Spherical collapse model in time varying vacuum cosmologies
International Nuclear Information System (INIS)
Basilakos, Spyros; Plionis, Manolis; Sola, Joan
2010-01-01
We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.
Vacuum inhomogeneous cosmological models
International Nuclear Information System (INIS)
Hanquin, J.-L.
1984-01-01
The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C; Oattes, L M; Starkman, G D
1988-01-01
The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.
Vacuum transitions in dual models
International Nuclear Information System (INIS)
Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.
1976-01-01
The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions
Vacuum energy from noncommutative models
Mignemi, S.; Samsarov, A.
2018-04-01
The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.
Running vacuum cosmological models: linear scalar perturbations
Energy Technology Data Exchange (ETDEWEB)
Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)
2017-08-01
In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.
FRIB driver linac vacuum model and benchmarks
Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume
2014-01-01
The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.
Vacuum stability in neutrinophilic Higgs doublet model
International Nuclear Information System (INIS)
Haba, Naoyuki; Horita, Tomohiro
2011-01-01
A neutrinophilic Higgs model has tiny vacuum expectation value (VEV), which can naturally explain tiny masses of neutrinos. There is a large energy scale hierarchy between a VEV of the neutrinophilic Higgs doublet and that of usual standard model-like Higgs doublet. In this Letter we at first analyze vacuum structures of Higgs potential in both supersymmetry (SUSY) and non-SUSY neutrinophilic Higgs models, and next investigate a stability of this VEV hierarchy against radiative corrections. We will show that the VEV hierarchy is stable against radiative corrections in both Dirac neutrino and Majorana neutrino scenarios in both SUSY and non-SUSY neutrinophilic Higgs doublet models.
Noncommutative geometry and the standard model vacuum
International Nuclear Information System (INIS)
Barrett, John W.; Dawe Martins, Rachel A.
2006-01-01
The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S 0 -reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. While there are interesting nontrivial vacua with Majorana-type mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix
Vacuum decay in a soluble model
International Nuclear Information System (INIS)
Camargo Filho, A.F. de; Shellard, R.C.; Marques, G.C.
1983-03-01
A field-theoretical model is studied, where the decay rate of the false vacuum can be computed up to the first quantum corrections in both the high-temperature and zero-temperature limits. It is found that the dependence of the decay rate on the height and width of the potential barrier does not follow the same simple area rule as in the quantum-mechanical case. Furthermore, its behaviour is strongly model-dependent. (Author) [pt
Denitrogenation model for vacuum tank degasser
Gobinath, R.; Vetrivel Murugan, R.
2018-02-01
Nitrogen in steel is both beneficial and detrimental depending on grade of steel and its application. To get desired low nitrogen during vacuum degassing process, VD parameters namely vacuum level, argon flow rate and holding time has to optimized depending upon initial nitrogen level. In this work a mathematical model to simulate nitrogen removal in tank degasser is developed and how various VD parameters affects nitrogen removal is studied. Ladle water model studies with bottom purging have shown two distinct flow regions, namely the plume region and the outside plume region. The two regions are treated as two separate reactors exchanging mass between them and complete mixing is assumed in both the reactors. In the plume region, transfer of nitrogen to single bubble is simulated. At the gas-liquid metal interface (bubble interface) thermodynamic equilibrium is assumed and the transfer of nitrogen from bulk liquid metal in the plume region to the gas-metal interface is obtained using mass transport principles. The model predicts variation of Nitrogen content in both the reactors with time. The model is validated with industrial process and the predicted results were found to have fair agreement with the measured results.
Vacuum expectation values for four-fermion operators. Model estimates
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1985-01-01
Some simple models (a system with a heavy quark, the rarefied insatanton gas) are used to investigate the problem of factorizability. Characteristics of vacuum fluctuations responsible for saturation of four-fermion vacuum expectation values which are known phenomenologically are discussed. A qualitative agreement between the model and phenomenologic;l estimates has been noted
Vacuum expectation values of four-fermion operators. Model estimates
International Nuclear Information System (INIS)
Zhitnitskii, A.R.
1985-01-01
Simple models (a system with a heavy quark, a rarefied instanton gas) are used to study problems of factorizability. A discussion is given of the characteristics of the vacuum fluctuations responsible for saturation of the phenomenologically known four-fermion vacuum expectation values. Qualitative agreement between the model and phenomenological estimates is observed
Behavior of cosmological models with varying G
International Nuclear Information System (INIS)
Barrow, J.D.; Parsons, P.
1997-01-01
We provide a detailed analysis of Friedmann-Robertson-Walker universes in a wide range of scalar-tensor theories of gravity. We apply solution-generating methods to three parametrized classes of scalar-tensor theory which lead naturally to general relativity in the weak-field limit. We restrict the parameters which specify these theories by the requirements imposed by the weak-field tests of gravitation theories in the solar system and by the requirement that viable cosmological solutions be obtained. We construct a range of exact solutions for open, closed, and flat isotropic universes containing matter with equation of state p≤(1)/(3)ρ and in vacuum. We study the range of early- and late-time behaviors displayed, examine when there is a open-quotes bounceclose quotes at early times, and expansion maxima in closed models. copyright 1997 The American Physical Society
Conceptual Modeling of Time-Varying Information
DEFF Research Database (Denmark)
Gregersen, Heidi; Jensen, Christian S.
2004-01-01
A wide range of database applications manage information that varies over time. Many of the underlying database schemas of these were designed using the Entity-Relationship (ER) model. In the research community as well as in industry, it is common knowledge that the temporal aspects of the mini......-world are important, but difficult to capture using the ER model. Several enhancements to the ER model have been proposed in an attempt to support the modeling of temporal aspects of information. Common to the existing temporally extended ER models, few or no specific requirements to the models were given...
PEP-II vacuum system pressure profile modeling using EXCEL
International Nuclear Information System (INIS)
Nordby, M.; Perkins, C.
1994-06-01
A generic, adaptable Microsoft EXCEL program to simulate molecular flow in beam line vacuum systems is introduced. Modeling using finite-element approximation of the governing differential equation is discussed, as well as error estimation and program capabilities. The ease of use and flexibility of the spreadsheet-based program is demonstrated. PEP-II vacuum system models are reviewed and compared with analytical models
The stability of vacuum phototriodes to varying light pulse loads and long term changes in response.
Hobson, Peter
2012-01-01
Mesh anode Vacuum Phototriodes (VPTs) are radiation resistant, single gain-stage photomultipliers which are designed to operate in a strong quasi-axial magnetic field. These VPTs are used in the endcap electromagnetic calorimeter of the CMS experiment at the CERN LHC to detect scintillation light from lead tungstate crystals. Short term dynamic response changes occur because of pulse rate variations during normal LHC operation cycles. Over the longer term the effect of increasing integrated charge taken from the photocathode causes an overall degradation of response. We have investigated these effects over time periods exceeding two years of simulated operation and discuss the implications for the long term performance of the VPTs in CMS.
Perfect fluid Bianchi Type-I cosmological models with time varying G ...
Indian Academy of Sciences (India)
Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...
Spatially varying dispersion to model breakthrough curves.
Li, Guangquan
2011-01-01
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Varying coefficients model with measurement error.
Li, Liang; Greene, Tom
2008-06-01
We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.
KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION
Directory of Open Access Journals (Sweden)
AbdulMunem A. Karim
2013-05-01
Full Text Available This study deals with kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K. The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt. The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.
On the vacuum baryon number in the chiral bag model
International Nuclear Information System (INIS)
Jaroszewicz, T.
1984-01-01
We give a rederivation, generalization and interpretation of the result of Goldstone and Jaffe on the vacuum baryon number in the chiral bag model. Our results are based on considering the bag model as a theory of free quarks, massless inside and infinitely massive outside the bag. (orig.)
Vacuum spark breakdown model based on exploding metal wire phenomena
International Nuclear Information System (INIS)
Haaland, J.
1984-06-01
Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted
Vacuum instability in the quantum sine-gordon model
International Nuclear Information System (INIS)
Bogolyubov, N.M.; Izergin, A.G.; Korepin, V.E.
1985-01-01
A review is given of papers dealing with regularization of the sine-Gordon model and the construction of the integrable lattice sine-Gordon (LSG) model. The regularization by means of LSG model seems to be much more natural as it is done in terms of initial boson fields entering Hamiltonian which describes relativistic scalar field with essentially nonlinear self-interaction. Changes in physical vacuum due to regularizations of the sine-Gordon model is shown
Modelling of the new FLNR magnetic analyzer vacuum channel
International Nuclear Information System (INIS)
Bashevoj, V.V.; Majdikov, V.Z.
1998-01-01
The quality of any magnetic analyzer directly depends on the area of radial cross section of its volume filled with the ions trajectories. The conception of new magnetic spectrometer vacuum channel is based on computer modelling of the maximum filling of the spectrometer acceptance with given pole pieces width and the gap height of the magnetic dipole together with the maximum transmission of underflected in magnetic field emission from the target at the angle of measurements. The correct correlation of the aperture of the vacuum channel with durability, engineering and ease of handling characteristics combined with ion-optical properties of the spectrometer determines its construction in the whole
Mass corrections to Green functions in instanton vacuum model
International Nuclear Information System (INIS)
Esaibegyan, S.V.; Tamaryan, S.N.
1987-01-01
The first nonvanishing mass corrections to the effective Green functions are calculated in the model of instanton-based vacuum consisting of a superposition of instanton-antiinstanton fluctuations. The meson current correlators are calculated with account of these corrections; the mass spectrum of pseudoscalar octet as well as the value of the kaon axial constant are found. 7 refs
Thermal conductivity model for powdered materials under vacuum based on experimental studies
Directory of Open Access Journals (Sweden)
N. Sakatani
2017-01-01
Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.
Dynamics of holographic vacuum energy in the DGP model
International Nuclear Information System (INIS)
Wu Xing; Zhu Zonghong; Cai Ronggen
2008-01-01
We consider the evolution of the vacuum energy in the Dvali-Gabadadze-Porrati (DGP) model according to the holographic principle under the assumption that the relation linking the IR and UV cutoffs still holds in this scenario. The model is studied when the IR cutoff is chosen to be the Hubble scale H -1 , the particle horizon R ph , and the future event horizon R eh , respectively. The two branches of the DGP model are also taken into account. Through numerical analysis, we find that in the cases of H -1 in the (+) branch and R eh in both branches, the vacuum energy can play the role of dark energy. Moreover, when considering the combination of the vacuum energy and the 5D gravity effect in both branches, the equation of state of the effective dark energy may cross -1, which may lead to the big rip singularity. Besides, we constrain the model with the Type Ia supernovae and baryon oscillation data and find that our model is consistent with current data within 1σ, and that the observations prefer either a pure holographic dark energy or a pure DGP model
Partially linear varying coefficient models stratified by a functional covariate
Maity, Arnab; Huang, Jianhua Z.
2012-01-01
We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric
Vacuum System and Modeling for the Materials Plasma Exposure Experiment
International Nuclear Information System (INIS)
Lumsdaine, Arnold; Meitner, Steve; Graves, Van; Bradley, Craig; Stone, Chris
2017-01-01
Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breaking vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.
A quantum liquid model for the QCD vacuum
International Nuclear Information System (INIS)
Nielsen, H.B.; Olesen, P.
1979-06-01
It is shown that domains are formed in a homogeneous SU(2) color magnetic field. Due to quantum fluctuations the domains have fluid properties. It is then argued that quantum mechanically superpositions of such domains must be considered. The resulting state is gauge and rotational invariant, in spite of the fact that the original color magnetic field breaks these invariances. It is pointed out that in the model for the QCD vacuum color magnetic monopoles are not confined. (Auth.)
Standard Model Vacuum Stability and Weyl Consistency Conditions
DEFF Research Database (Denmark)
Antipin, Oleg; Gillioz, Marc; Krog, Jens
2013-01-01
At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....
Dust mobilization and transport modeling for loss of vacuum accidents
International Nuclear Information System (INIS)
Humrickhouse, P.W.; Sharpe, J.P.
2007-01-01
We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization
Dust mobilization and transport modeling for loss of vacuum accidents
International Nuclear Information System (INIS)
Humrickhouse, P.W.; Sharpe, J.P.
2008-01-01
We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization
On the metastability of the Standard Model vacuum
International Nuclear Information System (INIS)
Isidori, Gino; Ridolfi, Giovanni; Strumia, Alessandro
2001-01-01
If the Higgs mass m H is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on m H imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for m H =115 GeV, the Higgs potential develops an instability below the Planck scale for m t >(166±2) GeV, but the electroweak vacuum is sufficiently long-lived for m t <(175±2) GeV
On the metastability of the Standard Model vacuum
Isidori, Gino; Strumia, A; Isidori, Gino; Ridolfi, Giovanni; Strumia, Alessandro
2001-01-01
If the Higgs mass $m_H$ is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on $m_H$ imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for $m_H=115$ GeV, the Higgs potential develops an instability below the Planck scale for $m_t>(166\\pm 2) \\GeV$, but the electroweak vacuum is sufficiently long-lived for $m_t > (175\\pm 2) \\GeV$.
On the metastability of the standard model vacuum
International Nuclear Information System (INIS)
Isidori, G.; Strumia, A.
2001-03-01
If the Higgs mass m H is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. It is presented a detailed analysis of the lower bounds on m H imposed by the requirement that the electroweak vacuum be sufficiently long-lived. It is performed a complete one-loop calculation of the tunnelling probability at zero temperature, and it is improved by means of two-loop renormalization-group equations. It has been found that, for m H = 115 GeV, the Higgs potential develops an instability below the Planck scale for m t > (166 ±2) GeV, but the electroweak vacuum is sufficiently long-lived for m t < (175 ±2) GeV
On the metastability of the standard model vacuum
Energy Technology Data Exchange (ETDEWEB)
Isidori, G. [Conseil Europeen pour la Recherche Nucleaire, Geneve (Switzerland); Ridolfi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy)]|[Istituto Nazionale di Fisica Nucleare, Sect. Genoa, Genoa (Italy); Strumia, A. [Pisa Univ., Pisa (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Sect. Pisa (Italy)
2001-03-01
If the Higgs mass m{sub H} is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. It is presented a detailed analysis of the lower bounds on m{sub H} imposed by the requirement that the electroweak vacuum be sufficiently long-lived. It is performed a complete one-loop calculation of the tunnelling probability at zero temperature, and it is improved by means of two-loop renormalization-group equations. It has been found that, for m{sub H} = 115 GeV, the Higgs potential develops an instability below the Planck scale for m{sub t} > (166 {+-}2) GeV, but the electroweak vacuum is sufficiently long-lived for m{sub t} < (175 {+-}2) GeV.
Development of a General Modelling Methodology for Vacuum Residue Hydroconversion
Directory of Open Access Journals (Sweden)
Pereira de Oliveira L.
2013-11-01
Full Text Available This work concerns the development of a methodology for kinetic modelling of refining processes, and more specifically for vacuum residue conversion. The proposed approach allows to overcome the lack of molecular detail of the petroleum fractions and to simulate the transformation of the feedstock molecules into effluent molecules by means of a two-step procedure. In the first step, a synthetic mixture of molecules representing the feedstock for the process is generated via a molecular reconstruction method, termed SR-REM molecular reconstruction. In the second step, a kinetic Monte-Carlo method (kMC is used to simulate the conversion reactions on this mixture of molecules. The molecular reconstruction was applied to several petroleum residues and is illustrated for an Athabasca (Canada vacuum residue. The kinetic Monte-Carlo method is then described in detail. In order to validate this stochastic approach, a lumped deterministic model for vacuum residue conversion was simulated using Gillespie’s Stochastic Simulation Algorithm. Despite the fact that both approaches are based on very different hypotheses, the stochastic simulation algorithm simulates the conversion reactions with the same accuracy as the deterministic approach. The full-scale stochastic simulation approach using molecular-level reaction pathways provides high amounts of detail on the effluent composition and is briefly illustrated for Athabasca VR hydrocracking.
Dust resuspension and transport modeling for loss of vacuum accidents
International Nuclear Information System (INIS)
Humrickhouse, P.W.; Corradini, M.L.; Sharpe, J.P.
2007-01-01
Plasma surface interactions in tokamaks are known to create significant quantities of dust, which settles onto surfaces and accumulates in the vacuum vessel. In ITER, a loss of vacuum accident may result in the release of dust which will be radioactive and/or toxic, and provides increased surface area for chemical reactions or dust explosion. A new method of analysis has been developed for modeling dust resuspension and transport in loss of vacuum accidents. The aerosol dynamic equation is solved via the user defined scalar (UDS) capability in the commercial CFD code Fluent. Fluent solves up to 50 generic transport equations for user defined scalars, and allows customization of terms in these equations through user defined functions (UDF). This allows calculation of diffusion coefficients based on local flow properties, inclusion of body forces such as gravity and thermophoresis in the convection term, and user defined source terms. The code accurately reproduces analytical solutions for aerosol deposition in simple laminar flows with diffusion and gravitational settling. Models for dust resuspension are evaluated, and code results are compared to available resuspension data, including data from the Toroidal Dust Mobilization Experiment (TDMX) at the Idaho National Laboratory. Extension to polydisperse aerosols and inclusion of coagulation effects is also discussed. (orig.)
Modelling vacuum arcs : from plasma initiation to surface interactions
International Nuclear Information System (INIS)
Timko, H.
2011-01-01
A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering.The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early
Optimization of Edwards vacuum coating unit model E12E for the production of thin films
International Nuclear Information System (INIS)
Ruiz P, H.S.
1995-01-01
This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author)
Development of a master model concept for DEMO vacuum vessel
Energy Technology Data Exchange (ETDEWEB)
Mozzillo, Rocco; Marzullo, Domenico; Tarallo, Andrea [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy); Bachmann, Christian [EUROfusion PMU, Boltzmannstraße 2, 85748 Garching (Germany); Di Gironimo, Giuseppe, E-mail: peppe.digironimo@gmail.com [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy)
2016-11-15
Highlights: • The present work concerns the development of a first master concept model for DEMO vacuum vessel. • A parametric-associative CAD master model concept of a DEMO VV sector has been developed in accordance with DEMO design guidelines. • A proper CAD design methodology has been implemented in view of the later FEM analyses based on “shell elements”. - Abstract: This paper describes the development of a master model concept of the DEMO vacuum vessel (VV) conducted within the framework of the EUROfusion Consortium. Starting from the VV space envelope defined in the DEMO baseline design 2014, the layout of the VV structure was preliminarily defined according to the design criteria provided in RCC-MRx. A surface modelling technique was adopted and efficiently linked to the finite element (FE) code to simplify future FE analyses. In view of possible changes to shape and structure during the conceptual design activities, a parametric design approach allows incorporating modifications to the model efficiently.
Development of a master model concept for DEMO vacuum vessel
International Nuclear Information System (INIS)
Mozzillo, Rocco; Marzullo, Domenico; Tarallo, Andrea; Bachmann, Christian; Di Gironimo, Giuseppe
2016-01-01
Highlights: • The present work concerns the development of a first master concept model for DEMO vacuum vessel. • A parametric-associative CAD master model concept of a DEMO VV sector has been developed in accordance with DEMO design guidelines. • A proper CAD design methodology has been implemented in view of the later FEM analyses based on “shell elements”. - Abstract: This paper describes the development of a master model concept of the DEMO vacuum vessel (VV) conducted within the framework of the EUROfusion Consortium. Starting from the VV space envelope defined in the DEMO baseline design 2014, the layout of the VV structure was preliminarily defined according to the design criteria provided in RCC-MRx. A surface modelling technique was adopted and efficiently linked to the finite element (FE) code to simplify future FE analyses. In view of possible changes to shape and structure during the conceptual design activities, a parametric design approach allows incorporating modifications to the model efficiently.
Elementary amplitudes from full QCD and the stochastic vacuum model
International Nuclear Information System (INIS)
Martini, A.F.; Menon, M.J.
2002-01-01
In a previous work, making use of the gluon gauge-invariant two-point correlation function determined from lattice QCD in the quenched approximation and the stochastic vacuum model, we determined the elementary (parton-parton) scattering amplitude in the momentum transfer space. In this communication we compute the elementary amplitude from new lattice QCD calculations that include the effects of dynamical fermions (full QCD). The main conclusion is that the inclusion of dynamical fermions leads to a normalized elementary amplitude that decreases more quickly with the momentum transfer than that in the quenched approximation. (author)
The π and Tensor Vacuum Susceptibilities from the Global Color Symmetry Model
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; YANG Hong-Ting; LU Xiao-Fu; WANG Fan
2002-01-01
A modified method for calculating the nonperturbative quark vacuum condensates from the global color symmetry model is derived. Within this approach it is shown that the treatment of quark vacuum condensates is different from that in the previous studies. As a special case we calculate the π and tensor vacuum susceptibilities. A comparison with the results of the other nonperturbative QCD approaches is given.
Characteristics of Microwave Vacuum Baking and Drying of Oolong and Its Kinetic Model
Rongchuan Lin; Hetong Lin; Qingjiao Lin
2013-01-01
This paper studies the characteristics of microwave vacuum baking and drying of oolong and analyzes the influence of microwave power and vacuum degree in the drying process on the moisture in the tea. According to the variation law of moisture, it explores the relationship between time and wet base moisture contents under different microwave powers and vacuum degrees, as well as the kinetic mathematical model of vacuum drying for oolong using the microwave. Based on the energy balance between...
Estimating varying coefficients for partial differential equation models.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2017-09-01
Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.
The vacuum tribology model (VTM) of TriboLAB
Garmendia, I.; Landaberea, A.; Anglada, E.; Fernández-Sanz, R.; Santiago, R.; Herrada, F.; Encinas, J. M.
2003-09-01
TriboLAB is a tribology instrument that is planned for installation in the EuteF Flight Segment Platform, along with several other European scientific instruments. EuteF will be fixed onto an Express Pallet Adapter (ExPA), which provides standard structural, mechanical, electrical and communications interfaces to the Columbus External Payload Facility of the International Space Station (ISS). As a part of the model philosophy, a vacuum tribological model (VTM) has been developed to generate "on ground" tribological data of selected lubricants. The idea is to compare the results obtained "on ground" with those that will be produced in the space, in order to investigate the different behaviors of same tribological films and to be able to compare the performance of specific lubricants in Low Earth Orbit (LEO) conditions. The VTM is composed of six double experiment cells that perform respectively ball bearing (BB) experiments (with liquid and solid lubrication) and pin-on-disk (PoD) tests of solid lubricants. Thin films of alloyed MoS2 are being tested in the VTM under controlled vacuum conditions. In this work, the two sections of the VTM are described.
Dynamical gluon mass in the instanton vacuum model
Musakhanov, M.; Egamberdiev, O.
2018-04-01
We consider the modifications of gluon properties in the instanton liquid model (ILM) for the QCD vacuum. Rescattering of gluons on instantons generates the dynamical momentum-dependent gluon mass Mg (q). First, we consider the case of a scalar gluon, no zero-mode problem occurs and its dynamical mass Ms (q) can be found. Using the typical phenomenological values of the average instanton size ρ = 1 / 3 fm and average inter-instanton distance R = 1 fm we get Ms (0) = 256 MeV. We then extend this approach to the real vector gluon with zero-modes carefully considered. We obtain the following expression Mg2 (q) = 2 Ms2 (q). This modification of the gluon in the instanton media will shed light on nonperturbative aspect on heavy quarkonium physics.
Partially linear varying coefficient models stratified by a functional covariate
Maity, Arnab
2012-10-01
We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.
Testing for time-varying loadings in dynamic factor models
DEFF Research Database (Denmark)
Mikkelsen, Jakob Guldbæk
Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....
Mathematical Models of IABG Thermal-Vacuum Facilities
Doring, Daniel; Ulfers, Hendrik
2014-06-01
IABG in Ottobrunn, Germany, operates thermal-vacuum facilities of different sizes and complexities as a service for space-testing of satellites and components. One aspect of these tests is the qualification of the thermal control system that keeps all onboard components within their save operating temperature band. As not all possible operation / mission states can be simulated within a sensible test time, usually a subset of important and extreme states is tested at TV facilities to validate the thermal model of the satellite, which is then used to model all other possible mission states. With advances in the precision of customer thermal models, simple assumptions of the test environment (e.g. everything black & cold, one solar constant of light from this side) are no longer sufficient, as real space simulation chambers do deviate from this ideal. For example the mechanical adapters which support the spacecraft are usually not actively cooled. To enable IABG to provide a model that is sufficiently detailed and realistic for current system tests, Munich engineering company CASE developed ESATAN models for the two larger chambers. CASE has many years of experience in thermal analysis for space-flight systems and ESATAN. The two models represent the rather simple (and therefore very homogeneous) 3m-TVA and the extremely complex space simulation test facility and its solar simulator. The cooperation of IABG and CASE built up extensive knowledge of the facilities thermal behaviour. This is the key to optimally support customers with their test campaigns in the future. The ESARAD part of the models contains all relevant information with regard to geometry (CAD data), surface properties (optical measurements) and solar irradiation for the sun simulator. The temperature of the actively cooled thermal shrouds is measured and mapped to the thermal mesh to create the temperature field in the ESATAN part as boundary conditions. Both models comprise switches to easily
Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays, Phase I
National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...
Performance modelling of plasma microthruster nozzles in vacuum
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Pion Susceptibilities of the Vacuum in a Modified Global Colour Symmetry Model
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; WU Xiao-Hua; DING Xiao-Ping; L0 Xiao-Fu; ZHAO En-Guang
2001-01-01
Based on a modified version of the global color symmetry model, the pion susceptibilities of vacuum needed in the QCD sum rule external-field method for the coupling of pseudoscalar current to hadron have bean calculated beyond the vacuum saturation approximation. Comparison with the previous estimations has been given.
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
International Nuclear Information System (INIS)
Chapelle, P.; Bellot, J.P.; Duval, H.; Jardy, A.; Ablitzer, D.
2002-01-01
As part of a complete theoretical description of the behaviour of the electric arc in the vacuum arc remelting process, a model has been developed for the column of plasma generated by a single cluster of cathode spots. The model combines a kinetic approach, taking into account the formation of the plasma in the cathodic region, and a hydrodynamic approach, describing the expansion of the plasma in the vacuum between the electrodes. The kinetic model is based on a system of Boltzmann-Vlasov-Poisson equations and uses a particle-type simulation procedure, combining the PIC (particle in cell) and FPM (finite point set method) methods. In the two-dimensional hydrodynamic model, the plasma is assimilated to a mixture of two continuous fluids (the electrons and the ions), each described by a system of coupled transport equations. Finally, a simplified method has been defined for calculating the electric current density and the energy flux density transmitted by the plasma to the anode. The results of the numerical simulation presented are consistent with a certain number of experimental data available in the literature. In particular, the model predicts a percentage of the electric power of the cluster transmitted to the anode (25%) in good agreement with the value indicated in the literature. (author)
Modeling maximum daily temperature using a varying coefficient regression model
Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith
2014-01-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...
Boiling process modelling peculiarities analysis of the vacuum boiler
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
Modeling information diffusion in time-varying community networks
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Vacuum fused deposition modelling system to improve tensile ...
African Journals Online (AJOL)
In the printing process, the interlayer bonding is made too quick thus the layers are not fully fused together causing the reduced tensile strength. This paper presents a possible solution to this problem by incorporating vacuum technology in FDM system to improve tensile strength of 3D printed specimens. In this study, a ...
Modelling Time-Varying Volatility in Financial Returns
DEFF Research Database (Denmark)
Amado, Cristina; Laakkonen, Helinä
2014-01-01
The “unusually uncertain” phase in the global financial markets has inspired many researchers to study the effects of ambiguity (or “Knightian uncertainty”) on the decisions made by investors and their implications for the capital markets. We contribute to this literature by using a modified...... version of the time-varying GARCH model of Amado and Teräsvirta (2013) to analyze whether the increasing uncertainty has caused excess volatility in the US and European government bond markets. In our model, volatility is multiplicatively decomposed into two time-varying conditional components: the first...... being captured by a stable GARCH(1,1) process and the second driven by the level of uncertainty in the financial market....
Simple Model with Time-Varying Fine-Structure ``Constant''
Berman, M. S.
2009-10-01
Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.
Model Complexities of Shallow Networks Representing Highly Varying Functions
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra; Sanguineti, M.
