WorldWideScience

Sample records for varying liquid flow

  1. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  2. Gas-liquid flow filed in agitated vessels

    International Nuclear Information System (INIS)

    Hormazi, F.; Alaie, M.; Dabir, B.; Ashjaie, M.

    2001-01-01

    Agitated vessels in form of sti reed tank reactors and mixed ferment ors are being used in large numbers of industry. It is more important to develop good, and theoretically sound models for scaling up and design of agitated vessels. In this article, two phase flow (gas-liquid) in a agitated vessel has been investigated numerically. A two-dimensional computational fluid dynamics model, is used to predict the gas-liquid flow. The effects of gas phase, varying gas flow rates and variation of bubbles shape on flow filed of liquid phase are investigated. The numerical results are verified against the experimental data

  3. Time varying determinants of bond flows to emerging markets

    Directory of Open Access Journals (Sweden)

    Yasemin Erduman

    2016-06-01

    Full Text Available This paper investigates the time varying nature of the determinants of bond flows with a focus on the global financial crisis period. We estimate a time varying regression model using Bayesian estimation methods, where the posterior distribution is approximated by Gibbs sampling algorithm. Our findings suggest that the interest rate differential is the most significant pull factor of portfolio bond flows, along with the inflation rate, while the growth rate does not play a significant role. Among the push factors, global liquidity is the most important driver of bond flows. It matters the most, when unconventional monetary easing policies were first announced; and its importance as a determinant of portfolio bond flows decreases over time, starting with the Eurozone crisis, and diminishes with the tapering talk. Global risk appetite and the risk perception towards the emerging countries also have relatively small and stable significant effects on bond flows.

  4. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  5. Exploring liquid metal plasma facing component (PFC) concepts-Liquid metal film flow behavior under fusion relevant magnetic fields

    International Nuclear Information System (INIS)

    Narula, M.; Abdou, M.A.; Ying, A.; Morley, N.B.; Ni, M.; Miraghaie, R.; Burris, J.

    2006-01-01

    The use of fast moving liquid metal streams or 'liquid walls' as a plasma contact surface is a very attractive option and has been looked upon with considerable interest over the past several years, both by the plasma physics and fusion engineering programs. Flowing liquid walls provide an ever replenishing contact surface to the plasma, leading to very effective particle pumping and surface heat flux removal. A key feasibility issue for flowing liquid metal plasma facing component (PFC) systems, pertains to their magnetohydrodynamic (MHD) behavior under the spatially varying magnetic field environment, typical of a fusion device. MHD forces hinder the development of a smooth and controllable liquid metal flow needed for PFC applications. The present study builds up on the ongoing research effort at UCLA, directed towards providing qualitative and quantitative data on liquid metal free surface flow behavior under fusion relevant magnetic fields

  6. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  7. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  8. Liquid-Flow Controller With Trickle Preflow

    Science.gov (United States)

    Cox, George B., Jr.

    1990-01-01

    Liquid-flow controller allows pressure in liquid to increase steeply with flow as flow starts, then provides more-gradual nearly linear rise of pressure with flow as flow and pressure increase beyond preset breakpoint. Controller alternative version of mechanism described in "Liquid-Flow Controller Responds To Pressure" (MFS-28329) and "Liquid-Flow Controller With Preset Break Pressure" (MFS-28330). Material cut out of cone at tip of pintle. Liquid always passes from shell, albeit at low rate. When pressure in shell great enough to force orifice away from pintle, liquid flows at greater rate.

  9. A study of stratified gas-liquid pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, George W.

    2005-07-01

    This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of

  10. Advances in gas-liquid flows 1990

    International Nuclear Information System (INIS)

    Kim, J.M.; Hashemi, A.

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows

  11. Gas/liquid flow configurations

    International Nuclear Information System (INIS)

    Bonin, Jacques; Fitremann, J.-M.

    1978-01-01

    Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr

  12. Study of gas-liquid flow in model porous media for heterogeneous catalysis

    Science.gov (United States)

    Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team

    2015-11-01

    Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.

  13. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. I. Experimental observations

    Science.gov (United States)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2017-04-01

    This is the first part of a two-part study on a partially miscible liquid-liquid flow (liquid carbon dioxide and deionized water) which is highly pressurized and confined in a microfluidic T-junction. Our main focuses are to understand the flow regimes as a result of varying flow conditions and investigate the characteristics of drop flow distinct from coflow, with a capillary number, C ac , that is calculated based on the continuous liquid, ranging from 10-3 to 10-2 (10-4 for coflow). Here in part I, we present our experimental observation of drop formation cycle by tracking drop length, spacing, frequency, and after-generation speed using high-speed video and image analysis. The drop flow is chronologically composed of a stagnating and filling stage, an elongating and squeezing stage, and a truncating stage. The common "necking" time during the elongating and squeezing stage (with C ac˜10-3 ) for the truncation of the dispersed liquid stream is extended, and the truncation point is subsequently shifted downstream from the T-junction corner. This temporal postponement effect modifies the scaling function reported in the literature for droplet formation with two immiscible fluids. Our experimental measurements also demonstrate the drop speed immediately following their generations can be approximated by the mean velocity from averaging the total flow rate over the channel cross section. Further justifications of the quantitative analysis by considering the mass transfer at the interface of the two partially miscible fluids are provided in part II.

  14. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  15. FLIT: Flowing LIquid metal Torus

    Science.gov (United States)

    Kolemen, Egemen; Majeski, Richard; Maingi, Rajesh; Hvasta, Michael

    2017-10-01

    The design and construction of FLIT, Flowing LIquid Torus, at PPPL is presented. FLIT focuses on a liquid metal divertor system suitable for implementation and testing in present-day fusion systems, such as NSTX-U. It is designed as a proof-of-concept fast-flowing liquid metal divertor that can handle heat flux of 10 MW/m2 without an additional cooling system. The 72 cm wide by 107 cm tall torus system consisting of 12 rectangular coils that give 1 Tesla magnetic field in the center and it can operate for greater than 10 seconds at this field. Initially, 30 gallons Galinstan (Ga-In-Sn) will be recirculated using 6 jxB pumps and flow velocities of up to 10 m/s will be achieved on the fully annular divertor plate. FLIT is designed as a flexible machine that will allow experimental testing of various liquid metal injection techniques, study of flow instabilities, and their control in order to prove the feasibility of liquid metal divertor concept for fusion reactors. FLIT: Flowing LIquid metal Torus. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  16. The magnetohydrodynamic flow near a time-varying accelerated porous plate

    International Nuclear Information System (INIS)

    Roy, A.; Das, A.K.

    1985-01-01

    This paper confines to the study of the flow of an electrically conducting incompressible viscous liquid due to the varying motion of an infinite nonconducting porous flat pjate in the presence of a transverse magnetic field under the following assumptions: (1) the fluid flows subject to uniform section, (2) the magnetic Reynold number is equai to the viscous Reynold number, (3) the plate moves in its own plane with the velocity of esup(at)tsup(n) (n is an integer and α > a), (4) the Alfven velocity is less than the suction velocity. The induced magnetic field produced by the motion is taken into account. General expressions of the velocity and skinfriction have been obtained when the plate moves with the velocity esup(at)tsup(n). Several particular cases have been studied. (authors)

  17. One-dimensional three-field model of condensation in horizontal countercurrent flow with supercritical liquid velocity

    International Nuclear Information System (INIS)

    Trewin, Richard R.

    2011-01-01

    Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected

  18. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  19. Liquid-liquid extraction in flow analysis: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Santos, Joao L.M. [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Lima, Jose L.F.C., E-mail: limajlfc@ff.up.pt [REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Universidade do Porto, R. Anibal Cunha, 164, 4099-030 Porto (Portugal); Zagatto, Elias A.G. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, P.O. Box 96, Piracicaba 13400-970 (Brazil)

    2009-10-12

    Liquid-liquid extractions (LLE) are a common sample pre-treatment in many analytical applications. This review aims at providing a critical overview of the distinct automated continuous flow-based approaches that were developed for liquid-liquid extraction with the purpose of pre-concentration and/or separation of multiple analytes, such as ultra-trace metal and metalloid species, phenolic compounds, surfactants, pharmaceuticals, etc., hyphenated with many detection technique such as UV/vis spectrophotometry, atomic spectrometric detection systems and luminescent detectors, including distinct extraction strategies and applications like single and multiple extraction schemes, wetting film extraction, supported liquid membrane extraction, back extraction, closed-loop systems and the utilisation of zone sampling, chromatomembranes and iterative reversal techniques. The analytical performance of the developed flow-based LLE methods and the influence of flow manifold components such as the segmenter, extraction coil and phase separator, is emphasised and object of discussion. An overall presentation of each system components, selectivity, advantages and shortcomings is carried out and exemplified with selected applications.

  20. The dynamics of liquid drops and their interaction with solids of varying wettabilities

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    Microdrop impact and spreading phenomena are explored as an interface formation process using a recently developed computational framework. The accuracy of the results obtained from this framework for the simulation of high deformation free-surface flows is confirmed by a comparison with previous numerical studies for the large amplitude oscillations of free liquid drops. Our code\\'s ability to produce high resolution benchmark calculations for dynamic wetting flows is then demonstrated by simulating microdrop impact and spreading on surfaces of greatly differing wettability. The simulations allow one to see features of the process which go beyond the resolution available to experimental analysis. Strong interfacial effects which are observed at the microfluidic scale are then harnessed by designing surfaces of varying wettability that allow new methods of flow control to be developed. © 2012 American Institute of Physics.

  1. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  2. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  3. On intermittent flow characteristics of gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Thaker, Jignesh; Banerjee, Jyotirmay, E-mail: jbaner@gmail.com

    2016-12-15

    Highlights: • Unified correlations for intermittent flow characteristics are developed. • Influence of inflow conditions on intermittent flow characteristics is analysed. • Developed correlations can be used for effective design of piping components. - Abstract: Flow visualisation experiments are reported for intermittent regime of gas–liquid two-phase flow. Intermittent flow characteristics, which include plug/slug frequency, liquid plug/slug velocity, liquid plug/slug length, and plug/slug bubble length are determined by image processing of flow patterns captured at a rate of 1600 frames per second (FPS). Flow characteristics are established as a function of inlet superficial velocity of both the phases (in terms of Re{sub SL} and Re{sub SG}). The experimental results are first validated with the existing correlations for slug flow available in literature. It is observed that the correlations proposed in literature for slug flow do not accurately predict the flow characteristics in the plug flow regime. The differences are clearly highlighted in this paper. Based on the measured database for both plug and slug flow regime, modified correlations for the intermittent flow regime are proposed. The correlations reported in the present paper, which also include plug flow characteristics will aid immensely to the effective design and optimization of operating conditions for safer operation of two-phase flow piping systems.

  4. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  5. Heat Transfer Characteristics during Boiling of Immiscible Liquids Flowing in Narrow Rectangular Heated Channels

    Directory of Open Access Journals (Sweden)

    Yasuhisa Shinmoto

    2017-11-01

    Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.

  6. Interfacial transport characteristics in a gas-liquid or an immiscible liquid-liquid stratified flow

    International Nuclear Information System (INIS)

    Inoue, A.; Aoki, S.; Aritomi, M.; Kozawa, Y.

    1982-01-01

    This paper is a review for an interfacial transport characteristics of mass, momentum and energy in a gas-liquid or a immiscible liquid-liquid stratified flow with wavy interface which have been studied in our division. In the experiment, a characteristic of wave motion and its effect to the turbulence near the interface as well as overall flow characteristics like pressure drop, position of the interface were investigated in an air-water, an air-mercury and a water-liquid metal stratified flow. On the other hand, several models based on the mixing length model and a two-equation model of turbulence, with special interfacial boundary conditions in which the wavy surface was regarded as a rough surface correspond to the wavy height, a source of turbulent energy equal to the wave energy and a damped-turbulence due to the surface tension, were proposed to predict the flow characteristics and the interfacial heat transfer in a fully developed and an undeveloped stratified flow and examined by the experimental data. (author)

  7. Experimental and numerical investigation of stratified gas-liquid flow in inclined circular pipes

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Botelho, M.H.D.S.; Cunha, M.V.; Cunha Filho, J.S.; Su, J.

    2012-01-01

    In this paper, a stratified gas-liquid flow is experimentally and numerically investigated. Two measurement techniques, namely an ultrasonic technique and a visualization technique, are applied on an inclined circular test section using a fast single transducer pulse-echo technique and a high-speed camera. A numerical model is employed to simulate the stratified gas-liquid flow, formed by a system of non-linear differential equations consisting of the Reynolds averaged Navier-Stokes equations with the κ-ω turbulence model. The test section used in this work is comprised mainly of a transparent circular pipe with inner diameter 1 inch, and inclination angles varying from -2.5 to -10.0 degrees. Numerical solutions are obtained for the liquid height as a function of inclination angles, and compared with our own experimental data. (author)

  8. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  9. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuation....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity...

  10. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  11. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    Science.gov (United States)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  12. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  13. Drift-flux parameters for upward gas flow in stagnant liquid

    International Nuclear Information System (INIS)

    Kataoka, Yoshiyuki; Suzuki, Hiroaki; Murase, Michio

    1987-01-01

    The drift-flux model is widely used for gas-liquid two phase flow analysis, because it is applicable to various flow patterns and a wide range of void fractions. The drift-flux parameters for upward gas flow in stagnant liquid, however, have not been well examined. In this study, the distribution parameter C o and the drift velocity V gj for stagnant liquid were derived from the void fraction correlation and boundary conditions of drift-flux parameters, and then compared with C o and V gj for high liquid velocities. Also using the two region model where a circular flow area was divided into an inner region of cocurrent up-flow and an outer annulus region of liquid down flow, C o and V gj for stagnant liquid and for high liquid velocity were compared. The results showed that C o values for stagnant liquid were larger than values for high liquid velocity, while V gj values were almost the same for both cases. (author)

  14. Horizontal liquid film-mist two phase flow, (1)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Sakaguchi, Tadashi; Fujii, Terushige; Nakatani, Yoji; Nakaseko, Kosaburo.

    1979-01-01

    The characteristics of liquid film in annular spray flow, the generation of droplets from liquid film and the transport of droplets to a wall are the important matters in the planning and design of nuclear reactor cooling system and the channels of steam generators. The study on the liquid film spray flow is scarce, and its characteristics are not yet elucidated. The purpose of this series of studies is to clarify the characteristics of liquid film, the generation, diffusion and distribution of droplets and pressure loss in the liquid film spray flow composed of the liquid film on the lower wall and spraying gas flow in a rectangular, horizontal channel. In this paper, the concentration distribution and the diffusion coefficient of droplets on a cross section in the region of flow completion are reported. The experimental apparatuses and the experimental method, the flow rate of droplets and the velocity distribution of gas phase, the concentration distribution and the diffusion coefficient of droplets, and the diameter of generated droplets are explained. The equation for the concentration distribution of droplets using dimensionless characteristic value was derived. The mean diffusion coefficient of droplets was constant on a cross section, and the effects of gravity and turbulent diffusion can be evaluated. (Kako, I.)

  15. Oscillating liquid flow ICF Reactor

    International Nuclear Information System (INIS)

    Petzoldt, R.W.

    1990-01-01

    Oscillating liquid flow in a falling molten salt inertial confinement fusion reactor is predicted to rapidly clear driver beam paths of residual liquid droplets. Oscillating flow will also provide adequate neutron and x-ray protection for the reactor structure with a short (2-m) fall distance permitting an 8 Hz repetition rate. A reactor chamber configuration is presented with specific features to clear the entire heavy-ion beam path of splashed molten salt. The structural components, including the structure between beam ports, are shielded. 3 refs., 12 figs

  16. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  17. Industrial aspects of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.

    1977-01-01

    The lecture begins by reviewing the various types of plant in which two phase flow occurs. Specifically, boiling plant, condensing plant and pipelines are reviewed, and the various two phase flow problems occurring in them are described. Of course, many other kinds of chemical engineering plant involve two phase flow, but are somewhat outside the scope of this lecture. This would include distillation columns, vapor-liquid separators, absorption towers etc. Other areas of industrial two phase flow which have been omitted for space reasons from this lecture are those concerned with gas/solids, liquid/solid and liquid/liquid flows. There then follows a description of some of the two phase flow processes which are relevant in industrial equipment and where special problems occur. The topics chosen are as follows: (1) pressure drop; (2) horizontal tubes - separation effects non-uniformites in heat transfer coefficient, effect of bends on dryout; (3) multicomponent mixtures - effects in pool boiling, mass transfer effects in condensation and Marangoni effects; (4) flow distribution - manifold problems in single phase flow, separation effects at a single T-junction in two phase flow and distribution in manifolds in two phase flow; (5) instability - oscillatory instability, special forms of instability in cryogenic systems; (6) nucleate boiling - effect of variability of surface, unresolved problems in forced convective nucleate boiling; and (7) shell side flows - flow patterns, cross flow boiling, condensation in cross flow

  18. Supersonic flows past an obstacle in Yukawa liquids

    Science.gov (United States)

    Charan, Harish; Ganesh, Rajaraman

    2018-04-01

    Shock formation, when a supersonic flow passes a stationary obstacle, is ubiquitous in nature. Considering particles mediating via a Yukawa-type interaction as a prototype for a strongly coupled complex plasma, characterized by coupling strength (Γ, ratio of the average potential to kinetic energy per particle) and screening parameter (κ, ratio of the mean inter-particle distance to the shielding length), we address the fundamental problem of supersonic fluid flow U0, past a stationary obstacle immersed in this strongly coupled system. We here report the results on the bow shocks formed in Yukawa liquids when the liquid flows at speeds larger than the speed of sound in the system. Depending on the values of Mach number MC L=U/0 CL , where CL is the longitudinal speed of sound in the system, the bow shocks are found to be either traveling or localized. We find that for the transonic flows (0.8 ≲ MC L≲ 1.2), the bow shocks travel in the upstream direction opposite to the incoming fluid. The phase velocity of the traveling bow shocks is found to be a non-monotonous function of κ, varying as ∝1 /k1.11 at a fixed value of Γ, and is found to be independent of Γ at a fixed value of κ. It is observed that for the flow values with MC L>1.5 , the shock waves do not travel in the upstream direction but instead form a stationary arc like structure around the obstacle. For the fluid flows with 1 ≲ MC L≲ 2.6 , secondary bow shocks are seen to emerge behind the stationary obstacle which travel in the downstream direction, and the phase velocity of these secondary bow shocks is found to be equal to that of the primary bow shocks.

  19. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  20. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  1. Extending the accredited low flow liquid calibration range

    NARCIS (Netherlands)

    Platenkamp, Tom; Lötters, Joost Conrad

    2017-01-01

    There is an increasing demand for ISO/IEC 17025:2005 accredited liquid flow calibrations in the range of 1 g/h to 30 kg/h. The accredited Low Flow liquid Calibration Setup [1] (LFCS) at Bronkhorst® covers a flow range of 1 to 200 g/h, leaving a traceability gap in the flow range of 0.2 to 30 kg/h.

  2. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    Science.gov (United States)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  3. Effect of wall wettability on flow characteristics of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Uematsu, Junichi; Abe, Kazuya; Hazuku, Tatsuya; Takamasa, Tomoji; Hibiki, Takashi

    2007-01-01

    To evaluate the effect of surface wettability in pipe wall on flow characteristics in a vertical upward gas-liquid to-phase flow, visualization study was performed using three test pipes, namely an acrylic pipe, a hydrophilic pipe, a hydrophobic pipe. Such basic flow characteristics as flow patterns and void fraction were investigated in these three pipes. In the hydrophilic pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity condition at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity condition at a given liquid velocity. In the hydrophobic pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was observed in the acrylic pipe. At high-gas flow rate condition, the mean void fraction in the hydrophobic pipe took relatively higher value to that in the acrylic pipe. (author)

  4. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  5. Spontaneous Marangoni Mixing of Miscible Liquids at a Liquid-Liquid-Air Contact Line.

    Science.gov (United States)

    Kim, Hyoungsoo; Lee, Jeongsu; Kim, Tae-Hong; Kim, Ho-Young

    2015-08-11

    We investigate the flow patterns created when a liquid drop contacts a reservoir liquid, which has implications on various physicochemical and biochemical reactions including mixing in microfluidic systems. The localized vortical flow spontaneously triggered by the difference of surface tension between the two liquids is studied, which is thus termed the Marangoni vortex. To quantitatively investigate the strength of vortices, we performed particle image velocimetry (PIV) experiments by varying the surface tension difference, the gap of the flow cell, the density and viscosity of the reservoir liquid, and the size of the drop. A scaling law that balances the interfacial energy of the system with the kinetic energy of the vortical flows allows us to understand the functional dependence of the Marangoni vortex strength on various experimental parameters.

  6. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    Science.gov (United States)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  7. A tracer liquid image velocimetry for multi-layer radial flow in bioreactors.

    Science.gov (United States)

    Gao, Yu-Bao; Liang, Jiu-Xing; Luo, Yu-Xi; Yan, Jia

    2015-02-13

    This paper presents a Tracer Liquid Image Velocimetry (TLIV) for multi-layer radial flow in bioreactors used for cells cultivation of tissue engineering. The goal of this approach is to use simple devices to get good measuring precision, specialized for the case in which the uniform level of fluid shear stress was required while fluid velocity varied smoothly. Compared to the widely used Particles Image Velocimetry (PIV), this method adopted a bit of liquid as tracer, without the need of laser source. Sub-pixel positioning algorithm was used to overcome the adverse effects of the tracer liquid deformation. In addition, a neighborhood smoothing algorithm was used to restrict the measurement perturbation caused by diffusion. Experiments were carried out in a parallel plates flow chamber. And mathematical models of the flow chamber and Computational Fluid Dynamics (CFD) simulation were separately employed to validate the measurement precision of TLIV. The mean relative error between the simulated and measured data can be less than 2%, while in similar validations using PIV, the error was around 8.8%. TLIV avoided the contradiction between the particles' visibility and following performance with tested fluid, which is difficult to overcome in PIV. And TLIV is easier to popularize for its simple experimental condition and low cost.

