uptake of radiationless by some fresh water aquatic biota review

    International Nuclear Information System (INIS)

    Abdel Malik, W.E.Y.; Ibrahim, A.S.; El-Shinawy, R.M.K.

    2005-01-01

    The work presented in this paper reviews many studies carried out by the authors along the last thirty years. The behaviour of the radionuclides in the aquatic ecology of Ismailia Canal stream is of great interest for the evaluation of the possible hazards that may occur to man through the movement of such radionuclides via food chain. Laboratory investigations have been carried out in order to understand the accumulation and release of some radionuclide by some aquatic biota (aquatic macrophyte aquatic plants, some snails species and some fish species) inhabiting this fresh water stream. Different parameters such as water ph, contact time, water salinity, etc. were used in these investigations. The kinetic analysis of the uptake process of some radio nuclides by certain biota was performed. From this analysis, it was possible (through the statistical methods) to investigate that the uptake process proceeded through different steps with different rates depending on the radionuclide and the biota species. It was possible to conclude that some of the selected biota can be used as biological indicators for certain radionuclides

  8. Design parameters for sludge reduction in an aquatic worm reactor

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2010-01-01

    Reduction and compaction of biological waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus. In our reactor concept for a worm reactor, the worms are immobilised in a carrier material. The size of a worm reactor will therefore mainly be

  9. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    International Nuclear Information System (INIS)

    Espinoza-Quinones, F.R.; Rizzutto, M.A.; Added, N.; Tabacniks, M.H.; Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N.

    2009-01-01

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr 6+ mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  11. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)], E-mail: f.espinoza@terra.com.br; Rizzutto, M.A.; Added, N.; Tabacniks, M.H. [Physics Institute, University of Sao Paulo, Rua do Matao s/n, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)

    2009-04-15

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr{sup 6+} mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  12. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  13. Potential Responses of Vascular Plants from the Pristine "Lost World" of the Neotropical Guayana Highlands to Global Warming: Review and New Perspectives.

    Science.gov (United States)

    Rull, Valentí; Vegas-Vilarrúbia, Teresa

    2017-01-01

    The neotropical Guayana Highlands (GH) are one of the few remaining pristine environments on Earth, and they host amazing biodiversity with a high degree endemism, especially among vascular plants. Despite the lack of direct human disturbance, GH plants and their communities are threatened with extinction from habitat loss due to global warming (GW). Geographic information systems simulations involving the entire known vascular GH flora (>2430 species) predict potential GW-driven extinctions on the order of 80% by the end of this century, including nearly half of the endemic species. These estimates and the assessment of an environmental impact value for each species led to the hierarchization of plants by their risk of habitat loss and the definition of priority conservation categories. However, the predictions assume that all species will respond to GW by migrating upward and at equal rates, which is unlikely, so current estimates should be considered preliminary and incomplete (although they represent the best that can be done with the existing information). Other potential environmental forcings (i.e., precipitation shifts, an increase in the atmospheric CO 2 concentration) and idiosyncratic plant responses (i.e., resistance, phenotypic acclimation, rapid evolution) should also be considered, so detailed eco-physiological studies of the more threatened species are urgently needed. The main obstacles to developing such studies are the remoteness and inaccessibility of the GH and, especially, the difficulty in obtaining official permits for fieldwork.

  14. Beneath Still Waters - Multistage Aquatic Exploitation of Euryale ferox (Salisb. during the Acheulian

    Directory of Open Access Journals (Sweden)

    Naama Goren-Inbar1

    2014-09-01

    Full Text Available Remains of the highly nutritious aquatic plant Fox nut – Euryale ferox Salisb. (Nymphaeaceae – were found at the Acheulian site of Gesher Benot Ya'aqov, Israel. Here, we present new evidence for complex cognitive strategies of hominins as seen in their exploitation of E. ferox nuts. We draw on excavated data and on parallels observed in traditional collecting and processing practices from Bihar, India. We suggest that during the early Middle Pleistocene, hominins implemented multistage procedures comprising underwater gathering and subsequent processing (drying, roasting and popping of E. ferox nuts. Hierarchical processing strategies are observed in the Acheulian lithic reduction sequences and butchering of game at this and other sites, but are poorly understood as regards the exploitation of aquatic plant resources. We highlight the ability of Acheulian hominins to resolve issues related to underwater gathering of E. ferox nuts during the plant's life cycle and to adopt strategies to enhance their nutritive value.