2016-01-01
Roč. 171, 1 January (2016), s. 598-604 ISSN 0925-2312 R&D Projects: GA MŠk(CZ) LD13002 Grant - others:grant for Visiting Professors(IT) GNAMPA-INdAM Institutional support: RVO:67985807 Keywords : shallow networks * model complexity * highly varying functions * Chernoff bound * perceptrons * Gaussian kernel units Subject RIV: IN - Informatics, Computer Science Impact factor: 3.317, year: 2016
Flashover of a vacuum-insulator interface: A statistical model
Directory of Open Access Journals (Sweden)
W. A. Stygar
2004-07-01
Full Text Available We have developed a statistical model for the flashover of a 45° vacuum-insulator interface (such as would be found in an accelerator subject to a pulsed electric field. The model assumes that the initiation of a flashover plasma is a stochastic process, that the characteristic statistical component of the flashover delay time is much greater than the plasma formative time, and that the average rate at which flashovers occur is a power-law function of the instantaneous value of the electric field. Under these conditions, we find that the flashover probability is given by 1-exp(-E_{p}^{β}t_{eff}C/k^{β}, where E_{p} is the peak value in time of the spatially averaged electric field E(t, t_{eff}≡∫[E(t/E_{p}]^{β}dt is the effective pulse width, C is the insulator circumference, k∝exp(λ/d, and β and λ are constants. We define E(t as V(t/d, where V(t is the voltage across the insulator and d is the insulator thickness. Since the model assumes that flashovers occur at random azimuthal locations along the insulator, it does not apply to systems that have a significant defect, i.e., a location contaminated with debris or compromised by an imperfection at which flashovers repeatedly take place, and which prevents a random spatial distribution. The model is consistent with flashover measurements to within 7% for pulse widths between 0.5 ns and 10 μs, and to within a factor of 2 between 0.5 ns and 90 s (a span of over 11 orders of magnitude. For these measurements, E_{p} ranges from 64 to 651 kV/cm, d from 0.50 to 4.32 cm, and C from 4.96 to 95.74 cm. The model is significantly more accurate, and is valid over a wider range of parameters, than the J. C. Martin flashover relation that has been in use since 1971 [J. C. Martin on Pulsed Power, edited by T. H. Martin, A. H. Guenther, and M. Kristiansen (Plenum, New York, 1996]. We have generalized the statistical model to estimate the total-flashover probability of an
Vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking
International Nuclear Information System (INIS)
Bertolami, O.; Paramos, J.
2005-01-01
We study the vacuum solutions of a gravity model where Lorentz symmetry is spontaneously broken once a vector field acquires a vacuum expectation value. Results are presented for the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB. The purely radial LSB result corresponds to new black hole solutions. When possible, parametrized post-Newtonian parameters are computed and observational boundaries used to constrain the Lorentz symmetry breaking scale
Structure of the vacuum in the color dielectric model: confinement and chiral symmetry
International Nuclear Information System (INIS)
Mazzolo, A.
1992-01-01
Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied
Monopoly models with time-varying demand function
Cavalli, Fausto; Naimzada, Ahmad
2018-05-01
We study a family of monopoly models for markets characterized by time-varying demand functions, in which a boundedly rational agent chooses output levels on the basis of a gradient adjustment mechanism. After presenting the model for a generic framework, we analytically study the case of cyclically alternating demand functions. We show that both the perturbation size and the agent's reactivity to profitability variation signals can have counterintuitive roles on the resulting period-2 cycles and on their stability. In particular, increasing the perturbation size can have both a destabilizing and a stabilizing effect on the resulting dynamics. Moreover, in contrast with the case of time-constant demand functions, the agent's reactivity is not just destabilizing, but can improve stability, too. This means that a less cautious behavior can provide better performance, both with respect to stability and to achieved profits. We show that, even if the decision mechanism is very simple and is not able to always provide the optimal production decisions, achieved profits are very close to those optimal. Finally, we show that in agreement with the existing empirical literature, the price series obtained simulating the proposed model exhibit a significant deviation from normality and large volatility, in particular when underlying deterministic dynamics become unstable and complex.
Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures
Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter
2018-01-01
Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.
A thermal model for photovoltaic panels under varying atmospheric conditions
International Nuclear Information System (INIS)
Armstrong, S.; Hurley, W.G.
2010-01-01
The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.
Multivariate time-varying volatility modeling using probabilistic fuzzy systems
Basturk, N.; Almeida, R.J.; Golan, R.; Kaymak, U.
2016-01-01
Methods to accurately analyze financial risk have drawn considerable attention in financial institutions. One difficulty in financial risk analysis is the fact that banks and other financial institutions invest in several assets which show time-varying volatilities and hence time-varying financial
International Nuclear Information System (INIS)
Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.
1981-01-01
Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru
Quantum fluctuations in the dressed vacuum of a bosonic model system
International Nuclear Information System (INIS)
Wagner, R E; Su, Q; Grobe, R; Acosta, S; Glasgow, S A
2012-01-01
Quantum fluctuations and the polarizability of the vacuum state are sometimes interpreted in terms of virtual particles that come into and out of existence for a limited amount of time. We study the spatial and temporal properties of these auxiliary particles on a numerical space-time grid for a one-dimensional model system. This approach permits us to compute the average distance between virtual particles and their lifetime. The creation dynamics of the virtual particles from the bare vacuum state is also examined. (paper)
Pyrolysis of propane under vacuum carburizing conditions. An experimental and modeling study
Energy Technology Data Exchange (ETDEWEB)
Khan, R.U.; Bajohr, S.; Buchholz, D.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Engler Bunte Ring 1, Universitaet Karlsruhe, 76131 Karlsruhe (Germany); Minh, H.D.; Norinaga, K.; Janardhanan, V.M.; Tischer, S.; Deutschmann, O. [Institute of Chemical Technology, University of Karlsruhe, 76128 Karlsruhe (Germany)
2008-03-15
Propane has been pyrolyzed in a flow reactor system at different temperatures ranging from 640 C to 1010 C and at 8 mbar of partial pressure which are typical vacuum carburizing conditions for steel. Nitrogen was used as a carrier gas. The products of pyrolysis were collected and analyzed by gas chromatography. The reactor was numerically simulated by 1D and 2D flow models coupled to a detailed gas phase reaction mechanism. The gas atmosphere composition has been predicted under the conditions of vacuum carburizing of steel. (author)
Consideration of the vacuum of QCD in a composite quark model. Strange hadrons
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.
1986-01-01
The method of inclusion of QCD vacuum condensates within the quark composite model is generalized to the case of hadrons containing strange quarks. The mass formula for such hadrons is obtained. The mass of strange quark is defined by analysing the energy spectrum of hadron ground states. The mixing angles of pseudoscalar mesons are estimated
Vacuum circuit breaker postarc current modelling based on the theory of Langmuir probes
Lanen, van E.P.A.; Smeets, R.; Popov, M.; Sluis, van der L.
2007-01-01
High-resolution measurements on the postarc current in vacuum circuit breakers (VCBs) reveal a period, immediately following current-zero, in which the voltage remains practically zero. The most widely used model for simulating the interaction between the postarc current with the electrical circuit
Hadron static properties in the model considering the structure of QCD vacuum
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.
1987-01-01
The model taking into account the interaction of quarks with QCD vacuum fields is applied to calculate the mean-square charge radii, magnetic moments and axial-vector constants of the hadron interaction. It is shown that one-particle contributions of these characteristics describe the experimental data with 20% accuracy
Modeling of velocity field for vacuum induction melting process
Institute of Scientific and Technical Information of China (English)
CHEN Bo; JIANG Zhi-guo; LIU Kui; LI Yi-yi
2005-01-01
The numerical simulation for the recirculating flow of melting of an electromagnetically stirred alloy in a cylindrical induction furnace crucible was presented. Inductive currents and electromagnetic body forces in the alloy under three different solenoid frequencies and three different melting powers were calculated, and then the forces were adopted in the fluid flow equations to simulate the flow of the alloy and the behavior of the free surface. The relationship between the height of the electromagnetic stirring meniscus, melting power, and solenoid frequency was derived based on the law of mass conservation. The results show that the inductive currents and the electromagnetic forces vary with the frequency, melting power, and the physical properties of metal. The velocity and the height of the meniscus increase with the increase of the melting power and the decrease of the solenoid frequency.
Microcanonical simulation of a toy model with vacuum seizing
International Nuclear Information System (INIS)
Stone, M.
1984-01-01
Tested was a newly developed method for simulating field theories with fermionic degrees of freedom on a simple quantum mechanical model which still has enough structure to exhibit symmetry breaking and other effects due to anomalies
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
Energy Technology Data Exchange (ETDEWEB)
Bhoonah, Amit; Thomas, Evan, E-mail: zucchini@phas.ubc.ca; Zhitnitsky, Ariel R., E-mail: arz@phas.ubc.ca
2015-01-15
We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions.
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
International Nuclear Information System (INIS)
Bhoonah, Amit; Thomas, Evan; Zhitnitsky, Ariel R.
2015-01-01
We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions
Directory of Open Access Journals (Sweden)
Jingjin Liu
2017-10-01
Full Text Available Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills. In this paper, an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City, China. With this multiple-vacuum preloading method, the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion. A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one. Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content, and vane shear strength was measured at different positions. The testing results indicate that water discharge–time curves obtained by the traditional vacuum preloading method can be divided into three phases: rapid growth phase, slow growth phase, and steady phase. According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process, the fluctuations of pore water pressure during each loading step are divided into three phases: steady phase, rapid dissipation phase, and slow dissipation phase. An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method. For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City, the best loading step was 20 kPa and the loading of 40–50 kPa produced the highest drainage consolidation. The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement, both of which indicate
A potato model intercomparison across varying climates and productivity levels
DEFF Research Database (Denmark)
H. Fleisher, David; Condori, Bruno; Quiroz, Roberto
2017-01-01
A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States.......01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach....
Structure and chemistry of model catalysts in ultrahigh vacuum
Walker, Joshua D.
The study of catalysis is a key area of focus not only in the industrial sector but also in the nature and biological systems. The market for catalysis is a multi-billion dollar industry. Many of the materials and products we use on a daily basis are formed through a catalytic process. The quest to understanding and improving catalytic mechanisms is ongoing. Many model catalysts use transition metals as a support for chemical reactions to take place due to their selectivity and activity. Palladium, gold, and copper metals are studied in this work and show the ability to be catalytically reactive. It is important to understand the characteristics and properties of these surfaces. A well-known example of catalysis is the conversion of carbon monoxide (CO), a very harmful gas to carbon dioxide (CO2) which is less harmful. This reaction is mainly seen in the automotive industry. This reaction is investigated in this work on a Au(111) single crystal, which is normally inert but becomes reactivity with the adsorption of oxygen on the surface. Temperature Programmed Desorption (TPD) is used to understand some of the chemistry and effects with and without the addition of H2O. The oxidation of CO is shown to be enhanced by the addition of water, but warrants further analysis too fully understand the different mechanisms and reaction pathways existing. The field of nano-electronics is rapidly growing as technology continues to challenge scientists to create innovative ideas. The trend to produce smaller electronic products is increasing as consumer demands persist. It has been shown previously that 1,4-phenlyene diisocyanobenzene (1,4-PDI) on Au(111) react to form one-dimensional oligomer chains comprising alternating gold and 1,4-PDI units on the Au(111) surface. A similar compound 1,3-phenlyene diisocyanobenzene (1,3-PDI) was studied in order to investigate whether the oligomerization found for 1,4-PDI is a general phenomenon and to ultimately explore the effect of
Fabrication and modeling of narrow capillaries for vacuum system gas inlets
DEFF Research Database (Denmark)
Quaade, Ulrich; Jensen, Søren; Hansen, Ole
2005-01-01
Micrometer-sized cylindrical capillaries with well-controlled dimensions are fabricated using deep reactive ion etching. The flow through the capillaries is experimentally characterized for varying pressures, temperatures, and diameters. For the parameters used, it is shown that the Knudsen numbe...... is in the intermediate flow regime, and Knudsen's expression for the flow fit the data well. The flow properties of the capillaries make them ideal for introducing gas into vacuum systems and in particular mass spectrometers. ©2005 American Institute of Physics...
Black-holes-hedgehogs in the false vacuum and a new physics beyond the Standard Model
Das, C. R.; Laperashvili, L. V.; Sidharth, B. G.; Nielsen, H. B.
2017-12-01
In the present talk, we consider the existence of the two degenerate universal vacua: a) the first Electroweak vacuum at v = 246 GeV - “true vacuum”, and b) the second Planck scale “false vacuum” at v 2 ∼ 1018 GeV. In these vacua, we investigated the different topological defects. The main aim of this paper is an investigation of the hedgehog’s configurations as defects of the false vacuum. In the framework of the f(R) gravity, suggested by authors in their Gravi-Weak Unification model, we obtained a black hole solution, which corresponds to a “hedgehog” - global monopole, “swallowed” by a black-hole with mass ∼ 1019 GeV. These black-holes form a lattice-like structure of the vacuum at the Planck scale. Considering the results of the hedgehog lattice theory in the framework of the SU(2) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehog’s confinement phase. This result gave us the possibility to conclude that there exist triplet Higgs fields which can contribute to the SM at the energy scale ≃ 104 ∼ 105 GeV. Showing a new physics at the scale 10÷100 TeV, these triplet Higgs particles can provide the stability of the EW-vacuum of the SM.
Institute of Scientific and Technical Information of China (English)
呼义翔; 雷天时; 吴撼宇; 郭宁; 韩娟娟; 邱爱慈; 王亮平; 黄涛; 丛培天; 张信军; 李岩; 曾正中; 孙铁平
2011-01-01
The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedance in the magnetically insulated transmission line system of the Z accelerator before and after magnetic insulation is established. By including electron pressure and zero electric field at the cathode, a closed set of equations is obtained at each time step, and dynamic shunt resistance （used to represent any electron loss to the anode） and flow impedance are solved, which have been incorporated into the transmission line code for simulations of the vacuum section in the Z accelerator. Finally, the results are discussed in comparison with earlier findings to show the effectiveness and limitations of the model.
A potato model intercomparison across varying climates and productivity levels.
Fleisher, David H; Condori, Bruno; Quiroz, Roberto; Alva, Ashok; Asseng, Senthold; Barreda, Carolina; Bindi, Marco; Boote, Kenneth J; Ferrise, Roberto; Franke, Angelinus C; Govindakrishnan, Panamanna M; Harahagazwe, Dieudonne; Hoogenboom, Gerrit; Naresh Kumar, Soora; Merante, Paolo; Nendel, Claas; Olesen, Jorgen E; Parker, Phillip S; Raes, Dirk; Raymundo, Rubi; Ruane, Alex C; Stockle, Claudio; Supit, Iwan; Vanuytrecht, Eline; Wolf, Joost; Woli, Prem
2017-03-01
A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be
Modeling spin magnetization transport in a spatially varying magnetic field
International Nuclear Information System (INIS)
Picone, Rico A.R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of
Modeling spin magnetization transport in a spatially varying magnetic field
Energy Technology Data Exchange (ETDEWEB)
Picone, Rico A.R., E-mail: rpicone@stmartin.edu [Department of Mechanical Engineering, University of Washington, Seattle (United States); Garbini, Joseph L. [Department of Mechanical Engineering, University of Washington, Seattle (United States); Sidles, John A. [Department of Orthopædics, University of Washington, Seattle (United States)
2015-01-15
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of
Modeling spin magnetization transport in a spatially varying magnetic field
Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
Varying parameter models to accommodate dynamic promotion effects
Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.
1999-01-01
The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for
Population models for time-varying pesticide exposure
Jager T; Jong FMW de; Traas TP; LER; SEC
2007-01-01
A model has recently been developed at RIVM to predict the effects of variable exposure to pesticides of plant and animal populations in surface water. Before a pesticide is placed on the market, the environmental risk of the substance has to be assessed. This risk is estimated by comparing
Directory of Open Access Journals (Sweden)
Zhengguo Shang
2009-05-01
Full Text Available A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.
Internal vacuum-assisted closure device in the swine model of severe liver injury
Directory of Open Access Journals (Sweden)
Everett Christopher B
2012-12-01
Full Text Available Abstract Objectives The authors present a novel approach to nonresectional therapy in major hepatic trauma utilizing intraabdominal perihepatic vacuum assisted closure (VAC therapy in the porcine model of Grade V liver injury. Methods A Grade V injury was created in the right lobe of the liver in a healthy pig. A Pringle maneuver was applied (4.5 minutes total clamp time and a vacuum assisted closure device was placed over the injured lobe and connected to suction. The device consisted of a perforated plastic bag placed over the liver, followed by a 15 cm by 15cm VAC sponge covered with a nonperforated plastic bag. The abdomen was closed temporarily. Blood loss, cardiopulmonary parameters and bladder pressures were measured over a one-hour period. The device was then removed and the animal was euthanized. Results Feasibility of device placement was demonstrated by maintenance of adequate vacuum suction pressures and seal. VAC placement presented no major technical challenges. Successful control of ongoing liver hemorrhage was achieved with the VAC. Total blood loss was 625 ml (20ml/kg. This corresponds to class II hemorrhagic shock in humans and compares favorably to previously reported estimated blood losses with similar grade liver injuries in the swine model. No post-injury cardiopulmonary compromise or elevated abdominal compartment pressures were encountered, while hepatic parenchymal perfusion was maintained. Conclusion These data demonstrate the feasibility and utility of a perihepatic negative pressure device for the treatment of hemorrhage from severe liver injury in the porcine model.
Vacuum stability bounds in anomaly and gaugino mediated supersymmetry breaking models
International Nuclear Information System (INIS)
Gabrielli, Emidio; Huitu, Katri; Roy, Sourov
2002-01-01
We constrain the parameter space of the minimal and gaugino-assisted anomaly mediation, and gaugino mediation models by requiring that the electroweak vacuum corresponds to the deepest minimum of the scalar potential. In the framework of anomaly mediation models we find strong lower bounds on slepton and squark masses. In the gaugino mediation models the mass spectrum is forced to be at the TeV scale. We find extensive regions of the parameter space which are ruled out, even at low tanβ. The implications of these results on the g-2 of the muon are also analyzed
Constraints on running vacuum model with H ( z ) and f σ{sub 8}
Energy Technology Data Exchange (ETDEWEB)
Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Lee, Chung-Chi [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Yin, Lu, E-mail: geng@phys.nthu.edu.tw, E-mail: lee.chungchi16@gmail.com, E-mail: yinlumail@foxmail.com [Department of Physics, National Tsing Hua University, Hsinchu, 300 Taiwan (China)
2017-08-01
We examine the running vacuum model with Λ ( H ) = 3 ν H {sup 2} + Λ{sub 0}, where ν is the model parameter and Λ{sub 0} is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H ( z ) and weighted linear growth f ( z )σ{sub 8}( z ) measurements, we find that ν=(1.37{sup +0.72}{sub −0.95})× 10{sup −4} with the best fitted χ{sup 2} value slightly smaller than that in the ΛCDM model.
Time-varying parameter models for catchments with land use change: the importance of model structure
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Time-varying parameter models for catchments with land use change: the importance of model structure
Directory of Open Access Journals (Sweden)
S. Pathiraja
2018-05-01
Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly
Stuart, David
2014-12-01
We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.
Naidu, Gayathri
2016-08-27
The application of vacuum to direct contact membrane distillation (vacuum enhanced direct contact membrane distillation, V-DCMD) removed condensable gasses and reduced partial pressure in the membrane pores, achieving 37.6% higher flux than DCMD at the same feed temperature. Transfer mechanism and temperature distribution profile in V-DCMD were studied. The empirical flux decline (EFD) model represented fouling profiles of V-DCMD. In a continuous V-DCMD operation with moderate temperature (55 degrees C) and permeate pressure (300 mbar) for treating wastewater ROC, a flux of 16.0 +/- 0.3 L/m(2) h and high quality distillate were achieved with water flushing, showing the suitability of V-DCMD for ROC treatment. (C) 2016 Elsevier B.V. All rights reserved.
Naidu, Gayathri; Shim, Wang Geun; Jeong, Sanghyun; Choi, YoungKwon; Ghaffour, NorEddine; Vigneswaran, Saravanamuthu
2016-01-01
The application of vacuum to direct contact membrane distillation (vacuum enhanced direct contact membrane distillation, V-DCMD) removed condensable gasses and reduced partial pressure in the membrane pores, achieving 37.6% higher flux than DCMD at the same feed temperature. Transfer mechanism and temperature distribution profile in V-DCMD were studied. The empirical flux decline (EFD) model represented fouling profiles of V-DCMD. In a continuous V-DCMD operation with moderate temperature (55 degrees C) and permeate pressure (300 mbar) for treating wastewater ROC, a flux of 16.0 +/- 0.3 L/m(2) h and high quality distillate were achieved with water flushing, showing the suitability of V-DCMD for ROC treatment. (C) 2016 Elsevier B.V. All rights reserved.
Modelling of crater formation on anode surface by high-current vacuum arcs
Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura
2016-11-01
Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.
Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum
Energy Technology Data Exchange (ETDEWEB)
Heidt, C.; Grohmann, S. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute for Technical Thermodynamics and Refrigeration, Engler-Bunte (Germany); Süßer, M. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)
2014-01-29
The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.
Mathematical modeling of groundwater contamination with varying velocity field
Directory of Open Access Journals (Sweden)
Das Pintu
2017-06-01
Full Text Available In this study, analytical models for predicting groundwater contamination in isotropic and homogeneous porous formations are derived. The impact of dispersion and diffusion coefficients is included in the solution of the advection-dispersion equation (ADE, subjected to transient (time-dependent boundary conditions at the origin. A retardation factor and zero-order production terms are included in the ADE. Analytical solutions are obtained using the Laplace Integral Transform Technique (LITT and the concept of linear isotherm. For illustration, analytical solutions for linearly space- and time-dependent hydrodynamic dispersion coefficients along with molecular diffusion coefficients are presented. Analytical solutions are explored for the Peclet number. Numerical solutions are obtained by explicit finite difference methods and are compared with analytical solutions. Numerical results are analysed for different types of geological porous formations i.e., aquifer and aquitard. The accuracy of results is evaluated by the root mean square error (RMSE.
Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in A4 models
International Nuclear Information System (INIS)
Barry, James; Rodejohann, Werner
2010-01-01
The addition of an A 4 family symmetry and extended Higgs sector to the standard model can generate the tribimaximal mixing pattern for leptons, assuming the correct vacuum expectation value alignment of the Higgs scalars. Deviating this alignment affects the predictions for the neutrino oscillation and neutrino mass observables. An attempt is made to classify the plethora of models in the literature, with respect to the chosen A 4 particle assignments. Of these models, two particularly popular examples have been analyzed for deviations from tribimaximal mixing by perturbing the vacuum expectation value alignments. The effect of perturbations on the mixing angle observables is studied. However, it is only investigation of the mass-related observables (the effective mass for neutrinoless double beta decay and the sum of masses from cosmology) that can lead to the exclusion of particular models by constraints from future data, which indicates the importance of neutrino mass in disentangling models. The models have also been tested for fine-tuning of the parameters. Furthermore, a well-known seesaw model is generalized to include additional scalars, which transform as representations of A 4 not included in the original model.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Modelling suction instabilities in soils at varying degrees of saturation
Directory of Open Access Journals (Sweden)
Buscarnera Giuseppe
2016-01-01
Full Text Available Wetting paths imparted by the natural environment and/or human activities affect the state of soils in the near-surface, promoting transitions across different regimes of saturation. This paper discusses a set of techniques aimed at quantifying the role of hydrologic processes on the hydro-mechanical stability of soil specimens subjected to saturation events. Emphasis is given to the mechanical conditions leading to coupled flow/deformation instabilities. For this purpose, energy balance arguments for three-phase systems are used to derive second-order work expressions applicable to various regimes of saturation. Controllability analyses are then performed to relate such work input with constitutive singularities that reflect the loss of strength under coupled and/or uncoupled hydro-mechanical forcing. A suction-dependent plastic model is finally used to track the evolution of stability conditions in samples subjected to wetting, thus quantifying the growth of the potential for coupled failure modes upon increasing degree of saturation. These findings are eventually linked with the properties of the field equations that govern pore pressure transients, thus disclosing a conceptual link between the onset of coupled hydro-mechanical failures and the evolution of suction with time. Such results point out that mathematical instabilities caused by a non-linear suction dependent behaviour play an important role in the advanced constitutive and/or numerical tools that are commonly used for the analysis of geomechanical problems in the unsaturated zone, and further stress that the relation between suction transients and soil deformations is a key factor for the interpretation of runaway failures caused by intense saturation events.
Locally Rotationally Symmetric Bianchi Type-I Model with Time Varying Λ Term
International Nuclear Information System (INIS)
Tiwari, R. K.; Jha, Navin Kumar
2009-01-01
We investigate the locally rotationally symmetric (LRS) Bianchi type-I cosmological model for stiff matter and a vacuum solution with a cosmological term proportional to R −m (R is the scale factor and m is a positive constant). The cosmological term decreases with time. We obtain that for both the cases the present universe is accelerating with a large fraction of cosmological density in the form of a cosmological term
Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights
L.F. Hoogerheide (Lennart); R.H. Kleijn (Richard); H.K. van Dijk (Herman); M.J.C.M. Verbeek (Marno)
2009-01-01
textabstractSeveral Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time
Directory of Open Access Journals (Sweden)
Jamaluddin1*
2011-06-01
Full Text Available Expansion and puffing are specific characteristics of fried products critical for consumer preferences. To obtain expanded and puffed dried products that fit well with consumer acceptance criteria, it is necessary to pay attention to the process conditions which change the raw material characteristics during frying. The important changes include volume and density ratio of the products during frying. Hypothetically, these changes are due to water vaporization and the decrease dry matter in the products. The objective of this research is to develop a mathematical model of volume and density ratio changes for jack fruit during vacuum frying as a function of water and starch content reductions. Samples were vacuum fried at 70–100OC and pressure of 80-90 kPa for 15–60 min. The parameters observed were volume and density as well as water and starch contents of samples before and after vacuum frying. The results showed that the developed model can be used to predict changes in volume and density ratio of jack fruit during vacuum frying.
Electroweak vacuum stability in classically conformal B - L extension of the standard model
Energy Technology Data Exchange (ETDEWEB)
Das, Arindam; Okada, Nobuchika; Papapietro, Nathan [University of Alabama, Department of Physics and Astronomy, Alabama (United States)
2017-02-15
We consider the minimal U(1){sub B-L} extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1){sub B-L} gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1){sub B-L} Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the U(1){sub B-L} gauge boson (Z{sup '} boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1){sub B-L} extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z{sup '} boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z{sup '} boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings. (orig.)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Vacuum Expectation Value Profiles of the Bulk Scalar Field in the Generalized Randall-Sundrum Model
International Nuclear Information System (INIS)
Moazzen, M.; Tofighi, A.; Farokhtabar, A.
2015-01-01
In the generalized Randall-Sundrum warped brane-world model the cosmological constant induced on the visible brane can be positive or negative. In this paper we investigate profiles of vacuum expectation value of the bulk scalar field under general Dirichlet and Neumann boundary conditions in the generalized warped brane-world model. We show that the VEV profiles generally depend on the value of the brane cosmological constant. We find that the VEV profiles of the bulk scalar field for a visible brane with negative cosmological constant and positive tension are quite distinct from those of Randall-Sundrum model. In addition we show that the VEV profiles for a visible brane with large positive cosmological constant are also different from those of the Randall-Sundrum model. We also verify that Goldberger and Wise mechanism can work under nonzero Dirichlet boundary conditions in the generalized Randall-Sundrum model.
Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures
Institute of Scientific and Technical Information of China (English)
WANGDian-Fu; SONGHe-Shan; MIDong
2004-01-01
In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.
Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shan; MI Dong
2004-01-01
In terms of the Nambu-Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple localgauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalarfields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential isgiven which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinementbehavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can bemelted away under high temperatures.
Towards an emergent model of solitonic particles from non-trivial vacuum structure
Directory of Open Access Journals (Sweden)
Gillard Adam B.
2017-01-01
Full Text Available We motivate and introduce what we refer to as the principles of Lie-stability and Hopf-stability and see what the physical theories must look like. Lie-stability is needed on the classical side and Hopf-stability is needed on the quantum side. We implement these two principles together with Lie-deformations consistent with basic constraints on the classical kinematical variables to arrive at the form of a theory that identifies standard model fermions with quantum solitonic trefoil knotted flux tubes which emerge from a flux tube vacuum network. Moreover, twisted unknot fluxtubes form natural dark matter candidates
A Heuristic Model for the Active Galactic Nucleus Based on the Planck Vacuum Theory
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-07-01
Full Text Available The standard explanation for an active galactic nucleus (AGN is a "central engine" consisting of a hot accretion disk surrounding a supermassive black hole. Energy is generated by the gravitational infall of material which is heated to high temperatures in this dissipative accretion disk. What follows is an alternative model for the AGN based on the Planck vacuum (PV theory, where both the energy of the AGN and its variable luminosity are explained in terms of a variable photon flux emanating from the PV.
MODEL OF HYDRODYNAMIC MIXING OF CARBONIC POWDERS IN VACUUMATOR, USED IN STEEL-MAKING OF RUP “BMZ”
Directory of Open Access Journals (Sweden)
A. N. Chichko
2005-01-01
Full Text Available The mathematical model of the mixing and dissolving process of carbonic powder in a system '"vacuumator-bowl” under influence of circulating argon is offered. The spatial distribution of hydrodynamic currents at mixing of carbonic powder, received on the basis of computer calculations is presented. The character of distribution of hydrodynamic speeds of melt (circulating currents in industrial bowl and vacuumator for different time slots of mixing is determined.