  8. Interaction of Liquid Film Flow of Direct Vessel Injection Under the Cross Directional Gas Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness and a hydraulic jump in the film flow and boundaries of the film flow. It was found that CFD analysis results without surface tension model showed some difference with the data in surface tension dominated flow region. For the interaction between a liquid film and gas shear flow, CFD results make a good agreement with the real liquid film dynamics in the case of low film Reynolds number or low Weber number flow. In the 1/20 scaled plate type experiment and simulation, the deformed spreading profile results seem to accord with each other at the relatively low We and Re regime.

  9. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  10. Experimental study of interfacial wave on a liquid film in vertical annular flow

    International Nuclear Information System (INIS)

    Hazuku, T.; Fukamachi, N.; Takamasa, T.; Matsumoto, Y.

    2003-01-01

    In this study, a precise database of microscopic interfacial wave-structure for annular flow developing in a vertical pipe was obtained using a new measuring technique with a laser focus displacement meter. Adiabatic upward annular air-water flow experiments were conducted using a 3-m-long, 11- mm-ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart, in the pipe. The axial distances from the inlet (L) normalized by the pipe diameter (D) varied over L/D = 50 to 250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from Reg = 31,800 to 98,300 for the gas phase and Ref = 1,050 to 9,430 for the liquid phase. Using this new technique, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The results revealed that the maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreases of film thickness and passing frequency, existed until the pipe exit, which means that the flow might never reach a fully developed condition. Minimum thickness of the film decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman's three-layer model. Correlation is proposed for the minimum film thickness obtained in regard to interfacial shear stress and the Reynolds number of the liquid. This correlation expresses the minimum film thickness obtained from the experiment within a 5% deviation

  11. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  12. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  13. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  14. Gas-liquid flow around an obstacle in a vertical pipe

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael; Beyer, Matthias; Frank, Thomas; Al Issa, Suleiman; Carl, Helmar; Pietruske, Heiko; Schuetz, Peter

    2008-01-01

    This paper presents a novel technique to study the two-phase flow field around an asymmetric obstruction in a vertical pipe with a nominal diameter of DN200. Main feature of the experiments is the shifting of a half-moon shaped diaphragm causing the obstruction along the axis of the pipe. In this way, the 3D void field is scanned with a stationary wire-mesh sensor that supplies data with a spatial resolution of 3 mm over the cross-section and a measuring frequency of 2.5 kHz. Besides the measurement of time-averaged void fraction fields and bubble-size distributions, novel data evaluation methods were developed to extract estimated liquid velocity profiles as well as lateral components of bubble velocities from the wire-mesh sensor data. The combination of void fraction fields and velocity profiles offer the opportunity to analyse a two-phase flow in a geometry that owns a series of features characteristic for complex components of power and chemical plant equipment. Such characteristics are sharp edges with flow separation, recirculation areas, jet formation, stagnation points and curved stream-lines. The tests were performed with an air-water flow at nearly ambient conditions and with a saturated steam-water mixture at 6.5 MPa. The superficial velocities of liquid and gas or, respectively, vapour were varied in a wide range. The flow structure upstream and downstream of the obstacle is characterized in detail. Bubble size dependent effects of bubble accumulation and migration are discussed on basis of void-fraction profiles decomposed into bubble-size classes. A pronounced influence of the fluid parameters was found in the behaviour of bubbles at the boundary of the jet coming from the non-obstructed part of the cross-section. In case of an air-water flow, bubbles are restrained from entering the jet, a phenomenon which was not observed in high-pressure steam-water flow. A detailed uncertainty analyse of the velocity assessments finishes the presented paper. A

  15. Liquid metal flow measurement by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, N.; Ono, A.; Matsubayashi, M.; Tsuruno, A.

    1996-01-01

    Visualization of a liquid metal flow and image processing methods to measure the vector field are carried out by real-time neutron radiography. The JRR-3M real-time thermal neutron radiography facility in the Japan Atomic Energy Research Institute was used. Lead-bismuth eutectic was used as a working fluid. Particles made from a gold-cadmium intermetallic compound (AuCd 3 ) were used as the tracer for the visualization. The flow vector field was obtained by image processing methods. It was shown that the liquid metal flow vector field was obtainable by real-time neutron radiography when the attenuation of neutron rays due to the liquid metal was less than l/e and the particle size of the tracer was larger than one image element size digitized for the image processing. (orig.)

  16. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  17. Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement

    International Nuclear Information System (INIS)

    Han, J; Dong, F; Xu, Y Y

    2009-01-01

    This paper introduces the fundamental of cross-section measurement system based on Electrical Resistance Tomography (ERT). The measured data of four flow regimes of the gas/liquid two-phase flow in horizontal pipe flow are obtained by an ERT system. For the measured data, five entropies are extracted to analyze the experimental data according to the different flow regimes, and the analysis method is examined and compared in three different perspectives. The results indicate that three different perspectives of entropy-based feature extraction are sensitive to the flow pattern transition in gas/liquid two-phase flow. By analyzing the results of three different perspectives with the changes of gas/liquid two-phase flow parameters, the dynamic structures of gas/liquid two-phase flow is obtained, and they also provide an efficient supplementary to reveal the flow pattern transition mechanism of gas/liquid two-phase flow. Comparison of the three different methods of feature extraction shows that the appropriate entropy should be used for the identification and prediction of flow regimes.

  18. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Science.gov (United States)

    Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin

    2009-11-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.

  19. Liquid-intake flow around the tip of butterfly proboscis.

    Science.gov (United States)

    Lee, Sang Joon; Lee, Seung Chul; Kim, Bo Heum

    2014-05-07

    Butterflies drink liquid through a slender proboscis using a large pressure gradient induced by the systaltic operation of a muscular pump inside their head. Although the proboscis is a naturally well-designed coiled micro conduit for liquid uptake and deployment, it has been regarded as a simple straw connected to the muscular pump. There are few studies on the transport of liquid food in the proboscis of a liquid-feeding butterfly. To understand the liquid-feeding mechanism in the proboscis of butterflies, the intake flow around the tip of the proboscis was investigated in detail. In this study, the intake flow was quantitatively visualized using a micro-PIV (particle image velocimetry) velocity field measurement technique. As a result, the liquid-feeding process consists of an intake phase, an ejection phase and a rest phase. When butterflies drink pooled liquid, the liquid is not sucked into the apical tip of the proboscis, but into the dorsal linkage aligned longitudinally along the proboscis. To analyze main characteristics of the intake flow around a butterfly proboscis, a theoretical model was established by assuming that liquid is sucked into a line sink whose suction rate linearly decreases proximally. In addition, the intake flow around the tip of a female mosquito׳s proboscis which has a distinct terminal opening was also visualized and modeled for comparison. The present results would be helpful to understand the liquid-feeding mechanism of a butterfly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Counter current 'emulsion flow' extractor for continuous liquid-liquid extraction from suspended solutions

    International Nuclear Information System (INIS)

    Yanase, Nobuyuki; Naganawa, Hirochika; Nagano, Tetsushi; Noro, Junji

    2011-01-01

    A single current 'emulsion flow' liquid-liquid extraction apparatus has a head with a number of holes from which micrometer-sized droplets of an aqueous phase spout into an organic phase to mix the two liquid phases. For practical use, however, a fatal problem can occur when particulate components in the aqueous phase plug the holes. In the present study, we have succeeded in solving the problem by applying a counter current-type emulsion flow extractor where micrometer-sized droplets of the organic phase are generated. (author)

  1. The Liquid Film Flow with Evaporation: Numerical Modelling

    Directory of Open Access Journals (Sweden)

    Rezanova Ekaterina

    2016-01-01

    Full Text Available The flow of thin liquid layer on an inclined substrate is investigated numerically. The mathematical modelling is based on the Oberbeck-Boussinesq equations and the generalized conditions on the thermocapillary boundary simplified during the parametrical analysis. In the framework of the long-wave approximation the evolution equation which determines the thickness of the liquid layer in the case of moderate Reynolds numbers is derived. The results of numerical modelling of the liquid flow with evaporation at the interface are obtained.

  2. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    Science.gov (United States)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  3. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  4. The effects of a flow obstacle on liquid film flowing concurrently with air in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.

    1986-01-01

    The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)

  5. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  6. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  7. Experimental study on liquid velocity in upward and downward two-phase flows

    International Nuclear Information System (INIS)

    Sun, X.; Paranjape, S.; Kim, S.; Ozar, B.; Ishii, M.

    2003-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral Laser Doppler Anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void weighted area-averaged drift velocity were obtained based on the definitions

  8. Computation of gradually varied flow in compound open channel ...

    Indian Academy of Sciences (India)

    The flow of water in an open channel can be treated as steady, gradually varied flow for ... channel between two nodes is treated as a single reach to calculate the loss ... dition at control points and (iii) critical depth is also required to verify the ...

  9. Study on cocurrent downtake gas-liquid flow in a vertical channel

    International Nuclear Information System (INIS)

    Lozovetskij, V.V.

    1978-01-01

    Hydraulic resistance and liquid stall from the film surface at cocurrent film and gas downflow in vertical channel in measurement range of reynolds number from 100 to 1260 for the film and from 1.2x10 4 to 10 5 for gas are studied. For downflow two regimes are characteristic: purely annular, that is separate phase flow regime, and the regime of stall and carrying liquid droplets from the film surface, that is annular dispersed flow regime. The existence boundaries of both regimes are determined and criterial equations for pressure drop calculation are obtained. It is established experimentally that at sufficient range from the liquid input place on the working zone the established two-phase flow takes place. In their nucleus two areas can be singled out, which differ by the flow density values of stalled liquid: central, having the permanent flow density value and area adjacent to the film surface, the liquid in the combs of waves making a significant contribution to the flow density value. At equal flooding density with the relative gas speed increase, the flow density value of stalled liquid in the channel central part increase. A similar result also takes place at flooding density increase at permanent relative speed. Flooding density and relative speed increase leads to levelling stalled liquid distribution about the channel cross section

  10. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  11. Secondary Flow Patterns of Liquid Ejector with Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kwisung; Yun, Jinwon; Yu, Sangseok [Chungnam National University, Daejeon (Korea, Republic of); Sohn, Inseok [COAVIS, Sejong (Korea, Republic of); Seo, Yongkyo [Korea Automotive Technology Institute, Cheonan (Korea, Republic of)

    2015-02-15

    An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of 35° was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

  12. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study of electroosmosis-driven two-liquid displacement flow in a microcapillary

    International Nuclear Information System (INIS)

    Gan, H Y; Yang, C; Wan, S Y M; Lim, G C; Lam, Y C

    2006-01-01

    Multi-liquid flow, such as one liquid displacing another liquid, is frequently encountered in practice. This can be achieved by electroosmotic (EO) pumping, which has its own unique characteristics and advantages. This investigation is on EO-driven, two-liquid displacement flow in a microcapillary. A theoretical model was developed to take into consideration the axial step change of velocity flow fields at the time-dependent liquid/liquid interface, continuity requirement, and induced local pressure gradients. The electrical current monitoring method was employed to measure the flowrate and subsequently determine the capillary zeta potentials which are required for the model prediction. The nonlinear change of the electrical current with time under a constant applied voltage was observed during the displacement process. The theoretical and experimental results validated the hypothesis that the non-uniform zeta potential and electric field induce local pressure gradients in the two different liquids. Our experimental results indicated that the time of displacement, and thus the flow velocity, is found to be dependent on the displacing flow direction, which has hitherto not been reported in the literature. The underlying mechanisms were postulated, but demand further investigation

  14. Drop coalescence and liquid flow in a single Plateau border

    Science.gov (United States)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  15. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  16. Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography

    International Nuclear Information System (INIS)

    Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.

    2005-01-01

    The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps

  17. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Science.gov (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  18. Trickle/pulse flow regime transition in downflow packed tower involving foaming liquids

    Directory of Open Access Journals (Sweden)

    Sodhi Vijay

    2012-01-01

    Full Text Available The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF where operational output is satisfactory but not yields efficiently as in pulsing flow (PF and foaming pulsing flow (FPF. Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study’s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF to foaming pulsing flow (PF/FPF by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.

  19. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft

    Science.gov (United States)

    Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing

    2005-03-01

    In order to solve the problems that exist in the magnetic liquid seal of reciprocating shaft, we have set up an experimental facility, which composes a camera, microscope, step-by-step motor, pin roller screw, reciprocating motion shaft, pole pieces, permanent magnet and the magnetic liquid in the seal gap. Through the optical technology and image process of the experimental facility, we have studied the magnetic liquid flow in the seal gap when the reciprocating shaft moves with different velocities and strokes. This study specially concentrates on: (1) the regular pattern of such flow; (2) the loss quantity of magnetic liquid caused by the reciprocating motion shaft; (3) the failure reasons of this magnetic liquid seal; and (4) the design of a new structure for the magnetic liquid seal of reciprocating shaft. The application indicates that the new structure is very effective in some occasions. The new structure was accepted as the state patent in 2001 and authenticated as the achievement in the scientific research in 2002.

  20. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft

    International Nuclear Information System (INIS)

    Li Decai; Xu Haiping; He Xinzhi; Lan Huiqing

    2005-01-01

    In order to solve the problems that exist in the magnetic liquid seal of reciprocating shaft, we have set up an experimental facility, which composes a camera, microscope, step-by-step motor, pin roller screw, reciprocating motion shaft, pole pieces, permanent magnet and the magnetic liquid in the seal gap. Through the optical technology and image process of the experimental facility, we have studied the magnetic liquid flow in the seal gap when the reciprocating shaft moves with different velocities and strokes. This study specially concentrates on: (1) the regular pattern of such flow; (2) the loss quantity of magnetic liquid caused by the reciprocating motion shaft; (3) the failure reasons of this magnetic liquid seal; and (4) the design of a new structure for the magnetic liquid seal of reciprocating shaft. The application indicates that the new structure is very effective in some occasions. The new structure was accepted as the state patent in 2001 and authenticated as the achievement in the scientific research in 2002

  1. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part I Analysis and Validation

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid has been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phases. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows using an Eulerian two-fluid model with RNG based k-emodel as the turbulent closure. An additional kinetic energy equation to better represent the combined fluid-particle behaviour is also employed in the current set of simulations. In the first part of this two part series, experimental results of Fessler and Eaton (1995 for Gas-Particle (GP flow and that of Founti and Klipfel (1998 for Liquid-Particle (LP flow have been compared and analysed. This forms the basis of the current study which aims to look at the particulate behaviour under the influence of two carrier phases. Further numerical simulations were carried out to test whether the current numerical formulation can used to simulate these varied type of flows and the same were validated against the experimental data of both GP as well LP flow. Qualitative results have been obtained for both these classes of flows with their respective experimental data both at the mean as well as at the turbulence level for carrier as well as the dispersed phases.

  2. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  3. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  4. High Reynolds number flows using liquid and gaseous helium

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium

  5. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

    Science.gov (United States)

    Ščepanskis, Mihails; Sarma, Mārtiņš; Vontobel, Peter; Trtik, Pavel; Thomsen, Knud; Jakovičs, Andris; Beinerts, Toms

    2017-04-01

    This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

  6. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  7. Experimental investigation on flow patterns of gas-liquid two-phase upward flow through packed channel with spheres

    International Nuclear Information System (INIS)

    Zhang Nan; Sun Zhongning; Zhao Zhongnan

    2011-01-01

    Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)

  8. Numerical simulation of liquid droplet breakup in supersonic flows

    Science.gov (United States)

    Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing

    2018-04-01

    A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.

  9. Electrical resistance imaging of a time-varying interface in stratified flows using an unscented Kalman filter

    International Nuclear Information System (INIS)

    Ijaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Chung, Soon Il; Kim, Sin

    2008-01-01

    In this paper, we estimate a time-varying interfacial boundary in stratified flows of two immiscible liquids using electrical resistance tomography. The interfacial boundary is approximated with front points spaced discretely along the interface. The design variables to be estimated are the locations of the front points, which are varying with the moving interface. The inverse problem is treated as a stochastic nonlinear state estimation problem with the nonstationary phase boundary (state) being estimated with the aid of an unscented Kalman filter. Numerical experiments are performed to evaluate the performance of an unscented Kalman filter. Specifically, a detailed analysis has been done on the effect of the number of front points and contrast ratio on the reconstruction performance. The reconstruction results show that an unscented Kalman filter is better suited for estimation in comparison to the conventional extended Kalman filter

  10. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    Science.gov (United States)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  11. Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Nakamura, D.

    2005-01-01

    To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)

  12. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  13. Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel

    Science.gov (United States)

    Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration

    2015-11-01

    Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  14. A New Approach for Accurate Prediction of Liquid Loading of Directional Gas Wells in Transition Flow or Turbulent Flow

    Directory of Open Access Journals (Sweden)

    Ruiqing Ming

    2017-01-01

    Full Text Available Current common models for calculating continuous liquid-carrying critical gas velocity are established based on vertical wells and laminar flow without considering the influence of deviation angle and Reynolds number on liquid-carrying. With the increase of the directional well in transition flow or turbulent flow, the current common models cannot accurately predict the critical gas velocity of these wells. So we built a new model to predict continuous liquid-carrying critical gas velocity for directional well in transition flow or turbulent flow. It is shown from sensitivity analysis that the correction coefficient is mainly influenced by Reynolds number and deviation angle. With the increase of Reynolds number, the critical liquid-carrying gas velocity increases first and then decreases. And with the increase of deviation angle, the critical liquid-carrying gas velocity gradually decreases. It is indicated from the case calculation analysis that the calculation error of this new model is less than 10%, where accuracy is much higher than those of current common models. It is demonstrated that the continuous liquid-carrying critical gas velocity of directional well in transition flow or turbulent flow can be predicted accurately by using this new model.

  15. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  16. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Science.gov (United States)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  17. Surfactant induced flows in thin liquid films : an experimental study

    NARCIS (Netherlands)

    Sinz, D.K.N.

    2012-01-01

    The topic of the experimental work summarized in my thesis is the flow in thin liquid films induced by non-uniformly distributed surfactants. The flow dynamics as a consequence of the deposition of a droplet of an insoluble surfactant onto a thin liquid film covering a solid substrate where

  18. Unconventional Liquid Flow in Low-Permeability Media: Theory and Revisiting Darcy's Law

    Science.gov (United States)

    Liu, H. H.; Chen, J.

    2017-12-01

    About 80% of fracturing fluid remains in shale formations after hydraulic fracturing and the flow back process. It is critical to understand and accurately model the flow process of fracturing fluids in a shale formation, because the flow has many practical applications for shale gas recovery. Owing to the strong solid-liquid interaction in low-permeability media, Darcy's law is not always adequate for describing liquid flow process in a shale formation. This non-Darcy flow behavior (characterized by nonlinearity of the relationship between liquid flux and hydraulic gradient), however, has not been given enough attention in the shale gas community. The current study develops a systematic methodology to address this important issue. We developed a phenomenological model for liquid flow in shale (in which liquid flux is a power function of pressure gradient), an extension of the conventional Darcy's law, and also a methodology to estimate parameters for the phenomenological model from spontaneous imbibition tests. The validity of our new developments is verified by satisfactory comparisons of theoretical results and observations from our and other research groups. The relative importance of this non-Darcy liquid flow for hydrocarbon production in unconventional reservoirs remains an issue that needs to be further investigated.

  19. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  20. Electrogates for stop-and-go control of liquid flow in microfluidics

    Science.gov (United States)

    Arango, Y.; Temiz, Y.; Gökçe, O.; Delamarche, E.

    2018-04-01

    Diagnostics based on microfluidic devices necessitate specific reagents, flow conditions, and kinetics for optimal performance. Such an optimization is often achieved using assay-specific microfluidic chip designs or systems with external liquid pumps. Here, we present "electrogates" for stop-and-go control of flow of liquids in capillary-driven microfluidic chips by combining liquid pinning and electrowetting. Electrogates are simple to fabricate and efficient: a sample pipetted to a microfluidic chip flows autonomously in 15-μm-deep hydrophilic channels until the liquid meniscus is pinned at the edge of a 1.5-μm-deep trench patterned at the bottom of a rectangular microchannel. The flow can then be resumed by applying a DC voltage between the liquid and the trench via integrated electrodes. Using a trench geometry with a semicircular shape, we show that retention times longer than 30 min are achieved for various aqueous solutions such as biological buffers, artificial urine, and human serum. We studied the activation voltage and activation delay of electrogates using a chip architecture having 6 independent flow paths and experimentally showed that the flow can be resumed in less than 1 s for voltages smaller than 10 V, making this technique compatible with low-power and portable microfluidic systems. Electrogates therefore can make capillary-driven microfluidic chips very versatile by adding flow control in microfluidic channels in a flexible manner.

  1. Modern Evaluation of Liquisolid Systems with Varying Amounts of Liquid Phase Prepared Using Two Different Methods

    Directory of Open Access Journals (Sweden)

    Barbora Vraníková

    2015-01-01

    Full Text Available Liquisolid systems are an innovative dosage form used for enhancing dissolution rate and improving in vivo bioavailability of poorly soluble drugs. These formulations require specific evaluation methods for their quality assurance (e.g., evaluation of angle of slide, contact angle, or water absorption ratio. The presented study is focused on the preparation, modern in vitro testing, and evaluation of differences of liquisolid systems containing varying amounts of a drug in liquid state (polyethylene glycol 400 solution of rosuvastatin in relation to an aluminometasilicate carrier (Neusilin US2. Liquisolid powders used for the formulation of final tablets were prepared using two different methods: simple blending and spraying of drug solution onto a carrier in fluid bed equipment. The obtained results imply that the amount of liquid phase in relation to carrier material had an effect on the hardness, friability, and disintegration of tablets, as well as their height. The use of spraying technique enhanced flow properties of the prepared mixtures, increased hardness values, decreased friability, and improved homogeneity of the final dosage form.