  15. Chemical defences against herbivores

    DEFF Research Database (Denmark)

    Pavia, Henrik; Baumgartner, Finn; Cervin, Gunnar

    2012-01-01

    This chapter focuses on the recent and emerging research involving chemical defences against herbivory in aquatic primary producers. It provides an overview of plant chemical defence theories and highlights recent research on aquatic primary producers addressing a number of aspects...... of these theories, concluding with new chemical approaches to tackle the questions and suggestions for future research directions. It explains that aquatic primary producers are a taxonomically and functionally diverse group of organisms that includes macroalgae, microalgae, and vascular plants. It also states...... that despite the fact that aquatic primary producers constitute a large and diverse group of organisms that vary in their evolutionary histories, selection for chemical defences to resist or reduce grazing are commonplace across the phylogenetic boundaries....

  16. Ecological Effects of Exotic and Native Aquatic Vegetation

    Science.gov (United States)

    2009-08-01

    related problem for fish. Normally, carbon dioxide released during respiration is utilized in photosynthesis or escapes into the atmo- sphere...with algae for nutrients and light (Boyd 1979). Phytoplankton populations are often suppressed in well-established stands of ERDC/EL TR-09-10 8...aquatic plants, and primary productivity is either dependent upon macrophytes and/or periphyton associated with them. Generally, the presence of

  17. Vascular Plant and Vertebrate Inventory of Saguaro National Park, Tucson Mountain District

    Science.gov (United States)

    Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.

    2007-01-01

    This report summarizes the results of the first comprehensive inventory of plants and vertebrates at the Tucson Mountain District (TMD) of Saguaro National Park, Arizona. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at the district to document the presence of species within its boundaries. Park staff also carried out extensive infrared-triggered camera work for medium and large mammals from 2002-2005 and results from that effort are reported here. Our spatial sampling design for all taxa employed a combination of random and nonrandom survey sites. Survey effort was greatest for medium and large mammals and herpetofauna. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the district. We also provide an overview of previous survey efforts in the district. We use data from our inventory and other surveys to compile species lists and to assess inventory completeness. The survey effort for herpetofauna, birds, and medium and large mammals was the most comprehensive ever undertaken in the district. We recorded a total of 320 plant and vertebrate species, including 21 species not previously found in the district (Table 1). Based on a review of our inventory and past research at the district, there have been a total of 723 species of plants and vertebrates found there. We believe inventories for most taxonomic groups are nearly complete. Based on our surveys, we believe the native plant and vertebrate community compositions of the district are relatively intact, though some species loss has occurred and threats are increasing, particularly to herpetofauna and larger mammals. Of particular note is the relatively small number of non-native species and their low abundance in the district, which is in contrast to many nearby natural areas. Rapidly expanding development on the west, north, and east sides of

  18. Aquatic Plant Control Research Program. Use of the White Amur for Aquatic Plant Management.

    Science.gov (United States)

    1984-08-01

    the body cavities. Curvature of the spine can Black Bass Act (16 U.S.C. 856-856). This result from imbalanced diets in some areas. law, which supports... Malaysian Aquwculture Joural frequently publish papers on the white Proceeding. of te Indo-PaW Fisheries Council amur (Table Al). Publications which...prepared diets . Data on plant consumption are found in The following popular articles present Woynarovich (1968), Vietmeyer (1976) and positive and

  19. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.

    Science.gov (United States)

    Pott, Antonia; Otto, Mathias; Schulz, Ralf

    2018-09-01

    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Mosses in Ohio wetlands respond to indices of disturbance and vascular plant integrity

    Science.gov (United States)

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Viau, Nick

    2016-01-01

    We examined the relationships between an index of wetland habitat quality and disturbance (ORAM score) and an index of vascular plant integrity (VIBI-FQ score) with moss species richness and a moss quality assessment index (MQAI) in 45 wetlands in three vegetation types in Ohio, USA. Species richness of mosses and MQAI were positively associated with ORAM and VIBI-FQ scores. VIBI-FQ score was a better predictor of both moss species richness and MQAI than was either ORAM score or vegetation type. This result was consistent with the strict microhabitat requirements for many moss species, which may be better assessed by VIBI-FQ than ORAM. Probability curves as a function of VIBI-FQ score were then generated for presence of groups of moss species having the same degree of fidelity to substrate and plant communities relative to other species in the moss flora (coefficients of conservatism, CCs). Species having an intermediate- or high degree of fidelity to substrate and plant communities (i.e., species with CC ≥ 5) had a 50% probability of presence (P50) and 90% probability of presence (P90) in wetlands with intermediate- and high VIBI-FQ scores, respectively. Although moss species richness, probability of presence of species based on CC, and MQAI may reflect wetland habitat quality, the 95% confidence intervals around P50 and P90 values may be too wide for regulatory use. Moss species richness, MQAI, and presence of groups of mosses may be more useful for evaluating moss habitat quality in wetlands than a set of “indicator species.”