New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
Chayjan, Reza Amiri; Alaei, Behnam
2016-01-01
Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired
Farrokhabadi, A.; Mokhtari, J.; Koochi, A.; Abadyan, M.
2015-06-01
In this paper, the impact of the Casimir attraction on the electromechanical stability of nanowire-fabricated nanotweezers is investigated using a theoretical continuum mechanics model. The Dirichlet mode is considered and an asymptotic solution, based on path integral approach, is applied to consider the effect of vacuum fluctuations in the model. The Euler-Bernoulli beam theory is employed to derive the nonlinear governing equation of the nanotweezers. The governing equations are solved by three different approaches, i.e. the modified variation iteration method, generalized differential quadrature method and using a lumped parameter model. Various perspectives of the problem, including the comparison with the van der Waals force regime, the variation of instability parameters and effects of geometry are addressed in present paper. The proposed approach is beneficial for the precise determination of the electrostatic response of the nanotweezers in the presence of Casimir force.
Interaction between computational modelling and experiments for vacuum consumable arc remelting
Energy Technology Data Exchange (ETDEWEB)
Bertram, L. A.; Zanner, F. J.
1980-01-01
A combined computational-experimental modelling effort is currently underway to characterize the vacuum consumable arc remelt process. This effort involves the coupling of experimental results with a magnetohydrodynamic flow model which is capable of time accurate solutions of the interdependent fluid flow-solidification process in the ingot. Models such as this are driven by boundary conditions. Considerable data have been compiled from direct observation of the electrode tip and molten pool surface by means of high speed photography in order to gain an understanding of the processes at the pool surface and the appropriate corresponding boundary conditions. The crucible wall/molten metal miniscus conditions are less well understood. Pool volumes are computed at different melting currents and show reasonable agreement with experimentally determined values. Current flow through the ingot is evaluated numerically and the results indicate that a significant portion of the melt current does not reach the interior of the ingot. U-6 wt. % Nb alloy was used.
Mager, R; Balzereit, C; Gust, K; Hüsch, T; Herrmann, T; Nagele, U; Haferkamp, A; Schilling, D
2016-05-01
Passive removal of stone fragments in the irrigation stream is one of the characteristics in continuous-flow PCNL instruments. So far the physical principle of this so-called vacuum cleaner effect has not been fully understood yet. The aim of the study was to empirically prove the existence of the vacuum cleaner effect and to develop a physical hypothesis and generate a mathematical model for this phenomenon. In an empiric approach, common low-pressure PCNL instruments and conventional PCNL sheaths were tested using an in vitro model. Flow characteristics were visualized by coloring of irrigation fluid. Influence of irrigation pressure, sheath diameter, sheath design, nephroscope design and position of the nephroscope was assessed. Experiments were digitally recorded for further slow-motion analysis to deduce a physical model. In each tested nephroscope design, we could observe the vacuum cleaner effect. Increase in irrigation pressure and reduction in cross section of sheath sustained the effect. Slow-motion analysis of colored flow revealed a synergism of two effects causing suction and transportation of the stone. For the first time, our model showed a flow reversal in the sheath as an integral part of the origin of the stone transportation during vacuum cleaner effect. The application of Bernoulli's equation provided the explanation of these effects and confirmed our experimental results. We widen the understanding of PCNL with a conclusive physical model, which explains fluid mechanics of the vacuum cleaner effect.
International Nuclear Information System (INIS)
Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris
2014-01-01
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired
Energy Technology Data Exchange (ETDEWEB)
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Quarkonium spectroscopy in a potential model with vacuum-polarization corrections
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
We consider a potential model taking long-distance vacuum-polarization corrections as suggested by Poggio and Schnitzer, which enables one to interpolate between cc-bar, bb-bar, and tt-bar systems. Taking special care for the accuracy of the numerical integration near the origin, we have developed a numerical method to obtain the heavy-quark--antiquark bound states along with their leptonic widths. We obtain the above flavor-independent potential giving good agreement with the so-called experimental mass splitting of the 1S-2S states of the psi and UPSILON family with reasonable values of the quark-gluon coupling constant α/sub s/, which do not deviate very much from the quantum-chromodynamics value. We obtain some of the bound states of the hypothetical tt-bar family and observe that the effect of screening of the potential due to the vacuum-polarization cloud decreases with increase of the mass of the heavy quark forming the quarkonium
Model of liquid-metal splashing in the cathode spot of a vacuum arc discharge
International Nuclear Information System (INIS)
Gashkov, M. A.; Zubarev, N. M.; Zubareva, O. V.; Mesyats, G. A.; Uimanov, I. V.
2016-01-01
The formation of microjets is studied during the extrusion of a melted metal by the plasma pressure from craters formed on a cathode in a burning vacuum arc. An analytic model of liquid-metal splashing that includes two stages is proposed. At the first stage, the liquid motion has the axial symmetry and a liquid-metal wall surrounding the crater is formed. At the second stage, the axial symmetry is broken due to the development of the Plateau–Rayleigh instability in the upper part of the wall. The wall breakup process is shown to have a threshold. The minimal plasma pressure and the minimal electric current flowing through the crater required for obtaining the liquid-metal splashing regime are found. The basic spatial and temporal characteristics of the jet formation process are found using the analytic model.
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
Long memory of financial time series and hidden Markov models with time-varying parameters
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
Hidden Markov models are often used to capture stylized facts of daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior for the ability to reproduce the stylized...... facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....
Thermo-optical vacuum testing of IRNSS laser retroreflector array qualification model
Porcelli, L.; Boni, A.; Ciocci, E.; Contessa, S.; Dell'Agnello, S.; Delle Monache, G.; Intaglietta, N.; Martini, M.; Mondaini, C.; Patrizi, G.; Salvatori, L.; Tibuzzi, M.; Lops, C.; Cantone, C.; Tuscano, P.; Maiello, M.; Venkateswaran, R.; Chakraborty, P.; Ramana Reddy, C. V.; Sriram, K. V.
2017-09-01
We describe the activities performed by SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and cube/microsat Characterization Facilities Laboratory) of INFN-LNF for the thermo-optical vacuum testing activity of a IRNSS (Indian Regional Navigation Satellite System) LRA (Laser Retroreflector Array), under contract for ISRO-LEOS. To our knowledge, this is the first publication on the characterization of the optical performance of an LRA operating at about 36,000 km altitude (typical of regional GNSS segments, namely QZSS, COMPASS-G) executed in fully representative, carefully lab-simulated space conditions. In particular, this is the only such publication concerning IRNSS. Since laser ranging to its altitude is more challenging than to GNSS altitudes (from about 19,100 km for GLONASS to about 23,200 km for Galileo), comparative measurements were long awaited by ILRS (International Laser Ranging Service) and we present measurements of the absolute laser return to ground stations of the ILRS in terms of lidar OCS (Optical Cross Section) at the IRNSS relevant value of velocity aberration, in turn derived from measurements of the full FFDP (Far Field Diffraction Pattern) over a very large range of velocity aberrations. These measurements were acquired: (i) on a full-size qualification model of a IRNSS CCR (Cube Corner Retroreflector) LRA that ISRO-LEOS provided to INFN-LNF; (ii) during the lab-simulation of a 1/4 orbit segment, in which the LRA CCRs are exposed to the perturbation of the sun heat at varying angles, from grazing incidence (90° with respect to the direction perpendicular to the plane of array), up to the perpendicular to the LRA, with a same time variation consistent with the actual space orbit. In this 1/4 orbit condition, the LRA experiences potentially large thermal degradations of the OCS, depending on the detailed thermal and mechanical design of the LRA. Since all GNSS constellations have different LRA designs or configurations, this is another
Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay
Directory of Open Access Journals (Sweden)
Xia Li
2011-01-01
Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.
Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
2016-01-01
Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior have not been thoroughly examined. This paper presents an adaptive...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....
Gauge-independent scales related to the Standard Model vacuum instability
International Nuclear Information System (INIS)
Espinosa, J.R.; Garny, M.; Konstandin, T.; Riotto, A.
2016-08-01
The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about 10"1"1 GeV. However, such a scale is unphysical as it is not gauge invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.
Vacuum Rabi Splitting and Dynamics of the Jaynes—Cummings Model for Arbitrary Coupling
International Nuclear Information System (INIS)
Zhang Yu-Yu; Chen Qing-Hu; Zhu Shi-Yao
2013-01-01
The effects of counter-rotating terms (CRTs) on Rabi splitting and the dynamic evolution of atomic population in the Jaynes—Cummings model are studied with a coherent-state approach. When the coupling strength increases, the Rabi splitting becomes of multi-Rabi frequencies for the initial state of an excited atom in a vacuum field, and the collapses and revivals gradually disappear, and then reappear with quite good periodicity. Without the rotating-wave approximation (RWA), the initial excited state contains many eigenstates rather than two eigenstates under the RWA, which results in the multi-peak emission spectrum. An analytical approximate solution for the strong coupling regime is obtained, which gives a new oscillation frequency and explains the recovery of collapses and revivals due to the equal energy spacing
Gauge-Independent Scales Related to the Standard Model Vacuum Instability
Espinosa, Jose R.; Konstandin, Thomas; Riotto, Antonio
2017-01-01
The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions
Directory of Open Access Journals (Sweden)
S. Sunjai Nakshatharan
2018-02-01
Full Text Available In this work, we address the problem of position control of ionic electroactive polymer soft actuators under varying relative humidity conditions. The impact of humidity on the actuation performance of ionic actuators is studied through frequency response and impedance spectroscopy analysis. Considering the uncertain performance of the actuator under varying humidity conditions, an adaptable model using the neural network method is developed. The model uses relative humidity magnitude as one of the model parameters, making it robust to different environmental conditions. Utilizing the model, a closed-loop controller based on the model predictive controller is developed for position control of the actuator. The developed model and controller are experimentally verified and found to be capable of predicting and controlling the actuators with excellent tracking accuracy under relative humidity conditions varying in the range of 10–90%.
Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts
International Nuclear Information System (INIS)
Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian
2016-01-01
A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The
Modeling polar cap F-region patches using time varying convection
International Nuclear Information System (INIS)
Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.
1993-01-01
Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF
Energy Technology Data Exchange (ETDEWEB)
Zayakin, Andrey V.
2011-01-17
This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the
International Nuclear Information System (INIS)
Zayakin, Andrey V.
2011-01-01
This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the
International Nuclear Information System (INIS)
Alekseev, A.; Arslanova, D.; Belov, A.; Belyakov, V.; Gapionok, E.; Gornikel, I.; Gribov, Y.; Ioki, K.; Kukhtin, V.; Lamzin, E.; Sugihara, M.; Sychevsky, S.; Terasawa, A.; Utin, Y.
2013-01-01
A set of detailed computational models are reviewed that covers integrally the system “vacuum vessel (VV), cryostat, and thermal shields (TS)” to study transient electromagnetics (EMs) in the ITER machine. The models have been developed in the course of activities requested and supervised by the ITER Organization. EM analysis is enabled for all ITER operational scenarios. The input data are derived from results of DINA code simulations. The external EM fields are modeled accurate to the input data description. The known magnetic shell approach can be effectively applied to simulate thin-walled structures of the ITER machine. Using an integral–differential formulation, a single unknown is determined within the shells in terms of the vector electric potential taken only at the nodes of a finite-element (FE) mesh of the conducting structures. As a result, the FE mesh encompasses only the system “VV + Cryostat + TS”. The 3D model requires much higher computational resources as compared to a shell model based on the equivalent approximation. The shell models have been developed for all principal conducting structures in the system “VV + Cryostat + TS” including regular ports and neutral beam ports. The structures are described in details in accordance with the latest design. The models have also been applied for simulations of EM transients in components of diagnostic systems and cryopumps and estimation of the 3D effects of the ITER structures on the plasma performance. The developed models have been elaborated and applied for the last 15 years to support the ITER design activities. The finalization of the ITER VV design enables this set of models to be considered ready to use in plasma-physics computations and the development of ITER simulators
Modeling and measurement of the motion of the DIII-D vacuum vessel during vertical instabilities
International Nuclear Information System (INIS)
Reis, E.; Blevins, R.D.; Jensen, T.H.; Luxon, J.L.; Petersen, P.I.; Strait, E.J.
1991-11-01
The motions of the D3-D vacuum vessel during vertical instabilities of elongated plasmas have been measured and studied over the past five years. The currents flowing in the vessel wall and the plasma scrapeoff layer were also measured and correlated to a physics model. These results provide a time history load distribution on the vessel which were input to a dynamic analysis for correlation to the measured motions. The structural model of the vessel using the loads developed from the measured vessel currents showed that the calculated displacement history correlated well with the measured values. The dynamic analysis provides a good estimate of the stresses and the maximum allowable deflection of the vessel. In addition, the vessel motions produce acoustic emissions at 21 Hertz that are sufficiently loud to be felt as well as heard by the D3-D operators. Time history measurements of the sounds were correlated to the vessel displacements. An analytical model of an oscillating sphere provided a reasonable correlation to the amplitude of the measured sounds. The correlation of the theoretical and measured vessel currents, the dynamic measurements and analysis, and the acoustic measurements and analysis show that: (1) The physics model can predict vessel forces for selected values of plasma resistivity. The model also predicts poloidal and toroidal wall currents which agree with measured values; (2) The force-time history from the above model, used in conjunction with an axisymmetric structural model of the vessel, predicts vessel motions which agree well with measured values; (3) The above results, input to a simple acoustic model predicts the magnitude of sounds emitted from the vessel during disruptions which agree with acoustic measurements; (4) Correlation of measured vessel motions with structural analysis shows that a maximum vertical motion of the vessel up to 0.24 in will not overstress the vessel or its supports. 11 refs., 10 figs., 1 tab
Calculation of Some Properties of Vacuum and π，σ Mesons in the Global Color Symmetry Model
Institute of Scientific and Technical Information of China (English)
ZONGHong－Shi; LIUYu－Xin; 等
2001-01-01
Based on the quark propagator derived in the instanton dilute liquid approximation,the quark condensate ,the mixed quark gluon condensate gs,the four-quark condensate and tensor,pion vacuum susceptibilities have been calculated at the mean-field leval in a nonperturbative QCD model.The numerical results are compatible with the values obtained within other nonperturbative approaches.The calculated masses and decay constants of π and σ mesons are close to the experimental values.These results show that the instanton medium might be a good approximation of the QCD vacuum.
Constructing Regional Groundwater Models from Geophysical Data of Varying Type, Age, and Quality
DEFF Research Database (Denmark)
Vest Christiansen, Anders; Auken, Esben; Marker, Pernille Aabye
for parameterization of a 3D model of the subsurface, integrating lithological information from boreholes with resistivity models. The objective is to create a direct input to regional groundwater models for sedimentary areas, where the sand/clay distribution governs the groundwater flow. The resistivity input is all......-inclusive in the sense that we include data from a variety of instruments (DC and EM, ground-based and airborne), with a varying spatial density and varying ages and quality. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters, which...
Block Empirical Likelihood for Longitudinal Single-Index Varying-Coefficient Model
Directory of Open Access Journals (Sweden)
Yunquan Song
2013-01-01
Full Text Available In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.
Directory of Open Access Journals (Sweden)
G. F. Dugan
2015-04-01
Full Text Available This paper compares measurements and calculations of scattering of photons from technical vacuum chamber surfaces typical of accelerators. Synchrotron radiation generated by a charged particle beam in the accelerator is either absorbed, specularly reflected, or scattered by the vacuum chamber surface. This phenomenon has important implications on the operation of the accelerator. Measurements of photon scattering were made at the BESSY-II synchrotron radiation facility using samples of aluminum vacuum chamber from Cornell electron storage ring (CESR. A description of the analytic model used in the calculation is given, which takes into account the reflectivity of the material, the surface features of the sample, the wavelengths and the incident angles of the photons. The surface properties used in these calculations were obtained from measurements made from an atomic force microscope.
Helbich, M; Griffith, D
2016-01-01
Real estate policies in urban areas require the recognition of spatial heterogeneity in housing prices to account for local settings. In response to the growing number of spatially varying coefficient models in housing applications, this study evaluated four models in terms of their spatial patterns
International Nuclear Information System (INIS)
Kei Ito.
1988-07-01
The vacuum amplitude of heterotic string compactified on a tensor product of nine copies of c=1, N=2 superconformal models is shown to vanish due to a generalized Riemann's theta identity associated with the 12x12 matrix identity t BB=6 2 I 12 , identity B ij =-5(i=j), 1(i≠j). (author). 4 refs
National Research Council Canada - National Science Library
Cohen, Douglas
2000-01-01
.... The model is used to predict how a magnesium-Teflon exhaust plume would look when viewed as an approximate point source by a distant infrared sensor and also to analyze the data acquired from three separate magnesium-Teflon flares burned in a large vacuum chamber.
Mass terms of CP-violating Weinberg three-Higgs-doublet model at a charge-breaking vacuum
International Nuclear Information System (INIS)
Zarrinkamar, S.; Hassanabadi, H.; Rajabi, A.A.
2010-01-01
Weinberg three-Higgs-doublet model attracts interest in many aspects including the study of CP-violation as well as calculating the muon transverse polarization and neutron electric dipole moment. In the present work, we calculate the mass terms of CP-violating Weinberg 3HDM at a charge-breaking vacuum using an elaborate basis. (author)
Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices
Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando
2017-10-01
We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.
Systematic vacuum study of the ITER model cryopump by test particle Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Luo, Xueli; Haas, Horst; Day, Christian [Institute for Technical Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)
2011-07-01
The primary pumping systems on the ITER torus are based on eight tailor-made cryogenic pumps because not any standard commercial vacuum pump can meet the ITER working criteria. This kind of cryopump can provide high pumping speed, especially for light gases, by the cryosorption on activated charcoal at 4.5 K. In this paper we will present the systematic Monte Carlo simulation results of the model pump in a reduced scale by ProVac3D, a new Test Particle Monte Carlo simulation program developed by KIT. The simulation model has included the most important mechanical structures such as sixteen cryogenic panels working at 4.5 K, the 80 K radiation shield envelope with baffles, the pump housing, inlet valve and the TIMO (Test facility for the ITER Model Pump) test facility. Three typical gas species, i.e., deuterium, protium and helium are simulated. The pumping characteristics have been obtained. The result is in good agreement with the experiment data up to the gas throughput of 1000 sccm, which marks the limit for free molecular flow. This means that ProVac3D is a useful tool in the design of the prototype cryopump of ITER. Meanwhile, the capture factors at different critical positions are calculated. They can be used as the important input parameters for a follow-up Direct Simulation Monte Carlo (DSMC) simulation for higher gas throughput.
Plasma modeling of MFTF-B and the sensitivity to vacuum conditions
International Nuclear Information System (INIS)
Porter, G.D.; Rensink, M.
1984-01-01
The Mirror Fusion Test Facility (MFTF-B) is a large tandem mirror device currently under construction at Lawrence Livermore National Laboratory. The completed facility will consist of a large variety of components. Specifically, the vacuum vessel that houses the magnetic coils is basically a cylindrical vessel 60 m long and 11 m in diameter. The magnetics system consists of some 28 superconducting coils, each of which is located within the main vacuum vessel. Twenty of these coils are relatively simple solenoidal coils, but the remaining eight are of a more complicated design to provide an octupole component to certain regions of the magnetic field. The vacuum system is composed of a rough vacuum chain, used to evacuate the vessel from atmospheric pressure, and a high vacuum system, used to maintain good vacuum conditions during a plasma shot. High vacuum pumping is accomplished primarily by cryogenic panels cooled to 4.5 0 K. The MFTF-B coil set is shown together with typical axial profiles of magnetic field (a), electrostatic potential (b), and plasma density (c). The plasma is divided into nine regions axially, as labelled on the coil set in Figure 1. The central cell, which is completely azimuthally symmetric, contains a large volume plasma that is confined by a combination of the magnetic fields and the electrostatic potentials in the yin-yang cell
Modeling and analysis of alternative concept of ITER vacuum vessel primary heat transfer system
International Nuclear Information System (INIS)
Carbajo, Juan; Yoder, Graydon; Dell'Orco, G.; Curd, Warren; Kim, Seokho
2010-01-01
A RELAP5-3D model of the ITER (Latin for 'the way') vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.
Problems for superstring models with vacuum expectation values for conjugate sneutrinos
International Nuclear Information System (INIS)
Campbell, B.; Ellis, J.; Gaillard, M.K.; Nanopoulos, D.V.; Olive, K.A.
1986-01-01
Superstring models compactified on Calabi-Yau manifolds contain two new neutral scalars in each 27 generation of chiral supermultiplets. We consider implications of a vacuum expectation value for one of the neutral scalars, the conjugates neutrino ν tilde L c : L c vertical stroke0>=y. Apart from a coupling which generates a Dirac neutrino mass and which must be small [ -9 )], its only superpotential interaction is with D L d L , so there wold be D-d mixing if y≠0. The fact that m d is not much less than m e or m u then tells us that y ν , arises if y≠0, and the D-d mixing would then induce the decay K→π+a ν at an unacceptable rate. Regardless of the gauge group rank, we show that the combined constraints on D-d mixing, and on the flavour-changing neutral currents it would induce, are sufficient to rule out D L d L c ν L c superpotential coupling large enough to produce L c vertical stroke0>≠0. These problems are avoided in models with a rank-5 gauge group and L c vertical stroke0>< or approx.40 KeV. (orig.)
Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach
Directory of Open Access Journals (Sweden)
Jeyhun I. Mikayilov
2017-11-01
Full Text Available Recent literature has shown that electricity demand elasticities may not be constant over time and this has investigated using time-varying estimation methods. As accurate modeling of electricity demand is very important in Azerbaijan, which is a transitional country facing significant change in its economic outlook, we analyze whether the response of electricity demand to income and price is varying over time in this economy. We employed the Time-Varying Coefficient cointegration approach, a cutting-edge time-varying estimation method. We find evidence that income elasticity demonstrates sizeable variation for the period of investigation ranging from 0.48% to 0.56%. The study has some useful policy implications related to the income and price aspects of the electricity consumption in Azerbaijan.
Directory of Open Access Journals (Sweden)
Jamaluddin Jamaluddin
2012-05-01
Full Text Available The natural colour of fruit flaky product is one of specific property prefered by consumer. To maintain the natural colourof the fruit flaky during frying, it is necessary to pay attention the characteristic changes of raw material and control the process in order not to have much changes to get the intended colour. The objective of this research is to develop empirically mathematical model of fruit flaky colour changes during vacuum frying process by considering the change of water and sucrose contents in the product. Sample of the research were jack fruits fried in the temperature of 70–100OC, frying duration of 15–60 minutes, and vacuum pressure of 13-23 kPa. The observed parameters are colour (L, colour (a, colour (b, water and sukrose contents before and after frying. The result showed that colour changes (L, a and b were influenced by free water vaporization and sukrose decreasing in product, so empirically, the developed mathematical model of colour changes (L, a and b can be used to predict fruit flaky colour changes during vacuum frying. ABSTRAK Warna alami pada produk keripik buah adalah merupakan salah satu sifat khas yang disukai oleh konsumen, untukmempertahankan warna alami keripik buah agar tidak banyak mengalami perubahan selama dalam penggorengan, perlu diperhatikan perubahan karakteristik bahan baku dan pengendalian proses, agar warna keripik buah yang dihasilkan sesuai dengan yang diinginkan. Penelitian ini bertujuan untuk mengembangkan secara empirik model matematik perubahan warna keripik buah selama dalam proses penggorengan vakum dengan mempertimbangkan ke dalam model perubahan kadar air dan kadar sukrosa di dalam padatan. Sampel penelitian adalah buah nangka digoreng pada suhu70-100 OC, lama penggorengan 15-60 menit dan tekanan vakum 13-23 kPa. Parameter yang diamati adalah warna (L, warna (a, warna (b, kadar air dan kadar sukrosa sebelum dan setelah sampel digoreng. Hasil penelitian menunjukkan perubahan warna L, a
Energy Technology Data Exchange (ETDEWEB)
Biltoft, P J
2004-10-15
The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.
Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure
DEFF Research Database (Denmark)
Amado, Christina; Teräsvirta, Timo
multiplier type misspecification tests. Finite-sample properties of these procedures and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice......In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either ad- ditive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change...... in the conditional and unconditional variances where the transition between regimes over time is smooth. A modelling strategy for these new time-varying parameter GARCH models is developed. It relies on a sequence of Lagrange multiplier tests, and the adequacy of the estimated models is investigated by Lagrange...
Models of quality-adjusted life years when health varies over time
DEFF Research Database (Denmark)
Hansen, Kristian Schultz; Østerdal, Lars Peter Raahave
2006-01-01
Qualityadjusted life year (QALY) models are widely used for economic evaluation in the health care sector. In the first part of the paper, we establish an overview of QALY models where health varies over time and provide a theoretical analysis of model identification and parameter estimation from...... time tradeoff (TTO) and standard gamble (SG) scores. We investigate deterministic and probabilistic models and consider five different families of discounting functions in all. The second part of the paper discusses four issues recurrently debated in the literature. This discussion includes questioning...... of these two can be used to disentangle risk aversion from discounting. We find that caution must be taken when drawing conclusions from models with chronic health states to situations where health varies over time. One notable difference is that in the former case, risk aversion may be indistinguishable from...
Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther
2018-04-01
A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.
DEFF Research Database (Denmark)
Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne
2012-01-01
Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...
Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo
1989-01-01
The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.
Applicability of common stomatal conductance models in maize under varying soil moisture conditions.
Wang, Qiuling; He, Qijin; Zhou, Guangsheng
2018-07-01
In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Fleming, H.
1985-01-01
The vacuum equation of state required by cosmological inflation is taken seriously as a general property of the cosmological vacuum. This correctly restricts the class of theories which admit inflation. A model of such a vacuum is presented that leads naturally to the cosmological principle. (Author) [pt
F4 , E6 and G2 exceptional gauge groups in the vacuum domain structure model
Shahlaei, Amir; Rafibakhsh, Shahnoosh
2018-03-01
Using a vacuum domain structure model, we calculate trivial static potentials in various representations of F4 , E6, and G2 exceptional groups by means of the unit center element. Due to the absence of the nontrivial center elements, the potential of every representation is screened at far distances. However, the linear part is observed at intermediate quark separations and is investigated by the decomposition of the exceptional group to its maximal subgroups. Comparing the group factor of the supergroup with the corresponding one obtained from the nontrivial center elements of S U (3 ) subgroup shows that S U (3 ) is not the direct cause of temporary confinement in any of the exceptional groups. However, the trivial potential obtained from the group decomposition into the S U (3 ) subgroup is the same as the potential of the supergroup itself. In addition, any regular or singular decomposition into the S U (2 ) subgroup that produces the Cartan generator with the same elements as h1, in any exceptional group, leads to the linear intermediate potential of the exceptional gauge groups. The other S U (2 ) decompositions with the Cartan generator different from h1 are still able to describe the linear potential if the number of S U (2 ) nontrivial center elements that emerge in the decompositions is the same. As a result, it is the center vortices quantized in terms of nontrivial center elements of the S U (2 ) subgroup that give rise to the intermediate confinement in the static potentials.
Kosterlitz-Thouless transitions in simple spin-models with strongly varying vortex densities
Himbergen, J.E.J.M. van
1985-01-01
A generalized XY-model, consisting of a family of nearest neighbour potentials of varying shape, for classical planar spins on a two-dimensional square lattice is analysed by a combination of Migdal-Kadanoff real-space renormalization and Monte Carlo simulations on a sequence of finite lattices of
Time-varying coefficient estimation in SURE models. Application to portfolio management
DEFF Research Database (Denmark)
Casas, Isabel; Ferreira, Eva; Orbe, Susan
This paper provides a detailed analysis of the asymptotic properties of a kernel estimator for a Seemingly Unrelated Regression Equations model with time-varying coefficients (tv-SURE) under very general conditions. Theoretical results together with a simulation study differentiates the cases...
Artificial neural network modeling of DDGS flowability with varying process and storage parameters
Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....
Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...
The estimation of time-varying risks in asset pricing modelling using B-Spline method
Nurjannah; Solimun; Rinaldo, Adji
2017-12-01
Asset pricing modelling has been extensively studied in the past few decades to explore the risk-return relationship. The asset pricing literature typically assumed a static risk-return relationship. However, several studies found few anomalies in the asset pricing modelling which captured the presence of the risk instability. The dynamic model is proposed to offer a better model. The main problem highlighted in the dynamic model literature is that the set of conditioning information is unobservable and therefore some assumptions have to be made. Hence, the estimation requires additional assumptions about the dynamics of risk. To overcome this problem, the nonparametric estimators can also be used as an alternative for estimating risk. The flexibility of the nonparametric setting avoids the problem of misspecification derived from selecting a functional form. This paper investigates the estimation of time-varying asset pricing model using B-Spline, as one of nonparametric approach. The advantages of spline method is its computational speed and simplicity, as well as the clarity of controlling curvature directly. The three popular asset pricing models will be investigated namely CAPM (Capital Asset Pricing Model), Fama-French 3-factors model and Carhart 4-factors model. The results suggest that the estimated risks are time-varying and not stable overtime which confirms the risk instability anomaly. The results is more pronounced in Carhart’s 4-factors model.