  2. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  3. Flow of liquid metals with a transversely applied magnetic field, (8)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou

    1977-01-01

    As one of the researches of liquid metal flow in transversely applied magnetic field concerning the flow in MHD pipes, the influences of the electrical property of channel side walls, aspect ratio, Reynolds number and Hartmann number on laminar and transition flows investigated experimentally are reported in this paper. Mercury flowed in the rectangular ducts, one of which was made with four insulated walls, and another with insulated top and bottom walls and two conductive side walls, with the aspect ratio varying from 8 to 1/8, in the region of relatively low Hartmann number and Reynolds number. The facility, procedure and results of the experiment are explained, and many experimental curves showing the relations among pipe friction coefficient, Hartmann number, Reynolds number, aspect ratio and the property of walls are given. The experimental results show that the Hartmann effect and the aspect ratio effect are evident as the magnetic field is intensified, but the influence by the electric property of walls is little, and three shapes of the curves representing the relation of friction coefficient and Reynolds number are confirmed by this experiment. (auth.)

  4. Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...

    African Journals Online (AJOL)

    Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...

  5. Homogeneous and Stratified Liquid-Liquid Flow Effect of a Viscosity Reducer: I. Comparison in parallel plates for heavy crude

    Directory of Open Access Journals (Sweden)

    E. J. Suarez-Dominguez

    2016-12-01

    Full Text Available Production of heavy crude oil in Mexico, and worldwide, is increasing which has led to the application of different methods to reduce viscosity or to enhance transport through stratified flow to continue using the existing infrastructures. In this context, injecting a viscosity improver that does not mix completely with the crude, establishes a liquid-liquid stratified flow. On the basis of a parallel plates model, comparing the increase of flow that occurs in the one-phase case which assumes a complete mixture between the crude and the viscosity improver against another stratified liquid-liquid (no mixing between the oil and compared improver; it was found that in both cases there is a flow increase for the same pressure drop with a maximum for the case in which the flow improver is between the plates and the crude.

  6. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G; Eckert, S [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  7. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  8. Flashing inception in flowing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1979-01-01

    The inception of net vaporization in flashing flows is examined. It is suggested that the flashing inception can be expressed as two additive effects. One is due to the static decompression which is a function of the spinodal limit and also of the expansion rate. The other effect which is a function of Reynolds number and flashing index, is due to the turbulent fluctuations of the flowing liquid. It is shown that by taking a three standard deviation band on the turbulent velocity fluctuations, an adequate representation of the inverse mass flux effect on flashing inception for existing data is obtained

  9. Flow measurement in two-phase (gas-liquid) systems

    International Nuclear Information System (INIS)

    Hewitt, G.F.; Whalley, P.B.

    1980-01-01

    The main methods of measuring mass flow and quality in gas-liquid flows in industrial situations are reviewed. These include gamma densitometry coupled with differential pressure devices such as crifice plates, turbine flow meters and drag screens. For each method the principle of operation, and the advantages and disadvantages, are given. Some further techniques which are currently being investigated and developed for routine use are also described briefly. Finally the detailed flow measurements possible on a particular flow pattern - annular flow - is examined. (author)

  10. Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow

    International Nuclear Information System (INIS)

    Dong, F; Zhang, F S; Li, W; Tan, C

    2009-01-01

    Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.

  11. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  12. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  13. Thaw flow control for liquid heat transport systems

    Science.gov (United States)

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  14. Real-time measurement of gas and liquid flow rates in two-phase slug flow by an advanced electromagnetic flowmeter and conductance probes

    International Nuclear Information System (INIS)

    Kim Jongrok; Ahn Yeh-Chan; Oh Byung Do; Kang Deok-Hong; Kim Moo Hwan

    2005-01-01

    Full text of publication follows: In order to measure the liquid mean velocity (cross-sectional average) in two-phase flow with an electromagnetic flowmeter, each flow pattern must be considered separately because of their different flow characteristics. Since bubbly flow can be approximated as a homogeneous mixture of gas and liquid at the same velocity, there are no additional measurement difficulties compared to single-phase flow. Cha et al. (2002) and Knoll (1991) reported that this approximation gives rise to no more than a 5% error in the liquid flow rate when the void fraction is less than 0.25. Annular flow measurements are also similar to those of single-phase flow if the film is assumed to be uniform and smooth, and the gas core is located at the center of the flow tube. Slug flow, however, is the most complicated, since the liquid axial velocity over a slug unit experiences considerable acceleration or deceleration. Therefore an electromagnetic flowmeter with high temporal resolution is needed. In slug flow, film velocity measurements are also difficult to perform because the liquid film is very thin and can be easily disturbed, thus altering the flow field. Only two experimental results for liquid film velocity measurement could be found. They were performed using photo-chromic dye method (DeJesus, 1997) and PIV technique (Polonsky et al., 1999). In this study, an advanced electromagnetic flow-metry was developed to measure liquid mean velocity with high transients. In addition, two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with three rings designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From the

  15. Measuring method of liquid flow behavior using visualization

    International Nuclear Information System (INIS)

    Serizawa, Akimi; Kamei, Takashi; Takahashi, Osamu; Kawara, Zensaku

    1994-01-01

    It is important for the safety of nuclear reactor to understand the behavior of gas-liquid two-phase flow. For that analysis, we have to understand its time and spatial dependence. But most of the measuring methods applied to two-phase flow experiments are not enough for this purpose, because they consider the time averaged value, and they are put on the local position in test sections. Standing on such a point of view, we have been developing a measuring method using fluorescence. And from those pictures gotten by video camera, after processed by computer, we measure liquid film thickness. (author)

  16. Falling liquid film flow along cascade-typed first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a 'cascade-typed' first wall with a falling liquid film flow is proposed as the 'liquid wall' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the STREAM code and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ρu 2 δ/σ: ρ is density, u is velocity, δ is film thickness, σ is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant water-head located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same structure and the same height as the reactor design

  17. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  18. Heat transfer in vapour-liquid flow of carbon dioxide

    International Nuclear Information System (INIS)

    Yagov, V.V.

    2009-01-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO 2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO 2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO 2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  19. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    Science.gov (United States)

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.

  20. Inverted annular flow experimental study

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.

    1985-04-01

    Steady-state inverted annular flow of Freon 113 in up flow was established in a transparent test section. Using a special inlet configuration consisting of long aspect-ratio liquid nozzles coaxially centered within a heated quartz tube, idealized inverted annular flow initial geometry (cylindrical liquid core surrounded by coaxial annulus of gas) could be established. Inlet liquid and gas flowrates, liquid subcooling, and gas density (using various gas species) were measured and varied systematically. The hydrodynamic behavior of the liquid core, and the subsequent downstream break-up of this core into slugs, ligaments and/or droplets of various sizes, was observed. In general, for low inlet liquid velocities it was observed that after the initial formation of roll waves on the liquid core surface, an agitated region of high surface area, with attendant high momentum and energy transfers, occurs. This agitated region appears to propagate downsteam in a quasi-periodic pattern. Increased inlet liquid flow rates, and high gas annulus flow rates tend to diminish the significance of this agitated region. Observed inverted annular flow (and subsequent downstream flow pattern) hydrodynamic behavior is reported, and comparisons are drawn to data generated by previous experimenters studying post-CHF flow

  1. Droplets in annular-dispersed gas-liquid pipe-flows

    NARCIS (Netherlands)

    Van 't Westende, J.M.C.

    2008-01-01

    Annular-dispersed gas-liquid pipe-flows are commonly encountered in many industrial applications, and have already been studied for many decades. However, due to the great complexity of this type of flow, there are still many phenomena that are poorly understood. The aim of this thesis is to shed

  2. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  3. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead...... to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  4. Sound transmission in slowly varying circular and annular ducts with flow

    NARCIS (Netherlands)

    Rienstra, S.W.

    1999-01-01

    Sound transmission through straight circular ducts with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion. A natural extension for ducts with axially slowly varying properties (diameter and mean flow, wall impedance) is a

  5. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  6. Statistic characteristics of the gas-liquid flow in a vertical minichannel

    Science.gov (United States)

    Kozulin, I. A.; Kuznetsov, V. V.

    2010-03-01

    The gas-liquid upward flow was studied in a rectangular minichannel of 1.75×3.8 mm and length of 0.7 m. The experiments were carried out within the range of the gas superficial velocity from 0.1 to 10 m/s and the liquid superficial velocity from 0.07 to 0.7 m/s for the co-current H2O/CO2 flow under the conditions of saturation. The method for the two-beam laser scanning of structure and determination of statistic characteristics of the two-phase flow was worked through. The slug-bubble, slug, transitional, churn, and annular flows were distinguished. The statistics characteristics of liquid and gas phases motion in a minichannel were obtained for the first time including the velocities of phase motion.

  7. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    Science.gov (United States)

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  8. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    Science.gov (United States)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  9. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  10. Computational and experimental studies of the flow field near the beam entrance window of a liquid metal target

    International Nuclear Information System (INIS)

    Geža, Vadims; Milenković, Rade Ž.; Kapulla, Ralf; Dementjevs, Sergejs; Jakovičs, Andris; Wohlmuther, Michael

    2014-01-01

    Highlights: • Water model of liquid metal target for validation of CFD models was built. • PIV measurements showed flow features in the region near beam entrance window. • The zones with high turbulence kinetic energy were distinguished. • Reasonable agreement between modeling and PIV data was obtained. - Abstract: After the first world liquid metal target has been successfully operated at the SINQ facility at the Paul Scherrer Institut (PSI) for 6 months. The idea of having a reliable target with a bypass flow for cooling the beam entrance window, but with the bypass flow not driven by a separate pump, was examined within the project called LIMETS (Liquid Metal Target for SINQ). In designing of liquid metal targets, turbulence modelling is of high importance due to lack in methods for measuring the spatial distribution of flow and turbulence characteristics. In this study, validation of different turbulence models were performed in water model with hemispherical geometry using particle image velocimetry (PIV) technique. Two components of water flow velocity in plexiglas container with inner radius of 88 mm were measured in different cross sections, with the velocities varying from 1 to 10 m/s. Numerical calculations using large eddy simulation (LES) approach and Reynolds averaged Navier–Stokes (RANS) models were carried out to validate their applicability and study performance issues. Mean velocity and turbulence kinetic energy data were used for comparison of PIV and calculation results. Reasonable agreement was obtained for mean velocity data, with some discrepancies due to the limited length of the inlet tube. However, several discrepancies in turbulence characteristics were found in numerical results, especially in RANS model calculations

  11. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    Science.gov (United States)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  12. Effect of shear-thinning behaviour on liquid-liquid plug flow in microchannels

    Science.gov (United States)

    Roumpea, Evangelia; Chinaud, Maxime; Weheliye, Weheliye Hashi; Angeli, Panagiota; Kahouadji, Lyes; Matar, Omar K.

    2016-11-01

    The present work investigates the dynamics of plug formation of shear-thinning solutions in a 200 μm microchannel using a two-colour micro-PIV system. Measurements, including phase-averaged velocity fields, have been conducted both at the T-junction inlet and the main channel to enhance understanding of non-Newtonian liquid-liquid flows. Two aqueous glycerol solutions containing xanthan gum are used as the non-Newtonian fluids while 5 cSt silicone oil is the Newtonian phase. The current experimental results revealed a pronounced impact of the xanthan gum (shear-thinning behaviour) on the flow pattern transition boundaries, and enhance the fluid flowrates where plug flow occurred. The addition of polymer resulted also in different hydrodynamic characteristics such as a bullet-shaped plug and an increased film thickness between the plug and the wall. In the present work, the technique allows to capture the velocity field of both phases simultaneously. Experimental results are compared with the numerical simulations provided by the code BLUE. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  13. Fundamental research of two-phase flows with high liquid/gas density ratios

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi; Saito, Yasushi; Tobita, Yoshiharu; Konishi, Kensuke; Suzuki, Tohru

    2000-07-01

    In order to analyze the boiling of a fuel-steel mixture pool formed during the core disruptive accident in a fast breeder reactor, it is important to understand the flow characteristics of gas-liquid two-phase pools containing molten reactor materials. Since the liquid/gas density ratio is high, the characteristics of such two-phase flows may differ from those of ordinary flows such as water/air flow. In this study, as a fundamental research of two-phase flows with a high liquid/gas density ratio, the experiments were performed to visualize and measure molten metal (lead-bismuth)/nitrogen gas two-phase flows using a neutron radiography technique. From these experiments, fundamental data such as bubble shapes, void fractions and liquid velocity fields were obtained. In addition, the momentum exchange model of SIMMER-III, which has been developed by JNC, was assessed and improved using the experimental data. In the visualization by neutron radiography, it was found that deformed ellipsoidal bubbles could be seen with smaller gas flux or lower void fractions, and spherical cap bubbles could be seen with larger gas flux or higher void fractions. In addition, a correlation applicable to SIMMER-III was proposed through a comparison between the experimental data and traditional empirical correlations. Furthermore, a visualization experiment using gold-cadmium tracer particles showed that the image processing technique used in the quantification of void fractions is applicable to the measurement of the liquid velocity fields. On the other hand, in the analysis by SIMMER-III, it was confirmed that the original momentum exchange model was appropriate for ellipsoidal bobby flows and that the accuracy of SIMMER-III for cap bubbly flows was much improved with the proposed correlation. Moreover, a new procedure, in which the appropriate drag coefficient could be automatically selected according to bubble shape, was developed. The SIMMER-III code improved through this study can

  14. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    Science.gov (United States)

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  15. Liquid flow rate effects during partial evaporation in a falling film micro contactor

    NARCIS (Netherlands)

    Moschou, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.

    2013-01-01

    The focus of this study is the investigation of the effect of liquid flow rate on partial evaporation, enhanced by convective nitrogen flow, in a falling film micro contactor. Experiments are performed at different flow rates and for a certain heating liquid temperature. The temperatures of the gas

  16. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    Science.gov (United States)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  17. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  18. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  19. Improving Process Quality by Means of Accurate and Traceable Calibration of Flow Devices with Process-oriented Liquids.

    Science.gov (United States)

    Bissig, Hugo; Tschannen, Martin; de Huu, Marc

    2018-03-30

    Calibration of flow devices is important in several areas of pharmaceutical, flow chemistry and health care applications where volumetric dosage or delivery at given flow rates are crucial for the process. Although most of the flow devices are measuring flow rates of process-oriented liquids, their calibrations are often performed with water as calibration liquid. It is recommended to perform the calibrations of the flow devices with process-oriented liquids as the liquid itself might influence the performance of the flow devices. Therefore, METAS has developed facilities with METAS flow generators to address the issue of measuring with process-oriented liquids for flow rates from 400 ml/min down to 50 nl/min with uncertainties from 0.07-0.9 %. Traceability is guaranteed through the calibration of the generated flow rates of the METAS flow generators by means of the dynamic gravimetric method where a liquid of well-known density and a well-controlled evaporation rate is used. The design of the milli-flow facility will be discussed as well as first measurement results of the METAS flow generators in the range of micro-flow and milli-flow using water and other liquids.

  20. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  1. About the statistical description of gas-liquid flows

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, D.; Guido-Lavalle, G.; Carrica, P. [Centro Atomico Bariloche and Instituto Balseiro (Argentina)] [and others

    1995-09-01

    Elements of the probabilistic geometry are used to derive the bubble coalescence term of the statistical description of gas liquid flows. It is shown that the Boltzmann`s hypothesis, that leads to the kinetic theory of dilute gases, is not appropriate for this kind of flows. The resulting integro-differential transport equation is numerically integrated to study the flow development in slender bubble columns. The solution remarkably predicts the transition from bubbly to slug flow pattern. Moreover, a bubbly bimodal size distribution is predicted, which has already been observed experimentally.

  2. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  3. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  4. Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Amitay, Michael

    2017-11-01

    Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.

  5. Computational issues of solving the 1D steady gradually varied flow equation

    Directory of Open Access Journals (Sweden)

    Artichowicz Wojciech

    2014-09-01

    Full Text Available In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the wellknown standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.

  6. The effect of surfactant on stratified and stratifying gas-liquid flows

    Science.gov (United States)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  7. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  8. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  9. Nonisentropic Nonsteady Liquid Flow with Centrifugal, Gravitational, and Dissipative Forces

    National Research Council Canada - National Science Library

    Sidransky, Fred

    1966-01-01

    The method of characteristics is used to present general compatibility relations for nonsteady liquid flow or water-hammer theory which permit the investigation of the dynamics of the flow under diverse conditions...

  10. Effect of liquid density differences on boiling two-phase flow stability

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Manera, Annalisa; Bragt, David D.B.; Hagen, Tim H.J.J. van der; Kruijf, Willy J.M.de

    2002-01-01

    In order to investigate the effect of considering liquid density dependence on local fluid temperature in the thermal-hydraulic stability, a linear stability analysis is performed for a boiling natural circulation loop with an adiabatic riser. Type-I and Type-II instabilities were to investigate according to Fukuda-Kobori's classification. Type-I instability is dominant when the flow quality is low, while Type-II instability is relevant at high flow quality. Type-II instability is well known as the typical density wave oscillation. Neglecting liquid density differences yields estimates of Type-II instability margins that are too small, due to both a change in system-dynamics features and in the operational point. On the other hand, neglecting liquid density differences yields estimates of Type-I stability margins that are too large, especially due to a change in the operational point. Neglecting density differences is thus non-conservative in this case. Therefore, it is highly recommended to include liquid density dependence on the fluid subcooling in the stability analysis if a flow loop with an adiabatic rise is operated under the condition of low flow quality. (author)

  11. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    Science.gov (United States)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  12. Shear flow simulations of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  13. Flow in curved ducts of varying cross-section

    Science.gov (United States)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  14. Experimental study of gas-liquid flow local characteristics in rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Bartkus German

    2017-01-01

    Full Text Available Using high-speed video recording and the method of dual laser scanning the gas-liquid flow was investigated in a rectangular microchannel with an aspect ratio of 0.74 (cross section 269×362 μm. The T-mixer was used at the channel’s inlet for the two-phase flow formation. The peculiarity of this work is using a number of liquids (ethanol, distilled water, 40% aqueous ethanol with different physical properties, including surface tension, viscosity, and density, with nitrogen. Experiments were carried out for the vertically upward and horizontal flow. Using laser scanning method the maps of flow patterns were obtained for all mixtures.

  15. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  16. Investigation and visualization of liquid–liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    International Nuclear Information System (INIS)

    Shad, S; Gates, I D; Maini, B B

    2009-01-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas–liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio

  17. Numerical simulation of gas-liquid two-phase flow behavior with condensation heat transfer

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi.

    1995-01-01

    In this study, condensation heat transfer experiments were performed in order to verify a condensation heat transfer model coupled with a three-dimensional two-phase flow analysis. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for steam velocity effect. In the experiments, 112 horizontal staggered tubes with an outer diameter of 16 mm and length of 0.55 m were used. Steam and spray water were supplied to the test section, and inlet quality was controlled by the spray water flow rate. The temperature was 100degC and the pressure was 0.1 MPa. The overall heat transfer coefficients were measured for inlet quality of 13-100%. From parameter calculations for the falling liquid film ratio from the upper tubes to the lower tubes, the calculated overall heat transfer coefficients agreed with the data to within ±5% at the falling liquid film ratio of 0.7. (author)

  18. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    Science.gov (United States)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  19. Forming of film surface of very viscous liquid flowing with gas in pipes

    Directory of Open Access Journals (Sweden)

    Czernek Krystian

    2017-01-01

    Full Text Available The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.

  20. The effect of the gas-liquid density ratio on the liquid film thickness in vertical upward annular flow

    International Nuclear Information System (INIS)

    Mori, Shoji; Okuyama, Kunito

    2010-01-01

    Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provide the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρ L /ρ G =763, 451, 231, and 31). As a result, it was found that liquid film thickness characteristics including the effect of liquid/gas density ratios were well correlated with a gas Weber number and the liquid Reynolds number in the wide range of experimental conditions (ρ L /ρ G : 31-763, We: 10-1800, Re L : 500-2200). (author)

  1. The status of research on CFD-PBM simulation of liquid-liquid two-phase flow in extraction columns

    International Nuclear Information System (INIS)

    Li Shaowei; Jing Shan; Wu Qiulin; Zhang Qi

    2012-01-01

    Computational fluid dynamics (CFD) simulation has gained more and more interest in the chemical engineering researchers and is becoming a useful tool for the chemical engineering research. The research on liquid-liquid two-phase flow CFD simulation in extraction columns is now in its initial stage. There is much work to do for the developing of this research field. The purpose of this article is to review the CFD simulation methods for two-phase flow in extraction column. The population balance model (PBM) is detailedly described in this article because it is the main method used in the two-phase flow CFD simulation currently. Then some examples for the two-phase flow simulation in extraction columns are briefly introduced. The strategy for the research on CFD simulation of two-phase flow in extraction columns is suggested at last. (authors)

  2. Modeling liquid hydrogen cavitating flow with the full cavitation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.B.; Qiu, L.M.; Qi, H.; Zhang, X.J.; Gan, Z.H. [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-12-15

    Cavitation is the formation of vapor bubbles within a liquid where flow dynamics cause the local static pressure to drop below the vapor pressure. This paper strives towards developing an effective computational strategy to simulate liquid hydrogen cavitation relevant to liquid rocket propulsion applications. The aims are realized by performing a steady state computational fluid dynamic (CFD) study of liquid hydrogen flow over a 2D hydrofoil and an axisymmetric ogive in Hord's reports with a so-called full cavitation model. The thermodynamic effect was demonstrated with the assumption of thermal equilibrium between the gas phase and liquid phase. Temperature-dependent fluid thermodynamic properties were specified along the saturation line from the ''Gaspak 3.2'' databank. Justifiable agreement between the computed surface pressure, temperature and experimental data of Hord was obtained. Specifically, a global sensitivity analysis is performed to examine the sensitivity of the turbulent computations to the wall grid resolution, wall treatments and changes in model parameters. A proper near-wall model and grid resolution were suggested. The full cavitation model with default model parameters provided solutions with comparable accuracy to sheet cavitation in liquid hydrogen for the two geometries. (author)

  3. Experimental observations of flow instabilities and rapid mixing of two dissimilar viscoelastic liquids

    Directory of Open Access Journals (Sweden)

    Hiong Yap Gan

    2012-12-01

    Full Text Available Viscoelastically induced flow instabilities, via a simple planar microchannel, were previously used to produce rapid mixing of two dissimilar polymeric liquids (i.e. at least a hundredfold different in shear viscosity even at a small Reynolds number. The unique advantage of this mixing technology is that viscoelastic liquids are readily found in chemical and biological samples like organic and polymeric liquids, blood and crowded proteins samples; their viscoelastic properties could be exploited. As such, an understanding of the underlying interactions will be important especially in rapid microfluidic mixing involving multiple-stream flow of complex (viscoelastic fluids in biological assays. Here, we use the same planar device to experimentally show that the elasticity ratio (i.e. the ratio of stored elastic energy to be relaxed between two liquids indeed plays a crucial role in the entire flow kinematics and the enhanced mixing. We demonstrate here that the polymer stretching dynamics generated in the upstream converging flow and the polymer relaxation events occurring in the downstream channel are not exclusively responsible for the transverse flow mixing, but the elasticity ratio is also equally important. The role of elasticity ratio for transverse flow instability and the associated enhanced mixing were illustrated based on experimental observations. A new parameter Deratio = Deside / Demain (i.e. the ratio of the Deborah number (De of the sidestream to the mainstream liquids is introduced to correlate the magnitude of energy discontinuity between the two liquids. A new Deratio-Demain operating space diagram was constructed to present the observation of the effects of both elasticity and energy discontinuity in a compact manner, and for a general classification of the states of flow development.

  4. Flashing inception in flowing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1980-01-01

    The inception of net vaporization in flashing flows is examined. It is suggested that the flashing inception can be expressed as two additive effects. One is due to the static decompression which is a function of the initial temperature and also the expansion rate. The other effect which is a function of Reynolds number and flashing index, is due to the turbulent fluctuations of the flowing liquid. It is shown that by taking a three standard deviation band on the turbulent velocity fluctuations, an adequate representation of the inverse mass flux effect on flashing inception for existing data is obtained. The turbulence effects are combined with the correlation of Alamgir and Lienhard to provide predictive methods recommended for the case where both static and convective decompression effects exist

  5. Pigging analysis for gas-liquid two phase flow in pipelines

    International Nuclear Information System (INIS)

    Kohda, K.; Suzukawa, Y.; Furukawa, H.

    1988-01-01

    A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good

  6. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows

    Science.gov (United States)

    Stelling, G. S.; Duinmeijer, S. P. A.

    2003-12-01

    This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.

  7. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  8. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    Science.gov (United States)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  9. Partial liquid-penetration inside a deep trench by film flowing over it

    Science.gov (United States)

    Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  10. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Hibiki, T.

    2008-01-01

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions

  11. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  12. Numerical Study of the Influence of Cavity on Immiscible Liquid Transport in Varied-Wettability Fractures

    Directory of Open Access Journals (Sweden)

    Zhi Dou

    2015-01-01

    Full Text Available Field evidence indicates that cavities often occur in fractured rocks, especially in a Karst region. Once the immiscible liquid flows into the cavity, the cavity has the immiscible liquid entrapped and results in a low recovery ratio. In this paper, the immiscible liquid transport in cavity-fractures was simulated by Lattice Boltzmann Method (LBM. The interfacial and surface tensions were incorporated by Multicomponent Shan-Chen (MCSC model. Three various fracture positions were generated to investigate the influence on the irreducible nonwetting phase saturation and displacement time. The influences of fracture aperture and wettability on the immiscible liquid transport were discussed and analyzed. It was found that the cavity resulted in a long displacement time. Increasing the fracture aperture with the corresponding decrease in displacement pressure led to the long displacement time. This consequently decreased the irreducible nonwetting phase saturation. The fracture positions had a significant effect on the displacement time and irreducible saturation. The distribution of the irreducible nonwetting phase was strongly dependent on wettability and fracture position. Furthermore, this study demonstrated that the LBM was very effective in simulating the immiscible two-phase flow in the cavity-fracture.

  13. Point dipole as a magnetic obstacle in liquid metal duct flow

    Science.gov (United States)

    Tympel, Saskia; Boeck, Thomas; Krasnov, Dmitry; Schumacher, Jörg

    2011-11-01

    Lorentz force velocimetry is a new contactless technique to measure the velocities of hot and agressive conductiong liquids. The measurement of the Lorentz force on the magnet is highly sensitive to the velocity profile that is influenced by the magnetic field. Thus the knowlegde of the flow transformation and the influence of an inhomogeneous local magnetic field on liquid metal flow is essential for obtaining velocity information from the measured forces. We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. A wide range of parameters affects the created wake. In this canonical setting, we study the modification of the flow for different Hartmann and Reynolds numbers. We observe a strong dependence of the magnetic obstacle effect and the corresponding Lorentz force on the orientation of the dipole as well as on its position. The authors acknowledge the support of the Deutsche Forschungsgemeinschaft.

  14. Experimental and numerical investigations of ionic liquid-aqueous flow in microchannel

    Science.gov (United States)

    Li, Qi; Tsaoulidis, Dimitrios; Angeli, Panagiota

    2015-11-01

    The hydrodynamic characteristics of plug flow of an ionic liquid-aqueous two-phase system in a microchannel were studied experimentally and numerically. A mixture of 0.2M N-octyl(plenyl)-N,N-diisobutylcarbamoylmethyphosphine oxide (CMOP)- 1.2 M Tri-n-butylphosphate (TBP) in room temperature ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide ([C4min][NTf2]), and a nitric acid solution of 1M were chosen. These fluids are relevant Eu(III) separation by extraction from nitric acid solutions. The two liquid phases were introduced into microchannels of 0.2 and 0.5mm internal diameter through a T-junction inlet. The flow pattern was visualized during plug formation at the inlet section and further downstream by means by bright field planar micro-Particle Image Velocimetry. Key features of plug flow, such as plug velocity, film thickness, plug length and recirculation intensity were measured under various experimental conditions. To gain further understanding of the 3-D flow field, Computation Fluid Dynamics (CFD) simulations approach were also conducted.

  15. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    Science.gov (United States)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  16. Flow accelerated corrosion and erosion-corrosion of RAFM steel in liquid breeders

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Muroga, Takeo; Sagara, Akio

    2010-11-01

    Corrosion experiments for RAFM, JLF-1 steel (Fe-9Cr-2w-0.1C) in 3types of flowing liquid breeders (i.e. Li, Pb-17Li and Flinak) were performed at the same conditions, and the compatibility was compared with each other. The weight loss of the specimens in the fluids was evaluated by the corrosion model based on mass transfer. The model can be applied to different test systems with different quantity of liquid breeders and different surface area of the systems. The flow enhanced the dissolution of element of the steel in the fluids. The mechanism of an erosion-corrosion in the liquid breeders was the peeling off of the corroded steel surface by the flow. (author)

  17. Cavitation and gas-liquid flow in fluid machinery and devices. FED-Volume 190

    International Nuclear Information System (INIS)

    O'Hern, T.J.; Kim, J.H.; Morgan, W.B.; Furuya, O.

    1994-01-01

    Cavitation and gas-liquid two-phase flow have remained important areas in many industrial applications and constantly provided challenges for academic researchers and industrial practitioners alike. Cavitation and two-phase flow commonly occur in fluid machinery such as pumps, propellers, and fluid devices such as orifices, valves, and diffusers. Cavitation not only degrades the performance of these machines and devices but deteriorates the materials. Gas-liquid two-phase flow has also been known to degrade the performance of pumps and propellers and can often induce an instability. The industrial applications of cavitation and two-phase flow can be found in power plants, ship propellers, hydrofoils, and aerospace equipment, to name but a few. The papers presented in this volume reflect the variety and richness of cavitation and gas-liquid two-phase flow in various flow transporting components and the increasing role they play in modern and conventional technologies. Separate abstracts were prepared for 35 papers in this book

  18. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  19. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  20. Investigation of cascade-typed falling liquid film flow along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Nakai, Tadakatsu; Kawara, Zensaku

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a ''cascade-typed'' falling liquid film flow is proposed as the ''liquid wall'' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the commercial code (STREAM: unsteady three-dimensional general purpose thermofluid code) and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ru 2 d/s: r is density, u is velocity, d is film thickness, s is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant waterhead located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same

  1. Liquid film and interfacial wave behavior in air-water countercurrent flow through vertical short multi-tube geometries

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Giot, M.

    1992-01-01

    A series of experiments has been performed on air-water countercurrent flow through short multi-tube geometries (tube number n = 3, diameter d = 36mm, length I = 2d, 10d and 20d). The time-varying thicknesses of the liquid films trickling down the individual tubes are measured by means of conductance probes mounted flush at different locations of the inner wall surfaces. Detailed time series analyses of the measured film thicknesses provide some useful information about the film flow behavior as well as the interfacial wave characteristics in individual tubes, which can be used as some guidelines for developing more general predictive flooding models. 18 refs., 18 figs., 1 tabs

  2. Bingham liquid flow between two cylinders induced by inner ring rotation

    Science.gov (United States)

    Jaroslav, Štigler; Simona, Fialová

    2017-09-01

    This paper deals with the fluid flow between two cylinders induced by inner ring rotation. The gap width between the cylinders, in case that they are both concentric, is 1mm, the gap and inner ring radius ratio 0.013 and the radius ratio 0.987. Attention is focused on rotation speed and eccentricity influence on the flow. Calculations were done for both Newtonian liquid and Bingham plastic liquid with the yield stress threshold 50 Pa.

  3. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    Science.gov (United States)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  4. Turbulent mixing between subchannels in a gas-liquid two-phase flow. For the equilibrium flow without net fluid transfer between subchannels

    International Nuclear Information System (INIS)

    Kawahara, Akimaro; Sadatomi, Michio; Sato, Yoshifusa; Saito, Hidetoshi.

    1995-01-01

    To provide data necessary for modeling turbulent mixing between subchannels in a nuclear fuel rod bundle, three experiments were made in series for equilibrium two-phase flows, in which net mass exchange does not occur between subchannels for each phase. The first one was the measurement of turbulent mixing rates of both gas and liquid phases by a tracer technique, using air and water as the working fluids. Three kinds of vertical test channels consisting of two subchannels were used. The data have shown that the turbulent mixing rate of each phase in a two-phase flow is strongly dependent on flow regime. So, to see the relation between turbulent mixing and two-phase flow configuration in the subchannels, the second experiment, flow visualization, was made. It was observed in slug and churn flows that a lateral inter-subchannel liquid flow of a large scale is caused by the successive axial transit of large gas bubbles in each subchannel, and the turbulent mixing for the liquid phase is dominated by this lateral flow. To investigate a driving force of such large scale lateral flow, the third experiment, the measurement of an instantaneous pressure differential between the subchannels, was made. The result showed that there is a close relationship between the liquid phase mixing rate and the magnitude of the pressure differential fluctuation. (author)

  5. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    Science.gov (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  6. Numerical simulation for gas-liquid two-phase flow in pipe networks

    International Nuclear Information System (INIS)

    Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun

    1998-01-01

    The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network

  7. Liquid metal coolant flow rate regulation

    International Nuclear Information System (INIS)

    Vitkovskij, I.V.; Glukhikh, V.A.; Kirillov, I.R.; Smirnov, A.M.

    1981-01-01

    Some aspects of fast reactor and experimental bench operation related to liquid metal flow rate regulation are considered. Requirements to the devices for the flow rate regulation are formulated. A new type of these devices namely magnetohydrodynamic (MHD) throttles is described. Structural peculiarities of MHD throttles of different types are described as well. It is noted that the MHD throttles with a screw channel have the best energy mass indices. On the basis of the comparison of the MHD throttles with mechanical valves it is concluded that the MHD throttles described are useful for regulating the flow rates of any working media. Smoothness and accuracy of the flow rate regulation by the throttles are determined by the electric control circuit and may be practically anyone. The total coefficient of hydraulic losses in the throttle channel in the absence of a magnetic field is ten and more times lesser than in completely open mechanical valve. Electromagnetic time constant of the MHD throttles does not exceed several tenths of a second [ru

  8. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  9. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  10. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  11. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2012-04-01

    Full Text Available This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen’s test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG’s length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  12. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  13. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  14. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    Science.gov (United States)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  15. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  16. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.

    Science.gov (United States)

    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L

    2015-02-06

    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Analysis of gas-liquid metal two-phase flows using a reactor safety analysis code SIMMER-III

    International Nuclear Information System (INIS)

    Suzuki, Tohru; Tobita, Yoshiharu; Kondo, Satoru; Saito, Yasushi; Mishima, Kaichiro

    2003-01-01

    SIMMER-III, a safety analysis code for liquid-metal fast reactors (LMFRs), includes a momentum exchange model based on conventional correlations for ordinary gas-liquid flows, such as an air-water system. From the viewpoint of safety evaluation of core disruptive accidents (CDAs) in LMFRs, we need to confirm that the code can predict the two-phase flow behaviors with high liquid-to-gas density ratios formed during a CDA. In the present study, the momentum exchange model of SIMMER-III was assessed and improved using experimental data of two-phase flows containing liquid metal, on which fundamental information, such as bubble shapes, void fractions and velocity fields, has been lacking. It was found that the original SIMMER-III can suitably represent high liquid-to-gas density ratio flows including ellipsoidal bubbles as seen in lower gas fluxes. In addition, the employment of Kataoka-Ishii's correlation has improved the accuracy of SIMMER-III for gas-liquid metal flows with cap-shape bubbles as identified in higher gas fluxes. Moreover, a new procedure, in which an appropriate drag coefficient can be automatically selected according to bubble shape, was developed. Through this work, the reliability and the precision of SIMMER-III have been much raised with regard to bubbly flows for various liquid-to-gas density ratios

  18. The questions of liquid metal two-phase flow modelling in the FBR core channels

    International Nuclear Information System (INIS)

    Martsiniouk, D.Ye.; Sorokin, A.P.

    2000-01-01

    The two-fluid model representation for calculations of two-phase flow characteristics in the FBR fuel pin bundles with liquid metal cooling is presented and analysed. Two conservation equations systems of the mass, momentum and energy have been written for each phase. Components accounted the mass-, momentum- and heat transfer throughout the interface occur in the macro-field equations after the averaging procedure realisation. The pattern map and correlations for two-fluid model in vertical liquid metal flows are presented. The description of processes interphase mass- and heat exchange and interphase friction is determined by the two-phase flow regime. The opportunity of the liquid metal two-phase flow regime definition is analysed. (author)

  19. Bistability of heat transfer of a viscous liquid under conditions of flow channel

    International Nuclear Information System (INIS)

    Melkikh, A.V.; Seleznev, V.D.

    2001-01-01

    The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru

  20. Recent improvements of the French liquid micro-flow reference facility

    Science.gov (United States)

    Florestan, Ogheard; Sandy, Margot; Julien, Savary

    2018-02-01

    According to the mission of the national reference laboratory, LNE-CETIAT achieved in 2012 the construction and accreditation of a modern and innovative calibration laboratory based on the gravimetric method. The measurement capabilities cover a flow rate range for liquid from 10 kg · h-1 down to 1 g · h-1 with expanded relative uncertainties from 0.1% to 0.6% (k  =  2). Since 2012, several theoretical and experimental studies have allowed a better knowledge and control over uncertainty sources and have decreased calibration time. When dealing with liquid micro-flow using a reference method such as the gravimetric method, several difficulties have to be overcome. The main improvements described in this paper relate to the enhancement of the evaporation trap system, the merging of the four dedicated measurement lines into one, and the implementation of a gravimetric dynamic ‘flying’ method for the calculation of the reference flow rate. The evaporation-avoiding system has been replaced by an oil layer in order to remove the possibility of condensation of water on both the weighed vessel and the immersed capillary. The article describes the experimental method used to quantify the effect of surface tension of water/oil/air interfaces on the weighed mass. The traditional static gravimetric method has been upgraded by a dynamic ‘flying’ gravimetric method. The article presents the newly implemented method, its validation and its advantages compared to the static method. The four dedicated weighing devices, dispatched over four sub-ranges of flow rate, have been merged leading to the use of only one weighing scale with the same uncertainties on the reference flow rate. The article discusses the new uncertainty budget over the full flow rate range capability. Finally, the article discusses the improvements still under development and the general prospects of liquid micro-flow metrology.

  1. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng; Liu, Chun; Qian, Tiezheng

    2012-01-01

    profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve

  2. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  3. Local studies in horizontal gas-liquid slug flow

    International Nuclear Information System (INIS)

    Sharma, S.; Lewis, S.; Kojasoy, G.

    1998-01-01

    The local axial velocity profile development in a horizontal air-water slug flow-pattern was experimentally investigated by simultaneously using two hot-film anemometers. One of the probes was exclusively used as phase identifier while the other probe was traversed for local velocity measurements. It was shown that the velocity rapidly develops into asymmetric but nearly fully-developed profiles within the liquid slugs whereas the velocity never develops into quasi-fully-developed profiles within the liquid layer underneath passing gas slugs. Transient nature of velocity at a given location was demonstrated. (author)

  4. Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2013-01-01

    Owing to the stringent indoor air quality (IAQ) requirements and high cost of desiccants, one of the major concerns in liquid desiccant technology has been the carryover, which can be eliminated through indirect contact between desiccant and air. Membrane contactors using microporous semipermeable hydrophobic membranes have a great potential in this regard. This communication investigates the performance of semipermeable membrane based indirect contactors as dehumidifiers in liquid desiccant cooling applications. Experiments on different types of membrane contactors are carried out using lithium chloride (LiCl) solution as desiccant. The membrane contactors consist of alternate channels of air and liquid desiccant flowing in cross-flow direction. Hydrophobic membranes form a liquid tight, vapor permeable porous barrier between hygroscopic solution and moist air, thus eliminating carryover of desiccant droplets. In order to provide maximum contact area for air–desiccant interaction, a wicking material is sandwiched between two membranes in the liquid channel. It is observed that vapor flux upto 1300 g/m 2 h can be achieved in a membrane contactor with polypropylene (PP) membranes, although the dehumidification effectiveness remains low. The effect of key parameters on the transmembrane vapor transport is presented in the paper. - Highlights: • Indirect membrane contactors developed to avoid carryover in liquid desiccant system. • Dehumidification effectiveness and vapor flux reported under varying conditions. • Vapor flux upto 1295 g/m 2 h in polypropylene contactor with high area density. • Dehumidification effectiveness with LiCl solution varies within 23% to 45%

  5. Using artificial intelligence to improve identification of nanofluid gas–liquid two-phase flow pattern in mini-channel

    Directory of Open Access Journals (Sweden)

    Jian Xiao

    2018-01-01

    Full Text Available This work combines fuzzy logic and a support vector machine (SVM with a principal component analysis (PCA to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas–liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  6. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    Science.gov (United States)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  7. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  8. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: An experimental study

    International Nuclear Information System (INIS)

    Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer

    2013-01-01

    Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)

  9. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    Science.gov (United States)

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  10. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  11. Mechanism of flow choking at shock boiling-up of a liquid

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1982-01-01

    The theory of the outflow of a saturated or non-heated liquid with thermodynamic parameters reaching the critical point from diaphragms and short nozzles has been developed basing on the concept of the boiling-up jump. Three characteristic flow conditions have been revealed: hydraulic, conditions when boiling-up jump is formed, and conditions of radial expansion of the flow. If the initial flow's parameters are low, the hydraulic conditions are realized. The expansion of the flow-passage cross-section of flow small jets by the final value takes place when the spinoidal overheating is reached near the exit cut-off at a small distance equal to the thickness of the boiling-up zone; and that causes the intensive jet dispersion in the radial direction. In case of overheatings close to the thermodynamic critical point, a boiling-up jump is formed inside the channel. The mechanism of flow choking has been analyzed; recommendations on calculation of the critical flow rate of a boiling-up liquid are given. The studied mechanism of flow choking at shock boiling-up of the flow permits to draw a rather detailed physical picture of the phenomenon and to give an explanation of the majority of experimentally-observed effects

  12. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)

    2005-01-07

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.

  13. Temporal instability of viscous liquid microjets with spatially varying surface tension

    International Nuclear Information System (INIS)

    Furlani, E P

    2005-01-01

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties

  14. Experimental evaluation of permanent magnet probe flowmeter measuring high temperature liquid sodium flow in the ITSL

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Yun Ho [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Jong-Man; Kim, Tae-Joon [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung Joong, E-mail: sungjkim@mit.edu [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-12-15

    Highlights: • An Instrument Test Sodium Loop (ITSL) has been built and tested in various conditions at KAERI. • Free fall of liquid sodium was conducted experimentally and numerically. • A Permanent Magnet Probe Flowmeter (PMPF) was experimented in the ITSL. • Excellent linearity of the PMPF was achieved under high temperature condition. - Abstract: The Instrument Test Sodium Loop (ITSL) installed at Korea Atomic Energy Research Institute (KAERI) is a medium-size experimental facility dedicated to obtaining relevant experimental data of liquid sodium flow characteristics under various thermal hydraulic conditions and sodium purification. The ITSL has been utilized to perform thermal flow measurement of the liquid sodium and to calibrate a Permanent Magnet Probe Flowmeter (PMPF). The primary objective of this study is to obtain liquid sodium flow rate given a wide temperature range using the PMPF. Non-stationary method was adopted for the calibration of the probe given the liquid sodium temperature range of 150–415 °C. A relationship between the measured voltage signal and flow rate was obtained successfully. It is observed that the calibration experiments result in excellent linear relationships between measured voltage and volumetric flow rate at various temperature conditions. Also a computational analysis using FlowMaster, is employed to facilitate the calibration process by predicting the liquid sodium flow rate. Finally the effect of the fluid temperature on thermal flow measurements is discussed in light of the obtained experimental data.

  15. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  16. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    Science.gov (United States)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  17. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Olsen, Niels Boye; Christensen, Tage Emil

    1996-01-01

    A model for the viscosity of glass-forming molecular liquids is proposed in which a "flow event" requires a local volume increase. The activation energy for a flow event is identified with the work done in shoving aside the surrounding liquid; this work is proportional to the high-frequency shear...