Schliep, E. M.; Gelfand, A. E.; Holland, D. M.
2015-12-01
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.
A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis.
Directory of Open Access Journals (Sweden)
Jessica M Conway
2014-08-01
Full Text Available Simple models of therapy for viral diseases such as hepatitis C virus (HCV or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.
New Inference Procedures for Semiparametric Varying-Coefficient Partially Linear Cox Models
Directory of Open Access Journals (Sweden)
Yunbei Ma
2014-01-01
Full Text Available In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical example are presented for illustration.
Modeling and Analysis of a Piezoelectric Energy Harvester with Varying Cross-Sectional Area
Directory of Open Access Journals (Sweden)
Maiara Rosa
2014-01-01
Full Text Available This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying cross-sectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass reported in the literature. The experimental verification of the model is also reported for a tapered bimorph cantilever with tip mass. The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output on beam shape optimization problems is also discussed.
Effects of varying the step particle distribution on a probabilistic transport model
International Nuclear Information System (INIS)
Bouzat, S.; Farengo, R.
2005-01-01
The consequences of varying the step particle distribution on a probabilistic transport model, which captures the basic features of transport in plasmas and was recently introduced in Ref. 1 [B. Ph. van Milligen et al., Phys. Plasmas 11, 2272 (2004)], are studied. Different superdiffusive transport mechanisms generated by a family of distributions with algebraic decays (Tsallis distributions) are considered. It is observed that the possibility of changing the superdiffusive transport mechanism improves the flexibility of the model for describing different situations. The use of the model to describe the low (L) and high (H) confinement modes is also analyzed
Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm
Jin, Ick Hoon
2013-10-01
The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Voelkle, Manuel C; Oud, Johan H L
2013-02-01
When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.
Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.
Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C
2014-05-01
Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.
Evaporation under vacuum condition
International Nuclear Information System (INIS)
Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime
2000-01-01
In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)
International Nuclear Information System (INIS)
Chernin, Artur D
2001-01-01
Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2001-11-30
Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)
Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model
International Nuclear Information System (INIS)
Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.
2011-01-01
Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al.; Sharpe and Humrickhouse). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome 'Tor Vergata' Quantum Electronics and Plasmas lab.
Directory of Open Access Journals (Sweden)
I PUTU GEDE DIAN GERRY SUWEDAYANA
2016-08-01
Full Text Available The purpose of this research is to forecast the number of Australian tourists arrival to Bali using Time Varying Parameter (TVP model based on inflation of Indonesia and exchange rate AUD to IDR from January 2010 – December 2015 as explanatory variables. TVP model is specified in a state space model and estimated by Kalman filter algorithm. The result shows that the TVP model can be used to forecast the number of Australian tourists arrival to Bali because it satisfied the assumption that the residuals are distributed normally and the residuals in the measurement and transition equations are not correlated. The estimated TVP model is . This model has a value of mean absolute percentage error (MAPE is equal to dan root mean square percentage error (RMSPE is equal to . The number of Australian tourists arrival to Bali for the next five periods is predicted: ; ; ; ; and (January - May 2016.
Tarazona, José L; Guerrero, Jáder; Cabanzo, Rafael; Mejía-Ospino, E
2012-03-01
A predictive model to determine the concentration of nickel and vanadium in vacuum residues of Colombian crude oils using laser-induced breakdown spectroscopy (LIBS) and artificial neural networks (ANNs) with nodes distributed in multiple layers (multilayer perceptron) is presented. ANN inputs are intensity values in the vicinity of the emission lines 300.248, 301.200 and 305.081 nm of the Ni(I), and 309.310, 310.229, and 311.070 nm of the V(II). The effects of varying number of nodes and the initial weights and biases in the ANNs were systematically explored. Average relative error of calibration/prediction (REC/REP) and average relative standard deviation (RSD) metrics were used to evaluate the performance of the ANN in the prediction of concentrations of two elements studied here. © 2012 Optical Society of America
Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.
Ouyang, Yicun; Yin, Hujun
2018-05-01
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.
Perperoglou, Aris
2016-12-10
Flexible survival models are in need when modelling data from long term follow-up studies. In many cases, the assumption of proportionality imposed by a Cox model will not be valid. Instead, a model that can identify time varying effects of fixed covariates can be used. Although there are several approaches that deal with this problem, it is not always straightforward how to choose which covariates should be modelled having time varying effects and which not. At the same time, it is up to the researcher to define appropriate time functions that describe the dynamic pattern of the effects. In this work, we suggest a model that can deal with both fixed and time varying effects and uses simple hypotheses tests to distinguish which covariates do have dynamic effects. The model is an extension of the parsimonious reduced rank model of rank 1. As such, the number of parameters is kept low, and thus, a flexible set of time functions, such as b-splines, can be used. The basic theory is illustrated along with an efficient fitting algorithm. The proposed method is applied to a dataset of breast cancer patients and compared with a multivariate fractional polynomials approach for modelling time-varying effects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Estimation and Properties of a Time-Varying GQARCH(1,1-M Model
Directory of Open Access Journals (Sweden)
Sofia Anyfantaki
2011-01-01
analysis of these models computationally infeasible. This paper outlines the issues and suggests to employ a Markov chain Monte Carlo algorithm which allows the calculation of a classical estimator via the simulated EM algorithm or a simulated Bayesian solution in only ( computational operations, where is the sample size. Furthermore, the theoretical dynamic properties of a time-varying GQARCH(1,1-M are derived. We discuss them and apply the suggested Bayesian estimation to three major stock markets.
Varying Coefficient Panel Data Model in the Presence of Endogenous Selectivity and Fixed Effects
Malikov, Emir; Kumbhakar, Subal C.; Sun, Yiguo
2013-01-01
This paper considers a flexible panel data sample selection model in which (i) the outcome equation is permitted to take a semiparametric, varying coefficient form to capture potential parameter heterogeneity in the relationship of interest, (ii) both the outcome and (parametric) selection equations contain unobserved fixed effects and (iii) selection is generalized to a polychotomous case. We propose a two-stage estimator. Given consistent parameter estimates from the selection equation obta...
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2007-01-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
Specification and testing of Multiplicative Time-Varying GARCH models with applications
DEFF Research Database (Denmark)
Amado, Cristina; Teräsvirta, Timo
2017-01-01
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smooth...... is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns....
A simple analytical model for dynamics of time-varying target leverage ratios
Lo, C. F.; Hui, C. H.
2012-03-01
In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
International Nuclear Information System (INIS)
Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang
2017-01-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang
2017-10-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028
Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred
2013-12-31
There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
Spatially-varying surface roughness and ground-level air quality in an operational dispersion model
International Nuclear Information System (INIS)
Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.
2014-01-01
Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations
International Nuclear Information System (INIS)
Bomberger, Cory C.; Attia, Peter M.; Prasad, Ajay K.; Zide, Joshua M.O.
2013-01-01
This paper presents a model to predict the power generation of a thermoelectric generator in a temporally-varying temperature environment. The model employs a thermoelectric plate sandwiched between two different heat exchangers to convert a temporal temperature gradient in the environment to a spatial temperature gradient within the device suitable for thermoelectric power generation. The two heat exchangers are designed such that their temperatures respond to a change in the environment's temperature at different rates which sets up a temperature differential across the thermoelectric and results in power generation. In this model, radiative and convective heat transfer between the device and its surroundings, and heat flow between the two heat exchangers across the thermoelectric plate are considered. The model is simulated for power generation in Death Valley, CA during the summer using the diurnal variation of air temperature and radiative exchange with the sun and night sky as heat sources and sinks. The optimization of power generation via scaling the device size is discussed. Additional applications of this device are considered. -- Highlights: • Thermoelectric power generation with time-varying temperature is modeled. • The ability to generate power without a natural spatial gradient is demonstrated. • Time dependent heat-transfer and differential heat flow rates are considered. • Optimization of power generation via scaling the device size is discussed
Effects of time-varying β in SNLS3 on constraining interacting dark energy models
International Nuclear Information System (INIS)
Wang, Shuang; Wang, Yong-Zhen; Geng, Jia-Jia; Zhang, Xin
2014-01-01
It has been found that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift evolution of the color-luminosity parameter β. In this paper, adopting the w-cold-dark-matter (wCDM) model and considering its interacting extensions (with three kinds of interaction between dark sectors), we explore the evolution of β and its effects on parameter estimation. In addition to the SNLS3 data, we also use the latest Planck distance priors data, the galaxy clustering data extracted from sloan digital sky survey data release 7 and baryon oscillation spectroscopic survey, as well as the direct measurement of Hubble constant H 0 from the Hubble Space Telescope observation. We find that, for all the interacting dark energy (IDE) models, adding a parameter of β can reduce χ 2 by ∝34, indicating that a constant β is ruled out at 5.8σ confidence level. Furthermore, it is found that varying β can significantly change the fitting results of various cosmological parameters: for all the dark energy models considered in this paper, varying β yields a larger fractional CDM densities Ω c0 and a larger equation of state w; on the other side, varying β yields a smaller reduced Hubble constant h for the wCDM model, but it has no impact on h for the three IDE models. This implies that there is a degeneracy between h and coupling parameter γ. Our work shows that the evolution of β is insensitive to the interaction between dark sectors, and then highlights the importance of considering β's evolution in the cosmology fits. (orig.)
International Nuclear Information System (INIS)
Vasileiadis, N.; Tatsios, G.; Misdanitis, S.; Valougeorgis, D.
2016-01-01
Highlights: • An integrated s/w for modeling complex rarefied gas distribution systems is presented. • Analysis is based on kinetic theory of gases. • Code effectiveness is demonstrated by simulating the ITER divertor pumping system. • The present s/w has the potential to support design work in large vacuum systems. - Abstract: An integrated software tool for modeling and simulation of complex gas distribution systems operating under any vacuum conditions is presented and validated. The algorithm structure includes (a) the input geometrical and operational data of the network, (b) the definition of the fundamental set of network loops and pseudoloops, (c) the formulation and solution of the mass and energy conservation equations, (d) the kinetic data base of the flow rates for channels of any length in the whole range of the Knudsen number, supporting, in an explicit manner, the solution of the conservation equations and (e) the network output data (mainly node pressures and channel flow rates/conductance). The code validity is benchmarked under rough vacuum conditions by comparison with hydrodynamic solutions in the slip regime. Then, its feasibility, effectiveness and potential are demonstrated by simulating the ITER torus vacuum system with the six direct pumps based on the 2012 design of the ITER divertor. Detailed results of the flow patterns and paths in the cassettes, in the gaps between the cassettes and along the divertor ring, as well as of the total throughput for various pumping scenarios and dome pressures are provided. A comparison with previous results available in the literature is included.
A behavioral asset pricing model with a time-varying second moment
International Nuclear Information System (INIS)
Chiarella, Carl; He Xuezhong; Wang, Duo
2006-01-01
We develop a simple behavioral asset pricing model with fundamentalists and chartists in order to study price behavior in financial markets when chartists estimate both conditional mean and variance by using a weighted averaging process. Through a stability, bifurcation, and normal form analysis, the market impact of the weighting process and time-varying second moment are examined. It is found that the fundamental price becomes stable (unstable) when the activities from both types of traders are balanced (unbalanced). When the fundamental price becomes unstable, the weighting process leads to different price dynamics, depending on whether the chartists act as either trend followers or contrarians. It is also found that a time-varying second moment of the chartists does not change the stability of the fundamental price, but it does influence the stability of the bifurcations. The bifurcation becomes stable (unstable) when the chartists are more (less) concerned about the market risk characterized by the time-varying second moment. Different routes to complicated price dynamics are also observed. The analysis provides an analytical foundation for the statistical analysis of the corresponding stochastic version of this type of behavioral model
Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio
Energy Technology Data Exchange (ETDEWEB)
Nicolaou, G. [Swedish Institute of Space Physics, Kiruna (Sweden); Livadiotis, G. [Southwest Research Institute, San Antonio, Texas (United States)
2017-03-20
We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying along the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.
Energy Technology Data Exchange (ETDEWEB)
Buerger, R.; Damasceno, J.J.R.; Karlesen, K.H.
2001-10-01
The phenomenological theory of continuous thickening of flocculated suspensions in an ideal cylindrical thickener is extended to vessels having varying cross-section, including divergent or convergent conical vessels. The purpose of this contribution is to draw attention to the corresponding mathematical model, whose key ingredient is a strongly degenerate parabolic partial differential equation. For ideal (non-flocculated) suspensions, which do not form co compressible sediments, the mathematical model reduces to the kinematic approach by Anestis, who developed a method of construction of exact solution by the method of characteristics. The difficulty lies in the fact that characteristics and iso-concentration lines, unlike the conventional Kynch model for cylindrical vessels, do not coincide, and one has to resort to numerical methods to simulate the thickening process. A numerical algorithm is presented and employed for simulations of continuous thickening. Implications of the mathematical model are also demonstrated by steady-state calculations, which lead to new possibilities in thickener design. (author)
H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays
Directory of Open Access Journals (Sweden)
Hanyong Shao
2014-01-01
Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.
Structural nested mean models for assessing time-varying effect moderation.
Almirall, Daniel; Ten Have, Thomas; Murphy, Susan A
2010-03-01
This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment (or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins' structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented and discussed: The first is a proposed two-stage regression estimator. The second is Robins' G-estimator. The results of a small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the bias-variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from a depression study.
Time-varying mixed logit model for vehicle merging behavior in work zone merging areas.
Weng, Jinxian; Du, Gang; Li, Dan; Yu, Yao
2018-08-01
This study aims to develop a time-varying mixed logit model for the vehicle merging behavior in work zone merging areas during the merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. From the safety perspective, vehicle crash probability and severity between the merging vehicle and its surrounding vehicles are regarded as major factors influencing vehicle merging decisions. Model results show that the model with the use of vehicle crash risk probability and severity could provide higher prediction accuracy than previous models with the use of vehicle speeds and gap sizes. It is found that lead vehicle type, through lead vehicle type, through lag vehicle type, crash probability of the merging vehicle with respect to the through lag vehicle, crash severities of the merging vehicle with respect to the through lead and lag vehicles could exhibit time-varying effects on the merging behavior. One important finding is that the merging vehicle could become more and more aggressive in order to complete the merging maneuver as quickly as possible over the elapsed time, even if it has high vehicle crash risk with respect to the through lead and lag vehicles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inflation and late-time acceleration in braneworld cosmological models with varying brane tension
International Nuclear Information System (INIS)
Wong, K.C.; Cheng, K.S.; Harko, T.
2010-01-01
Braneworld models with variable brane tension λ introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulting from the observational cosmological data, are also investigated. (orig.)
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
International Nuclear Information System (INIS)
Utschig, Tristan T.; Corradini, Michael L.
2003-01-01
Pulsed power experiments for basic physics investigations as well as inertial confinement fusion designs have developed Z-pinch technologies that produce terawatt level power using multiwire arrays. The energy released from such pulsed power tests results in fragmentation and vaporization of structures at the central wire array as well as shock wave propagation to the chamber boundaries. Practical design and safety considerations require that tracking of this shock front and the associated gas-debris field be done for a variety of experimental configurations to predict the arrival time of hazardous or radioactive debris at fast closure valve locations. A novel computational model has been developed to handle gas expansion into vacuum using a computer model (TEXAS) operating on a Eulerian mesh. Upon expansion of a high-pressure gas into a region of hard vacuum where free molecular transport dominates, the transport model switches between a traditional Eulerian continuum mechanics model and a free molecular transport model across the interface between the two regions. The interface location then propagates along the mesh as the gas expands. This new quasi-one-dimensional model (TEXAS-NCV) has been implemented and tested for two benchmark cases. Such a model can be useful in the design of inertial fusion systems
Directory of Open Access Journals (Sweden)
Nikolova Maria
2017-01-01
Full Text Available The thermochemical treatments of tool steels improve the performance of the components with respect to surface hardness, wear and tribological performance as well as corrosion resistance. Compared to the conventional gas ferritic nitrocarburizing process, the original vacuum oxy-nitrocarburizing is a time-, cost-effective and environmentally-friendly gas process. Because of the oxidizing nature of the gas atmosphere, there is no need to perform subsequent post-oxidation.In this study, a vacuum oxynitrocarburizing process was carried out onto four tool steels (AISI H10, H11, H21 and D2 at 570 °C, after hardening and single tempering. The structural analysis of the compound and diffusion layers was performed by optical and electron microscopy, X-ray diffraction and glow discharge optical emission spectrometry (GDOES methods. A largely monophase ε- layer is formed with a carbon accumulation at the substrate adjacent area. The overlaying oxides adjacent to the ε-carbonitride phase contained Fe3O4 (magnetite as a main constituent. A thermodynamic modelling approach was also performed to understand and optimize the process. The “Equilib module” of FactSage software which uses Gibbs energy minimization method, was used to estimate the possible products during vacuum oxynitrocarburising process.
Directory of Open Access Journals (Sweden)
Muzher M. Ibraheem
2013-05-01
Full Text Available The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K. This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250 respectively . The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.
State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.
Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J
2016-01-15
Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.
Directory of Open Access Journals (Sweden)
T. J. Anurose
2014-06-01
Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.
Dziak, John J; Li, Runze; Tan, Xianming; Shiffman, Saul; Shiyko, Mariya P
2015-12-01
Behavioral scientists increasingly collect intensive longitudinal data (ILD), in which phenomena are measured at high frequency and in real time. In many such studies, it is of interest to describe the pattern of change over time in important variables as well as the changing nature of the relationship between variables. Individuals' trajectories on variables of interest may be far from linear, and the predictive relationship between variables of interest and related covariates may also change over time in a nonlinear way. Time-varying effect models (TVEMs; see Tan, Shiyko, Li, Li, & Dierker, 2012) address these needs by allowing regression coefficients to be smooth, nonlinear functions of time rather than constants. However, it is possible that not only observed covariates but also unknown, latent variables may be related to the outcome. That is, regression coefficients may change over time and also vary for different kinds of individuals. Therefore, we describe a finite mixture version of TVEM for situations in which the population is heterogeneous and in which a single trajectory would conceal important, interindividual differences. This extended approach, MixTVEM, combines finite mixture modeling with non- or semiparametric regression modeling, to describe a complex pattern of change over time for distinct latent classes of individuals. The usefulness of the method is demonstrated in an empirical example from a smoking cessation study. We provide a versatile SAS macro and R function for fitting MixTVEMs. (c) 2015 APA, all rights reserved).
International Nuclear Information System (INIS)
Wueneke, C.D.; Schultz, H.
1975-01-01
The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de
Directory of Open Access Journals (Sweden)
Alexandra N. Ramos Valle
2018-04-01
Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.
National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate nonlinear, parameter-varying (PV),...
Energy Technology Data Exchange (ETDEWEB)
Ruiz P, H S
1995-10-01
This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author).
Energy Technology Data Exchange (ETDEWEB)
Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)
2017-09-15
The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)
International Nuclear Information System (INIS)
Power, B.D.; Priestland, C.R.D.
1978-01-01
This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)
A time-varying subjective quality model for mobile streaming videos with stalling events
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.
2015-09-01
Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.
International Nuclear Information System (INIS)
Strušnik, Dušan; Marčič, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij
2016-01-01
Highlights: • Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled. • A supervised machine learning models by using real process data are applied. • The equation of ejector pumped mass flow from steam turbine condenser was solved. • The loss of specific energy capable of work in a SEPS or LRVP component was analysed. • The economic efficiency analysis per different coal heating values was made. - Abstract: This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.
Vacuum expectation values of Higgs scalars in a SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model
International Nuclear Information System (INIS)
Kitazoe, T.; Mainland, G.B.; Tanaka, K.
1979-01-01
We determine the vacuum expectation values of the Higgs scalars within the framework of a six-quark SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model after the imposition of discrete symmetries that are necessary in order to express the Cabibbo angle in terms of quark mass ratios and phases of the vacuum expectation values. We find both real and complex solutions for the vacuum expectation values depending on the relative values of the parameters in the Higgs potential
Vacuum expectation values of Higgs scalars in a SU(2)/sub L/ X SU(2)/sub R/ X U(1) gauge model
International Nuclear Information System (INIS)
Kitazoe, T.; Mainland, G.B.; Tanaka, K.
1978-01-01
The vacuum expectation values of the Higgs scalars are determined within the framework of a six quark SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model after the imposition of discrete symmetrics that are necessary in order to express the Cabibbo angle in terms of quark mass ratios and phases of the vacuum expectation values. Both real and complex solutions are found for the vacuum expectation values depending on the relative values of the parameters in the Higgs potential
Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications
Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein
2018-03-01
The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
Proportional hazards model with varying coefficients for length-biased data.
Zhang, Feipeng; Chen, Xuerong; Zhou, Yong
2014-01-01
Length-biased data arise in many important applications including epidemiological cohort studies, cancer prevention trials and studies of labor economics. Such data are also often subject to right censoring due to loss of follow-up or the end of study. In this paper, we consider a proportional hazards model with varying coefficients for right-censored and length-biased data, which is used to study the interact effect nonlinearly of covariates with an exposure variable. A local estimating equation method is proposed for the unknown coefficients and the intercept function in the model. The asymptotic properties of the proposed estimators are established by using the martingale theory and kernel smoothing techniques. Our simulation studies demonstrate that the proposed estimators have an excellent finite-sample performance. The Channing House data is analyzed to demonstrate the applications of the proposed method.
Dealing with time-varying recruitment and length in Hill-type muscle models.
Hamouda, Ahmed; Kenney, Laurence; Howard, David
2016-10-03
Hill-type muscle models are often used in muscle simulation studies and also in the design and virtual prototyping of functional electrical stimulation systems. These models have to behave in a sufficiently realistic manner when recruitment level and contractile element (CE) length change continuously. For this reason, most previous models have used instantaneous CE length in the muscle׳s force vs. length (F-L) relationship, but thereby neglect the instability problem on the descending limb (i.e. region of negative slope) of the F-L relationship. Ideally CE length at initial recruitment should be used but this requires a multiple-motor-unit muscle model to properly account for different motor-units having different initial lengths when recruited. None of the multiple-motor-unit models reported in the literature have used initial CE length in the muscle׳s F-L relationship, thereby also neglecting the descending limb instability problem. To address the problem of muscle modelling for continuously varying recruitment and length, and hence different values of initial CE length for different motor-units, a new multiple-motor-unit muscle model is presented which considers the muscle to comprise 1000 individual Hill-type virtual motor-units, which determine the total isometric force. Other parts of the model (F-V relationship and passive elements) are not dependent on the initial CE length and, therefore, they are implemented for the muscle as a whole rather than for the individual motor-units. The results demonstrate the potential errors introduced by using a single-motor-unit model and also the instantaneous CE length in the F-L relationship, both of which are common in FES control studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Energy Technology Data Exchange (ETDEWEB)
Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2013-07-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
Spatial modeling of HIV and HSV-2 among women in Kenya with spatially varying coefficients
Directory of Open Access Journals (Sweden)
Elphas Okango
2016-04-01
Full Text Available Abstract Background Disease mapping has become popular in the field of statistics as a method to explain the spatial distribution of disease outcomes and as a tool to help design targeted intervention strategies. Most of these models however have been implemented with assumptions that may be limiting or altogether lead to less meaningful results and hence interpretations. Some of these assumptions include the linearity, stationarity and normality assumptions. Studies have shown that the linearity assumption is not necessarily true for all covariates. Age for example has been found to have a non-linear relationship with HIV and HSV-2 prevalence. Other studies have made stationarity assumption in that one stimulus e.g. education, provokes the same response in all the regions under study and this is also quite restrictive. Responses to stimuli may vary from region to region due to aspects like culture, preferences and attitudes. Methods We perform a spatial modeling of HIV and HSV-2 among women in Kenya, while relaxing these assumptions i.e. the linearity assumption by allowing the covariate age to have a non-linear effect on HIV and HSV-2 prevalence using the random walk model of order 2 and the stationarity assumption by allowing the rest of the covariates to vary spatially using the conditional autoregressive model. The women data used in this study were derived from the 2007 Kenya AIDS indicator survey where women aged 15–49 years were surveyed. A full Bayesian approach was used and the models were implemented in R-INLA software. Results Age was found to have a non-linear relationship with both HIV and HSV-2 prevalence, and the spatially varying coefficient model provided a significantly better fit for HSV-2. Age-at first sex also had a greater effect on HSV-2 prevalence in the Coastal and some parts of North Eastern regions suggesting either early marriages or child prostitution. The effect of education on HIV prevalence among women was more
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Directory of Open Access Journals (Sweden)
Dedeneva Elena
2017-01-01
Full Text Available A mathematical model allowing establishing regularities in the consolidation processes of fine-grained concrete mixtures with different mobility and compaction methods has been worked out. This study is based on two-phase systems and nonlinear character of their consolidation. It resolves the question of the choice of vacuumizing optimal parameters and axial pressing in layers for molding of thin-walled products such as concrete roof tiles and concrete pipe products. Finally, we can get products without heat treatment by the materials and energy-saving technologies.
Almirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A.
2014-01-01
This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. PMID:23873437
Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry
Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.
2004-04-01
A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.
Charbonneau, Jeremy
As the perceived quality of a product is becoming more important in the manufacturing industry, more emphasis is being placed on accurately predicting the sound quality of everyday objects. This study was undertaken to improve upon current prediction techniques with regard to the psychoacoustic descriptor of loudness and an improved binaural summation technique. The feasibility of this project was first investigated through a loudness matching experiment involving thirty-one subjects and pure tones of constant sound pressure level. A dependence of binaural summation on frequency was observed which had previously not been a subject of investigation in the reviewed literature. A follow-up investigation was carried out with forty-eight volunteers and pure tones of constant sensation level. Contrary to existing theories in literature the resulting loudness matches revealed an amplitude versus frequency relationship which confirmed the perceived increase in loudness when a signal was presented to both ears simultaneously as opposed to one ear alone. The resulting trend strongly indicated that the higher the frequency of the presented signal, the greater the increase in observed binaural summation. The results from each investigation were summarized into a single binaural summation algorithm and inserted into an improved time-varying loudness model. Using experimental techniques, it was demonstrated that the updated binaural summation algorithm was a considerable improvement over the state of the art approach for predicting the perceived binaural loudness. The improved function retained the ease of use from the original model while additionally providing accurate estimates of diotic listening conditions from monaural WAV files. It was clearly demonstrated using a validation jury test that the revised time-varying loudness model was a significant improvement over the previously standardized approach.
Energy Technology Data Exchange (ETDEWEB)
Martinez, P., E-mail: pablomiguel.martinez@ciemat.es [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain); Moreno, C. [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain); Martinez, I. [SENER Ingenieria y Sistemas, Provenca 392, 4a 08025 Barcelona (Spain); Sedano, L. [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain)
2012-08-15
The Permeator Against Vacuum (PAV) has been conceived as the simplest, cost effective and reliable technology system dedicated to tritium extraction from breeding liquid metals. An optimal design of a PAV requires a detailed hydraulic design optimization for established operational ranges (HCLL at low velocities of {approx}1 mm/s or DCLL in the ranges of tens of cm/s). The present work analyses the PAV extraction efficiency dependency on the design parameters as optimum on-line Tritium Extraction System (TES). Three different models have been built for that purpose: one through physically refined 1D tritium transport computation using TMAP7 (unique simulation tool with QA for ITER); and two further detailed models on 2D/3D FEM tool (COMSOL Multi-physics 4.0). The geometry used in this work is a simplification of Fuskite{sup Registered-Sign} conceptual design developed at CIEMAT, consisting of a set of cylindrical and concentric {alpha}-Fe double membranes enclosing a vacuumed space and in contact with in-pipe flowing LiPb eutectic. The aim of this paper is to give the first steps to establish the optimal design parameters of a PAV and evaluate the state-of-the-art of these models.
Using the power balance model to simulate cross-country skiing on varying terrain.
Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell
2014-01-01
The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.
Using the power balance model to simulate cross-country skiing on varying terrain
Directory of Open Access Journals (Sweden)
Moxnes JF
2014-05-01
Full Text Available John F Moxnes,1 Øyvind Sandbakk,2 Kjell Hausken31Department for Protection, Norwegian Defence Research Establishment, Kjeller, Norway; 2Center for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; 3Faculty of Social Sciences, University of Stavanger, Stavanger, NorwayAbstract: The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier’s locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier’s position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.Keywords: air drag, efficiency, friction coefficient, speed, locomotive power
Directory of Open Access Journals (Sweden)
Lan Liu
2017-01-01
Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when q
Institute of Scientific and Technical Information of China (English)
ZHOU Bang-Rong
2007-01-01
By means of a relativistic effective potential, we analytically research competition between the quarkLasinio (NJL) model and obtain the Gs-Hs phase diagram, where Gs and Hs are the respective four-fermion coupling constants in scalar quark-antiquark channel and scalar color anti-triplet diquark channel. The results show that, in the that there is no diquark condensates in the vacuum of QCD, will also impose a real restriction to any given two-flavor NJL model which is intended to simulate QCD, i.e. in such model the resulting snallest ratio Gs/Hs after the Fierz transformations in the Hartree approximation must be larger than 2/3. A few phenomenological QCD-like NJL models are checked and analyzed.
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2016-02-01
Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region - both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf - something that is poorly done in global models.
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
Non-self-conjugate mesons in a potential model with vacuum-polarization corrections
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
We present a unified approach to the study of non-self-conjugate mesons including both light and heavy mesons in the framework of the vacuum-polarization-corrected flavor-independent potential. We have found that the quark-confining potential in the form of an almost equal admixture of vector and scalar parts successfully explains the S-wave hyperfine levels of the observed light and heavy mesons. Finally we calculate the electromagnetic mass differences of the heavy-quark mesons and obtain (K-bar* 0 -K* - )=3.79 MeV, (K-bar 0 -K - )=6 MeV, (D* + /sub c/-D* 0 /sub c/)=2.4 MeV, (D + /sub c/-D 0 /sub c/)=5.8 MeV, (D* 0 /sub b/-D* - /sub b/)=3.547 MeV, and (D 0 /sub b/-D - /sub b/)=3.558 MeV
A Fragment-Cloud Model for Breakup of Asteroids with Varied Internal Structures
Wheeler, Lorien; Mathias, Donovan; Stokan, Ed; Brown, Peter
2016-01-01
As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, we have developed an analytic asteroid fragmentation model to assess the atmospheric energy deposition of asteroids with a range of structures and compositions. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, the size-strength scaling used to increase the robustness of smaller fragments, and other parameters. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, can be given an outer regolith later, or can be defined as a coherent or fractured monolith. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2015-07-01
We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.
Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR
Energy Technology Data Exchange (ETDEWEB)
Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui
2017-03-15
Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.
Hauth, Christopher F; Brand, Thomas
2018-01-01
In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect "binaural sluggishness." In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization-cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism.
Cosmological effects of scalar-photon couplings: dark energy and varying-α Models
Energy Technology Data Exchange (ETDEWEB)
Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)
2014-06-01
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.
The varying cosmological constant: a new approximation to the Friedmann equations and universe model
Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.
2018-05-01
We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.
Model and simulation of a vacuum sieve tray for T extraction from liquid PbLi breeding blankets
International Nuclear Information System (INIS)
Mertens, M.A.J.; Demange, D.; Frances, L.
2016-01-01
Highlights: • A simulation tool was developed to analyse, optimise and scale up VST set-ups. • This tool predicts that efficiencies higher than 90% can be reached. • Upscaling to DEMO breeding blanket flow rates results in feasibly sized designs. - Abstract: Tritium self-sufficiency within a nuclear fusion reactor is necessary to demonstrate nuclear fusion as a viable source of energy. Tritium can be produced within liquid eutectic PbLi but then has to be extracted to be refuelled to the plasma. The vacuum sieve tray (VST) method is based on the extraction of tritium from millimetre-scaled oscillating PbLi droplets falling inside a vacuum chamber. A simulation tool was developed describing the fluid dynamics occurring along the PbLi flow and was used to study the influence of the different geometrical and operational parameters on the VST performance. The simulation predicts that extraction efficiencies over 90% can be easily reached according to theory and previous experimental results. The size of the VST extraction unit for a fusion reactor is estimated based on the findings from our single-nozzle model and assuming no T reabsorption. It is found to be in the feasible range. Nevertheless, two approaches are discussed which may further reduce this size by up to 90%. The simulation tool proved to be an easy and powerful way to analyse and optimise VST set-ups at any scale.
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1981-01-01
Phenomenological evidence from meson spectroscopy is presented to support the view that a unified description of bound light- and heavy-quark systems is possible within the scope of a nonrelativistic-potential-model approach. The vacuum-polarization-corrected potential with its confinement part in the form of an approximately equal admixture of vector and scalar components is found to be a suitable one for the purpose. The overall systematics of the predictions based on this potential model for the meson masses, fine-hyperfine splittings, leptonic decay widths, and the Regge slopes are observed to be consistent with the premise that the forces between quarks and antiquarks are independent of the quark flavors
Directory of Open Access Journals (Sweden)
Jorge A. Orrego-Ruiz
2014-06-01
Full Text Available In this work, prediction models of Saturates, Aromatics, Resins and Asphaltenes fractions (SARA from thirty-seven vacuum residues of representative Colombian crudes and eighteen fractions of molecular distillation process were obtained. Mid-Infrared (MIR Attenuated Total Reflection (ATR spectroscopy in combination with partial least squares (PLS regression analysis was used to estimate accurately SARA analysis in these kind of samples. Calibration coefficients of prediction models were for saturates, aromatics, resins and asphaltenes fractions, 0.99, 0.96, 0.97 and 0.99, respectively. This methodology permits to control the molecular distillation process since small differences in chemical composition can be detected. Total time elapsed to give the SARA analysis per sample is 10 minutes.
St-Onge, Guillaume; Young, Jean-Gabriel; Laurence, Edward; Murphy, Charles; Dubé, Louis J.
2018-02-01
We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait.
Geroldinger, Ludwig; Bürger, Reinhard
2014-06-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
DSTAR: A comprehensive tokamak resistive disruption model for vacuum vessel components
International Nuclear Information System (INIS)
Merrill, B.J.; Jardin, S.C.
1987-01-01
A computer code, DSTAR, has recently been developed to quantify the surface erosion and induced forces than can occur during major tokamak plasma disruptions. A disruption analysis has been performed for the TFCX fusion device. The limiters and inboard first wall were assumed to be clad with beryllium. Disruption simulations were performed with and without these structures present, to determine their electromagnetic influence. The results with structure show that the ablated wall material is transported poloidally, as well as radially, in the plasma causing the outermost regions of the plasma to cool. The plasma moves downward and deforms while maintaining contact with the lower limiter. This motion maintains the peak impurity radiant source directly above the exposed surface. For the disruption simulation without the vacuum vessel included, the plasma moves radially along the lower limiter until it contacts the inboard wall, causing ablation of this surface as well. The conclusion is drawn that disruption simulations that do not include both the thermal and electromagnetic response of the vaccum vessel will not result in an accurate prediction. (orig.)
National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate parameter-varying (PV), aeroservoelastic (ASE)...
Directory of Open Access Journals (Sweden)
Huiguo Chen
2017-01-01
Full Text Available Based on the Kanai-Tajimi power spectrum filtering method proposed by Du Xiuli et al., a genetic algorithm and a quadratic optimization identification technique are employed to improve the bimodal time-varying modified Kanai-Tajimi power spectral model and the parameter identification method proposed by Vlachos et al. Additionally, a method for modeling time-varying power spectrum parameters for ground motion is proposed. The 8244 Orion and Chi-Chi earthquake accelerograms are selected as examples for time-varying power spectral model parameter identification and ground motion simulations to verify the feasibility and effectiveness of the improved bimodal time-varying modified Kanai-Tajimi power spectral model. The results of this study provide important references for designing ground motion inputs for seismic analyses of major engineering structures.
Optimization of a simplified automobile finite element model using time varying injury metrics.
Gaewsky, James P; Danelson, Kerry A; Weaver, Caitlin M; Stitzel, Joel D
2014-01-01
In 2011, frontal crashes resulted in 55% of passenger car injuries with 10,277 fatalities and 866,000 injuries in the United States. To better understand frontal crash injury mechanisms, human body finite element models (FEMs) can be used to reconstruct Crash Injury Research and Engineering Network (CIREN) cases. A limitation of this method is the paucity of vehicle FEMs; therefore, we developed a functionally equivalent simplified vehicle model. The New Car Assessment Program (NCAP) data for our selected vehicle was from a frontal collision with Hybrid III (H3) Anthropomorphic Test Device (ATD) occupant. From NCAP test reports, the vehicle geometry was created and the H3 ATD was positioned. The material and component properties optimized using a variation study process were: steering column shear bolt fracture force and stroke resistance, seatbelt pretensioner force, frontal and knee bolster airbag stiffness, and belt friction through the D-ring. These parameters were varied using three successive Latin Hypercube Designs of Experiments with 130-200 simulations each. The H3 injury response was compared to the reported NCAP frontal test results for the head, chest and pelvis accelerations, and seat belt and femur forces. The phase, magnitude, and comprehensive error factors, from a Sprague and Geers analysis were calculated for each injury metric and then combined to determine the simulations with the best match to the crash test. The Sprague and Geers analyses typically yield error factors ranging from 0 to 1 with lower scores being more optimized. The total body injury response error factor for the most optimized simulation from each round of the variation study decreased from 0.466 to 0.395 to 0.360. This procedure to optimize vehicle FEMs is a valuable tool to conduct future CIREN case reconstructions in a variety of vehicles.
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving
International Nuclear Information System (INIS)
Cao Jing; Jiang Yu; Sun Weimin; Zong Hongshi
2012-01-01
In this Letter, an improved quasi-particle model is presented. Unlike the previous approach of establishing quasi-particle model, we introduce a classical background field (it is allowed to depend on the temperature) to deal with the infinity of thermal vacuum energy which exists in previous quasi-particle models. After taking into account the effect of this classical background field, the partition function of quasi-particle system can be made well-defined. Based on this and following the standard ensemble theory, we construct a thermodynamically consistent quasi-particle model without the need of any reformulation of statistical mechanics or thermodynamical consistency relation. As an application of our model, we employ it to the case of (2+1) flavor QGP at zero chemical potential and finite temperature and obtain a good fit to the recent lattice simulation results of Borsányi et al. A comparison of the result of our model with early calculations using other models is also presented. It is shown that our method is general and can be generalized to the case where the effective mass depends not only on the temperature but also on the chemical potential.
Jingping Gu; Paula Hernandez-Verme
2009-01-01
In this paper, we propose a new semiparametric varying coefficient model which extends the existing semi-parametric varying coefficient models to allow for a time trend regressor with smooth coefficient function. We propose to use the local linear method to estimate the coefficient functions and we provide the asymptotic theory to describe the asymptotic distribution of the local linear estimator. We present an application to evaluate credit rationing in the U.S. credit market. Using U.S. mon...
Qi Gao; Jingping Gu; Paula Hernandez-Verme
2012-01-01
In this paper, we propose a new semiparametric varying coefficient model which extends the existing semi-parametric varying coefficient models to allow for a time trend regressor with smooth coefficient function. We propose to use the local linear method to estimate the coefficient functions and we provide the asymptotic theory to describe the asymptotic distribution of the local linear estimator. We present an application to evaluate credit rationing in the U.S. credit market. Using U.S. mon...
Koopman, S.J.; Mallee, M.I.P.; van der Wel, M.
2010-01-01
In this article we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities. The Nelson-Siegel model has been recently reformulated as a dynamic factor model with vector autoregressive
Comparison of model microbial allocation parameters in soils of varying texture
Hagerty, S. B.; Slessarev, E.; Schimel, J.
2017-12-01
The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation
Vacuum polarization and chiral lattice fermions
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-09-01
The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs
Quasineutral plasma expansion into infinite vacuum as a model for parallel ELM transport
Moulton, D.; Ghendrih, Ph; Fundamenski, W.; Manfredi, G.; Tskhakaya, D.
2013-08-01
An analytic solution for the expansion of a plasma into vacuum is assessed for its relevance to the parallel transport of edge localized mode (ELM) filaments along field lines. This solution solves the 1D1V Vlasov-Poisson equations for the adiabatic (instantaneous source), collisionless expansion of a Gaussian plasma bunch into an infinite space in the quasineutral limit. The quasineutral assumption is found to hold as long as λD0/σ0 ≲ 0.01 (where λD0 is the initial Debye length at peak density and σ0 is the parallel length of the Gaussian filament), a condition that is physically realistic. The inclusion of a boundary at x = L and consequent formation of a target sheath is found to have a negligible effect when L/σ0 ≳ 5, a condition that is physically plausible. Under the same condition, the target flux densities predicted by the analytic solution are well approximated by the ‘free-streaming’ equations used in previous experimental studies, strengthening the notion that these simple equations are physically reasonable. Importantly, the analytic solution predicts a zero heat flux density so that a fluid approach to the problem can be used equally well, at least when the source is instantaneous. It is found that, even for JET-like pedestal parameters, collisions can affect the expansion dynamics via electron temperature isotropization, although this is probably a secondary effect. Finally, the effect of a finite duration, τsrc, for the plasma source is investigated. As is found for an instantaneous source, when L/σ0 ≳ 5 the presence of a target sheath has a negligible effect, at least up to the explored range of τsrc = L/cs (where cs is the sound speed at the initial temperature).
Roy, Christian
2015-01-01
The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012). I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.
Directory of Open Access Journals (Sweden)
Christian Roy
Full Text Available The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012. I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.
Handling Interfaces and Time-varying Properties in Radionuclide Transport Models
Energy Technology Data Exchange (ETDEWEB)
Robinson, Peter; Watson, Claire (Quintessa Ltd., Henley-on-Thames (United Kingdom))
2010-12-15
This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q{sub eq} concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q{sub eq} approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q{sub eq} values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of sq root10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q{sub eq}frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are
Handling Interfaces and Time-varying Properties in Radionuclide Transport Models
International Nuclear Information System (INIS)
Robinson, Peter; Watson, Claire
2010-12-01
This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q eq concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q eq approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q eq values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of √10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q eq frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are sorption coefficients and flow rates. For both
Directory of Open Access Journals (Sweden)
Ghaderi A.
2012-01-01
Full Text Available Drying characteristics of button mushroom slices were determined using microwave vacuum drier at various powers (130, 260, 380, 450 W and absolute pressures (200, 400, 600, 800 mbar. To select a suitable mathematical model, 6 thin-layer drying models were fitted to the experimental data. The fitting rates of models were assessed based on three parameters; highest R2, lowest chi square ( and root mean square error (RMSE. In addition, using the experimental data, an ANN trained by standard back-propagation algorithm, was developed in order to predict moisture ratio (MR and drying rate (DR values based on the three input variables (drying time, absolute pressure, microwave power. Different activation functions and several rules were used to assess percentage error between the desired and the predicted values. According to our findings, Midilli et al. model showed a reasonable fitting with experimental data. While, the ANN model showed its high capability to predict the MR and DR quite well with determination coefficients (R2 of 0.9991, 0.9995 and 0.9996 for training, validation and testing, respectively. Furthermore, their predictions Mean Square Error were 0.00086, 0.00042 and 0.00052, respectively.
Models of few optical cycle solitons beyond the slowly varying envelope approximation
International Nuclear Information System (INIS)
Leblond, H.; Mihalache, D.
2013-01-01
In the past years there was a huge interest in experimental and theoretical studies in the area of few-optical-cycle pulses and in the broader fast growing field of the so-called extreme nonlinear optics. This review concentrates on theoretical studies performed in the past decade concerning the description of few optical cycle solitons beyond the slowly varying envelope approximation (SVEA). Here we systematically use the powerful reductive expansion method (alias multiscale analysis) in order to derive simple integrable and nonintegrable evolution models describing both nonlinear wave propagation and interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von Neumann equation for the density matrix of two-level atoms. We analyze in detail both long-wave and short-wave propagation models. The propagation of ultrashort few-optical-cycle solitons in quadratic and cubic nonlinear media are adequately described by generic integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the propagation of few-cycle optical solitons in both (1+1)- and (2+1)-dimensional physical settings. A generalized modified Korteweg–de Vries equation is introduced in order to describe robust few-optical-cycle dissipative solitons. We investigate in detail the existence and robustness of both linearly polarized and circularly polarized few-cycle solitons, that is, we also take into account the effect of the vectorial nature of the electric field. Some of these results concerning the systematic use of the reductive expansion method beyond the SVEA can be relatively easily extended to few
The localized quantum vacuum field
International Nuclear Information System (INIS)
Dragoman, D
2008-01-01
A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles
The localized quantum vacuum field
Energy Technology Data Exchange (ETDEWEB)
Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com
2008-03-15
A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.
Directory of Open Access Journals (Sweden)
Fengxia Xu
2014-01-01
Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.
Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.
2017-01-01
An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines
Cheong, Chin Wen
2008-02-01
This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.
Directory of Open Access Journals (Sweden)
Hong Zhang
2014-01-01
Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Bøknæs, Niels; Nielsen, P.L.
factors leading to variations and uncertainties in prediction of the right process parameters. The current work is focused on modelling of OH of solid food pieces of varying sizes cooked in one batch. A 3D mathematical model of coupled heat transfer and electric field during OH of shrimps has been...
On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot
Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.
2018-06-01
Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.
DEFF Research Database (Denmark)
Andersen, P.; Skjærbæk, P. S.; Kirkegaard, Poul Henning
with the smoothed quanties which have been obtained from SARCOF. The results show the usefulness of the technique for identification of a time varying civil engineering structure. It is found that all the techniques give reliable estiates of the frequencies of the two lowest modes and the first mode shape. Only...
Vacuum evaporation of KCl-NaCl salts. Part 2: Vaporization-rate model and experimental results
International Nuclear Information System (INIS)
Wang, L.L.; Wallace, T.C. Sr.; Hampel, F.G.; Steele, J.H.
1996-01-01
Separation of chloride salts from the actinide residue by vacuum evaporation is a promising method of treating wastes from the pyrochemical plutonium processes. A model based on the Hertz-Langmuir relation is used to describe how evaporation rates of the binary KCl-NaCl system change with time. The effective evaporation coefficient (α), which is a ratio of the actual evaporation rate to the theoretical maximum, was obtained for the KCl-NaCl system using this model. In the temperature range of 640 C to 760 C, the effective evaporation coefficient ranges from ∼0.4 to 0.1 for evaporation experiments conducted at 0.13 Pa. At temperatures below the melting point, the lower evaporation coefficients are suggested to result from the more complex path that a molecule needs to follow before escaping to the gas phase. At the higher liquid temperatures, the decreasing evaporation coefficients result from a combination of the increasing vapor-flow resistances and the heat-transfer effects at the evaporation surface and the condensate layer. The microanalysis of the condensate verified that composition of the condensate changes with time, consistent with the model calculation. The microstructural examination revealed that the vaporate may have condensed as a single solution phase, which upon cooling forms fine lamellar structures of the equilibrium KCl and NaCl phases. In conclusion, the optimum design of the evaporation process and equipment must take the mass and heat transfer factors and equipment materials issues into consideration
Diels, K; Diels, Kurt
1966-01-01
Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.
Energy Technology Data Exchange (ETDEWEB)
Lu, Fengbin, E-mail: fblu@amss.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Qiao, Han, E-mail: qiaohan@ucas.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shouyang, E-mail: sywang@amss.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung, E-mail: mskklai@cityu.edu.hk [Department of Management Sciences, City University of Hong Kong (Hong Kong); Li, Yuze, E-mail: richardyz.li@mail.utoronto.ca [Department of Industrial Engineering, University of Toronto (Canada)
2017-01-15
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
International Nuclear Information System (INIS)
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Lepora, N.; Kibble, T.
1999-01-01
We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)
Magnetic fluctuations in the quantized vacuum of the Georgi-Glashow model on the lattice
International Nuclear Information System (INIS)
Mitryushkin, V.K.; Zadorozhnyj, A.M.
1987-01-01
Influence of (electro)magnetic fluctuations on the phase structure of the 4D-Georgi-Glashow model on the lattice. The distributions of (electro)magnetic fluxes and different correlations were measured using the Monte-Carlo method
Espinosa, J R; Racco, D; Riotto, A
2018-03-23
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11} GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
Exergy analysis of a solar-powered vacuum membrane distillation unit using two models
International Nuclear Information System (INIS)
Miladi, Rihab; Frikha, Nader; Gabsi, Slimane
2017-01-01
A detailed exergy analysis of a solar powered VMD unit was performed using two models: the ideal mixture model and the model using the thermodynamics properties of seawater. The exergy flow rates of process steam, given by the two models differed of about 18%, on average. Despite these differences, the two models agree that during the step of condensation, the most important fraction of exergy was destroyed. Moreover, in this work, two forms of exergy efficiency are calculated. The overall exergy efficiency of the unit with reference to the exergy collected by the solar collector was 3.25% and 2.30% according to Cerci and Sharqawy models, respectively. But, it was 0.182% and 0.128%, when referenced to the exergy of solar radiation, according to Cerci and Sharqawy models, respectively. Besides, the utilitarian exergy efficiency was 9.96%. Since the heat exchanger, the hollow-fiber module and the condenser have a very high exergy performance, then it can be concluded that the enhancement or reduction of exergy losses will be mainly by recovering heat lost in brine discharges and in the rejection of the cooling water. In addition, the influence of the rejection rate on exergy efficiencies was studied. - Highlights: • Two exergy models were compared using a VMD plant dataset. • Two forms of exergy efficiency were evaluated and discussed. • The components responsible for the biggest losses in the system were identified. • The direction for performance enhancement of the desalination device was pointed out. • The influence of the rejection rate on exergy efficiencies was studied.
Espinosa, J. R.; Racco, D.; Riotto, A.
2018-03-01
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
International Nuclear Information System (INIS)
Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan
2015-01-01
Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)
A One-Dimensional Particle-in-Cell Model of Plasma Build-Up in Vacuum Arcs
Timko, H; Kovermann, J; Taborelli, M; Nordlund, K; Descoeudres, A; Schneider, R; Calatroni, S; Matyash, K; Wuensch, W; Hansen, A; Grudiev, A
2011-01-01
Understanding the mechanism of plasma build-up in vacuum arcs is essential in many fields of physics. A one-dimensional particle-in-cell computer simulation model is presented, which models the plasma developing from a field emitter tip under electrical breakdown conditions, taking into account the relevant physical phenomena. As a starting point, only an external electric field and an initial enhancement factor of the tip are assumed. General requirements for plasma formation have been identified and formulated in terms of the initial local field and a critical neutral density. The dependence of plasma build-up on tip melting current, the evaporation rate of neutrals and external circuit time constant has been investigated for copper and simulations imply that arcing involves melting currents around 0.5-1 A/mu m(2),evaporation of neutrals to electron field emission ratios in the regime 0.01 - 0.05, plasma build-up timescales in the order of similar to 1 - 10 ns and two different regimes depending on initial ...
The Impact of Varied Discrimination Parameters on Mixed-Format Item Response Theory Model Selection
Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.
2013-01-01
Whittaker, Chang, and Dodd compared the performance of model selection criteria when selecting among mixed-format IRT models and found that the criteria did not perform adequately when selecting the more parameterized models. It was suggested by M. S. Johnson that the problems when selecting the more parameterized models may be because of the low…
A modeling study of vacuum sorption characteristics of carbon dioxide on 4A zeolite molecular sieves
Energy Technology Data Exchange (ETDEWEB)
Prazniak, J.K.; Byers, C.H.
1987-08-01
A model is presented to describe the isothermal adsorption of carbon dioxide (CO/sub 2/) and of nitrogen (N/sub 2/) on 4A zeolite molecular sieves under cryogenic conditions. The model is comprised of a fluid-phase mass balance representing the dynamics of gas in the bed and a one-dimensional diffusion equation representing adsorption in the solid. Cubic crystals of 4A zeolite are assumed to be spherical, and the concentration dependence of the diffusivity of the sorbate in both the gas and solid phases is considered. Numerical solution of the parabolic partial differential model equations is accomplished using orthogonal collocation in conjunction with an ordinary differential equation integrator suitable for stiff equations. 34 refs., 18 figs., 5 tabs.
Structure of the discrete Dirac vacuum in the sigma + omega model
International Nuclear Information System (INIS)
Miller, L.D.
1989-01-01
The sigma + omega model potentials imply that any moderate to large nucleus should have thousands of discrete negative-energy nucleon states. Theoretical predictions of structure in this discrete island of the nuclear Dirac sea are presented in this paper. This structure is related to the spectral functions that will emerge in high energy electron- and hardon-induced reactions on nuclei. These high-energy reaction studies should supplement our understanding of the saturation mechanism of the sigma + omega model. They could also identify the threshold for observable quantum chromo-dynamics (QCD) effects in nuclei
Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution
Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan
The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.
Vacuum instability, cosmology and constraints on particle masses in the Weinberg-Salam model
International Nuclear Information System (INIS)
Linde, A.D.
1980-01-01
A set of constraints on the masses of particles in the Weinberg-Salam model is obtained. It is shown in particular that in the absence of superheavy fermions (msub(F) 2 thetasub(W) approx. 0.23. (orig.)
A thermodynamic model of plasma generation by pulsed laser irradiation in vacuum
Tosto, S
2003-01-01
This paper introduces a thermodynamic model to determine composition, temperature and pressure of the plasma cloud induced by pulsed laser irradiation in the case where a relevant thermal sputtering mechanism is operating at the surface of a molten layer. The model concerns in particular pulse lengths of the order of several nanoseconds and completes the results of a previous paper concerning the physics of the evaporation and boiling driven thermal sputtering (Tosto S 2002 J. Phys. D: Appl. Phys. 35); the recession rate and temperature at the molten surface are linked to the pulse fluence and plasma properties in the frame of a unique physical model. This paper shows that the plasma properties depend critically on the non-equilibrium character of the surface evaporation and boiling mechanisms. The extension of the model to the case of continuous laser irradiation is also discussed. Some examples of computer simulation aim to show the results available in the particular case of a metal target; the comparison ...
Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm
Jin, Ick Hoon; Liang, Faming
2013-01-01
The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing
Investigation of the vacuum structure of the Georgi-Glashow model on the lattice
International Nuclear Information System (INIS)
Bornyakov, V.G.; Ilgenfritz, E.M.; Mitrjushkin, V.K.; Zadorozhny, A.M.; Mueller-Preussker, M.
1988-08-01
Distributions and correlations of magnetic fluxes as well as correlations between magnetic fluxes and other local observables are calculated numerically in order to explain the phase structure of the 4D Georgi-Glashow model on the lattice. We use and compare different definitions of magnetic fluxes. The data suggest a simple picture characterizing typical magnetic fluctuations in different regions of the phase space. A relaxation procedure exposes Abelian monopole-loop configurations in one of the phases. (author). 21 refs, 12 figs
Ferreira , Cristina; Tayakout-Fayolle , Melaz; Guibard , Isabelle; Lemos , Francisco
2014-01-01
International audience; In order to be able to upgrade the heaviest part of the crude oil one needs to remove several impurities, such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can achieve high removal performances, with an industrial catalysts optimized staging. Despite the recent improvements, petroleum residues remain very difficult to describe and characterize in detail. Several kinetic models have been developed, but mostly they are feed depe...
Model experiments to study the first wall erosion by vacuum arcs
Energy Technology Data Exchange (ETDEWEB)
Karpov, D.A.; Saksagansky, G.L. (Leningradskij Nauchno-Issledovatel' skij Inst. (USSR). Electrophysical Apparatus); Paszti, F.; Szilagyi, E.; Manuaba, A. (Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)
Unipolar arcs acting on the first wall of future thermonuclear reactors were modelled by bipolar arcs burning on the side surface of a cylindrical titanium cathode. Erosion rate and spatial distribution of the material sputtered in arcs were investigated by Rutherford Backscattering (RBS) analysis of collector probes. The obtianed results will be discussed as a function of arc current and the intensity of the applied vault-shaped magnetic field. (orig.).
Model experiments to study the first wall erosion by vacuum arcs
International Nuclear Information System (INIS)
Karpov, D.A.; Saksagansky, G.L.; Paszti, F.; Szilagyi, E.; Manuaba, A.
1989-01-01
Unipolar arcs acting on the first wall of future thermonuclear reactors were modelled by bipolar arcs burning on the side surface of a cylindrical titanium cathode. Erosion rate and spatial distribution of the material sputtered in arcs were investigated by Rutherford Backscattering (RBS) analysis of collector probes. The obtianed results will be discussed as a function of arc current and the intensity of the applied vault-shaped magnetic field. (orig.)
Habitat Modeling of Alien Plant Species at Varying Levels of Occupancy
Directory of Open Access Journals (Sweden)
Jennifer A. Brown
2012-09-01
Full Text Available Distribution models of invasive plants are very useful tools for conservation management. There are challenges in modeling expanding populations, especially in a dynamic environment, and when data are limited. In this paper, predictive habitat models were assessed for three invasive plant species, at differing levels of occurrence, using two different habitat modeling techniques: logistic regression and maximum entropy. The influence of disturbance, spatial and temporal heterogeneity, and other landscape characteristics is assessed by creating regional level models based on occurrence records from the USDA Forest Service’s Forest Inventory and Analysis database. Logistic regression and maximum entropy models were assessed independently. Ensemble models were developed to combine the predictions of the two analysis approaches to obtain a more robust prediction estimate. All species had strong models with Area Under the receiver operator Curve (AUC of >0.75. The species with the highest occurrence, Ligustrum spp., had the greatest agreement between the models (93%. Lolium arundinaceum had the most disagreement between models at 33% and the lowest AUC values. Overall, the strength of integrative modeling in assessing and understanding habitat modeling was demonstrated.