  18. The use of a low-cost gas-liquid flow meter to monitor severe slugging

    DEFF Research Database (Denmark)

    Andreussi, Paolo; Bonizzi, Marco; Ciandri, Paolo

    2017-01-01

    A very simple, low-cost gas-liquid flow meter that only employs conventional field instrumentation has been used to monitor severe slugging occurring at the exit of a vertical pipe. This meter was originally developed for conventional oil field applications [1] and is based on the readings...... method to monitor severe slugging by means of low cost instrumentation, in particular, by replacing a cumbersome instrument such as a gamma-densitometer with a differential pressure transmitter. In field operation, the multiphase orifice used in these experiments can be replaced by a calibrated control...... of a multiphase orifice and the pressure drops of the gas-liquid mixture flowing in a vertical section of the pipe. Liquid and gas flow rates have been determined by means of semi-empirical equations developed for the specific set of flow parameters (geometry, flow rates, physical properties) adopted in a series...

  19. Stokes flow inside an evaporating liquid line for any contact angle

    Science.gov (United States)

    Petsi, A. J.; Burganos, V. N.

    2008-09-01

    Evaporation of droplets or liquid films lying on a substrate induces internal viscous flow, which affects the transport of suspended particles and, thus, the final deposit profile in numerous applications. In this work, the problem of Stokes flow inside a two-dimensional droplet, representing the cross section of an evaporating liquid line lying on a flat surface, is considered. The stream function formulation is adopted, leading to the biharmonic equation in bipolar coordinates. A solution in closed form is obtained for any contact angle in (0,π) and is, thus, valid for both hydrophilic and hydrophobic substrates. The solution can be used with any type of evaporation mechanism, including diffusion, convection, or kinetically controlled modes. Both pinned and depinned contact lines are considered. For the boundary conditions to be compatible at the contact lines, the Navier slip boundary condition is applied on the substrate. Numerical results are presented for kinetically and diffusion controlled evaporation. For pinned contact lines, the flow inside the evaporating liquid line is directed towards the edges, thus, promoting the coffee stain phenomenon. In the case of depinned contact lines and contact angle less than π/2 , the flow is directed towards the center of the droplet, whereas, for strongly hydrophobic substrates it is directed outwards.

  20. Enhancement of the stability of the flow focusing technique for low-viscosity liquids

    International Nuclear Information System (INIS)

    Acero, A J; Montanero, J M; Ferrera, C; Herrada, M A; Gañán-Calvo, A M

    2012-01-01

    We propose a modified flow focusing configuration to produce low-viscosity microjets at much smaller flow rates than those reached by the standard configuration. In the modified flow focusing device, a sharpened rod blocks the recirculation cell appearing in the tapering liquid meniscus for low flow rates, which considerably improves its stability. We measured the minimum flow rates attainable with the modified configuration and compared the results with the corresponding values for the standard technique. For moderate and large applied pressure drops, the minimum flow rate reached with the modified configuration was about five times smaller than its counterpart in the standard configuration. The Weber numbers of the jets produced with the modified flow focusing configuration were considerably smaller than those with the standard technique. Numerical simulations were conducted to show how the presence of the inner rod substantially changes the flow pattern in the liquid meniscus. (paper)

  1. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  2. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    Science.gov (United States)

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of

  3. Portable apparatus for containing and regulating flow of a liquid into a drainage inlet

    International Nuclear Information System (INIS)

    Warren, R.E.

    1991-01-01

    This patent describes a method of using an apparatus suitable for containing a mixture of spilled petroleum liquid and water and regulating the flow of water into a storm drain, having a drainage inlet with a recess area extending about a perimeter of the drainage inlet, while minimizing the flow of the petroleum liquid into the storm drain, the apparatus comprising, flange means, defining a central opening therein, for engaging the recess area of the storm drain, the flange means being substantially the same size and shape as a cover of the storm drain so that when the cover is removed from the storm drain, the method comprising the steps of: positioning the apparatus over a storm drain with the flange means being received and supported by the recess area of the storm drain with the central opening overlying the drainage inlet; allowing the mixture of petroleum liquid and water to collect around the apparatus; controlling the position of the movable hollow member, relative to the flange means, to control the flow of water into the drainage inlet, through the sidewall and central openings, while maintaining the petroleum liquid floating on the water and preventing entry of the petroleum liquid into the at least sidewall opening; and collecting the petroleum liquid after a sufficient quantity of water has been allowed to flow into the drainage inlet

  4. Method of driving liquid flow at or near the free surface using magnetic microparticles

    Science.gov (United States)

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  5. Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel

    Directory of Open Access Journals (Sweden)

    Hongtruong Pham

    2012-01-01

    Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.

  6. Investigation of flow asymmetry and instability in the liquid mercury target of the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pointer, D.; Ruggles, A.; Wendel, M.; Crye, J.

    2000-01-01

    The Spallation Neutron Source (SNS) will utilize a liquid mercury target placed in the path of a high-energy proton beam to produce neutrons for research activities. As the high-energy protons interact with the mercury target, the majority of the beam energy is converted to thermal energy. The liquid mercury must provide sufficient heat transfer to maintain the temperature of the target structure within the thermal limits of the structural materials. Therefore, the behavior of the liquid mercury flow must be characterized in sufficient detail to ensure accurate evaluation of heat transfer in the mercury target. A combination of experimental and computational methods is utilized to characterize the flow in these preliminary analyses. Preliminary studies of the liquid mercury flow in the SNS target indicate that the flow in the exit channel may exhibit multiple recirculation zones, flow asymmetries, and possibly large-scale flow instabilities. While these studies are not conclusive, they serve to focus the efforts of subsequent CFD modeling and experimental programs to better characterize the flow patterns in the SNS mercury target

  7. Film behaviour of vertical gas-liquid flow in a large diameter pipe

    OpenAIRE

    Zangana, Mohammed Haseeb Sedeeq

    2011-01-01

    Gas-liquid flow commonly occurs in oil and gas production and processing system. Large diameter vertical pipes can reduce pressure drops and so minimize operating costs. However, there is a need for research on two-phase flow in large diameter pipes to provide confidence to designers of equipments such as deep water risers. In this study a number of experimental campaigns were carried out to measure pressure drop, liquid film thickness and wall shear in 127mm vertical pipe. Total pressur...

  8. Thermocapillary and shear driven flows in gas/liquid system in annular duct

    International Nuclear Information System (INIS)

    Gaponenko, Yu; Shevtsova, V; Nepomnyashchy, A

    2011-01-01

    We report the results of numerical study of two-phase flows in annulus for different aspect ratios obtained in the frame of the JEREMI experiment preparation. The geometry of the physical problem is a cylindrical and non-deformable liquid bridge concentrically surrounded by an annular gas channel under conditions of zero gravity. Thermocapillary (Marangoni) convection in liquid bridge of Pr = 68 is analyzed in the case when the interface is subjected to an axial gas stream. The gas flow is counter-directed with respect to the Marangoni flow. The inlet gas velocity U 0 g , temperature difference ΔT between end rods of the liquid bridge and aspect ratio are the control parameters of the system. In the case when the gas stream comes from the cold side, it cools down the interface to a temperature lower than that of the liquid beneath, and in a certain region of the parameter space that cooling causes instability due to a temperature difference in the direction, perpendicular to the interface. The present study is focused on the influence of the aspect ratio on the existence and characteristic features of the oscillatory regime.

  9. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry

    Science.gov (United States)

    Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.

    2004-04-01

    A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.

  10. Two-Phase Gas-Liquid Flow Structure Characteristics under Periodic Cross Forces Action

    Directory of Open Access Journals (Sweden)

    V. V. Perevezentsev

    2015-01-01

    Full Text Available The article presents a study of two-phase gas-liquid flow under the action of periodic cross forces. The work objective is to obtain experimental data for further analysis and have structure characteristics of the two-phase flow movement. For research, to obtain data without disturbing effect on the flow were used optic PIV (Particle Image Visualization methods because of their noninvasiveness. The cross forces influence was provided by an experimental stand design to change the angular amplitudes and the periods of channel movement cycle with two-phase flow. In the range of volume gas rates was shown a water flow rate versus the inclination angle of immovable riser section and the characteristic angular amplitudes and periods of riser section inclination cycle under periodic cross forces. Data on distribution of average water velocity in twophase flow in abovementioned cases were also obtained. These data allowed us to draw a conclusion that a velocity distribution depends on the angular amplitude and on the period of the riser section roll cycle. This article belongs to publications, which study two-phase flows with no disturbing effect on them. Obtained data give an insight into understanding a pattern of twophase gas-liquid flow under the action of periodic cross forces and can be used to verify the mathematical models of the CFD thermo-hydraulic codes. In the future, the work development expects taking measurements with more frequent interval in the ranges of angular amplitudes and periods of the channel movement cycle and create a mathematical model to show the action of periodic cross forces on two-phase gas-liquid flow.

  11. Mechanical annealing in the flow of supercooled metallic liquid

    International Nuclear Information System (INIS)

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-01-01

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr 58.5 Cu 15.6 Al 10.3 Ni 12.8 Nb 2.8 , at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10 −1 s −1 to different strains were performed at the end of glass transition (T g-end  = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10 −1 s −1 to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model

  12. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    International Nuclear Information System (INIS)

    Spindler, B.

    1983-01-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods

  13. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    Science.gov (United States)

    Spindler, B.

    1983-08-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods.

  14. Coupling of a two phase gas liquid 3D Darcy flow in fractured porous media with a 1D free gas flow

    OpenAIRE

    Brenner , Konstantin; Masson , Roland; Trenty , Laurent; Zhang , Yumeng

    2015-01-01

    A model coupling a three dimensional gas liquid compositional Darcy flow in a frac-tured porous medium, and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermody-namical equilibrium, the gas pressure continuity and the gas and liquid molar fractions continuity. The fractures are represented as interfaces of codimens...

  15. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  16. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  17. Experimental investigation of two-phase gas-liquid flow in microchannel with T-junction

    Science.gov (United States)

    Bartkus, German; Kozulin, Igor; Kuznetsov, Vladimir

    2017-10-01

    Using high-speed video recording and the method of dual laser scanning the gas-liquid flow was investigated in rectangular microchannels with an aspect ratio of 2.35 and 1.26. Experiments were earned out for the vertical flow of ethanol-nitrogen mixture in a microchannel with a cross section of 553×235 µm and for the horizontal flow of water-nitrogen mixture in a microchannel with a cross section of 315×250 µm. The T-mixer was used at the channel's inlet for gas-liquid flow formation. It was observed that elongated bubble, transition, and annular flows are the main regimes for a microchannel with a hydraulic diameter substantially less than the capillary constant. Using laser scanning, the maps of flow regimes for ethanol-nitrogen and water-nitrogen mixtures were obtained and discussed.

  18. Liquid level controller

    International Nuclear Information System (INIS)

    Mangus, J.D.; Redding, A.H.

    1975-01-01

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies

  19. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    International Nuclear Information System (INIS)

    Leitner, David M.; Pandey, Hari Datt

    2015-01-01

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes

  20. Evaporation-induced flow in an inviscid liquid line at any contact angle

    Science.gov (United States)

    Petsi, A. J.; Burganos, V. N.

    2006-04-01

    The problem of potential flow inside an evaporating liquid line, shaped as an infinitely long cylindrical segment lying on a flat surface, is considered and an analytical solution is obtained for any contact angle in (0,π) . In this way, microflow details inside linear liquid bodies evaporating on hydrophilic, hydrophobic, and strongly hydrophobic substrates can now be obtained. The mathematical formulation employs the velocity potential and stream function formulations in bipolar coordinates and the solution is obtained using the technique of Fourier transform. Both pinned and depinned contact lines are considered. The solution is applicable to any evaporation mechanism but for illustration purposes numerical results are presented here for the particular case of kinetically controlled evaporation. For hydrophilic substrates, the flow inside the evaporating liquid line is directed towards the edges for pinned contact lines, thus, promoting a coffee stain effect. The opposite flow direction is observed for depinned contact lines. However, for strongly hydrophobic substrates, flow is directed outwards for both pinned and depinned contact lines, but owing to its low magnitude compared to that on hydrophilic substrates, a craterlike colloidal deposit should be expected rather than a ringlike deposit, in agreement with experimental observations.

  1. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  2. Analyses of liquid-gas two-phase flow in fermentation tanks

    International Nuclear Information System (INIS)

    Toi, Takashi; Serizawa, Akimi; Takahashi, Osamu; Kawara, Zensaku; Gofuku, Akio; Kataoka, Isao.

    1993-01-01

    The understanding of two-phase flow is one of the important problems for both design and safety analyses of various engineering systems. For example, the flow conditions in beer fermentation tanks have an influence on the quality of production and productivity of tank. In this study, a two-dimensional numerical calculation code based on the one-pressure two-fluid model is developed to understand the circulation structure of low quality liquid-gas two-phase flows induced by bubble plume in a tank. (author)

  3. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  4. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  5. Topological transitions in unidirectional flow of nematic liquid crystal

    Science.gov (United States)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  6. Flow of a falling liquid curtain onto a moving substrate

    International Nuclear Information System (INIS)

    Liu, Yekun; Itoh, Masahiro; Kyotoh, Harumichi

    2017-01-01

    In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed. (paper)

  7. Flow of a falling liquid curtain onto a moving substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yekun; Itoh, Masahiro [Graduate school of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki 302-8573 (Japan); Kyotoh, Harumichi, E-mail: yekunliu@hotmail.com [Division of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki 302-8573 (Japan)

    2017-10-15

    In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed. (paper)

  8. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  9. A review on measuring methods of gas-liquid flow rates

    International Nuclear Information System (INIS)

    Minemura, Kiyoshi; Yamashita, Masato

    2000-01-01

    This paper presents a review on the state of current measuring techniques for gas-liquid multiphase flow rates. After briefly discussing the basic idea on measuring methods for single-phase and two-phase flows, existing methods for the two-phase flow rates are classified into several types, that is, with or without a homogenizing device, single or combined method of several techniques, with intrusive or non-intrusive sensors, and physical or software method. Each methods are comparatively reviewed in view of measuring accuracy and manageability. Its scope also contains the techniques developed for petroleum-gas-water flow rates. (author)

  10. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  11. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  12. MHD flow of a dusty viscoelastic liquid through a porous medium between two inclined parallel plates

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, N.P.

    1996-01-01

    Magnetohydrodynamic flow of a dusty viscoelastic liquid (Oldroyd B-liquid) through a porous medium between two parallel plates inclined to the horizon has been studied. The liquid velocity, dust particle velocity and flux of flow have been obtained. Earlier results have been deduced as particular cases of the present investigation. The physical situation of the motion has been discussed graphically. (author)

  13. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part II Particle Response

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available In this paper the numerical model, which was presented in the first paper (Mohanarangam & Tu; 2009 of this series of study, is employed to study the different particle responses under the influence of two carrier phases namely the gas and the liquid. The numerical model takes into consideration the turbulent behaviour of both the carrier and the dispersed phases, with additional equations to take into account the combined fluid particle behaviour, thereby effecting a two-way coupling. The first paper in this series showed the distinct difference in particulate response both at the mean as well as at the turbulent level for two varied carrier phases. In this paper further investigation has been carried out over a broad range of particle Stokes number to further understand their behaviour in turbulent environments. In order to carry out this prognostic study, the backward facing step geometry of Fessler and Eaton (1999 has been adopted, while the inlet conditions for the carrier as well as the particle phases correspond to that of the experiments of Founti and Klipfel (1998. It is observed that at the mean velocity level the particulate velocities increased with a subsequent increase in the Stokes number for both the GP (Gas-Particle as well as the LP (Liquid-Particle flow. It was also observed that across the Stokes number there was a steady increase in the particulate turbulence for the GP flows with successive increase in Stokes number. However, for the LP flows, the magnitude of the increase in the particulate turbulence across the increasing of Stokes number is not as characteristic as the GP flow. Across the same sections for LP flows the majority of the trend shows a decrease after which they remain more or less a constant.

  14. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    Science.gov (United States)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  15. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  16. Response of small pitot tubes in gas-liquid flows

    International Nuclear Information System (INIS)

    Davis, M.R.

    1980-01-01

    The pressure rise experienced by a pitot tube immersed in a bubbly gas-liquid mixture flow exceeds that predicted by homogeneous flow analysis under conditions where the pitot is smaller than the mean bubble size. A systematic dependence of the deviation from homogeneous flow analysis exists, depending upon the mixture void fraction. A maximum effect is observed at a void fraction of 0.60, where the pressure rise was found to be 1.73 times the predicted stagnation pressure rise or 0.87 of the mixture momentum flux density. The magnitude of these effects is comparable with similar effects reported elsewhere for gas/solid mixture flow due to relative motion between phases in the vicinity of the sensing probe tip. (orig.)

  17. Global Liquidity and Drivers of Cross-Border Bank Flows

    NARCIS (Netherlands)

    Cerutti, E.; Claessens, S.; Ratnovski, L.

    2014-01-01

    This paper provides a definition of global liquidity consistent with its meaning as the "ease of financing" in international financial markets. Using a longer time series and broader sample of countries than in previous studies, it identifies global factors driving cross-border bank flows, alongside

  18. An improved liquid film model to predict the CHF based on the influence of churn flow

    International Nuclear Information System (INIS)

    Wang, Ke; Bai, Bofeng; Ma, Weimin

    2014-01-01

    The critical heat flux (CHF) for boiling crisis is one of the most important parameters in thermal management and safe operation of many engineering systems. Traditionally, the liquid film flow model for “dryout” mechanism shows a good prediction in heated annular two-phase flow. However, a general assumption that the initial entrained fraction at the onset of annular flow shows a lack of reasonable physical interpretation. Since the droplets have great momentum and the length of churn flow is short, the droplets in churn flow show an inevitable effect on the downstream annular flow. To address this, we considered the effect of churn flow and developed the original liquid film flow model in vertical upward flow by suggesting that calculation starts from the onset of churn flow rather than annular flow. The results indicated satisfactory predictions with the experimental data and the developed model provided a better understanding about the effect of flow pattern on the CHF prediction. - Highlights: •The general assumption of initial entrained fraction is unreasonable. •The droplets in churn flow show an inevitable effect on downstream annular flow. •The original liquid film flow model for prediction of CHF was developed. •The integration process was modified to start from the onset of churn flow

  19. Local composition shift of mixed working fluid in gas–liquid flow with phase transition

    International Nuclear Information System (INIS)

    Xu Xiongwen; Liu Jinping; Cao Le; Li Zeyu

    2012-01-01

    Local composition shift is an important characteristic of gas-liquid mixture flow with phase transition. It affects the heat transfer process, stream sonic velocity and the mixture distribution in the thermodynamic cycle. Presently, it is mainly calculated through the empirical models of the void fraction from pure fluid experiments. In this paper, we made efforts to obtain it and its rules basing on conservation equations derivation. The result calculated with propane/i-butane binary mixture was verified by the experiment in the evaporator of a refrigerator. As an extending, it was applied to a ternary mixture with components of methane, propane and butane and more information was presented and analyzed. The calculation approach presented in this paper can be applied any multicomponent mixture, and the rules will be helpful to improve the composition shift theory. - Highlights: ► Local composition shift of mixed working fluid in gas–liquid flow was modelled. ► A solution method for local composition of gas–liquid flow was proposed. ► The solution method was verified by the experimental result. ► Local composition shift mechanism of gas–liquid flow was studied

  20. Heat transfer by gas-liquid mixture in forced turbulent flow with weak vaporization of the liquid phase (1962); Transfert de chaleur par melange de liquide et de gaz en convection forcee turbulente avec faible vaporisation de la phase liquide (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Huyghe, J; Mondin, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    The present study deals with measures of heat transfer and pressure drop in two-phase liquid flow. The stream is of annular dispersed type, obtained by introducing a small quantity of liquid in a gas turbulent flow. The heat transfer experiments are performed without vaporization of the liquid phase. A notable improvement of the heat transfer coefficient of such a stream is observed, compared with a gas-alone or liquid-alone flow. The improvement concerning the gas-alone is of about 20 when it is compared with the same gas Reynolds's number, of about 8 when it is compared with the same total mass flow rate. A hydrodynamic study of the flow pattern lets us know the original structure of the flow, and allows to foresee the experimental results by means of a simplified theory. (authors) [French] II est fait etat de mesures de transfert thermique et de perte de charge dans un ecoulement en double phase gaz-liquide. L'ecoulement est du type annulaire disperse, obtenu par injection d'une faible quantite de liquide dans un ecoulement gazeux en regime turbulent. Les experiences de transfert thermique sont menees sans vaporisation de la phase liquide. On note une amelioration sensible du coefficient de transfert thermique dans un tel ecoulement par rapport a un ecoulement de gaz seul ou de liquide seul. L'augmentation est de l'ordre de 20 par rapport au gaz seul si on opere a meme nombre de REYNOLDS du gaz, de l'ordre de 8 si on opere a meme debit massique total. Une etude hydrodynamique rapide de l'ecoulement permet de connaitre la structure originale de l'ecoulement, puis de prevoir par une theorie simplifiee le phenomene thermique observe. (auteurs)

  1. Characterization of linear interfacial waves in a turbulent gas-liquid pipe flow

    Science.gov (United States)

    Ayati, A. A.; Farias, P. S. C.; Azevedo, L. F. A.; de Paula, I. B.

    2017-06-01

    The evolution of interfacial waves on a stratified flow was investigated experimentally for air-water flow in a horizontal pipe. Waves were introduced in the liquid level of stratified flow near the pipe entrance using an oscillating plate. The mean height of liquid layer and the fluctuations superimposed on this mean level were captured using high speed cameras. Digital image processing techniques were used to detect instantaneous interfaces along the pipe. The driving signal of the oscillating plate was controlled by a D/A board that was synchronized with acquisitions. This enabled to perform phase-locked acquisitions and to use ensemble average procedures. Thereby, it was possible to measure the temporal and spatial evolution of the disturbances introduced in the flow. In addition, phase-locked measurements of the velocity field in the liquid layer were performed using standard planar Particle Image Velocimetry (PIV). The velocity fields were extracted at a fixed streamwise location, whereas the measurements of the liquid level were performed at several locations along the pipe. The assessment of the setup was important for validation of the methodology proposed in this work, since it aimed at providing results for further comparisons with theoretical models and numerical simulations. Therefore, the work focuses on validation and characterization of interfacial waves within the linear regime. Results show that under controlled conditions, the wave development can be well captured and reproduced. In addition, linear waves were observed for liquid level oscillations lower than about 1.5% of the pipe diameter. It was not possible to accurately define an amplitude threshold for the appearance of nonlinear effects because it strongly depended on the wave frequency. According to the experimental findings, longer waves display characteristics similar to linear waves, while short ones exhibit a more complex evolution, even for low amplitudes.

  2. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    Science.gov (United States)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  3. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  4. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua; Peng Lilin; Yan Jiancheng

    2003-01-01

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Z eff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s -1 . Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  5. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  6. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing

    Directory of Open Access Journals (Sweden)

    Yunfeng Zuo

    2018-04-01

    Full Text Available Light manipulation has always been the fundamental subject in the field of optics since centuries ago. Traditional optical devices are usually designed using glasses and other materials, such as semiconductors and metals. Optofluidics is the combination of microfluidics and optics, which brings a host of new advantages to conventional solid systems. The capabilities of light manipulation and biochemical sensing are inherent alongside the emergence of optofluidics. This new research area promotes advancements in optics, biology, and chemistry. The development of fast, accurate, low-cost, and small-sized biochemical micro-sensors is an urgent demand for real-time monitoring. However, the fluid flow in the on-chip sensor is usually non-uniformed, which is a new and emerging challenge for the accuracy of optical detection. It is significant to reveal the principle of light propagation in an inhomogeneous liquid flow and the interaction between biochemical samples and light in flowing liquids. In this review, we summarize the current state of optofluidic lab-on-a-chip techniques from the perspective of light modulation by the unique dynamic properties of fluid in heterogeneous media, such as diffusion, heat transfer, and centrifugation etc. Furthermore, this review introduces several novel photonic phenomena in an inhomogeneous liquid flow and demonstrates their application in biochemical sensing.

  7. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  8. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  9. Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel

    International Nuclear Information System (INIS)

    Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.

    2014-01-01

    Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)

  10. On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow

    Science.gov (United States)

    Behzad, Mohsen; Ashgriz, Nasser

    2011-11-01

    The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.

  11. Numerical Investigation of the Liquid Film Flows with Evaporation at Thermocapillary Interface

    Directory of Open Access Journals (Sweden)

    Rezanova Ekaterina

    2016-01-01

    Full Text Available Flows of the thin liquid layers on an inclined non-uniformly heated substrate are investigated numerically. The evaporation at the thermocapillary interface is taking into account. The Oberbeck-Boussinesq equations and the generalized kinematic, dynamic and energy conditions on a thermocapillary boundary are used for governing equations. The evolution equation, which determines the position of the interface, is obtained on the basis of the long-wave approximation of the equations for moderate Reynolds numbers. The numerical algorithm for solving of this evolution equation is presented. Comparison of the numerical results of flows of various liquids is presented.

  12. Dynamics and stability of flexible cylinders subjected to liquid and two-phase axial flow in confined annuli

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Paidoussis, M.P.

    1976-03-01

    The nuclear fuel for CANDU-BLW reactors consists of fuel bundles assembled in the form of strings. The strings are inserted in fuel channels. From a fluidelastic viewpoint the strings are essentially flexible cylinders in confined annuli. Fluidelastic instability is one of the flow-induced vibration excitation mechanisms that could cause fretting damage. The fluidelastic behaviour of flexible cylinders in confined annuli was investigated experimentally. The cylinders were subjected to fuel channel flow conditions, that is flow velocities up to 10 m/s in liquid flow and mass fluxes up to 500 g/cm 2 s in two-phase flow simulated by air-water. The effect of several parameters such as flexural rigidity, end conditions, downstream end shape, and annular confinement were explored. Generally, cylinders except those with square downstream free ends experienced fluidelastic instabilities in liquid flow in the form of buckling or oscillations. Higher frequencies and higher modes were observed at higher flow velocities. Conversely cylinders with square downstream free ends were very stable in liquid flow. The behaviour in two-phase flow is completely different. The cylinder vibration response was severe and broadband random in nature. A mathematical model was formulated for the fluidelastic behaviour. The experimental results are compared to the analytical predictions. The formulated model is qualitatively valid for liquid flow but not for two-phase flow. (author)

  13. Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.

    Science.gov (United States)

    Rao, Prasada; Hromadka, Theodore V

    2016-01-01

    The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.

  14. Film thickness in gas-liquid two-phase flow, (4)

    International Nuclear Information System (INIS)

    Fukano, Toru; Sekoguchi, Kotohiko; Kawakami, Yasushi; Shimizu, Hideo.

    1979-01-01

    This paper reports in detail on the thinning process of water film by means of the drainage that appears directly under an obstacle inserted against the flow into the gas-liquid two-phase flow in a tube. The equipment is the same as that used for the first study, in which the orifice type obstacle of 5 mm long having the area ratio of 0.235 was used. This obstacle is the one for which the most significant drainage was observed in the previous study. The change of liquid film in course of time was measured by the constant current method as described before. First, the premising conditions and duration of the drainage are considered. In the thinning by drainage, water film became about 0.1 mm at the early stage of 0.1 sec from its start, then the whole water film became the flow governed by viscosity (called viscous water film). After this state, the film became thinner very slowly. The viscous film is thicker as it is apart farther from the obstacle. If the flow conditions show significant drainage, the duration of drainage directly under the obstacle is nearly equal to the passing time of gas slug. When the thinning of water film is accelerated by drainage, it might cause the possible disappearance of water film when gas slug passes, even if the thermal load is comparatively low. (Wakatsuki, Y.)

  15. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  16. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  17. Capillary Flow of Liquid Metals in Brazing

    Science.gov (United States)

    Dehsara, Mohammad

    Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the

  18. Boiling, condensation, and gas-liquid flow

    International Nuclear Information System (INIS)

    Whalley, P.B.

    1987-01-01

    Heat transfer phenomena involving boiling and condensation are an important aspect of engineering in the power and process industries. This book, aimed at advanced first-degree and graduate students in mechanical and chemical engineering, deals with these phenomena in detail. The first part of the book describes gas-liquid two-phase flow, as a necessary preliminary to the later discussion of heat transfer and change of phase. A detailed section on calculation methods shows how theory can be put to practical use, and there are also descriptions of some of the equipment and plant used in the process and power industries

  19. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt

    2008-08-15

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.

  20. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    International Nuclear Information System (INIS)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R.; Campos, J.B.L.M.

    2008-01-01

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator

  1. Low-level flow counting of liquid chromatography column eluates

    International Nuclear Information System (INIS)

    Harding, N.G.L.; Farid, Y.; Stewart, M.J.

    1982-01-01

    The principal parameters which determine the operation of a high-resolution, high-sensitivity radioactive flow monitor are described: a) Sample preparation to ensure adequate recovery of radiolabelled sample, metabolites and internal standard. b) The instrument background count rate, when no sample or radiolabel is present in the flow cell, is a function of shielding and a reduction in noise obtained with a coincidence time below one microsecond. c) The minimum detectable amount of label depends upon the machine background, HPLC eluent and scintillator flow, whether or not packed flow cells are used, flow cell geometry, and the scintillator used. d) Three types of flow cell have been designed to cover the majority of HPLC and isotope applications. e) The performance of solid and liquid scintillators. It is shown that an instrument has been designed taking account of these parameters. The resulting design satisfies present high sensitivity counting requirements and maintains the resolution of current HPLC procedures when detection is by simultaneous flow radioassay and by optical methods. (orig.)

  2. Film thickness in gas-liquid two-phase flow, (2)

    International Nuclear Information System (INIS)

    Sekoguchi, Kotohiko; Fukano, Toru; Kawakami, Yasushi; Shimizu, Hideo.

    1977-01-01

    The effect of four rectangular obstacles inserted into a circular tube has been studied in gas-liquid two-phase flow. The obstacles are set on the inner wall of the tube, and the ratio of the opening is 0.6. The water film flows partially through the obstacles. The minimum thickness of water film was measured in relation to flow speed. The serious effect of the obstacles was seen against the formation of water film, and drainage under the obstacles and backward flow play important roles. Since water film can flow partially through the obstacles, the film in case of the rectangular obstacles in thicker than that in case of an orifice when the gas flow speed was slower than 5 m/s. However, when the gas flow speed is over 5 m/s, the film thickness was thinner. The minimum film thickness of downstream of the obstacles was almost same as that in case of no obstacle. The minimum film thickness of up stream depends on the location of measurement due to the effect of drainage. (Kato, T.)

  3. Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi; Lister, Derek H.

    2009-01-01

    Overlapping effects of flow dynamics and corrosion are important issues to determine reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) are typical phenomena due to both interactions. In order to evaluation local wall thinning due to FAC and LDI, 6 step evaluation procedures have been proposed. (1) Flow pattern along the flow path was obtained with 1D computational flow dynamics (CFD) codes, (2) Corrosive conditions, e.g., oxygen concentration along the flow path were calculated with a hydrazine oxygen reaction code for FAC evaluation, while flow pattern of liquid droplets in high velocity steam and possibility of their collision to pipe inner surface were evaluated for LDI evaluation. (3) Mass transfer coefficient at the structure surface was calculated with 3D CFD codes for FAC evaluation, while frequency of oxide film rupture due to droplet collision was calculated for LDI evaluation. (4) High risk zones for FAC/LDI occurrence were evaluated by coupling major parameters, and then, (5) Wall thinning rates were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC/LDI risk zone. (author)

  4. Measurements of time-dependent liquid-metal magnetohydrodynamic flows in a flat rectangular duct

    International Nuclear Information System (INIS)

    Buehler, L.; Horanyi, S.

    2009-01-01

    In the helium-cooled lead lithium (HCLL) blanket, which has been chosen as a reference concept for a liquid-metal breeding blanket to be tested in ITER, the heat is removed by helium cooled plates aligned with the strong toroidal magnetic field that confines the fusion plasma. The liquid breeder lead lithium circulates through gaps of rectangular cross-section between the cooling plates to transport the generated tritium towards external extraction facilities. Under the action of the strong magnetic field, liquid metal flows in conducting rectangular ducts exhibit jet-like velocity profiles in the thin boundary layers near the side walls, which are parallel to the magnetic field like the cooling plates in HCLL blankets. The velocity in these side layers may exceed several times the mean velocity in the duct and it is known that these layers become unstable for sufficiently high Reynolds numbers. The present paper summarizes experimental results for such unstable time-dependent flows in strong magnetic fields, which have been obtained in the MEKKA liquid metal laboratory of the Forschungszentrum Karlsruhe. In particular, spatial and temporal scales of perturbation patterns are identified. The results suggest that the flow between cooling plates in a HCLL blanket is laminar and stable. The observed time-dependent flow behavior appears at larger velocities so that the present results are more relevant for applications in dual coolant concepts where high-velocity jets have been predicted along side walls.

  5. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  6. Experimental characterization of MHD pressure drop of liquid sodium flow under uniform magnetic field

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Park, Jon Ho; Kim, Jong Man; Nam, Ho Yoon; Choi, Jong Hyun

    2001-01-01

    Magnetic field has many effects on the hydraulic pressure drop of fluids with high electrical conductivity. The theoretical solution about MHD pressure drop is sought for the uniform current density model with simplified physical geometry. Using the MHD equation in the rectangular duct of the sodium liquid flow under a transverse magnetic field, the electrical potential is sought in terms of the duct geometry and the electrical parameters of the liquid metal and duct material. By the product of the induced current inside the liquid metal and transverse magnetic field, the pressure gradients is found as a function of the duct size and the electrical conductivity of the liquid metal. The theoretically predicted pressure drop is compared with experimental results on the change of flow velocity and magnetic flux density

  7. 3D flow simulation of liquid lead in the erosion test facility for ADS materials

    International Nuclear Information System (INIS)

    Muscher, Heinrich; Kieser, Martin; Weisenburger, Alfons; Mueller, Georg

    2009-01-01

    Future nuclear reactor concepts, such as GEN IV or ADS use liquid lead for neutron multiplication and coolant purposes. The design concepts assumes that the structural material is in contact with the liquid metal at temperatures up to 600 C and a flow rate of 20 m/s. Therefore a significant effect of liquid metal corrosion/erosion is expected. The paper describes the fluid dynamical simulation of the ADS erosion test facility. Earlier studies on the laminar flow modeling were completed by introduction of transient behavior and extended to 3D-models. The results for liquid lead should be transferable to LBE (lead bismuth eutectic). Further work has to include a mass transport model for modeling of the global isothermal erosion rate of the structural material dependent on time (for liquid lead and LBE).

  8. Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium

    International Nuclear Information System (INIS)

    Ravelet, F.; Monchaux, R.; Aumaitre, S.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.; Bourgoin, M.; Odier, Ph.; Plihon, N.; Pinton, J.-F.; Volk, R.

    2008-01-01

    We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow

  9. A flow reactor setup for photochemistry of biphasic gas/liquid reactions

    Directory of Open Access Journals (Sweden)

    Josef Schachtner

    2016-08-01

    Full Text Available A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction. Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories.

  10. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  11. Undulations on the surface of elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Ferrari, A.; Thome, J. R.; Stone, H. A.

    2017-08-01

    A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca =0.002 -0.1 and Re =0.1 -1000 , where Ca =μ U /σ and Re =2 ρ U R /μ , with μ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We =Ca Re =O (10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10 R when Ca >0.01 and the value of the Reynolds number approaches 1000.

  12. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  13. Korea advanced liquid metal reactor development - Development of measuring techniques of the sodium two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Hwan; Cha, Jae Eun [Pohang University of Science and Technology, Pohang (Korea)

    2000-04-01

    The technology which models and measures the behavior of bubble in liquid sodium is very important to insure the safety of the liquid metal reactor. In this research, we designed/ manufactured each part and loop of experimental facility for sodium two phase flow, and applied a few possible methods, measured characteristic of two phase flow such as bubbly flow. A air-water loop similar to sodium loop on each measuring condition was designed/manufactured. This air-water loop was utilized to acquire many informations which were necessary in designing the two phase flow of sodium and manufacturing experimental facility. Before the manufacture of a electromagnetic flow meter for sodium, the experiment using each electromagnetic flow mete was developed and the air-water loop was performed to understand flow characteristics. Experiments for observing the signal characteristics of flow were performed by flowing two phase mixture into the electromagnetic flow mete. From these experiments, the electromagnetic flow meter was designed and constructed by virtual electrode, its signal processing circuit and micro electro magnet. It was developed to be applicable to low conductivity fluid very successfully. By this experiment with the electromagnetic flow meter, we observed that the flow signal was very different according to void fraction in two phase flow and that probability density function which was made by statistical signal treatment is also different according to flow patterns. From this result, we confirmed that the electromagnetic flow meter could be used to understand the parameters of two phase flow of sodium. By this study, the experimental facility for two phase flow of sodium was constricted. Also the new electromagnetic flow meter was designed/manufactured, and experimental apparatus for two phase flow of air-water. Finally, this study will be a basic tool for measurement of two phase flow of sodium. As the fundamental technique for the applications of sodium at

  14. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  15. The relative contributions of thermo-solutal Marangoni convections on flow patterns in a liquid bridge

    Science.gov (United States)

    Minakuchi, H.; Takagi, Y.; Okano, Y.; Gima, S.; Dost, S.

    2014-01-01

    A numerical simulation study was carried out to investigate the relative contributions of thermal and solutal Marangoni convections on transport structures in a liquid bridge under zero gravity. The liquid bridge in the model represents a three dimensional half-zone configuration of the Floating Zone (FZ) growth system. Three dimensional field equations of the liquid zone, i.e. continuity, momentum, energy, and diffusion equations, were solved by the PISO algorithm. Computations were performed using the open source software OpenFOAM. The numerical simulation results show that the flow field becomes three-dimensional and time-depended when the solutal Marangoni number is larger than the critical value. It was also shown that not only flow patterns but also the azimuthal wave number (m) changes due to the competing contributions of thermal and solutal Marangoni convective flows.

  16. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  17. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    International Nuclear Information System (INIS)

    Monroe, Morgan M; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W

    2017-01-01

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2 ) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved. (paper)

  18. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    Science.gov (United States)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  19. Design and optimization of mixed flow pump impeller blades by varying semi-cone angle

    Science.gov (United States)

    Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik

    2018-03-01

    The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.

  20. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.

    2016-01-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. - Highlights: • Residence time distributions of liquid phase were measured in a trickle bed reactor. • Bromine-82 as ammonium bromide was used as a radiotracer. • Mean residence times, holdups and radial distribution of liquid phase were quantified. • Axial dispersion with exchange model was used to simulate the measured data. • The trickle bed reactor behaved as a plug flow reactor.

  1. Constitutive Equation with Varying Parameters for Superplastic Flow Behavior

    Science.gov (United States)

    Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui

    2014-03-01

    In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.

  2. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Nishihara, H.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1999-01-01

    In a core melt accident of a fast breeder reactor, there is a possibility of boiling of the fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the possibility of re-criticality of melted core. Gas-liquid two-phase flow with a large liquid-to-gas density ratio is formed due to the boiling of fuel-steel mixture. Although it is anticipated that the large density ratio may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with a large liquid-to-gas density ratio. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography and image processing techniques. Then, the effect of large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified

  3. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. II. Theoretical justifications and modeling

    Science.gov (United States)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2017-04-01

    This is the second part of a two-part study on a partially miscible liquid-liquid flow (carbon dioxide and deionized water) that is highly pressurized and confined in a microfluidic T-junction. In the first part of this study, we reported experimental observations of the development of flow regimes under various flow conditions and the quantitative characteristics of the drop flow including the drop length, after-generation drop speed, and periodic spacing development between an emerging drop and the newly produced one. Here in part II we provide theoretical justifications to our quantitative studies on the drop flow by considering (1) C O2 hydration at the interface with water, (2) the diffusion-controlled dissolution of C O2 molecules in water, and (3) the diffusion distance of the dissolved C O2 molecules. Our analyses show that (1) the C O2 hydration at the interface is overall negligible, (2) a saturation scenario of the dissolved C O2 molecules in the vicinity of the interface will not be reached within the contact time between the two fluids, and (3) molecular diffusion does play a role in transferring the dissolved molecules, but the diffusion distance is very limited compared with the channel geometry. In addition, mathematical models for the drop length and the drop spacing are developed based on the observations in part I, and their predictions are compared to our experimental results.

  4. Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface

    Science.gov (United States)

    Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John

    2016-11-01

    Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.

  5. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break

    Science.gov (United States)

    Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il

    2018-06-01

    This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.

  6. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Gas–liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades

    NARCIS (Netherlands)

    Ranade, V.; Deshpande, Vaibhav R.

    1999-01-01

    In a gas–liquid stirred reactor, gas tends to accumulate in low-pressure regions behind the impeller blades. Such gas accumulation significantly alters impeller performance characteristics. We have computationally investigated gas–liquid flow generated by a Rushton (disc) turbine. Rotating Rushton

  8. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Energy Technology Data Exchange (ETDEWEB)

    Masson, R., E-mail: roland.masson@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France); Trenty, L., E-mail: laurent.trenty@andra.fr [Andra, Chatenay Malabry (France); Zhang, Y., E-mail: yumeng.zhang@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France)

    2016-09-15

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  9. Feasibility of using of the second gradient theory for the direct numerical simulation of liquid-vapor flows with phase-change; Etude des potentialites de la theorie du second gradient pour la simulation numerique directe des ecoulements liquide-vapeur avec changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, D. [CEA Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique]|[Ecole Centrale de Paris, 75 (France)

    1998-12-31

    One on the main difficulties encountered in the direct numerical simulation of two-phase flows in general and of liquid-vapor flows with phase-change in particular, is the interface tracking. The idea developed in this work consists in modeling a liquid-vapor interface as a volumetric zone across which physical properties vary continuously instead of a discontinuous surface. The second gradient theory allows to establish the evolution equations of the fluid in the whole system: bulk phases and interfaces. That means that the resolution of a unique system of partial differential equations is necessary to determine the whole two-phase flow, the interfaces and their evolution in time being a part of the solution of this unique system. We show in this work that it is possible to artificially enlarge an interface without changing its surface tension and the latent heat of vaporization. That means than it is possible to track all the interfaces of a liquid-vapor two-phase flow with phase-change on a mesh the size of which is imposed by the smallest Kolmogorov scale of the bulk phases for example. The artificial enlargement of an interfacial zone is obtained by modifying the thermodynamic behavior of the fluid within the binodal. We show that this modification does not change the dynamics of an interface. However, although the thickness of an interface and its surface tension vary with the mass and heat fluxes that go though it, the thermodynamic modification necessary to the artificial enlargement of an interface drastically increases these variations. Consequently, the artificial enlargement of an interface must be made carefully to avoid a too much important variation of its surface tension during dynamic situations. (author) 60 refs.

  10. Simulation of the Two-Phase Liquid – Gas Flow through Ultrasonic Transceivers Application in Ultrasonic Tomography

    Directory of Open Access Journals (Sweden)

    Zulkarnay Zakaria

    2010-01-01

    Full Text Available In this paper, ultrasonic transmission mode tomography was used to visualize the two phase liquid/gas flow in a pipe/vessel. The sensing element consists of 8, 16 and 32 units ultrasonic transceivers were used to cover the pipe cross-section at different time. The motivation of this paper is to analyze the optimum numbers of transceivers which can give the best performance in providing better image of the two phase liquid/gas flow. This paper also details the development of the system including the ultrasonic transduction circuits, the electronic measurement circuits, the data acquisition system and the image reconstruction techniques. Ten conditions of liquid-gas flow have been simulated. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases while the 32 transceivers has provided the best image for the ten conditions applied.

  11. Child-Langmuir flow with periodically varying anode voltage

    International Nuclear Information System (INIS)

    Rokhlenko, A.