PARAFFIN SEPARATION VACUUM DISTILLATION
Directory of Open Access Journals (Sweden)
Zaid A. Abdulrahman
2013-05-01
Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD
Directory of Open Access Journals (Sweden)
Santosh Jatrana
Full Text Available The aim of this paper was to see whether all-cause and cause-specific mortality rates vary between Asian ethnic subgroups, and whether overseas born Asian subgroup mortality rate ratios varied by nativity and duration of residence. We used hierarchical Bayesian methods to allow for sparse data in the analysis of linked census-mortality data for 25-75 year old New Zealanders. We found directly standardised posterior all-cause and cardiovascular mortality rates were highest for the Indian ethnic group, significantly so when compared with those of Chinese ethnicity. In contrast, cancer mortality rates were lowest for ethnic Indians. Asian overseas born subgroups have about 70% of the mortality rate of their New Zealand born Asian counterparts, a result that showed little variation by Asian subgroup or cause of death. Within the overseas born population, all-cause mortality rates for migrants living 0-9 years in New Zealand were about 60% of the mortality rate of those living more than 25 years in New Zealand regardless of ethnicity. The corresponding figure for cardiovascular mortality rates was 50%. However, while Chinese cancer mortality rates increased with duration of residence, Indian and Other Asian cancer mortality rates did not. Future research on the mechanisms of worsening of health with increased time spent in the host country is required to improve the understanding of the process, and would assist the policy-makers and health planners.
Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.
Liu, Pu; Liu, Lukai; Clancy, Edward A
2015-11-01
Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.
How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?
Bassu, Simona; Brisson, Nadine; Grassini, Patricio; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Adam, Myriam;
2014-01-01
Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Modelling the Earth's static and time-varying gravity field using a combination of GRACE and GOCE data
Farahani, H.H.
2013-01-01
The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new
H. Li; X. Deng; Andy Dolloff; E. P. Smith
2015-01-01
A novel clustering method for bivariate functional data is proposed to group streams based on their waterâair temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...
International Nuclear Information System (INIS)
Stroo, R.; Schwebke, H.; Heine, E.
1984-01-01
This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)
International Nuclear Information System (INIS)
Hobson, J.P.
1975-01-01
An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made
Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity
DEFF Research Database (Denmark)
Masina, I.; Notari, A.
2012-01-01
If the standard model is valid up to very high energies it is known that the Higgs potential can develop a local minimum at field values around 10(15)-10(17) GeV, for a narrow band of values of the top quark and Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacu....... This prediction could be soon tested at the Large Hadron Collider. Our inflationary scenario could also be further checked by better constraining the spectral index and the tensor-to-scalar ratio....
Zhang, Wen; Liu, Xiaolong; He, Wei; Dong, Mingli; Zhu, Lianqing
2017-09-01
For the improvement of monitoring accuracy, a vibration monitoring for aircraft wing model using a fiber Bragg grating (FBG) array packaged by vacuum-assisted resin transfer molding (VARTM) is proposed. The working principle of the vibration monitoring using FBG array has been explained, which can theoretically support the idea of this paper. VARTM has been explained in detail, which is suitable for not only the single FBG sensor but also the FBG array within a relatively large area. The calibration experiment has been performed using the FBG sensor packaged by VARTM. The strain sensitivity of the VARTM package is 1.35 pm/μɛ and the linearity is 0.9999. The vibration monitoring experiment has been carried out using FBG array packaged by VARTM. The measured rate of strain changes across the aluminum test board used to simulate the aircraft wing is 0.69 μɛ/mm and the linearity is 0.9931. The damping ratio is 0.16, which could be further used for system performance evaluation. Experimental results demonstrate that the vibration monitoring using FBG sensors packaged by VARTM can be efficiently used for the structural health monitoring. Given the validation and great performance, this method is quite promising for in-flight monitoring and holds great reference value in other similar engineering structures.
A dynamic model for beam tube vacuum effects on the SSC cryogenic system
International Nuclear Information System (INIS)
Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.
1992-01-01
The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1km long SSC arc section where the beam tube pressure in one of the dipoles is increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very high locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the cold mass due to beam-gas scattering remains low despite the increase in the beam tube temperature
A dynamic model for beam tube vacuum effects on the SSC cryogenic system
International Nuclear Information System (INIS)
Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.
1992-03-01
The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1 km long SSC arc section where the beam tube pressure in one of the dipoles in increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1 W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the coldmass due to beam-gas scattering remains low despite the increase in the beam tube temperature
A novel vacuum assisted closure therapy model for use with percutaneous devices.
Cook, Saranne J; Nichols, Francesca R; Brunker, Lucille B; Bachus, Kent N
2014-06-01
Long-term maintenance of a dermal barrier around a percutaneous prosthetic device remains a common clinical problem. A technique known as Negative Pressure Wound Therapy (NPWT) uses negative pressure to facilitate healing of impaired and complex soft tissue wounds. However, the combination of using negative pressure with percutaneous prosthetic devices has not been investigated. The goal of this study was to develop a methodology to apply negative pressure to the tissues surrounding a percutaneous device in an animal model; no tissue healing outcomes are presented. Specifically, four hairless rats received percutaneous porous coated titanium devices implanted on the dorsum and were bandaged with a semi occlusive film dressing. Two of these animals received NPWT; two animals received no NPWT and served as baseline controls. Over a 28-day period, both the number of dressing changes required between the two groups as well as the pressures were monitored. Negative pressures were successfully applied to the periprosthetic tissues in a clinically relevant range with a manageable number of dressing changes. This study provides a method for establishing, maintaining, and quantifying controlled negative pressures to the tissues surrounding percutaneous devices using a small animal model. Published by Elsevier Ltd.
Consumer acceptance of model soup system with varying levels of herbs and salt.
Wang, Chao; Lee, Youngsoo; Lee, Soo-Yeun
2014-10-01
Although herbs have been reported as one of the most common saltiness enhancers, few studies have focused on the effect of herbs on reducing added sodium as well as the impact of herbs on consumers' overall liking of foods. Therefore, the objectives of this study were to determine the effect of varying levels of herbs on reducing added sodium and consumers' overall liking of soups and identify the impact of salt levels on consumers' overall liking of soups. Overall liking of freshly prepared and retorted canned soups with varying levels of herbs was evaluated before and after adding salt by consumers ad libitum until the saltiness of the soup was just about right for them. The results of the study demonstrated that when the perceived herb flavor increased, the amount of salt consumers added to fresh soups decreased (P ≤ 0.006); however, consumers' overall liking decreased (P ≤ 0.013) as well for the highest level of herb tested in the study. Although overall liking of all canned soups was not significantly decreased by herbs, the amount of salt consumers added was also not significantly decreased when herbs were used. Overall liking of all soups significantly increased after more salt was added (P ≤ 0.001), which indicates that salt level was a dominant factor in affecting consumers' overall liking of soups with varying levels of herbs. These findings imply the role of herbs in decreasing salt intake, and the adequate amount of herbs to be added in soup systems. It is challenging for the food industry to reduce sodium in foods without fully understanding the impact of sodium reduction on sensory properties of foods. Herbs are recommended to use in reducing sodium; however, little has been reported regarding the effect of herbs on sodium reduction and how herbs influence consumers’ acceptance of foods. This study provides findings that herbs may aid in decreasing the amount of salt consumers need to add for freshly prepared soups. It was also found that high
Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution
DEFF Research Database (Denmark)
Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan
2017-01-01
The absorption spectrum of the MnO4(-) ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high...... by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit...... treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO4(-) absorption spectrum, whose assignment has been elusive....
New Ghost-node method for linking different models with varied grid refinement
International Nuclear Information System (INIS)
Mehl, Steffen W.; Hill, Mary Catherine; James, Scott Carlton; Leake, Stanley A.; Zyvoloski, George A.; Dickinson, Jesse E.; Eddebbarh, Al A.
2006-01-01
A flexible, robust method for linking grids of locally refined models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined 'child' model that is contained within a larger and coarser 'parent' model that is based on the iterative method of Mehl and Hill (2002, 2004). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has either matching grids (parent cells border an integer number of child cells; Figure 2a) or non-matching grids (parent cells border a non-integer number of child cells; Figure 2b). The coupled grids are simulated using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models (Mehl and Hill, 2002). When the grids are non-matching, model accuracy is slightly increased over matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to accurately couple distinct models because the overall error is less than if only the regional model was used to simulate flow in the child model's domain
New ghost-node method for linking different models with varied grid refinement
James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.
2006-01-01
A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.
Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...
The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...
Using Video Modeling with Substitutable Loops to Teach Varied Play to Children with Autism
Dupere, Sally; MacDonald, Rebecca P. F.; Ahearn, William H.
2013-01-01
Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that…
Early marketing matters : A time-varying parameter approach to persistence modeling
Osinga, E.C.; Leeflang, P.S.H.; Wieringa, J.E.
Are persistent marketing effects most likely to appear right after the introduction of a product? The authors give an affirmative answer to this question by developing a model that explicitly reports how persistent and transient marketing effects evolve over time. The proposed model provides
Time-Varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies
N. Basturk (Nalan); S. Grassi (Stefano); L.F. Hoogerheide (Lennart); H.K. van Dijk (Herman)
2016-01-01
markdownabstractA novel dynamic asset-allocation approach is proposed where portfolios as well as portfolio strategies are updated at every decision period based on their past performance. For modeling, a general class of models is specified that combines a dynamic factor and a vector autoregressive
Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework
Directory of Open Access Journals (Sweden)
Krzysztof Drachal
2018-05-01
Full Text Available This article presents results from modelling spot oil prices by Dynamic Model Averaging (DMA. First, based on a literature review and availability of data, the following oil price drivers have been selected: stock prices indices, stock prices volatility index, exchange rates, global economic activity, interest rates, supply and demand indicators and inventories level. Next, they have been included as explanatory variables in various DMA models with different initial parameters. Monthly data between January 1986 and December 2015 has been analyzed. Several variations of DMA models have been constructed, because DMA requires the initial setting of certain parameters. Interestingly, DMA has occurred to be robust to setting different values to these parameters. It has also occurred that the quality of prediction is the highest for the model with the drivers solely connected with the stock markets behavior. Drivers connected with macroeconomic fundamental indicators have not been found so important. This observation can serve as an argument favoring the hypothesis of the increasing financialization of the oil market, at least in the short-term period. The predictions from other, slightly different modelling variations based on DMA methodology, have happened to be consistent with each other in general. Many constructed models have outperformed alternative forecasting methods. It has also been found that normalization of the initial data, although not necessary for DMA from the theoretical point of view, significantly improves the quality of prediction.
Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus
2014-01-01
One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.
Directory of Open Access Journals (Sweden)
Philipp Singer
Full Text Available One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.
Time-varying disaster risk models: An empirical assessment of the Rietz-Barro hypothesis
DEFF Research Database (Denmark)
Irarrazabal, Alfonso; Parra-Alvarez, Juan Carlos
This paper revisits the fit of disaster risk models where a representative agent has recursive preferences and the probability of a macroeconomic disaster changes over time. We calibrate the model as in Wachter (2013) and perform two sets of tests to assess the empirical performance of the model ...... and hence to reduce the Sharpe Ratio, a lower elasticity of substitution generates a more reasonable level for the equity risk premium and for the volatility of the government bond returns without compromising the ability of the price-dividend ratio to predict excess returns....
Blank, B.; van der Wal, W.; Pappa, F.; Ebbing, J.
2017-12-01
B. Blank1, H. Hu1, W. van der Wal1, F Pappa2, J. Ebbing21Delft University of Technology 2Christian-Albrechts-University of KielSince the beginning of the 2000's time-variable gravity data from GRACE has proved to be an effective method for mapping ice mass loss in Antarctica. However, Glacial Isostatic Adjustment (GIA) models are required to correct for GIA induced mass changes. While most GIA models have adopted an Earth model that only varies radially in parameters, it has long been clear that the Earth structure also varies with longitude and latitude. For this study a new global 3D GIA model has been developed within the finite element software package ABAQUS, which can be modified to operate on a spatial resolution down to 50 km locally. The model is being benchmarked against normal model models for surface loading. It will be used to investigate the effects of a 3D varying lithosphere and upper asthenosphere in Antarctica. Viscosity which will be computed from temperature estimates with laboratory based flow laws. A new 3D temperature map of the Antarctic lithosphere has been developed within ESA's GOCE+ project based on seismic data as well as on GOCE and GRACE inferred gravity gradients. Output from the GIA model with this new temperature estimates will be compared to that of 1D viscosity profiles and other recent 3D viscosity models based on seismic data. From these side to side comparisons we want to investigate the influence of the viscosity map on uplift rates and horizontal movement. Finally the results can be compared to GPS measurement to investigate the validity of all models.
A phenomenological model on the kink mode threshold varying with the inclination of sheath boundary
International Nuclear Information System (INIS)
Sun, X.; Intrator, T. P.; Sears, J.; Weber, T.; Liu, M.
2013-01-01
In nature and many laboratory plasmas, a magnetic flux tube threaded by current or a flux rope has a footpoint at a boundary. The current driven kink mode is one of the fundamental ideal magnetohydrodynamic instabilities in plasmas. It has an instability threshold that has been found to strongly depend on boundary conditions (BCs). We provide a theoretical model to explain the transition of this threshold dependence between nonline tied and line tied boundary conditions. We evaluate model parameters using experimentally measured plasma data, explicitly verify several kink eigenfunctions, and validate the model predictions for boundary conditions BCs that span the range between NLT and LT BCs. Based on this model, one could estimate the kink threshold given knowledge of the displacement of a flux rope end, or conversely estimate flux rope end motion based on knowledge of it kink stability threshold
Analysis of credit linked demand in an inventory model with varying ordering cost.
Banu, Ateka; Mondal, Shyamal Kumar
2016-01-01
In this paper, we have considered an economic order quantity model for deteriorating items with two-level trade credit policy in which a delay in payment is offered by a supplier to a retailer and also an another delay in payment is offered by the retailer to his/her all customers. Here, it is proposed that the demand function is dependent on the length of the customer's credit period and also the duration of offering the credit period. In this article, it is considered that the retailer's ordering cost per order depends on the number of replenishment cycles. The objective of this model is to establish a deterministic EOQ model of deteriorating items for the retailer to decide the position of customers credit period and the number of replenishment cycles in finite time horizon such that the retailer gets the maximum profit. Also, the model is explained with the help of some numerical examples.
Sridhara, Basavapatna Sitaramaiah
In an internal combustion engine, the engine is the noise source and the exhaust pipe is the main transmitter of noise. Mufflers are often used to reduce engine noise level in the exhaust pipe. To optimize a muffler design, a series of experiments could be conducted using various mufflers installed in the exhaust pipe. For each configuration, the radiated sound pressure could be measured. However, this is not a very efficient method. A second approach would be to develop a scheme involving only a few measurements which can predict the radiated sound pressure at a specified distance from the open end of the exhaust pipe. In this work, the engine exhaust system was modelled as a lumped source-muffler-termination system. An expression for the predicted sound pressure level was derived in terms of the source and termination impedances, and the muffler geometry. The pressure source and monopole radiation models were used for the source and the open end of the exhaust pipe. The four pole parameters were used to relate the acoustic properties at two different cross sections of the muffler and the pipe. The developed formulation was verified through a series of experiments. Two loudspeakers and a reciprocating type vacuum pump were used as sound sources during the tests. The source impedance was measured using the direct, two-load and four-load methods. A simple expansion chamber and a side-branch resonator were used as mufflers. Sound pressure level measurements for the prediction scheme were made for several source-muffler and source-straight pipe combinations. The predicted and measured sound pressure levels were compared for all cases considered. In all cases, correlation of the experimental results and those predicted by the developed expressions was good. Predicted and measured values of the insertion loss of the mufflers were compared. The agreement between the two was good. Also, an error analysis of the four-load method was done.
Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing
2018-06-01
Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
International Nuclear Information System (INIS)
Martini, Johannes W. R.; Habeck, Michael
2015-01-01
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
Energy Technology Data Exchange (ETDEWEB)
Martini, Johannes W. R., E-mail: jmartin2@gwdg.de [Max Planck Institute for Developmental Biology, Tübingen (Germany); Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Habeck, Michael, E-mail: mhabeck@gwdg.de [Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany)
2015-03-07
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.
International Nuclear Information System (INIS)
Ouyang, Minggao; Feng, Xuning; Han, Xuebing; Lu, Languang; Li, Zhe; He, Xiangming
2016-01-01
Highlights: • A dynamic capacity degradation model for large format Li-ion battery is proposed. • The change of the model parameters directly link with the degradation mechanisms. • The model can simulate the fading behavior of Li-ion battery under varying loads. • The model can help evaluate the longevity of a battery system under specific load. • The model can help predict the evolution of cell variations within a battery pack. - Abstract: The capacity degradation of the lithium ion battery should be well predicted during battery system design. Therefore, high-fidelity capacity degradation models that are suitable for the task of capacity prediction are required. This paper proposes a novel capacity degradation model that can simulate the degradation dynamics under varying working conditions for large-format lithium ion batteries. The degradation model is built based on a mechanistic and prognostic model (MPM) whose parameters are closely linked with the degradation mechanisms of lithium ion batteries. Chemical kinetics was set to drive the parameters of the MPM to change as capacity degradation continues. With the dynamic parameters of the MPM, the capacity predicted by the degradation model decreases as the cycle continues. Accelerated aging tests were conducted on three types of commercial lithium ion batteries to calibrate the capacity degradation model. The good fit with the experimental data indicates that the model can capture the degradation mechanisms well for different types of commercial lithium ion batteries. Furthermore, the calibrated model can be used to (1) evaluate the longevity of a battery system under a specific working load and (2) predict the evolution of cell variations within a battery pack when different cell works at different conditions. Correlated applications are discussed using the calibrated degradation model.
DEFF Research Database (Denmark)
Kepler, Jørgen Asbøl; Hansen, Michael Rygaard
2007-01-01
thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance.......A sandwich panel is described by an axisymmetric lumped mass- spring model. The panel compliance is simplified, considering only core shear deformation uniformly distributed across the core thickness. Transverse penetrating impact is modeled for impactors of diameters comparable to the panel...
Nitric oxide levels in the aqueous humor vary in different ocular hypertension experimental models
Directory of Open Access Journals (Sweden)
Da-Wen Lu
2014-12-01
Full Text Available This study investigated the relationships among intraocular pressure (IOP, nitric oxide (NO levels, and aqueous flow rates in experimental ocular hypertension models. A total of 75 rabbits were used. One of four different materials [i.e., α-chymotrypsin, latex microspheres (Polybead, red blood cell ghosts, or sodium hyaluronate (Healon GV] was injected into the eyes of the 15 animals in each experimental group; the remaining 15 rabbits were reserved for a control group. The IOP changes in the five groups were recorded on postinduction Days 1–3, Day 7, Day 14, Day 30, Day 60, Day 90, and Day 120. On postinduction Day 7, the dynamics and NO levels in the aqueous humor were recorded. Significant IOP elevations were induced by α-chymotrypsin (p < 0.01 and Polybead (p < 0.01 on each postinduction day. In the red blood cell ghosts model, significant elevations (p < 0.01 were found on postinduction Days 1–3; Healon GV significantly elevated IOP (p < 0.01 on postinduction Day 1 and Day 2. On postinduction Day 7, the aqueous humor NO levels increased significantly in the models of α-chymotrypsin, Polybead, and red blood cell ghosts (all p < 0.01, while the aqueous flow rates were significantly reduced in the models of α-chymotrypsin and Polybead (p < 0.005. Persistent ocular hypertension models were induced with α-chymotrypsin and Polybead in the rabbits. The Polybead model exhibited the characteristic of an increased aqueous humor NO level, similar to human eyes with acute angle-closure glaucoma and neovascular glaucoma.
Directory of Open Access Journals (Sweden)
S. N. Pelykh
2010-09-01
Full Text Available Main features of a fuel element cladding state change mathematical model for a WWER-1000 reactor plant operated in the mode of varying loading are listed. The integrated model is based on the energy creep theory, uses the finite element method for imultaneous solution of the fuel element heat conduction and mechanical deformation equa-tions. Proposed mathematical model allows us to determine the influence of the WWER-1000 regime parameters and fuel assembly design characteristics on the change of cladding properties under different loading conditions of normal operation, as well as the cladding limiting state at variable loading depending on the length, depth and number of cycles.
Slab detachment in laterally varying subduction zones: 3-D numerical modeling
Duretz, T.; Gerya, T.V.; Spakman, W.|info:eu-repo/dai/nl/074103164
Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models,
Modelling the solidification of ductile cast iron parts with varying wall thicknesses
DEFF Research Database (Denmark)
Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper
2015-01-01
] with a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions...
A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels
BollaÂ Pittaluga, M.; Frascati, A.; Falivene, O.
2018-01-01
We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.
Modeling complex flow structures and drag around a submerged plant of varied posture
Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.
2017-04-01
Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.
Jong, S. de; Noordkamp, H.W.; Poel, N.C.L. van der; Smit, S.K.
2015-01-01
Assessing the effectiveness of a plan, given multiple potential scenarios, is a common problem for analysts, especially in the military domain. This problem can seriously impact the safety of the people that are involved in planned missions. More precisely, the availability of multiple models, with
Liou, Jing-Yang; Ting, Chien-Kun; Mandell, M Susan; Chang, Kuang-Yi; Teng, Wei-Nung; Huang, Yu-Yin; Tsou, Mei-Yung
2016-08-01
Selecting an effective dose of sedative drugs in combined upper and lower gastrointestinal endoscopy is complicated by varying degrees of pain stimulation. We tested the ability of 5 response surface models to predict depth of sedation after administration of midazolam and alfentanil in this complex model. The procedure was divided into 3 phases: esophagogastroduodenoscopy (EGD), colonoscopy, and the time interval between the 2 (intersession). The depth of sedation in 33 adult patients was monitored by Observer Assessment of Alertness/Scores. A total of 218 combinations of midazolam and alfentanil effect-site concentrations derived from pharmacokinetic models were used to test 5 response surface models in each of the 3 phases of endoscopy. Model fit was evaluated with objective function value, corrected Akaike Information Criterion (AICc), and Spearman ranked correlation. A model was arbitrarily defined as accurate if the predicted probability is effect-site concentrations tested ranged from 1 to 76 ng/mL and from 5 to 80 ng/mL for midazolam and alfentanil, respectively. Midazolam and alfentanil had synergistic effects in colonoscopy and EGD, but additivity was observed in the intersession group. Adequate prediction rates were 84% to 85% in the intersession group, 84% to 88% during colonoscopy, and 82% to 87% during EGD. The reduced Greco and Fixed alfentanil concentration required for 50% of the patients to achieve targeted response Hierarchy models performed better with comparable predictive strength. The reduced Greco model had the lowest AICc with strong correlation in all 3 phases of endoscopy. Dynamic, rather than fixed, γ and γalf in the Hierarchy model improved model fit. The reduced Greco model had the lowest objective function value and AICc and thus the best fit. This model was reliable with acceptable predictive ability based on adequate clinical correlation. We suggest that this model has practical clinical value for patients undergoing procedures
International Nuclear Information System (INIS)
Yang, S.Q.; Green, M.A.; Lau, W.
2004-01-01
This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Kukačka, Jiří
2015-01-01
Roč. 15, č. 6 (2015), s. 959-973 ISSN 1469-7688 R&D Projects: GA ČR GA402/09/0965; GA ČR GA13-32263S EU Projects: European Commission 612955 - FINMAP Institutional support: RVO:67985556 Keywords : Stochastic cusp catastrophe model * Realized volatility * Bifurcations * Stock market crash Subject RIV: AH - Economics Impact factor: 0.794, year: 2015 http://library.utia.cas.cz/separaty/2014/E/barunik-0434202.pdf
Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.
2014-04-01
The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].
International Nuclear Information System (INIS)
Biddlecombe, C.S.; Edwards, C.B.; Shaw, M.J.
1981-10-01
The computer code PE2D has been used to optimise the design of a compact, 500kV, low inductance vacuum diode interface assembly for SPRITE, a sophisticated electron beam pumped exciplex laser system under construction at RAL. Electrostatic modelling of various dielectric interfaces has been achieved in cylindrical symmetry under conditions not amenable to more traditional methods of electrostatic field plotting. (author)
2017-12-08
STATISTICAL LINEAR TIME-VARYING SYSTEM MODEL OF HIGH GRAZING ANGLE SEA CLUTTER FOR COMPUTING INTERFERENCE POWER 1. INTRODUCTION Statistical linear time...beam. We can approximate one of the sinc factors using the Dirichlet kernel to facilitate computation of the integral in (6) as follows: ∣∣∣∣sinc(WB...plotted in Figure 4. The resultant autocorrelation can then be found by substituting (18) into (28). The Python code used to generate Figures 1-4 is found
Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.
2010-12-01
As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.
Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.
D'Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J; Pearce, Patrice; Fenton, Andre A; MacLusky, Neil J; Scharfman, Helen E
2015-07-01
In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.
Dall'Asta, Andrea; Ghi, Tullio; Pedrazzi, Giuseppe; Frusca, Tiziana
2016-09-01
Vacuum extractor has been increasingly used over the last decades and is acknowledged as a risk factor for shoulder dystocia (SD). In this meta-analysis we assess the actual risk of SD following a vacuum delivery compared to spontaneous vaginal delivery (SVD) and forceps. Systematic literature search (English literature only) on MEDLINE, EMBASE, ScienceDirect, the Cochrane library and ClinicalTrials.gov conducted up to May 2015. Key search terms included: Operative/Vacuum/Forceps delivery [Mesh] and shoulder dystocia and subheadings. 2 stage-process study selection. We included only studies where data concerning the occurrence of SD following operative vaginal delivery were reported as adjusted odds ratio (AOR) and no significant difference in confounding factors for SD was recorded. Included trials clustered according to the delivery mode (1) vacuum vs. SVD, (2) forceps vs. vacuum. Methodological quality of each study evaluated with the Newcastle-Ottawa System (NOS). 87 potentially relevant papers. After applying inclusion and exclusion criteria only 7 were selected for the meta-analysis. Vacuum delivery appeared associated with a higher risk of SD than SVD in both fixed and random model (OR 2.87 and 2.98 respectively). No difference in the rate of SD was found between vacuum and forceps (p>0.05). Vacuum extractor carries an increased risk of SD compared with spontaneous vaginal delivery whereas the occurrence of SD does not seem to vary following vacuum or forceps. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modelling antecedents of blood donation motivation among non-donors of varying age and education.
Lemmens, K P H; Abraham, C; Ruiter, R A C; Veldhuizen, I J T; Dehing, C J G; Bos, A E R; Schaalma, H P
2009-02-01
Understanding blood donation motivation among non-donors is prerequisite to effective recruitment. Two studies explored the psychological antecedents of blood donation motivation and the generalisability of a model of donation motivation across groups differing in age and educational level. An older well-educated population and a younger less well-educated population were sampled. The studies assessed the role of altruism, fear of blood/needles and donation-specific cognitions including attitudes and normative beliefs derived from an extended theory of planned behaviour (TPB). Across both samples, results showed that affective attitude, subjective norm, descriptive norm, and moral norm were the most important correlates of blood donation intentions. Self-efficacy was more important among the younger less well-educated group. Altruism was related to donation motivation but only indirectly through moral norm. Similarly, fear of blood/needles only had an indirect effect on motivation through affective attitude and self-efficacy. Additional analyses with the combined data set found no age or education moderation effects, suggesting that this core model of donation-specific cognitions can be used to inform future practical interventions recruiting new blood donors in the general population.
RELATION BETWEEN FUNCTION AND FORM IN VACUUM CLEANERS DESIGN
Directory of Open Access Journals (Sweden)
RADU Ștefan
2015-11-01
Full Text Available The paper analyses how robotic vacuum cleaner works, describing their cleaning capabilities and additional features. The paper illustrates advantages of using robotic vacuum cleaners that have intelligent programming and a vacuum cleaning system, the components of a robotic vacuum cleaner. The paper develops aspects concerning to create 2D scale models for the evaluation of specific features of the new components for a prototype robotic vacuum cleaner.
Zhu, Zichen; Wang, Yongzhi; Bian, Shuhua; Hu, Zejian; Liu, Jianqiang; Liu, Lejun
2017-11-01
We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations (SSC) measured from July 25th to July 26th, 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m2, and from 0.05 to 0.14 N/m 2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.
Remer, D. S.
1977-01-01
A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.
Balazs, Csaba; Fowlie, Andrew; Mazumdar, Anupam; White, Graham A.
2017-01-01
A new gauge singlet scalar field can undergo a strongly first-order phase transition (PT) leading to gravitational waves (GW) potentially observable at aLIGO and stabilizes the electroweak vacuum at the same time by ensuring that the Higgs quartic coupling remains positive up to at least the grand
A mathematical model for the movement of food bolus of varying viscosities through the esophagus
Tripathi, Dharmendra
2011-09-01
This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.