    2015-01-01

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed by a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance

  12. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  13. Numerical simulation of interface movement in gas-liquid two-phase flows with Level Set method

    International Nuclear Information System (INIS)

    Li Huixiong; Chinese Academy of Sciences, Beijing; Deng Sheng; Chen Tingkuan; Zhao Jianfu; Wang Fei

    2005-01-01

    Numerical simulation of gas-liquid two-phase flow and heat transfer has been an attractive work for a quite long time, but still remains as a knotty difficulty due to the inherent complexities of the gas-liquid two-phase flow resulted from the existence of moving interfaces with topology changes. This paper reports the effort and the latest advances that have been made by the authors, with special emphasis on the methods for computing solutions to the advection equation of the Level set function, which is utilized to capture the moving interfaces in gas-liquid two-phase flows. Three different schemes, i.e. the simple finite difference scheme, the Superbee-TVD scheme and the 5-order WENO scheme in combination with the Runge-Kutta method are respectively applied to solve the advection equation of the Level Set. A numerical procedure based on the well-verified SIMPLER method is employed to numerically calculate the momentum equations of the two-phase flow. The above-mentioned three schemes are employed to simulate the movement of four typical interfaces under 5 typical flowing conditions. Analysis of the numerical results shows that the 5-order WENO scheme and the Superbee-TVD scheme are much better than the simple finite difference scheme, and the 5-order WENO scheme is the best to compute solutions to the advection equation of the Level Set. The 5-order WENO scheme will be employed as the main scheme to get solutions to the advection equations of the Level Set when gas-liquid two-phase flows are numerically studied in the future. (authors)

  14. Numerical simulation of turbulent liquid metal flows in plane channels and annuli

    International Nuclear Information System (INIS)

    Groetzbach, G.

    1980-06-01

    The method of direct numerical simulation is used to study heat transfer and statistical data for fully developed turbulent liquid metal flows in plane channels and annuli. Subgrid scale models using one transport equation account for the high wave-number turbulence not resolved by the finite difference grid. A special subgrid-scale heat flux model is deduced together with an approximative theory to calculate all model coefficients. This model can be applied on the total Peclet number range of technical liquid metal flows. Especially it can be used for very small Peclet numbers, where the results are independent on model parameters. A verification of the numerical results for liquid sodium and mercury flows is undertaken by the Nusselt number in plane channels and radial temperature and eddy conductivity profiles for annuli. The numerically determined Nusselt numbers for annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The numerical results for the eddy conductivity profiles may be used to remove these problems. The statistical properties of the simulated temperature fluctuations are within the wide scatter-band of experimental data. The numerical results give reasonable heat flux correlation coefficients which depend only weakly on the problem marking parameters. (orig.) [de

  15. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Science.gov (United States)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  16. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  17. Estimation of gas wall shear stress in horizontal stratified gas-liquid pipe flow

    International Nuclear Information System (INIS)

    Newton, C.H.; Behnia, M.

    1996-01-01

    Two-phase pipe flows occur in many industrial applications, such as condensers and evaporators, chemical processing equipment, nuclear reactors, and oil pipelines. A variety of basic mechanistic flow models for predicting the pressure gradient and liquid loading characteristics of these types of flows to assist in design calculations has emerged over the past two decades, especially for the stratified and slug flow regimes. These models generally rely on a number of basic assumptions and empirical closure equations. Possibly the most notable of these relates to the evaluation of interfacial shear stresses. However, one of the most important yet least discussed assumptions used in most of these models is that the phase wall shear stresses can be accurately estimated from correlations developed for single-phase pipe flows. The object of this article is to present measurements of gas wall shear up to locations in close proximity to the gas-liquid interface for a variety of interface conditions in developed flow, and to determine the effects of the interface on average gas wall friction factors. In this context the interface may be smooth, rippled or wavy

  18. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant

    International Nuclear Information System (INIS)

    Liu, X.H.; Zhang, Y.; Qu, K.Y.; Jiang, Y.

    2006-01-01

    The liquid desiccant air conditioning system is drawing more and more attention due to its advantages in energy saving and environmental friendliness. The dehumidifier is one of the essential parts of the system, which affects the whole system performance severely. This paper experimentally studies the performance of the cross flow dehumidifier, which has been less studied than the counter flow dehumidifier, although it is more applicable in practice. Celdek structured packings were used in the dehumidifier, and a LiBr aqueous solution was used as the liquid desiccant. The moisture removal rate and dehumidifier effectiveness were adopted as the dehumidifier performance indices. The effects of the dehumidifier inlet parameters, including air and desiccant flow rates, air inlet temperature and humidity ratio and desiccant inlet temperature and concentration, on the two indices were investigated. Correlations are proposed to predict the cross flow dehumidifier performance, which give results in good agreement with the present experimental findings

  19. Three-dimensional MHD [magnetohydrodynamic] flows in rectangular ducts of liquid-metal-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.; Picologlou, B.F.; Reed, C.B.

    1988-07-01

    Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions for flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs

  20. Influence of the Fin on Two-Dimensional Characteristics of Dispersed Flow With Wall Liquid Film in the Vicinity of Obstacle

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stevanovic, Vladimir D.; Serizawa, Akimi

    2002-01-01

    Spacers have positive effects on the heat transfer enhancement and critical heat flux (CHF) increase downstream of their location in the boiling channel. These effects are further increased by the inclusion of the fin on the spacer rear edge. Numerical simulation of a separation in a high void gas phase and dispersed droplets flow around a spacer, with a liquid film flowing on the wall, is performed. Mechanisms leading to the CHF increase due to the two-phase flow separation and liquid film thickening downstream the spacer are demonstrated. Numerical simulations of gas phase, entrained droplets and wall liquid film flows were performed with the three-fluid model and with the application of the high order numerical scheme for the liquid film surface interface tracking. Predicted is a separation of gas and entrained droplets streams around the spacer without and with a fin inclined 30 and 60 degrees to the wall, as well as a change of wall liquid film thickness in the vicinity of spacer. Results of liquid film dynamic behaviour are compared with the recently obtained experimental results. Multi-dimensional characteristics of surface waves on the liquid film were measured with newly developed ultrasonic transmission technique in a 3 3 rod bundle test section with air-water flow under atmospheric conditions. Obtained numerical results are in good agreement with experimental observations. The presented investigation gives insight into the complex mechanisms of separated two-phase flow with wall liquid film around the spacer and support thermal-hydraulic design and optimisation of flow obstacles in various thermal equipment. (authors)

  1. Cellular properties of slug flow in vertical co-current gas-liquid flow: slug-churn transition

    International Nuclear Information System (INIS)

    Lusseyran, Francois

    1990-01-01

    This research thesis reports the study and description of the structure of a slug flow regime in a co-current vertical cylindrical duct, and the characterization and prediction of its transition towards a slug-churn (de-structured) regime. Flow physical mechanisms highlighted by the measurement of two important dynamics variables (wall friction and thickness of liquid films) are related to hypotheses of cellular models. The author first proposes an overview of slug flow regimes: theoretical steady and one-dimensional analysis, mass assessment equations of cellular models, application to the assessment of the flow rate and of the thickness of the film surrounding the gas slug. In the second part, the author addresses the slug flow regime transition towards the slug-churn regime: assessment of the evolution of flow dynamic properties, use of average wall friction analysis to obtain a relevant transition criterion. The third part presents experimental conditions, and measurement methods: conductometry for thickness measurement, polarography for wall friction measurement, and gas phase detection by using an optic barrier or optic fibres [fr

  2. River adjustments under varying flow and sediment sypply regimes. The role of hydrograh shape

    Science.gov (United States)

    Ferrer-Boix, C.; Elgueta, M. A.; Hassan, M. A.

    2016-12-01

    This research aims to explore how sediment supply conditions and hydrograph shape influence bed surface evolution, vertical and downstream sediment sorting, and sediment transport in gravel bed streams. While a significant body of research has been focused on channel evolution under constant flow regimes, few studies have focused on the impacts of flow variations in channel adjustments. Particularly, we are interested in examining the impact of the sediment supply regime and hydrograph magnitude and duration on channel adjustments and sediment transport rates. To this end, we conducted a set of experiments in a 0.8 m-wide, 5 m-long tilting flume. Flow discharge during the runs was increased and decreased at steps of certain duration allowing us to vary the steepness of rising and falling limbs of hydrographs. The influence of hydrograph shape (symmetrical and asymmetrical) on river morphodynamics was tested. Flow rates during the experiments ranged from 30 l/s to 70 l/s. Some of the experiments were conducted under no feed conditions while others were carried out with sediment supply, which ranged from 10 kg/h to 80 kg/h. The feed texture in these latter runs was identical to that of the original mixture (Dmin = 0.5 mm, Dmax = 64 mm, Dg = 5.65 mm and σg = 3.05). Initial bed slope and surface configuration were obtained after varying times of conditioning under constant flow and no feed. Finally, we conducted equilibrium experiments under constant flow and sediment supply that were used as reference. All these sets of experiments benefited from a very detailed and extensive data monitoring which allowed us to provide a unique description or river adjustments under varying flow conditions. Data acquisition included: 1) bed surface images covering the entire flume, 2) bed scans at 2 mm resolution of the whole flume and 3) real-time measurements of bedload transport (rate and texture) at the outlet of the flume. This set up allows us to obtain fractional particle

  3. Shear flow in smectic A liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Stewart, F

    2009-01-01

    This paper considers the onset of a shear-induced instability in a sample of smectic A liquid crystal. Unlike many previous models, the usual director n need not necessarily coincide with the local smectic layer normal a; the traditional Oseen constraint (∇xa=0) is not imposed when flow is present. A recent dynamic theory for smectic A (Stewart 2007 Contin. Mech. Thermodyn. 18 343-60) will be used to examine a stationary instability in a simple model when the director reorientation and smectic layer distortions are, firstly, assumed not to be coupled to the velocity and, secondly, are supposed coupled to the velocity. A critical shear rate at which the onset of the instability occurs will be identified, together with an accompanying critical director tilt angle and critical wavenumber for the associated smectic layer undulations. Despite some critical phenomena being largely unaffected by any coupling to the flow, it will be shown that the influence of some material parameters, especially the smectic layer compression constant B 0 and the coupling constant B 1 , upon the critical shear rate and critical tilt angle can be greatly affected by flow.

  4. Unsteady Flow in a Horizontal Double-Sided Symmetric Thin Liquid Films

    Directory of Open Access Journals (Sweden)

    Joseph G. ABDULAHAD

    2017-06-01

    Full Text Available In this paper a mathematical model is constructed to describe a two dimensional incompressible flow in a symmetric horizontal thin liquid film for unsteadies flow. We apply the Navier-Stokes equations with specified boundary conditions and we obtain the equation of the film thickness by using the similarity method in which we can isolate the explicit time dependence and then the shape of the film will depend on one variable only.

  5. Electrohydrodynamic stability of two stratified power law liquid in couette flow

    International Nuclear Information System (INIS)

    Eldabe, N.T.

    1988-01-01

    Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated

  6. Liquid dispersion in trickle-bed reactors with gas-liquid cocurrent downflow

    International Nuclear Information System (INIS)

    Chu, C.F.; Ng, K.M.

    1986-01-01

    The flow pattern can deviate from ideal plug flow in both trickling and pulsing flows. The liquid dispersion in those flow regimes are investigated separately, as the mechanisms causing the deviation of flow pattern from plug flow are different. In trickling flow, the dispersion of the liquid phase occurs in the flow path which is determined with computer-generated packed column. Dispersion in pulsing flow is studied with a combination of the method of characteristics and analysis of liquid dispersion in the liquid slug and gas pulse. The axial dispersion coefficients are then determined based on Monte Carlo simulation. Finally, liquid dispersion in trickle beds containing porous packings is also discussed

  7. Combined convective heat transfer of liquid sodium flowing across tube banks

    International Nuclear Information System (INIS)

    Ma, Ying; Sugiyama, Ken-ichiro; Ishiguro, Ryoji

    1989-01-01

    In order to clarify the heat transfer characteristics of combined convection of liquid sodium, a numerical analysis is performed for liquid sodium which flows through a single horizontal row of tubes in the direction of gravity. The correlation of heat transfer characteristics between liquid sodium and ordinary fluids is also discussed. The heat transfer characteristics at large Reynolds numbers are improved when the Richardson number is increased, and the improvement rate is enlarged with increase in p/d value, since convection effect is relatively large. However heat transfer coefficients do not differ from those of forced convection at small Reynolds numbers even when the Richardson number reaches a high value because of conduction effect. A good consistence of heat transfer characteristics of combined convection between liquid sodium and air is obtained at the same Peclet number and Richardson number. This means that the fundamental heat transfer characteristics of combined convection of liquid sodium can be investigated with ordinary fluids. (author)

  8. Churn-annular flow pattern transition in a vertical upward gas-liquid two-phase flow in various conduits

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Ueda, Tadanobu; Asano, Hitoshi

    2008-01-01

    Void fraction was measured by neutron radiography for a vertical upward gas-water two-phase flow in a concentric annular tube with and with out a spacer, 4x4 rod bundle with and without a spacer and a tight rod bundle with and without a wrapping wire for various gas and liquid flow rates. The flow patterns of these two-phase flows were determined by the Mishima-Ishii flow pattern map and void fraction was calculated by the Ishii's drift flux model. The predicted values were compared with the experimental results. The void fraction was well predicted by the Mishima-Ishii flow pattern map and the Ishii's drift flux model except the annular flow region with void fraction lower than 0.8 for conduits with small equivalent diameter. A new churn-annular flow pattern transition condition of the void fraction equal to 0.8 was added. The void fraction for the present experimental condition was successful predicted with the new transition model. (author)

  9. Turbulence characteristics of flow in an open channel with temporally varying mobile bedforms

    Directory of Open Access Journals (Sweden)

    Hanmaiahgari Prashanth Reddy

    2017-03-01

    Full Text Available Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV to evaluate the turbulence structure of free surface flow over a fixed (immobile bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.

  10. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  11. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  12. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    International Nuclear Information System (INIS)

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  13. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindrical nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.

  14. Gravity assisted recovery of liquid xenon at large mass flow rates

    Science.gov (United States)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  15. The mechanism of fracture for entangled polymer liquids in extensional flow

    DEFF Research Database (Denmark)

    Huang, Qian; Yu, Liyun; Wingstrand, Sara Lindeblad

    In uniaxial extensional flow of entangled polymer liquids, different rupture modes may happen, including necking and fracture. Malkin andPetrie [1] proposed a ''master curve'' dividing the flow behavior into four zones based on the stretch rate: (I) Flow zone; (II) Transition zone; (III) Rubbery...... curve in Zone IV. However, with faster rate, a constant critical strain is observed, which is not shown in the original master curve. The value of the constant critical strain seems to be related to themaximum stretch ratio of the polymer chain (determined by Me), but not influenced by Z. The results...

  16. Carbon-steel corrosion in multiphase slug flow and CO2

    International Nuclear Information System (INIS)

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  17. Nusselt number for turbulent flow of liquid metal in circular ducts

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-07-01

    The forced convection heat transfer in turbulent flow of liquid metals in ducts, is analyzed. An analogy between moment and heat at wall surface, is developed for determining one heat transfer coeficient in friction of friction coeficient. (E.G.) [pt

  18. Quantitative Analysis of Piroxicam Using Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Microextraction Followed By Stopped-Flow Injection Spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2013-07-01

    Full Text Available Background:Piroxicam (PXM belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs. PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was followed with stopped-flow injection spectrofluorimetry (SFIS for quantitation of PXM in pharmaceutical formulations and biological samples.Methods:Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6] ionic liquid (IL through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS.Results and Major Conclusion:Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD of 0.046 μg l-1 and a relative standard deviation (RSD of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples.

  19. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Barbier, F.

    2001-01-01

    Corrosion of steels exposed to flowing liquid lead alloys can be affected by hydrodynamic parameters. The rotating cylinder system is of interest for the practical evaluation of the fluid velocity effect on corrosion and for the prediction of the corrosion behavior in other geometries. Models developed in aqueous medium are tested in the case of liquid metal environments. It is shown that equations established for the rotating cylinder and the pipe flow geometry can be used effectively in liquid lead alloys (Pb-17Li) assuming the corrosion process is mass transfer controlled and the diffusion coefficient of dissolved species is known. The corrosion rate of martensitic steels in Pb-17Li is shown to be independent of the geometry when plotted as a function of the mass transfer coefficient. Predictions about the corrosion of steel in liquid Pb-Bi are performed but experiments are needed to validate the results obtained by modeling

  20. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  1. Visualization of two-phase gas-liquid flow regimes in horizontal and slightly-inclined circular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia Alves [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: livia@lasme.coppe.ufrj.br; Cunha Filho, Jurandyr; Su, Jian [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program], Emails: cunhafilho@lasme.coppe.ufrj.br, sujian@lasme.coppe.ufrj.br; Faccini, Jose Luiz Horacio [Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: faccini@ien.gov.br

    2010-07-01

    In this paper a flow visualization study was performed for two-phase gas-liquid flow in horizontal and slightly inclined tubes. The test section consists of a 2.54 cm inner diameter stainless steel circular tube, followed by a transparent acrylic tube with the same inner diameter. The working fluids were air and water, with liquid superficial velocities ranging from 0:11 to 3:28 m/s and gas superficial velocities ranging from 0:27 to 5:48 m/s. Flow visualization was executed for upward flow at 5 deg and 10 deg and downward flow at 2:5 deg, 5 deg and 10 deg, as well as for horizontal flow. The visualization technique consists of a high-speed digital camera that records images at rates of 125 and 250 frames per second of a concurrent air-water mixture through a transparent part of the tube. From the obtained images, the flow regimes were identified (except for annular flow), observing the effect of inclination angles on flow regime transition boundaries. Finally, the experimental results were compared with empirical and theoretical flow pattern maps available in literature. (author)

  2. Entrainment phenomenon in gas–liquid two-phase flow: A review

    Indian Academy of Sciences (India)

    into four categories: (a) mathematical description of the phenomenon using ... dome, (b) the central depressed portion rises up due to momentum of liquid, ... vapour velocity gets carried all the way in the vapour flow, which happens to be the minimum ..... included the droplet collection on the plate coated with carbon layer at ...

  3. Importance of Interfacial Interactions to Access Shear Elasticity of Liquids and Understand Flow Induced Birefringence from Liquid Crystals to Worm-Like Micellar Solutions

    Directory of Open Access Journals (Sweden)

    Noirez Laurence

    2017-03-01

    Full Text Available This work points out the importance of the substrate boundary conditions to lower the dissipation in the dynamic measurement and access the closest dynamic characteristics of liquids, in particular to access the low frequency shear elasticity. The liquid/surface interface is a source of dissipation that enters and impacts the measurement. Examples of steady-state shear flows or flow birefringence are presented to highlight the non-universality of the behavior with respect to the nature of the substrate or the sheared thickness. Additionally the present development completes and extends the identification of low frequency shear elasticity made at sub-millimeter gaps in various one-component liquids to salt-free aqueous solutions (CTAB-water (Hexadecyl-TrimethylAmmonium Bromide.

  4. Supported liquid phase catalyst coating in micro flow Mizoroki-Heck reaction

    NARCIS (Netherlands)

    Stouten, S.C.; Noël, T.; Wang, Q.; Hessel, V.

    2015-01-01

    A Supported Liquid Phase Catalyst (SLPC) coating was successfully applied for the Mizoroki–Heck reaction in micro flow. Foremost, extended on stream operation was enabled and the on stream performance stability was verified. Stable catalytic activity was achieved during two consecutive runs totaling

  5. Instability of a binary liquid film flowing down a slippery heated plate

    Science.gov (United States)

    Ellaban, E.; Pascal, J. P.; D'Alessio, S. J. D.

    2017-09-01

    In this paper, we study the stability of a binary liquid film flowing down a heated slippery inclined surface. It is assumed that the heating induces concentration differences in the liquid mixture (Soret effect), which together with the differences in temperature affects the surface tension. A mathematical model is constructed by coupling the Navier-Stokes equations governing the flow with equations for the concentration and temperature. A Navier slip condition is applied at the liquid-solid interface. We carry out a linear stability analysis in order to obtain the critical conditions for the onset of instability. We use a Chebyshev spectral collocation method to obtain numerical solutions to the resulting Orr-Sommerfeld-type equations. We also obtain an asymptotic solution that yields an expression for the state of neutral stability of long perturbations as a function of the parameters controlling the problem. A weighted residual approximation is employed to derive a reduced model that is used to analyse the nonlinear effects. Good agreement between the linear stability analysis and nonlinear simulations provided by the weighted residual model is found.

  6. multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows

    Science.gov (United States)

    Turnquist, Brian; Owkes, Mark

    2017-11-01

    Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.

  7. Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel

    International Nuclear Information System (INIS)

    Bharti, Ram P.; Harvie, Dalton J.E.; Davidson, Malcolm R.

    2009-01-01

    Electroviscous effects in steady, fully developed, pressure-driven flow of power-law liquids through a uniform cylindrical microchannel have been investigated numerically by solving the Poisson-Boltzmann and the momentum equations using a finite difference method. The pipe wall is considered to have uniform surface charge density and the liquid is assumed to be a symmetric 1:1 electrolyte solution. Electroviscous resistance reduces the velocity adjacent to the wall, relative to the velocity on the axis. The effect is shown to be greater when the liquid is shear-thinning, and less when it is shear-thickening, than it is for Newtonian flow. For overlapping electrical double layers and elevated surface charge density, the electroviscous reduction in the near-wall velocity can form an almost stationary (zero shear) layer there when the liquid is shear-thinning. In that case, the liquid behaves approximately as if it is flowing through a channel of reduced diameter. The induced axial electrical field shows only a weak dependence on the power-law index with the dependence being greatest for shear-thinning liquids. This field exhibits a local maximum as surface charge density increases from zero, even though the corresponding electrokinetic resistance increases monotonically. The magnitude of the electroviscous effect on the apparent viscosity, as measured by the ratio of the apparent and physical consistency indices, decreases monotonically as the power-law index increases. Thus, overall, the electroviscous effect is stronger in shear-thinning, and weaker in shear-thickening liquids, than it is when the liquid is Newtonian.

  8. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Void fraction and interfacial velocity in gas-liquid upward two-phase flow across tube bundles

    International Nuclear Information System (INIS)

    Ueno, T.; Tomomatsu, K.; Takamatsu, H.; Nishikawa, H.