Smalt, Christopher J; Heinz, Michael G; Strickland, Elizabeth A
2014-04-01
The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noisy environments. This advantage can be attributed to a feedback mechanism that suppresses auditory nerve (AN) firing in continuous background noise, resulting in increased sensitivity to a tone or speech. MOC neurons synapse on outer hair cells (OHCs), and their activity effectively reduces cochlear gain. The computational model developed in this study implements the time-varying, characteristic frequency (CF) and level-dependent effects of the MOCR within the framework of a well-established model for normal and hearing-impaired AN responses. A second-order linear system was used to model the time-course of the MOCR using physiological data in humans. The stimulus-level-dependent parameters of the efferent pathway were estimated by fitting AN sensitivity derived from responses in decerebrate cats using a tone-in-noise paradigm. The resulting model uses a binaural, time-varying, CF-dependent, level-dependent OHC gain reduction for both ipsilateral and contralateral stimuli that improves detection of a tone in noise, similarly to recorded AN responses. The MOCR may be important for speech recognition in continuous background noise as well as for protection from acoustic trauma. Further study of this model and its efferent feedback loop may improve our understanding of the effects of sensorineural hearing loss in noisy situations, a condition in which hearing aids currently struggle to restore normal speech perception.
... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...
Acceleration of plasma into vacuum
Energy Technology Data Exchange (ETDEWEB)
Marshall, John [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)
1958-07-01
The first part of this paper is a discussion of the magnetic acceleration of plasma. The second part contains a description of some experiments which have been performed. In the work reported the intention is: 1. To produce a burst of gas in vacuo; 2. To ionize the gas and heat it to such an extent that it becomes a good electrical conductor. 3. To accelerate the plasma thus produced into vacuum by the use of external time-varying magnetic fields.
International Nuclear Information System (INIS)
Pointer, W. David; Ruggles, Arthur E.
2003-01-01
Thin-walled vacuum containment vessels cooled by circulating water jackets are often utilized in research and industrial applications where isolation of equipment or experiments from the influences of the surrounding environment is desirable. The development of leaks in these vessels can result in costly downtime for the facility. A Vessel Integrity Monitoring System (VIMS) is developed to detect leak formation and estimate the size of the leak to allow evaluation of the risk associated with continued operation. A wide range of leak configurations and fluid flow phenomena are considered in the evaluation of the rate at which a tracer gas dissolved in the cooling jacket water is transported into the vacuum vessel. A methodology is presented that uses basic fluid flow models and careful evaluation of their ranges of applicability to provide a conservative estimate of the transport rates for the tracer gas and hence the time required for the VIMS to detect a leak of a given size
Gentry, Robert
2011-04-01
Physicists who identify the big bang with the early universe should have first noted from Hawking's A Brief History of Time, p. 42, that he ties Hubble's law to Doppler shifts from galaxy recession from a nearby center, not to bb's unvalidated and thus problematical expansion redshifts. Our PRL submission LJ12135 describes such a model, but in it Hubble's law is due to Doppler and vacuum gravity effects, the 2.73K CBR is vacuum gravity shifted blackbody cavity radiation from an outer galactic shell, and its (1 + z)-1 dilation and (M,z) relations closely fit high-z SNe Ia data; all this strongly implies our model's vacuum energy is the elusive dark energy. We also find GPS operation's GR effects falsify big bang's in-flight expansion redshift paradigm, and hence the big bang, by showing λ changes occur only at emission. Surprisingly we also discover big bang's CBR prediction is T 0, while galactic photons shrink dλ/dt < 0. Contrary to a PRL editor's claim, the above results show LJ12135 fits PRL guidelines for papers that replace established theories. For details see alphacosmos.net.
Villegas, Ignacio; Kizhakevariam, Naushad; Weaver, Michael J.
1995-07-01
The utility of infrared reflection-absorption spectroscopy (IRAS) for examining structure and bonding for model electrochemical interfaces in ultrahigh vacuum (UHV) is illustrated, focusing specifically on the solvation of cations and chemisorbed carbon monoxide on Pt(111). These systems were chosen partly in view of the availability of IRAS data (albeit limited to chemisorbate vibrations) for the corresponding in-situ metal-solution interfaces, enabling direct spectral comparisons to be made with the "UHV electrochemical model" systems. Kelvin probe measurements of the metal-UHV surface potential changes (ΔΦ) attending alterations in the interfacial composition are also described: these provide the required link to the in-situ electrode potentials as well as yielding additional insight into surface solvation. Variations in the negative electronic charge density and, correspondingly, in the cation surface concentration (thereby mimicking charge-induced alterations in the electrode potential below the potential of zero charge) are achieved by potassium atom dosage onto Pt(111). Of the solvents selected for discussion here — deuterated water, methanol, and acetonitrile — the first two exhibit readily detectable vibrational bands which provide information on the ionic solvation structure. Progressively dosing these solvents onto Pt(111) in the presence of low potassium coverages yields marked alterations in the solvent vibrational bands which can be understood in terms of sequential cation solvation. Comparison between these spectra for methanol with analogous data for sequential methanol solvation of gas-phase alkali cations enables the influence of the interfacial environment to be assessed. The effects of solvating chemisorbed CO are illustrated for acetonitrile; the markedly larger shifts in CO frequencies and binding sites for dilute CO adlayers can be accounted for in terms of short-range coadsorbate interactions in addition to longer-range Stark effects
Fluid approximation analysis of a call center model with time-varying arrivals and after-call work
Directory of Open Access Journals (Sweden)
Yosuke Kawai
2015-12-01
Full Text Available Important features to be included in queueing-theoretic models of the call center operation are multiple servers, impatient customers, time-varying arrival process, and operator’s after-call work (ACW. We propose a fluid approximation technique for the queueing model with these features by extending the analysis of a similar model without ACW recently developed by Liu and Whitt (2012. Our model assumes that the service for each quantum of fluid consists of a sequence of two stages, the first stage for the conversation with a customer and the second stage for the ACW. When the duration of each stage has exponential, hyperexponential or hypo-exponential distribution, we derive the time-dependent behavior of the content of fluid in each stage of service as well as that in the waiting room. Numerical examples are shown to illustrate the system performance for the cases in which the input rate and/or the number of servers vary in sinusoidal fashion as well as in adaptive ways and in stationary cases.
Chiral vacuum alignment and spontaneous CP violation by four-Fermi operators
International Nuclear Information System (INIS)
Rador, Tonguc
2009-01-01
In models where there is a global chiral symmetry which spontaneously breaks to its vectorial subgroup, the introduction of an explicit symmetry breaking perturbation will define the true vacuum of the theory. This true vacuum is found via the minimization of the expectation value of the perturbing Hamiltonian between different vacua as prescribed by Dashen. The procedure of finding the correct vacuum of the theory may result in the spontaneous breaking of CP symmetry even if one initially demands CP invariance on the perturbation. In this work we study, in detail, models where the perturbation is provided by four-Fermi operators. We present the exact treatment for models with two fermion flavors and study the three flavor case in depth numerically. We show that after the Dashen procedure is applied the solutions for the true vacuum fall in three classes with different CP breaking patterns. Critical transitions are possible between these classes as one varies the parameters of the perturbation. We rigorously show that at these transitions a pseudo-Goldstone boson mass vanishes. We also advocate, and substantiate with numerical statistical analysis for various types of models, that if one imposes CP invariance on the perturbation before solving the vacuum alignment, the resulting vacuum structure will have a sizable probability for a light pseudo-Goldstone boson mass. That is a statistical variant of Peccei-Quinn mechanism can be speculated to operate.
Liang, Hua; Miao, Hongyu; Wu, Hulin
2010-03-01
Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and
Directory of Open Access Journals (Sweden)
Li Yang
2017-01-01
Full Text Available Paste-like tailings slurry (PTLS is always simplified as a Bingham plastic fluid, leading to excessive computational errors in the calculation of the hydraulic gradient. In the case of paste-like tailings in long-distance pipeline transportation, to explore a high-precision and reliable hydraulic gradient formula, the rheological behavior of paste-like tailings slurry was analyzed, a time-varying hydraulic gradient model was constructed, and a series of laboratory shear tests were conducted. The results indicate that the PTLS shows noticeable shear-thinning characteristics in constant shear tests; the calculated hydraulic gradient declined by about 56%, from 4.44 MPa·km−1 to 1.95 MPa·km−1 within 253 s, and remained constant for the next four hours during the pipeline transportation. Comparing with the balance hydraulic gradient obtained in a semi-industrial loop test, the computational errors of those calculated by using the time-varying hydraulic gradient model, Jinchuan formula, and Shanxi formula are 15%, 78%, and 130%, respectively. Therefore, our model is a feasible and high-precision solution for the calculation of the hydraulic gradient of paste-like tailings in long-distance pipeline transportation.
Dynamical effects of QCD vacuum structure
International Nuclear Information System (INIS)
Ferreira, Erasmo
1994-01-01
The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the
Indian Vacuum Society: The Indian Vacuum Society
Saha, T. K.
2008-03-01
The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of
Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials
Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.
2013-12-01
Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68
QED vacuum loops and inflation
Energy Technology Data Exchange (ETDEWEB)
Fried, H.M. [Brown University, Department of Physics, Providence, RI (United States); Gabellini, Y. [UMR 6618 CNRS, Institut Non Lineaire de Nice, Valbonne (France)
2015-03-01
A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)
QED vacuum loops and inflation
International Nuclear Information System (INIS)
Fried, H.M.; Gabellini, Y.
2015-01-01
A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)
Michailidi, Eleni Maria; Antoniadi, Sylvia; Koukouvinos, Antonis; Bacchi, Baldassare; Efstratiadis, Andreas
2017-04-01
The time of concentration, tc, is a key hydrological concept and often is an essential parameter of rainfall-runoff modelling, which has been traditionally tackled as a characteristic property of the river basin. However, both theoretical proof and empirical evidence imply that tc is a hydraulic quantity that depends on flow, and thus it should be considered as variable and not as constant parameter. Using a kinematic method approach, easily implemented in GIS environment, we first illustrate that the relationship between tc and the effective rainfall produced over the catchment is well-approximated by a power-type law, the exponent of which is associated with the slope of the longest flow path of the river basin. Next, we take advantage of this relationship to adapt the concept of varying time of concentration within flood modelling, and particularly the well-known SCS-CN approach. In this context, the initial abstraction ratio is also considered varying, while the propagation of the effective rainfall is employed through a parametric unit hydrograph, the shape of which is dynamically adjusted according to the runoff produced during the flood event. The above framework is tested in a number of Mediterranean river basins in Greece, Italy and Cyprus, ensuring faithful representation of most of the observed flood events. Based on the outcomes of this extended analysis, we provide guidance for employing this methodology for flood design studies in ungauged basins.
Magnetically enhanced vacuum arc thruster
International Nuclear Information System (INIS)
Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I
2005-01-01
A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally
Magnetically enhanced vacuum arc thruster
Energy Technology Data Exchange (ETDEWEB)
Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)
2005-11-01
A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.
Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.
1990-01-01
A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.
A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.
Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell
2013-01-01
The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.
HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM
International Nuclear Information System (INIS)
McPhee, William S.
1999-01-01
The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and
Magnetically induced vacuum decay
International Nuclear Information System (INIS)
Xue Shesheng
2003-01-01
We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed
Simulations and Vacuum Tests of a CLIC Accelerating Structure
Garion, C
2011-01-01
The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.
International Nuclear Information System (INIS)
Tevikyan, R.V.
1986-01-01
This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory
Baek, Jonggyu; Sanchez-Vaznaugh, Emma V; Sánchez, Brisa N
2016-03-15
It is well known that associations between features of the built environment and health depend on the geographic scale used to construct environmental attributes. In the built environment literature, it has long been argued that geographic scales may vary across study locations. However, this hypothesized variation has not been systematically examined due to a lack of available statistical methods. We propose a hierarchical distributed-lag model (HDLM) for estimating the underlying overall shape of food environment-health associations as a function of distance from locations of interest. This method enables indirect assessment of relevant geographic scales and captures area-level heterogeneity in the magnitudes of associations, along with relevant distances within areas. The proposed model was used to systematically examine area-level variation in the association between availability of convenience stores around schools and children's weights. For this case study, body mass index (weight kg)/height (m)2) z scores (BMIz) for 7th grade children collected via California's 2001-2009 FitnessGram testing program were linked to a commercial database that contained locations of food outlets statewide. Findings suggested that convenience store availability may influence BMIz only in some places and at varying distances from schools. Future research should examine localized environmental or policy differences that may explain the heterogeneity in convenience store-BMIz associations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.
Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin
2013-08-01
It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.
Hayashi, K.
2013-11-01
We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Model of a 80 K liner vacuum system for the 4.2 K cold bore of the SSCL 20 TeV proton collider
International Nuclear Information System (INIS)
Turner, W.
1993-09-01
In this paper we discuss a model for an 80 K liner system for the beam tube vacuum of the Superconducting Super Collider (SSC). The liner is a coaxial perforated tube fitting inside the ∼4.2 K bore tube of the SSC magnet cryostats. A liner of this type is useful for pumping the gas desorbed by synchrotron radiation out of the view of the radiation and for decoupling the beam current from the 4.2 K refrigeration plant capacity. Addition of cryosorber on the bore tube (e.g., charcoal) greatly increases the H 2 sorption capacity compared to the bare metal surface, thus lengthening the time between beam tube warmups. The model equations are useful for estimating the performance of the beam tube vacuum and for defining the experimental information necessary to make a prediction. Some analysis is also presented for 4.2 K and 20 K liners and a simple 4.2 K beam tube without a liner
The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.
Toro-Ibacache, Viviana; O'Higgins, Paul
2016-07-01
Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A
2015-06-01
We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes.
International Nuclear Information System (INIS)
Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.
2011-01-01
A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. Several mechanisms resulting from material response to plasma bombardment in normal and off-normal conditions are responsible for generating dust of micron and sub-micron length scales inside the VV (Vacuum Vessel) of experimental fusion facilities. The loss of coolant accidents (LOCA), loss of coolant flow accidents (LOFA) and loss of vacuum accidents (LOVA) are types of accidents, expected in experimental fusion reactors like ITER, that may jeopardize components and plasma vessel integrity and cause dust mobilization risky for workers and public. The air velocity is the driven parameter for dust resuspension and its characterization, in the very first phase of the accidents, is critical for the dust release. To study the air velocity trend a small facility, Small Tank for Aerosol Removal and Dust (STARDUST), was set up at the University of Rome 'Tor Vergata', in collaboration with ENEA Frascati laboratories. It simulates a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air inlet from two different positions of the leak: at the equatorial port level and at the divertor port level. The velocity magnitude in STARDUST was investigated in order to map the velocity field by means of a punctual capacitive transducer placed inside STARDUST without obstacles. FLUENT was used to simulate the flow behavior for the same LOVA scenarios used during the experimental tests. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected for the first four seconds, because at the beginning of the experiments the maximum velocity values (that could cause the almost complete dust mobilization) have been measured. In this paper the authors present and discuss the
Ahmad, Sahar; Khan, Muhammad Faisal
2015-12-01
In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maheshwari, Rajesh; Tracy, Mark; Hinder, Murray; Wright, Audrey
2017-08-01
The aim of this study was to compare mask leak with three different peak inspiratory pressure (PIP) settings during T-piece resuscitator (TPR; Neopuff) mask ventilation on a neonatal manikin model. Participants were neonatal unit staff members. They were instructed to provide mask ventilation with a TPR with three PIP settings (20, 30, 40 cm H 2 O) chosen in a random order. Each episode was for 2 min with 2-min rest period. Flow rate and positive end-expiratory pressure (PEEP) were kept constant. Airway pressure, inspiratory and expiratory tidal volumes, mask leak, respiratory rate and inspiratory time were recorded. Repeated measures analysis of variance was used for statistical analysis. A total of 12 749 inflations delivered by 40 participants were analysed. There were no statistically significant differences (P > 0.05) in the mask leak with the three PIP settings. No statistically significant differences were seen in respiratory rate and inspiratory time with the three PIP settings. There was a significant rise in PEEP as the PIP increased. Failure to achieve the desired PIP was observed especially at the higher settings. In a neonatal manikin model, the mask leak does not vary as a function of the PIP when the flow rate is constant. With a fixed rate and inspiratory time, there seems to be a rise in PEEP with increasing PIP. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Vacuum and ultravacuum physics and technology
Bello, Igor
2018-01-01
Vacuum technology has enormous impact on human life in many aspects and fields, such as metallurgy, material development and production, food and electronic industry, microelectronics, device fabrication, physics, materials science, space science, engineering, chemistry, technology of low temperature, pharmaceutical industry, and biology. All decorative coatings used in jewelries and various daily productsincluding shiny decorative papers, the surface finish of watches, and light fixturesare made using vacuum technological processes. Vacuum analytical techniques and vacuum technologies are pillars of the technological processes, material synthesis, deposition, and material analysesall of which are used in the development of novel materials, increasing the value of industrial products, controlling the technological processes, and ensuring the high product quality. Based on physical models and calculated examples, the book provides a deeper look inside the vacuum physics and technology.
Maxwell electrodynamics subjected to quantum vacuum fluctuations
International Nuclear Information System (INIS)
Gevorkyan, A. S.; Gevorkyan, A. A.
2011-01-01
The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.
Insulation vacuum and beam vacuum overpressure release
Parma, V
2009-01-01
There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...
Design and Implementation of Temperature Controller for a Vacuum Distiller
Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi
2014-01-01
This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...
Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing
2014-09-01
In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Ali, M Sanni; Groenwold, Rolf H H; Belitser, Svetlana V; Souverein, Patrick C; Martín, Elisa; Gatto, Nicolle M; Huerta, Consuelo; Gardarsdottir, Helga; Roes, Kit C B; Hoes, Arno W; de Boer, Antonius; Klungel, Olaf H
2016-01-01
BACKGROUND: Observational studies including time-varying treatments are prone to confounding. We compared time-varying Cox regression analysis, propensity score (PS) methods, and marginal structural models (MSMs) in a study of antidepressant [selective serotonin reuptake inhibitors (SSRIs)] use and
Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun
2017-10-01
The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.
Bui, Quang M; Huggins, Richard M; Hwang, Wen-Han; White, Victoria; Erbas, Bircan
2010-01-01
Anti-smoking advertisements are an effective population-based smoking reduction strategy. The Quitline telephone service provides a first point of contact for adults considering quitting. Because of data complexity, the relationship between anti-smoking advertising placement, intensity, and time trends in total call volume is poorly understood. In this study we use a recently developed semi-varying coefficient model to elucidate this relationship. Semi-varying coefficient models comprise parametric and nonparametric components. The model is fitted to the daily number of calls to Quitline in Victoria, Australia to estimate a nonparametric long-term trend and parametric terms for day-of-the-week effects and to clarify the relationship with target audience rating points (TARPs) for the Quit and nicotine replacement advertising campaigns. The number of calls to Quitline increased with the TARP value of both the Quit and other smoking cessation advertisement; the TARP values associated with the Quit program were almost twice as effective. The varying coefficient term was statistically significant for peak periods with little or no advertising. Semi-varying coefficient models are useful for modeling public health data when there is little or no information on other factors related to the at-risk population. These models are well suited to modeling call volume to Quitline, because the varying coefficient allowed the underlying time trend to depend on fixed covariates that also vary with time, thereby explaining more of the variation in the call model.
Directory of Open Access Journals (Sweden)
Zheng Yang
2013-01-01
Full Text Available Torsional spring-loaded antibacklash gear which can improve the transmission precision is widely used in many precision transmission fields. It is very important to investigate the dynamic characteristics of antibacklash gear. In the paper, applied force analysis is completed in detail. Then, defining the starting point of double-gear meshing as initial position, according to the meshing characteristic of antibacklash gear, single- or double-tooth meshing states of two gear pairs and the transformation relationship at any moment are determined. Based on this, a nonlinear model of antibacklash gear with time-varying friction and meshing stiffness is proposed. The influences of friction and variations of torsional spring stiffness, damping ratio and preload on dynamic transmission error (DTE are analyzed by numerical calculation and simulation, and the results show that antibacklash gear can increase the composite meshing stiffness; when the torsional spring stiffness is large enough, the oscillating components of the DTE (ODTE and the RMS of the DTE (RDTE trend to be a constant value; the variations of ODTE and RDTE are not significant, unless preload exceeds a certain value.
Chambers, Austin
2005-01-01
Modern Vacuum Physics presents the principles and practices of vacuum science and technology along with a number of applications in research and industrial production. The first half of the book builds a foundation in gases and vapors under rarefied conditions, The second half presents examples of the analysis of representative systems and describes some of the exciting developments in which vacuum plays an important role. The final chapter addresses practical matters, such as materials, components, and leak detection. Throughout the book, the author''s explanations are presented in terms of first principles and basic physics, augmented by illustrative worked examples and numerous figures.
International Nuclear Information System (INIS)
Geng, X Y; Indraratna, B; Rujikiatkamjorn, C
2010-01-01
Vertical drains combined with vacuum pressure and surcharge preloading are widely used to accelerate the consolidation process of soft clay in order to decrease the pore pressure as well as to increase the effective stress. Currently there are two types of vacuum preloading systems commercially available; (a) membrane system with an airtight membrane over the drainage layer and, (b) membraneless system where a vacuum system is connected to individual drain. Their effectiveness varies from site to site depending on the type of soil treated and the characteristics of the drain-vacuum system. This study presents the analytical solutions of vertical drains with vacuum preloading for both membrane and membraneless systems. According to the field and laboratory observations, the vacuum in both of the membraneless and membrane system was assumed to be decreasing along the drain whereas in the membrane system, it was maintained at a constant level. This model was verified by using the measured settlements and excess pore pressures obtained from large-scale laboratory testing and case studies in Australia. The analytical solutions improved the accuracy of predicting the dissipation of pore water pressure and the associated settlement. The effects of the permeability of the sand blanket in a membrane system and the possible loss of vacuum were also discussed.
New varying speed of light theories
Magueijo, J
2003-01-01
We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying $c$, dispelling the myth that the constancy of $c$ is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying $c$ induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space...
International Nuclear Information System (INIS)
McNab, A; Stagni, F; Garcia, M Ubeda
2014-01-01
We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously 'in the vacuum' rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.
Plasma instability of a vacuum arc centrifuge
International Nuclear Information System (INIS)
Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.
2002-01-01
Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity
International Nuclear Information System (INIS)
Owada, Kimio.
1989-01-01
Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)
Vacuum considerations: summary
International Nuclear Information System (INIS)
Blechschmidt, D.; Halama, H.J.
1978-01-01
A summary is given of the efforts of a vacuum systems study group of the workshop on a Heavy Ion Demonstration Experiment (HIDE) for heavy ion fusion. An inadequate knowledge of cross-sections prevents a more concrete vacuum system design. Experiments leading to trustworthy numbers for charge exchange, stripping and capture cross-sections are badly needed and should start as soon as possible. In linacs, beam loss will be almost directly proportional to the pressure inside the tanks. The tanks should, therefore, be built in such a way that they can be baked-out in situ to improve their vacuum, especially if the cross-sections turn out to be higher than anticipated. Using standard UHV techniques and existing pumps, an even lower pressure can be achieved. The vacuum system design for circular machines will be very difficult, and in some cases, beyond the present state-of-the-art
2016-01-01
This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.
Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...
Vacuum mechatronics first international workshop
Energy Technology Data Exchange (ETDEWEB)
Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))
1989-01-01
This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.
Directory of Open Access Journals (Sweden)
Julia M. Moriarty
2014-04-01
Full Text Available Numerical models can complement observations in investigations of marine sediment transport and depositional processes. A coupled hydrodynamic and sediment transport model was implemented for the Waipaoa River continental shelf offshore of the North Island of New Zealand, to complement a 13-month field campaign that collected seabed and hydrodynamic measurements. This paper described the formulations used within the model, and analyzed the sensitivity of sediment flux estimates to model nesting and seabed erodibility. Calculations were based on the Regional Ocean Modeling System—Community Sediment Transport Modeling System (ROMS-CSTMS, a primitive equation model using a finite difference solution to the equations for momentum and water mass conservation, and transport of salinity, temperature, and multiple classes of suspended sediment. The three-dimensional model resolved the complex bathymetry, bottom boundary layer, and river plume that impact sediment dispersal on this shelf, and accounted for processes including fluvial input, winds, waves, tides, and sediment resuspension. Nesting within a larger-scale, lower resolution hydrodynamic model stabilized model behavior during river floods and allowed large-scale shelf currents to impact sediment dispersal. To better represent observations showing that sediment erodibility decreased away from the river mouth, the seabed erosion rate parameter was reduced with water depth. This allowed the model to account for the observed spatial pattern of erodibility, though the model held the critical shear stress for erosion constant. Although the model neglected consolidation and swelling processes, use of a spatially-varying erodibility parameter significantly increased export of fluvial sediment from Poverty Bay to deeper areas of the shelf.
TFTR diagnostic vacuum controller
International Nuclear Information System (INIS)
Olsen, D.; Persons, R.
1981-01-01
The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller
CERN. Geneva
2001-01-01
A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
International Nuclear Information System (INIS)
Rohrlich, D.M.
1986-01-01
Three problems in quantum field theory are analyzed. Each presents the vacuum in a different role. The connections among these significant roles are discussed in Chapter I. Chapter II contains a calculation of the zero-point energy in the Kaluza-Klein model. The zero-point fluctuations induce a potential which makes the compact dimensional contract. The effective potential is seen to be the four-dimensional version of the Casimir effect. Chapter III contains a Monte Carlo study of asymptotic freedom scales in lattice QCD. Two versions of SU(2) gauge theory, having different representations of the gauge group, are compared. A new method is used to calculate the ratio of scale parameters of the two theories. The method directly uses the weak-coupling behavior of the theories. The Monte-Carlo results are compared with perturbative calculations on the lattice, one of which is presented. They are in good agreement. Chapter IV applies the hypothesis of dimensional reduction to five-dimensional SU(2) and four-dimensional SO(3) lattice gauge theories. New analytic results for the strong- and weak-coupling limits are derived. Monte Carlo calculations show dimensional reduction in the strong coupling phases of both theories. At the phase transition, the two theories show a similar loss of dimensional reduction. An external source of random flux does not induce dimensional reduction where it is not already present
Quark and gluon condensate in vacuum
International Nuclear Information System (INIS)
Vajnshtejn, A.I.; Zakharov, V.I.; Shifman, M.A.
1979-01-01
The mechanism of quark confinement has been reviewed. The fact that coloured particles in a free state cannot be observed is connected with specific properties of vacuum in quantum chromodynamics. The basic hypothesis consists in the existence of vacuum fields, quark and gluon condensates, which affect the coloured objects. The vacuum transparent relative to noncharged ''white'' states serves as a source of the force acting upon the coloured particles. It has been a sucess to examine strictly the action of the vacuum fields on quarks when the distance between them is relatively small and the force of the vacuum fields on quarks is relatively small too. It is shown that the interaction with the vacuum fields manifests itself earlier than the forces connected with the gluon exchange do. It is assumed that the vacuum condensate of quarks and gluons and its relation to properties of resonances and to the bag model exist in reality. The dispersion sum rules are used for calculating masses and lepton widths of resonances
Constrained potential method for false vacuum decays
International Nuclear Information System (INIS)
Park, Jae-hyeon
2010-11-01
A procedure is reported for numerical analysis of false vacuum transition in a model with multiple scalar fields. It is a refined version of the approach by Konstandin and Huber. The alteration makes it possible to tackle a class of problems that was difficult or unsolvable with the original method, i.e. those with a distant or nonexistent true vacuum. An example with an unbounded-from-below direction is presented. (orig.)
Tang, Huadong; Hussain, Azher; Leal, Mauricio; Fluhler, Eric; Mayersohn, Michael
2011-02-01
This commentary is a reply to a recent article by Mahmood commenting on the authors' article on the use of fixed-exponent allometry in predicting human clearance. The commentary discusses eight issues that are related to criticisms made in Mahmood's article and examines the controversies (fixed-exponent vs. varying-exponent allometry) from the perspective of statistics and mathematics. The key conclusion is that any allometric method, which is to establish a power function based on a limited number of animal species and to extrapolate the resulting power function to human values (varying-exponent allometry), is infused with fundamental statistical errors. Copyright © 2010 Wiley-Liss, Inc.
Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K
2007-01-01
The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.
Gravitational collapse and the vacuum energy
International Nuclear Information System (INIS)
Campos, M
2014-01-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
International Nuclear Information System (INIS)
Miller, H.C.
1976-01-01
A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation
Brown, I.
2013-12-16
The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.
International Nuclear Information System (INIS)
Stohr, J.A.
1957-01-01
After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results
International Nuclear Information System (INIS)
1977-01-01
The vacuum system for Heavy Ion Fusion machines can be divided according to pressure into 4 parts: (a) Ion Sources; (b) Linear Accelerators; (c) Circular Accelerators, Accumulators and Storage Rings; and (d) Reactors. Since ion sources will need rather conventional pumping arrangements and reactors will operate with greater pressures, depending on their mode of operation, only items b and c will be treated in this report. In particular, the vacuum system design will be suggested for the machines proposed by various scenarios arrived at during the workshop. High mass numbers will be assumed
1964-01-01
Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr
Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K
2010-10-15
Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.
Raut, Samarth S.; Liu, Peng; Finol, Ender A.
2015-01-01
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...
On the existence of a first order phase transition at small vacuum angel θin the CP3 model
International Nuclear Information System (INIS)
Olejnik, S.; Slovenska Akademia Vied, Bratislava; Schierholz, G.; Forschungszentrum Juelich GmbH
1993-12-01
We examine the phase structure of the CP 3 model as a function of θ in the weak coupling regime. It is shown that the model has a first order phase transition at small θ. We pay special attention to the extrapolation of the data to the infinite volume. It is found that the critical value of θ decreases towards zero as β is taken to infinity. (orig.)
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2010-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has
Energy Technology Data Exchange (ETDEWEB)
Benedito, J., E-mail: jjbenedi@tal.upv.e [Grupo de Analisis y Simulacion de Procesos Agroalimentarios, Departamento Tecnologia de Alimentos, Universidad Politecnica de Valencia, Cami de Vera S/n, E46022 Valencia (Spain); Cambero, M.I. [Departamento de Nutricion, Bromatologia y Tecnologia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, E28040 Madrid (Spain); Ortuno, C. [Grupo de Analisis y Simulacion de Procesos Agroalimentarios, Departamento Tecnologia de Alimentos, Universidad Politecnica de Valencia, Cami de Vera S/n, E46022 Valencia (Spain); Cabeza, M.C.; Ordonez, J.A.; Hoz, L. de la [Departamento de Nutricion, Bromatologia y Tecnologia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, E28040 Madrid (Spain)
2011-03-15
The E-beam irradiation of vacuum-packaged RTE cooked ham was carried out to establish the dose required to achieve the food safety objective (FSO) and to minimize changes in selected sensory attributes. Cooked ham was irradiated with doses ranging 1-4 kGy. After the treatment, the microbial inactivation of Listeria monocytogenes, the shelf-life of the product and some sensory attributes (appearance, odor, and flavor) were determined. The inactivation of L. monocytogenes was satisfactorily described by a first-order kinetics equation (R2=0.99). The influence of the irradiation dose on appearance, odor, and flavor was modeled through Gompertz (R2=0.99, for appearance) and Activation/Inactivation (R2=0.99, for odor and flavor) equations. A model was also developed to determine the shelf-life of irradiated cooked ham depending on the irradiation dose (R2>0.91). The dose that maximized the scores of the sensory attributes was 0.96 kGy resulting in an acceptable sensory quality for 80 days. It is possible to apply up to 2 kGy to ensure microbial safety, while provoking no significant changes in the above mentioned sensory attributes.
International Nuclear Information System (INIS)
Benedito, J.; Cambero, M.I.; Ortuno, C.; Cabeza, M.C.; Ordonez, J.A.; Hoz, L. de la
2011-01-01
The E-beam irradiation of vacuum-packaged RTE cooked ham was carried out to establish the dose required to achieve the food safety objective (FSO) and to minimize changes in selected sensory attributes. Cooked ham was irradiated with doses ranging 1-4 kGy. After the treatment, the microbial inactivation of Listeria monocytogenes, the shelf-life of the product and some sensory attributes (appearance, odor, and flavor) were determined. The inactivation of L. monocytogenes was satisfactorily described by a first-order kinetics equation (R2=0.99). The influence of the irradiation dose on appearance, odor, and flavor was modeled through Gompertz (R2=0.99, for appearance) and Activation/Inactivation (R2=0.99, for odor and flavor) equations. A model was also developed to determine the shelf-life of irradiated cooked ham depending on the irradiation dose (R2>0.91). The dose that maximized the scores of the sensory attributes was 0.96 kGy resulting in an acceptable sensory quality for 80 days. It is possible to apply up to 2 kGy to ensure microbial safety, while provoking no significant changes in the above mentioned sensory attributes.
CERN PhotoLab
1983-01-01
Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.
International Nuclear Information System (INIS)
Bartlett, A.J.; Lessard, P.A.
1984-01-01
This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references
CERN PhotoLab
1971-01-01
Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-
CERN PhotoLab
1970-01-01
A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.
1983-01-01
This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.
Energy Technology Data Exchange (ETDEWEB)
Reik, H
1928-12-27
Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.
Energy Technology Data Exchange (ETDEWEB)
Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo
1988-02-25
An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)
Dadhich, Naresh
2010-01-01
We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.
DEFF Research Database (Denmark)
Silvennoinen, Annestiina; Terasvirta, Timo
A new multivariate volatility model that belongs to the family of conditional correlation GARCH models is introduced. The GARCH equations of this model contain a multiplicative deterministic component to describe long-run movements in volatility and, in addition, the correlations...
Masina, Isabella; Notari, Alessio
2012-05-11
For a narrow band of values of the top quark and Higgs boson masses, the standard model Higgs potential develops a false minimum at energies of about 10(16) GeV, where primordial inflation could have started in a cold metastable state. A graceful exit to a radiation-dominated era is provided, e.g., by scalar-tensor gravity models. We pointed out that if inflation happened in this false minimum, the Higgs boson mass has to be in the range 126.0±3.5 GeV, where ATLAS and CMS subsequently reported excesses of events. Here we show that for these values of the Higgs boson mass, the inflationary gravitational wave background has be discovered with a tensor-to-scalar ratio at hand of future experiments. We suggest that combining cosmological observations with measurements of the top quark and Higgs boson masses represent a further test of the hypothesis that the standard model false minimum was the source of inflation in the universe.
High current vacuum closing switch
International Nuclear Information System (INIS)
Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.
2005-01-01
The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru
International Nuclear Information System (INIS)
Charles, F.
2009-11-01
-In-Cell method. Starting from these models, we perform some numerical simulations of a loss-of-vacuum event in the framework of safety studies in ITER. (author)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.
2018-01-01
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was
Pero, Milad; Askari, Gholamreza; Skåra, Torstein; Skipnes, Dagbjørn; Kiani, Hossein
2018-02-08
Vacuum-packed broccoli stems and florets were subjected to heat treatment (60-99 °C) for various time intervals. The activity of peroxidase was measured after processing. Thermally processed samples were then stored at 4 °C for 35 days, and the color of the samples was measured every 7 days. Effects of parameters (heating temperature and duration, storage time) on the color of broccoli were modeled and simulated by an artificial neural network (ANN). Simulations confirmed that stems were predicted to be more prone to changes than florets. More color loss was observed with longer processing or storage combinations. The simulations also confirmed that higher temperatures during heat processing could retard color changes during storage. For stems treated at 80 °C for short durations, color loss was more predominant than both 65 and 99 °C, probably due to the incomplete inactivation of enzymes besides more tissue damage, with increased enzyme access to the substrate. The greenness of both stems and florets during storage can be better preserved at higher temperatures (99 °C) and short times. The simulation results revealed that the ANN method could be used as an effective tool for predicting and analyzing the color values of heat-treated broccoli. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Current and voltage distribution in the diffuse vacuum arc
Schellekens, H.; Schram, D.C.
1985-01-01
On the basis of extensive measurements, a model is developed for the diffuse plasma of the high-current vacuum arc. The model shows that the current constriction and the voltage distribution in the diffuse vacuum arc prior to anode-spot formation are caused by the pressure source to which the
International Nuclear Information System (INIS)
Adabi, Farzin; Karami, Kayoomars; Felegary, Fereshte; Azarmi, Zohre
2012-01-01
We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration parameters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G. (research papers)
Vacuum Ward identities for higher genera
International Nuclear Information System (INIS)
Zamolodchikov, Al.B.
1988-01-01
The minimal models of two-dimensional conformal field theory are considered on the surfaces with nontrivial topology. Due to degeneration of the vacuum module in these models, the stress tensor components satisfy special equations can be written in the form of partial differential equations on the moduli space, satisfied by the partition functions of the theory. 22 refs.; 1 tab
Vacuum alignment and radiatively induced Fermi scale
Directory of Open Access Journals (Sweden)
Alanne Tommi
2017-01-01
Full Text Available We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.
Vacuum alignment and radiatively induced Fermi scale
DEFF Research Database (Denmark)
Alanne, Tommi
2017-01-01
We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges ...
Apollo telescope mount thermal systems unit thermal vacuum test
Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.
1971-01-01
The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.
Is the compactified vacuum semiclassically unstable
International Nuclear Information System (INIS)
Maeda, K.
1987-01-01
It is shown, by applying the positive-energy theorem, that the present vacuum (M 4 xK D ) in some higher-dimensional theories (e.g. the Candelas-Weinberg model) is stable against decay by quantum tunnelling without change of topology. Frieman and Kolb have found a quantum tunnelling instability of the present vacuum in the same models. But they did not take into account the gravitational effect, which is important and prevents the universe from decaying into the higher-dimensional de Sitter phase. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Burda, Philipp [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)
2016-06-06
We have recently suggested that tiny black holes can act as nucleation seeds for the decay of the metastable Higgs vacuum. Previous results applied only to the nucleation of thin-wall bubbles, and covered a very small region of parameter space. This paper considers bubbles of arbitrary profile and reaches the same conclusion: black holes seed rapid vacuum decay. Seeded and unseeded nucleation rates are compared, and the gravitational back reaction of the bubbles is taken into account. The evolution of the bubble interior is described for the unseeded nucleation. Results are presented for the renormalisation group improved Standard Model Higgs potential, and a simple effective model representing new physics.
International Nuclear Information System (INIS)
Burda, Philipp; Gregory, Ruth; Moss, Ian G.
2016-01-01
We have recently suggested that tiny black holes can act as nucleation seeds for the decay of the metastable Higgs vacuum. Previous results applied only to the nucleation of thin-wall bubbles, and covered a very small region of parameter space. This paper considers bubbles of arbitrary profile and reaches the same conclusion: black holes seed rapid vacuum decay. Seeded and unseeded nucleation rates are compared, and the gravitational back reaction of the bubbles is taken into account. The evolution of the bubble interior is described for the unseeded nucleation. Results are presented for the renormalisation group improved Standard Model Higgs potential, and a simple effective model representing new physics.
Evaluating operational vacuum for landfill biogas extraction.
Fabbricino, Massimiliano
2007-01-01
This manuscript proposes a practical methodology for estimating the operational vacuum for landfill biogas extraction from municipal landfills. The procedure is based on two sub-models which simulate landfill gas production from organic waste decomposition and distribution of gas pressure and gas movement induced by suction at a blower station. The two models are coupled in a single mass balance equation, obtaining a relationship between the operational vacuum and the amount of landfill gas that can be extracted from an assigned system of vertical wells. To better illustrate the procedure, it is applied to a case study, where a good agreement between simulated and measured data, within +/- 30%, is obtained.
New varying speed of light theories
International Nuclear Information System (INIS)
Magueijo, Joao
2003-01-01
We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying-c, dispelling the myth that the constancy of c is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a colour-dependent speed of light; varying-c induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how 'doubly special' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra-high energy cosmic rays (UHECRs) and gamma ray bursts. Some recent work on the physics of 'black' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in c. Finally, we describe the observational status of the theory. The evidence is currently slim-redshift dependence in the atomic fine structure, anomalies with UHECRs, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight but not insurmountable. We conclude with the observational predictions of the theory and the prospects for its refutation or vindication
Directory of Open Access Journals (Sweden)
K. Rankinen
2002-01-01
Full Text Available As a first step in applying the Integrated Nitrogen model for CAtchments (INCA to the Simojoki river basin (3160 km2, this paper focuses on calibration of the hydrological part of the model and nitrogen (N dynamics in the river during the 1980s and 1990s. The model application utilised the GIS land-use and forest classification of Finland together with a recent forest inventory based on remote sensing. In the INCA model, the Hydrologically Effective Rainfall (HER is used to drive the water flow and N fluxes through the catchment system. HER was derived from the Watershed Simulation and Forecast System (WSFS. The basic component of the WSFS is a conceptual hydrological model which simulates runoff using precipitation, potential evapotranspiration and temperature data as inputs. Spatially uniform, lumped input data were calculated for the whole river basin and spatially semi-distributed input data were calculated for each of the nine sub-basins. When comparing discharges simulated by the INCA model with observed values, a better fit was obtained with the semi-distributed data than with the spatially uniform data (R2 0.78 v. 0.70 at Hosionkoski and 0.88 v. 0.78 at the river outlet. The timing of flow peaks was simulated rather well with both approaches, although the semi-distributed input data gave a more realistic simulation of low flow periods and the magnitude of spring flow peaks. The river basin has a relatively closed N cycle with low input and output fluxes of inorganic N. During 1982-2000, the average total N flux to the sea was 715 tonnes yr–1, of which 6% was NH4-N, 14% NO3-N, and 80% organic N. Annual variation in river flow and the concentrations of major N fractions in river water, and factors affecting this variation are discussed. Keywords: northern river basin, nitrogen, forest management, hydrology, dynamic modelling, semi-distributed modelling
Borisyuk, Alla; Semple, Malcolm N; Rinzel, John
2002-10-01
A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on
Nonperturbative QED vacuum birefringence
Energy Technology Data Exchange (ETDEWEB)
Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)
2017-05-19
In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.
Compact vacuum insulation embodiments
Benson, D.K.; Potter, T.F.
1992-04-28
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.
Benson, D.K.; Potter, T.F.
1993-01-05
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
International Nuclear Information System (INIS)
Sibuet, R
2008-01-01
For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed
Picha, Kelsey J; Howell, Dana M
2018-03-01
Patient adherence to rehabilitation programmes is frequently low - particularly adherence to home exercise programmes. Home exercise programmes have been identified as complementary to clinic-based physical therapy in an orthopaedic setting. Barriers to patient adherence have previously been identified within the literature. Low self-efficacy is a barrier to adherence that clinicians have the ability to have an impact on and improve. The theory of self-efficacy is defined as a person's confidence in their ability to perform a task. This theory examines the ability of a person to change through exerting control over inner processes of goal setting, self-monitoring, feedback, problem solving and self-evaluation. If clinicians are able to identify patients with low self-efficacy prior to the prescription of a home exercise programme, adjustments to individualized care can be implemented. Individualized care based on improving self-efficacy for home exercise programmes may improve patient adherence to these programmes. The purpose of this article was to use the theory of self-efficacy to direct clinicians in providing individualized programmes to patients with varying levels of self-efficacy. Copyright © 2017 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Dearnaley, G.
1986-01-01
The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)
International Nuclear Information System (INIS)
Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.
1993-01-01
Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source
International Nuclear Information System (INIS)
Groebner, O.
1995-01-01
The Large Hadron Collider (LHC) which is planned at CERN will be housed in the tunnel of the Large Electron Positron collider (LEP) and will store two counter-rotating proton beams with energies of up to 7 TeV in a 27 km accelerator/storage ring with superconducting magnets. The vacuum system for the LHC will be at cryogenic temperatures (between 1.9 and 20 K) and will be exposed to synchrotron radiation emitted by the protons. A stringent limitation on the vacuum is given by the energy deposition in the superconducting coils of the magnets due to nuclear scattering of the protons on residual gas molecules because this may provoke a quench. This effect imposes an upper limit to a local region of increased gas density (e.g. a leak), while considerations of beam lifetime (100 h) will determine more stringent requirements on the average gas density. The proton beam creates ions from the residual gas which may strike the vacuum chamber with sufficient energy to lead to a pressure 'run-away' when the net ion induced desorption yield exceeds a stable limit. These dynamic pressure effects will be limited to an acceptable level by installing a perforated 'beam screen' which shields the cryopumped gas molecules at 1.9 K from synchrotron radiation and which also absorbs the synchrotron radiation power at a higher and, therefore, thermodynamically more efficient temperature. (author)
Anomalous vacuum expectation values
International Nuclear Information System (INIS)
Suzuki, H.
1986-01-01
The anomalous vacuum expectation value is defined as the expectation value of a quantity that vanishes by means of the field equations. Although this value is expected to vanish in quantum systems, regularization in general produces a finite value of this quantity. Calculation of this anomalous vacuum expectation value can be carried out in the general framework of field theory. The result is derived by subtraction of divergences and by zeta-function regularization. Various anomalies are included in these anomalous vacuum expectation values. This method is useful for deriving not only the conformal, chiral, and gravitational anomalies but also the supercurrent anomaly. The supercurrent anomaly is obtained in the case of N = 1 supersymmetric Yang-Mills theory in four, six, and ten dimensions. The original form of the energy-momentum tensor and the supercurrent have anomalies in their conservation laws. But the modification of these quantities to be equivalent to the original one on-shell causes no anomaly in their conservation laws and gives rise to anomalous traces
Directory of Open Access Journals (Sweden)
P.A.V.B. Swamy
2017-02-01
Full Text Available Using the net effect of all relevant regressors omitted from a model to form its error term is incorrect because the coefficients and error term of such a model are non-unique. Non-unique coefficients cannot possess consistent estimators. Uniqueness can be achieved if; instead; one uses certain “sufficient sets” of (relevant regressors omitted from each model to represent the error term. In this case; the unique coefficient on any non-constant regressor takes the form of the sum of a bias-free component and omitted-regressor biases. Measurement-error bias can also be incorporated into this sum. We show that if our procedures are followed; accurate estimation of bias-free components is possible.
Vacuum pumping concepts for ETF
International Nuclear Information System (INIS)
Homeyer, W.G.
1980-09-01
The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems
DEFF Research Database (Denmark)
Matzuka, Brett; Mehlsen, Jesper; Tran, Hien
2015-01-01
are sparse, typical studies only include measurements of heart rate and blood pressure, as a result it is difficult to determine what mechanisms that are impaired. It is known, that blood pressure regulation is mediated by changes in heart rate, vascular resistance, cardiac contractility and a number...... of other factors. Given that numerous factors contribute to changing these quantities it is difficult to devise a physiological model describing how they change in time. One way is to build a model that allows these controlled quantities to change and to compare dynamics between subject groups. To do so...
Zainudin, W. N. R. A.; Ramli, N. A.
2017-09-01
In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.
Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y.; Luo, S.; Shen, Y.; Guo, J.; Wen, L.
2018-04-01
Systematic cold biases exist in the simulation for 2 m air temperature in the Tibetan Plateau (TP) when using regional climate models and global atmospheric general circulation models. We updated the albedo in the Weather Research and Forecasting (WRF) Model lower boundary condition using the Global LAnd Surface Satellite Moderate-Resolution Imaging Spectroradiometer albedo products and demonstrated evident improvement for cold temperature biases in the TP. It is the large overestimation of albedo in winter and spring in the WRF model that resulted in the large cold temperature biases. The overestimated albedo was caused by the simulated precipitation biases and over-parameterization of snow albedo. Furthermore, light-absorbing aerosols can result in a large reduction of albedo in snow and ice cover. The results suggest the necessity of developing snow albedo parameterization using observations in the TP, where snow cover and melting are very different from other low-elevation regions, and the influence of aerosols should be considered as well. In addition to defining snow albedo, our results show an urgent call for improving precipitation simulation in the TP.
Koopman, S.J.; Creal, D.D.
2010-01-01
We develop a flexible business cycle indicator that accounts for potential time variation in macroeconomic variables. The coincident economic indicator is based on a multivariate trend cycle decomposition model and is constructed from a moderate set of US macroeconomic time series. In particular, we
Daniels, Elizabeth A.; Sherman, Aurora M.
2016-01-01
Using an experimental methodology, the present study investigated adolescents' attitudes toward media images of women in non-appearance-focused (CEO and military pilot) and appearance-focused occupations (model and actor). One hundred adolescent girls and 76 adolescent boys provided ratings of likability, competence, and similarity to self after…
Homeyer, C. R.; Martin, E. R.; McKinzie, R.; McCarthy, K.
2017-12-01
The boundary between the tropics and the extratropics in each hemisphere is not fixed in space or time. Variations in the north-south width of the tropics are directly connected to changes in weather and climate. These fluctuations have been shown to impact tropical biodiversity, the spread of vector borne diseases, atmospheric chemistry, and additional natural and human sectors. However, there is no unanimous definition of the tropical boundary. This has led to a disagreement on the magnitude of changes in the tropical width during the past 30 years and a lack of understanding concerning its spatial and temporal variability. This study identifies the variability of the tropical width in modern reanalyses (ERA-Interim, JRA-55, CFSR, MERRA, and MERRA-2) and CMIP5 models (all models with available 6-hourly output) using a novel analysis metric: the tropopause "break" (i.e., the sharp discontinuity in tropopause altitude between the tropics and extratropics). Similarities and differences are found amongst the reanalyses, with some degree of tropical narrowing in the Eastern Pacific between 1981 and 2010. Historical simulations from the CMIP5 models agree well with the tropopause break latitudes depicted by the reanalyses, with considerable differences in estimated trends over the relatively short overlapping time period of the datasets. For future projections under the RCP8.5 scenario from 2006 to 2100, CMIP5 models generally show statistically significant increases in tropical width (at the 99% level) throughout each hemisphere, with regional variability of 1-2 degrees in poleward latitude trends. The impact of CMIP5 model grid resolution and other factors on the results of the tropopause break analysis will be discussed.
Vacuum fluctuations of the supersymmetric field in curved background
International Nuclear Information System (INIS)
Bilić, Neven; Domazet, Silvije; Guberina, Branko
2012-01-01
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Vacuum fluctuations of the supersymmetric field in curved background
Energy Technology Data Exchange (ETDEWEB)
Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)
2012-01-16
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Energy Technology Data Exchange (ETDEWEB)
Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering
2008-08-15
Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.
Katarina Anthony
2012-01-01
The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model. Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed. “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...
Quantum vacuum energy in graphs and billiards
International Nuclear Information System (INIS)
Kaplan, L.
2010-01-01
The vacuum (Casimir) energy in quantum field theory is a problem relevant both to new nanotechnology devices and to dark energy in cosmology. The crucial question is the dependence of the energy on the system geometry. Despite much progress since the first prediction of the Casimir effect in 1948 and its subsequent experimental verification in simple geometries, even the sign of the force in nontrivial situations is still a matter of controversy. Mathematically, vacuum energy fits squarely into the spectral theory of second-order self-adjoint elliptic linear differential operators. Specifically one promising approach is based on the small-t asymptotics of the cylinder kernel e -t√(H) , where H is the self-adjoint operator under study. In contrast with the well-studied heat kernel e -tH , the cylinder kernel depends in a non-local way on the geometry of the problem. We discuss some results by the Louisiana-Oklahoma-Texas collaboration on vacuum energy in model systems, including quantum graphs and two-dimensional cavities. The results may shed light on general questions, including the relationship between vacuum energy and periodic or closed classical orbits, and the contribution to vacuum energy of boundaries, edges, and corners.
DEFF Research Database (Denmark)
Liu, Guanchen; Jæger, Tanja C.; Nielsen, Søren B.
2017-01-01
To better understand the interactions between nanoparticulated whey protein (NWP) and other milk proteins during acidification, milk model systems were diluted to 0.5% protein concentration and adjusted to pH of 6.0-4.5 following homogenisation and heat treatment. The diluted systems with different...... concentrations of NWP (0-0.5%) were characterised in terms of particle size, viscosity, surface charge and hydrophobicity. When pH was adjusted to 5.5, aggregation was initiated at levels of NWP (0.25-0.5%) leading to significant increase in particle size and viscosity. Pure NWP (0.5%) showed largest initial...
A Perspective for Time-Varying Channel Compensation with Model-Based Adaptive Passive Time-Reversal
Directory of Open Access Journals (Sweden)
Lussac P. MAIA
2015-06-01
Full Text Available Underwater communications mainly rely on acoustic propagation which is strongly affected by frequency-dependent attenuation, shallow water multipath propagation and significant Doppler spread/shift induced by source-receiver-surface motion. Time-reversal based techniques offer a low complexity solution to decrease interferences caused by multipath, but a complete equalization cannot be reached (it saturates when maximize signal to noise ratio and these techniques in conventional form are quite sensible to channel variations along the transmission. Acoustic propagation modeling in high frequency regime can yield physical-based information that is potentially useful to channel compensation methods as the passive time-reversal (pTR, which is often employed in Digital Acoustic Underwater Communications (DAUC systems because of its low computational cost. Aiming to overcome the difficulties of pTR to solve time-variations in underwater channels, it is intended to insert physical knowledge from acoustic propagation modeling in the pTR filtering. Investigation is being done by the authors about the influence of channel physical parameters on propagation of coherent acoustic signals transmitted through shallow water waveguides and received in a vertical line array of sensors. Time-variant approach is used, as required to model high frequency acoustic propagation on realistic scenarios, and applied to a DAUC simulator containing an adaptive passive time-reversal receiver (ApTR. The understanding about the effects of changes in physical features of the channel over the propagation can lead to design ApTR filters which could help to improve the communications system performance. This work presents a short extension and review of the paper 12, which tested Doppler distortion induced by source-surface motion and ApTR compensation for a DAUC system on a simulated time-variant channel, in the scope of model-based equalization. Environmental focusing approach
McKenna, Mihan H.; Stump, Brian W.; Hayward, Chris
2008-06-01
The Chulwon Seismo-Acoustic Array (CHNAR) is a regional seismo-acoustic array with co-located seismometers and infrasound microphones on the Korean peninsula. Data from forty-two days over the course of a year between October 1999 and August 2000 were analyzed; 2052 infrasound-only arrivals and 23 seismo-acoustic arrivals were observed over the six week study period. A majority of the signals occur during local working hours, hour 0 to hour 9 UT and appear to be the result of cultural activity located within a 250 km radius. Atmospheric modeling is presented for four sample days during the study period, one in each of November, February, April, and August. Local meteorological data sampled at six hour intervals is needed to accurately model the observed arrivals and this data produced highly temporally variable thermal ducts that propagated infrasound signals within 250 km, matching the temporal variation in the observed arrivals. These ducts change dramatically on the order of hours, and meteorological data from the appropriate sampled time frame was necessary to interpret the observed arrivals.
Fisher, Aaron J; Reeves, Jonathan W; Chi, Cyrus
2016-07-01
Expanding on recently published methods, the current study presents an approach to estimating the dynamic, regulatory effect of the parasympathetic nervous system on heart period on a moment-to-moment basis. We estimated second-to-second variation in respiratory sinus arrhythmia (RSA) in order to estimate the contemporaneous and time-lagged relationships among RSA, interbeat interval (IBI), and respiration rate via vector autoregression. Moreover, we modeled these relationships at lags of 1 s to 10 s, in order to evaluate the optimal latency for estimating dynamic RSA effects. The IBI (t) on RSA (t-n) regression parameter was extracted from individual models as an operationalization of the regulatory effect of RSA on IBI-referred to as dynamic RSA (dRSA). Dynamic RSA positively correlated with standard averages of heart rate and negatively correlated with standard averages of RSA. We propose that dRSA reflects the active downregulation of heart period by the parasympathetic nervous system and thus represents a novel metric that provides incremental validity in the measurement of autonomic cardiac control-specifically, a method by which parasympathetic regulatory effects can be measured in process. © 2016 Society for Psychophysiological Research.
International Nuclear Information System (INIS)
Lynch, Miranda L.; Huang, Li-Shan; Cox, Christopher; Strain, J.J.; Myers, Gary J.; Bonham, Maxine P.; Shamlaye, Conrad F.; Stokes-Riner, Abbie; Wallace, Julie M.W.; Duffy, Emeir M.; Clarkson, Thomas W.; Davidson, Philip W.
2011-01-01
Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children's development. This cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children's neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as a case
Energy Technology Data Exchange (ETDEWEB)
Lynch, Miranda L., E-mail: Miranda_Lynch@urmc.rochester.edu [University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Huang, Li-Shan [University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Cox, Christopher [Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Strain, J.J. [University of Ulster, Coleraine, Northern Ireland (United Kingdom); Myers, Gary J. [University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Bonham, Maxine P. [University of Ulster, Coleraine, Northern Ireland (United Kingdom); Shamlaye, Conrad F. [Ministry of Health, Republic of Seychelles (Seychelles); Stokes-Riner, Abbie [University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Wallace, Julie M.W.; Duffy, Emeir M. [University of Ulster, Coleraine, Northern Ireland (United Kingdom); Clarkson, Thomas W.; Davidson, Philip W. [University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States)
2011-01-15
Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children's development. This cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children's neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy
Vacuum distillation/vapor filtration water recovery
Honegger, R. J.; Neveril, R. B.; Remus, G. A.
1974-01-01
The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.
Higgs vacuum stability and modified chaotic inflation
Energy Technology Data Exchange (ETDEWEB)
Saha, Abhijit Kumar, E-mail: abhijit.saha@iitg.ernet.in; Sil, Arunansu, E-mail: asil@iitg.ernet.in
2017-02-10
The issue of electroweak vacuum stability is studied in presence of a scalar field which participates in modifying the minimal chaotic inflation model. It is shown that the threshold effect on the Higgs quartic coupling originating from the Higgs–inflaton sector interaction can essentially make the electroweak vacuum stable up to the Planck scale. On the other hand we observe that the new physics parameters in this combined framework are enough to provide deviation from the minimal chaotic inflation predictions so as to keep it consistent with recent observation by Planck 2015.