    1997-01-01

    Tube failures due to flow-induced vibration are a major problem in heat exchangers and many studies on the problem of such vibration have been carried out so far. Most studies however, have not focused on two-phase flow behavior in tube bundles, but have concentrated mainly on tube vibration behavior like fluid damping, fluid elastic instability and so on. Such studies are not satisfactory for understanding the design of heat exchangers. Tube vibration behavior is very complicated, especially in the case of gas-liquid two-phase flow, so it is necessary to investigate two-phase flow behavior as well as vibration behavior before designing heat exchangers. This paper outlines the main parameters that characterize two-phase behavior, such as void fraction and interfacial velocity. The two-phase flow analyzed here is gas-liquid upward flow across a horizontal tube bundle. The fluids tested were HCFC-123 and steam-water. HCFC-123 stands for Hydrochlorofluorocarbon. Its chemical formula is CHCl 2 CF 3 , which has liquid and gas densities of 1335 and 23.9 kg/m 3 at a pressure of 0.40 MPa and 1252 and 45.7 kg/m 3 at a pressure of 0.76 MPa. The same model tube bundle was used in the two tests covered in this paper, to examine the similarity law of two-phase flow behavior in tube bundles using HCFC-123 and steam-water two-phase flow. We also show numerical simulation results for the two fluid models in this paper. We do not deal with vibration behavior and the relationship between vibration behavior and two-phase flow behavior. (author)

  10. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  11. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    OpenAIRE

    Abbagoni, Baba Musa; Yeung, Hoi

    2016-01-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase ...

  12. Magnetohydrodynamic flow of a rarefied gas near a time-varying accelerated plate

    International Nuclear Information System (INIS)

    Mishra, S.P.; Mohapatra, Priti

    1975-01-01

    The flow of an electrically conducting rarefied gas due to the time-varying motion of an infinite flat plate has been studied in the presence of a uniform magnetic field. The magnetic lines of force are taken to be fixed relative to the fluid. General expressions of the velocity and the skin friction have been compared by means of some qraphs and tables. (author)

  13. Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)

    2002-07-01

    Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)

  14. The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-11-18

    The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  15. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708

  16. The flow and hydrodynamic stability of a liquid film on a rotating disc

    International Nuclear Information System (INIS)

    Kim, Tae-Sung; Kim, Moon-Uhn

    2009-01-01

    The flow of a liquid film on a rotating disc is investigated in the case where a liquid is supplied at a constant flow rate. We propose thin film equations by the integral method with a simple approach to satisfy the boundary conditions on a disc and a free surface, and the results are compared with those of the Navier-Stokes equations. The radial film velocity is assumed to be a quartic profile in our analysis, whereas it was assumed to be a quadratic one, neglecting the inertia force so that the boundary conditions were not completely satisfied, in the analysis of Sisoev et al (2003 J. Fluid Mech. 229 531-54). The basic flow and its stability are analyzed using the thin film equations even in the region where the inertia force is not negligible. A local stability analysis of the flow is conducted using the linearized disturbance equations and correctly predicts Needham's simple instability criterion. The present thin film equations give a good approximation of the Navier-Stokes equations.

  17. Unsteady numerical simulation for gas–liquid two-phase flow in self-priming process of centrifugal pump

    International Nuclear Information System (INIS)

    Huang, Si; Su, Xianghui; Guo, Jing; Yue, Le

    2014-01-01

    Highlights: • The transient gas–liquid two-phase flow fields in the self-priming centrifugal pump are simulated. • The self-priming time and performance are estimated. • The air void fraction and two phase distribution are obtained.· The hole on the volute plays a significant role for gas exhausting. • The frequency of the impulsive pressure basically conforms to that of the air exhausted out of the pump. - Abstract: Self-priming pumps start up without pre-irrigation, and then work as common pumps when air in the pump is exhausted. The transient gas–liquid flow at the start-up stage inside a self-priming pump is an interesting process which greatly influences performance of the pump. In this paper, a conventional vertical self-priming centrifugal pump was selected as the object. Using unsteady numerical simulation, the authors investigated the transient gas–liquid two-phase flow in the self-priming centrifugal pump during the self-priming process. The main innovation in the simulation was that a section of the suction pipe filled with air was set as the initial condition, which conformed to the actual self-priming conditions. The gas–liquid two-phase distribution, the pressure and velocity in relation to time were computed and analyzed. Flow rates of both phases with time at the pump inlet and outlet were obtained based on the simulation, which could be used to estimate the self-priming time and other performance parameters. Finally, the numerical method and results for gas–liquid two-phase flow in the self-priming pump was partly validated by the pump performance test

  18. Monitoring drilling mud composition using flowing liquid junction electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, R; Fletcher, P; Vercaemer, C

    1990-06-27

    The concentration of a chosen ionic component of a drilling mud is determined from the potential difference between an ion selective electrode, selective to the component and a reference electrode, the reference electrode being connected to the mud by a liquid junction through which reference electrolyte flows from the electrode to the mud. The system avoids errors due to undesirable interactions between the mud and the reference electrode materials. (author).

  19. Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube

    International Nuclear Information System (INIS)

    Fukagata, Koji; Kasagi, Nobuhide; Ua-arayaporn, Poychat; Himeno, Takehiro

    2007-01-01

    Numerical simulation of an air and water two-phase flow in a 20 μm ID tube is carried out. A focus is laid upon the flow and heat transfer characteristics in bubble-train flows. An axisymmetric two-dimensional flow is assumed. The finite difference method is used to solve the governing equations, while the level set method is adopted for capturing the interface of gas and liquid. In each simulation, the mean pressure gradient and the wall heat flux are kept constant. The simulation is repeated under different conditions of pressure gradient and void fraction. The superficial Reynolds numbers of gas and liquid phases studied are 0.34-13 and 16-490, respectively, and the capillary number is 0.0087-0.27. Regardless of the flow conditions, the gas-phase velocity is found approximately 1.2 times higher than the liquid-phase velocity. This is in accordance with the Armand correlation valid for two-phase flows in macro-sized tubes. The two-phase friction coefficient is found to be scaled with the Reynolds number based on the effective viscosity of the Einstein type. The computed wall temperature distribution is qualitatively similar to that observed experimentally in a mini channel. The local Nusselt number beneath the bubble is found notably higher than that of single-phase flow

  20. Advection within side-by-side liquid micro-cylinders in a cross-flow

    Science.gov (United States)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices

  1. Viscous effects in liquid encapsulated liquid bridges

    International Nuclear Information System (INIS)

    Johnson, Duane T.

    2002-01-01

    An analytical derivation of the surface deflections and the streamfunctions for the flow inside a liquid encapsulated liquid bridge has been derived using an asymptotic expansion about a small capillary number. The model assumes an initially flat and cylindrical interface under the assumption that the densities of both fluids are equal. To simplify the analysis, the top and bottom walls are assumed to be stress-free and the Reynolds number is assumed to be negligible. Flow is generated either by a moving outer wall (shear-driven flow) or by applying a temperature difference across the top and bottom walls (Marangoni-driven flow). The resulting equations show that for the shear-driven flow, as the viscosity ratio increases, the surface deflections increase monotonically. For the Marangoni-driven flow there exist values of the viscosity ratio where the surface deflections reach a minimum and then switch signs. This investigation shows that it may be possible in more realistic systems to use an outer encapsulating liquid of the proper viscosity ratio to stabilize the liquid-liquid interface during float zone crystal growth

  2. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  3. Atomizing industrial gas-liquid flows – Development of an efficient hybrid VOF-LPT numerical framework

    International Nuclear Information System (INIS)

    Ström, Henrik; Sasic, Srdjan; Holm-Christensen, Olav; Shah, Louise Jivan

    2016-01-01

    Highlights: • Modelling of turbulent atomizing gas-liquid flows in real industrial devices. • A combined VOF-LPT framework with statistical coupling. • Regions of separated and dispersed multiphase flow treated simultaneously. • Statistical model based on a limited amount of highly resolved VOF data. - Abstract: Atomizing gas-liquid flows are used in industrial applications where high interphase heat and mass transfer rates and good mixing are of primary importance. Today, there is no single mathematical framework available to predict the entire liquid breakup process at an acceptable computational cost for a typical problem of industrial size. In this work, we develop a volume-of-fluid (VOF) framework that is combined with Lagrangian particle tracking (LPT) to take advantage of the respective strengths of these two approaches. The two frameworks are coupled via a statistical model that enables a transition from the VOF to the LPT formulation using input data about the primary breakup process obtained from detailed VOF simulations in dedicated switching zones. LPT-to-VOF transitions are handled directly by analyzing the proximity of LPT parcels to larger VOF structures. The combined framework is specifically designed to accommodate situations where atomization occurs in several locations simultaneously and when separated and dispersed turbulent gas-liquid flows co-exist in the same industrial unit. The procedure in which the statistical model is derived is presented and discussed, its performance is verified and the computational efficiency of the combined VOF-LPT model is assessed. Finally, the application of the coupled framework to the simulation of an industrial gas-liquid mixer with four separate atomization regions is presented.

  4. Exploratory studies of flowing liquid metal divertor options for fusion-relevant magnetic fields in the MTOR facility

    International Nuclear Information System (INIS)

    Ying, A.Y.; Abdou, M.A.; Morley, N.; Sketchley, T.; Woolley, R.; Burris, J.; Kaita, R.; Fogarty, P.; Huang, H.; Lao, X.; Narula, M.; Smolentsev, S.; Ulrickson, M.

    2004-01-01

    This paper reports on experimental findings on liquid metal (LM) free surface flows crossing complex magnetic fields. The experiments involve jet and film flows using GaInSn and are conducted at the UCLA MTOR facility. The goal of this study is to understand the magnetohydrodynamics (MHD) features associated with such a free surface flow in a fusion-relevant magnetic field environment, and determine what LM free surface flow option is most suitable for lithium divertor particle pumping and surface heat removal applications in a near-term experimental plasma device, such as NSTX. Experimental findings indicate that a steady transverse magnetic field, even with gradients typical of NSTX outer divertor conditions, stabilizes a LM jet flow--reducing turbulent disturbances and delaying jet breakup. Important insights into the MHD behavior of liquid metal films under NSTX-like environments are also presented. It is possible to establish an uphill liquid metal film flow on a conducting substrate, although the MHD drag experienced by the flow could be strong and cause the flow to pile-up under simulated NSTX magnetic field conditions. The magnetic field changes the turbulent film flow so that wave structures range from 2D column-type surface disturbances at regions of high magnetic field, to ordinary hydrodynamic turbulence wave structures at regions of low field strength at the outboard. Plans for future work are also presented

  5. An investigation on near wall transport characteristics in an adiabatic upward gas-liquid two-phase slug flow

    Science.gov (United States)

    Zheng, Donghong; Che, Defu

    2007-08-01

    The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.

  6. Flow of Liquid in Flat Gaps of the Satellite Motor Working Mechanism

    Directory of Open Access Journals (Sweden)

    Sliwiński Paweł

    2014-04-01

    Full Text Available The article describes the methodology and results of investigations of the flow of oil and HFA-E emulsion in flat gaps of the working mechanism of a satellite motor. The flow of liquid in those gaps is turbulent and not fully developed. The article presents two methods of modelling this flow. Method I makes use of the Darcy-Weisbach formula, while Method II bases on the assumption that in the variable-length gaps the flow is turbulent in the area where the length is the smallest and laminar where the length is the largest. Consequently, the flow in such gaps can be modelled as the sum of laminar and turbulent flows. The results obtained in the experiment have made the basis for calculating relevant coefficients and assessing the proportion of turbulence in the flow modelled using both methods

  7. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process

    International Nuclear Information System (INIS)

    Dubovikova, N; Kolesnikov, Y; Karcher, Ch

    2015-01-01

    This paper presents a detailed experimental study on an electromagnetic flow measurement technique to measure the flow rate of liquid metals. The experimental setup consists of a contactless electromagnetic pump with a torque sensor mounted on the pump shaft. The electromagnetic pump is composed of two rotating steel discs having embedded permanent magnets with alternating poles. The rotation of the discs creates a travelling sinusoidal magnetic field and eddy currents within the liquid metal. The metal is contained inside the duct located between the discs of the pump. The interaction of the magnetic field and the induced eddy currents generates an electromagnetic Lorentz force providing the pumping effect. The flow rate is proportional to this force. The torque sensor measures the moment of the discs due to the Lorentz force, which is converted to a flow rate value. We name the method Lorentz torque velocimetry (LTV). The full calibration procedure and experimental investigation of the LTV are described. The method can be used as a non-contact flow rate control technique for liquid metals. (paper)

  8. Slug Flow Analysis in Vertical Large Diameter Pipes

    Science.gov (United States)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show

  9. Experimental and CFD Simulations of Vertical Two-Phase Slug Flow for Gas-Newtonian and Non-Newtonian Liquids

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.

    Gas-liquid two-phase flows are presented everywhere in industrial processes (i.e. gas-oil pipelines). In spite of the common occurrence of these two-phase flows, their understanding is limited compared to single-phase flows. Different studies on two-phase flow have focus on developing empirical...... in the literature but none of them is enough robust and suitable for different conditions (i.e. flow patterns, gas-liquid combinations, pipe inclination angles, etc.). This clearly represents a drawback and more research in required on this field....... correlations based on large sets of experiment data for void fraction [1,2] and pressure drop [3,4] which have proven to be accurate for the specific condition that their where developed for. Currently, dozens of void fraction and pressure drop correlations for different flow patterns are available...

  10. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    Science.gov (United States)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  11. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  12. Large Eddy and Interface Simulation (LEIS) of liquid entrainment in turbulent stratified flow

    International Nuclear Information System (INIS)

    Gulati, S.; Buongiorno, J.; Lakehal, D.

    2011-01-01

    Dryout of the liquid film on the fuel rods in BWR fuel assemblies leads to an abrupt decrease in heat transfer coefficient and can result in fuel failure. The process of mechanical mass transfer from the continuous liquid field into the continuous vapor field along the liquid-vapor interface is called entrainment and is the dominant depletion mechanism for the liquid film in annular flow. Using interface tracking methods combined with a Large Eddy Simulation approach, implemented in the Computational Multi-Fluid Dynamics (CMFD) code TransAT®, we are studying entrainment phenomena in BWR fuel assemblies. In this paper we report on the CMFD simulation approaches and the current validation effort for the code. (author)

  13. Numerical investigation of the LM MHD flows in a curved duct with an FCI with varying slot locations

    International Nuclear Information System (INIS)

    Yang, Jong Hoon; Yan, Yue; Kim, Chang Nyung

    2016-01-01

    Highlights: • This study numerically investigates the liquid-metal magnetohydrodynamic flows in a curved duct with an FCI. • The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. • The influence of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. - Abstract: This study numerically investigates the liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with an FCI having three different slot locations and having no slot under a uniform magnetic field perpendicular to the duct. The flow velocity, current density, electric potential, Lorentz force, and pressure in different flow situations are presented in detail. The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. The flow field is examined with an introduction of the electric-field component and electro-motive component of the current, allowing us to analyze the interdependency of the flow variables. The effect of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. The result shows that and the case with an FCI slot located in the neutral position yields the smallest pressure gradient in the main flow direction among the cases with an FCI slot, resulting in the smallest pressure drop. Also, in a flow situation with smaller radius of curvature with the FCI slot in the neutral position, the axial velocity near the inner (in terms of the curvature) part of a cross-section is higher than that near the outer part.

  14. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  15. Implementation of unscented transform to estimate the uncertainty of a liquid flow standard system

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Sejong; Choi, Hae-Man; Yoon, Byung-Ro; Kang, Woong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2017-03-15

    First-order partial derivatives of a mathematical model are an essential part of evaluating the measurement uncertainty of a liquid flow standard system according to the Guide to the expression of uncertainty in measurement (GUM). Although the GUM provides a straightforward method to evaluate the measurement uncertainty of volume flow rate, the first-order partial derivatives can be complicated. The mathematical model of volume flow rate in a liquid flow standard system has a cross-correlation between liquid density and buoyancy correction factor. This cross-correlation can make derivation of the first-order partial derivatives difficult. Monte Carlo simulation can be used as an alternative method to circumvent the difficulty in partial derivation. However, the Monte Carlo simulation requires large computational resources for a correct simulation because it considers the completeness issue whether an ideal or a real operator conducts an experiment to evaluate the measurement uncertainty. Thus, the Monte Carlo simulation needs a large number of samples to ensure that the uncertainty evaluation is as close to the GUM as possible. Unscented transform can alleviate this problem because unscented transform can be regarded as a Monte Carlo simulation with an infinite number of samples. This idea means that unscented transform considers the uncertainty evaluation with respect to the ideal operator. Thus, unscented transform can evaluate the measurement uncertainty the same as the uncertainty that the GUM provides.

  16. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  17. Cross flow filtration of Oak Ridge National Laboratory liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-12-01

    A new method for disposal of Oak Ridge National Laboratory liquid low-level radioactive waste is being developed as an alternative to hydrofracture. The acceptability of the final waste form rests in part on the presence or absence of transuranic (TRU) isotopes. Inertial cross flow filtration was used in this study to determine the potential of this method for separation of the TRU isotopes from the bulk liquid stored in the Melton Valley Storage Tanks. 7 refs., 11 figs., 5 tabs

  18. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  19. Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  20. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    Science.gov (United States)

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  1. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  2. Flow proportional sampling of low level liquid effluent

    International Nuclear Information System (INIS)

    Colley, D.; Jenkins, R.

    1989-01-01

    A flow proportional sampler for use on low level radioactive liquid effluent has been developed for installation on all CEGB nuclear power stations. The sampler, operates by drawing effluent continuously from the main effluent pipeline, through a sampler loop and returning it to the pipeline. The effluent in this loop is sampled by taking small, frequent aliquots using a linear acting shuttle valve. The frequency of operation of this valve is controlled by a flowmeter installed in the effluent line; sampling rate being directly proportional to effluent flowrate. (author)

  3. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    Science.gov (United States)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  4. Nanoscale discontinuities at the boundary of flowing liquids: a look into structure

    International Nuclear Information System (INIS)

    Wolff, Max; Gutfreund, Philipp; Zabel, Hartmut; Ruehm, Adrian; Akgun, Bulent

    2011-01-01

    When downsizing technology, confinement and interface effects become enormously important. Shear imposes additional anisotropy on a liquid. This may induce inhomogeneities, which may have their origin close to the solid interface. For advancing the understanding of flow, information on structures on all length scales and in particular close to the solid interface is indispensable. Neutron scattering offers an excellent tool to contribute in this context. In this work, surface sensitive scattering techniques were used to resolve the structure of liquids under flow in the vicinity of a solid interface. Our results are summarized as follows. First, for a Newtonian liquid we report a depletion distance on the order of nanometers which is far too small to explain the amount of surface slip, on the order of micrometers, found by complementary techniques. Second, for a grafted polymer brush we find no entanglement-disentanglement transition under shear but the grafted film gets ripped off the surface. Third, by evaluating the local structure factor of a micellar solution close to the solid interface it turns out that the degree of order and local relaxation depends critically on the surface energy of the solid surface.

  5. A Review on Empirical Correlations for Jet/Spray Trajectory of Liquid Jet in Uniform Cross Flow

    Directory of Open Access Journals (Sweden)

    Soo-Young No

    2015-12-01

    Full Text Available The empirical correlations for the prediction of jet/spray penetration of liquid jet in subsonic uniform crossflow are reviewed in this study. Considerable number of empirical correlations had been proposed by many investigators. It has generally known that the jet/spray trajectory of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized distance in the airstream direction from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. Two different classification methods of correlations, i.e. classification based on mathematic functional form and classification based on flow regime, are introduced in this study. The one classification of existing correlations based on functional form includes correlations in a power-law, logarithmic, and exponential forms, respectively. The other classification of previous correlations based on flow regime includes one, two and three regime, correlations. Correlations in a power-law functional form can be further divided into three groups such as momentum flux ratio, Weber number and other parameters forms. Correlations in logarithmic functional form can be also grouped as momentum flux ratio and Weber number forms. Most of the evaluation studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, turbulence level in the core and boundary layer of incoming jet and gas flows, nozzle/injector geometry and its position in the crossflow. However, it can be found from the several evaluation studies that the power-law functional form with momentum flux ratio and two regimes

  6. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2016-11-01

    Full Text Available The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  7. Study on cross-flow ultrafiltration for the radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    Jung, K. H.; Jo, E. S.; Lee, D. G.; Lee, G. W.; Jung, K. J.

    2000-01-01

    The effect of the UF membranes on permeate flux was investigated in the ultrafiltration of dodecane (0.1v%) / water emulsion and dodecane-SDS-water emulsion in view of the treatment of radioactive oily emulsion liquid waste in the future. For variety of membranes, experiments in cross-flow modes have been performed at various pressure and different cross-flow velocities. Permeate flux decreased with the time and reached a constant steady-state value. Steady-state flux was found to be dependent by the hydrodynamic conditions but independent by the pressure. Flux decrease and rates of permeate flow resistance change have been analysed using a formulation of the equations illustrating the method of resistance mechanism recognition

  8. Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools

    International Nuclear Information System (INIS)

    Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.

    1999-01-01

    In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools

  9. Two-phase flow instability in a liquid nitrogen heat exchanger, 2

    International Nuclear Information System (INIS)

    Kondoh, Tetsuya; Fukuda, Kenji; Hasegawa, Shu; Yamada, Hidetomo; Ryu, Hiroyuki.

    1988-01-01

    Experimental and analytical investigations are conducted on flow instability in a vertically installed liquid nitrogen shell and tube type heat exchanger. The experiments are carried out by making use of water steam as a secondary fluid and it is observed that flow instability occurs in the range of small inlet flow rate. Mode analysis of the flow instability oscillation reveals that there exists a fundamental mode and its higher harmonics up to the fourth. As the period of the fundamental mode is nearly equal to the transit time for a fluid particle to travel through the heated tube, it is suggested that this flow instability is of the density wave type. It is shown that the amount of exchanged heat, as well as the pressure drop, decrease when unstable flow oscillation occurs. An analysis of the static heat transfer and pressure drop characteristics can simulate the experimental results in the stable region. Linear stability analysis is also carried out to yield the stability map as well as the period of flow oscillation, which proved to agree with the experimental data qualitatively. (author)

  10. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  11. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  12. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  13. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  14. Heat transfer by liquids in suspension in a turbulent gas stream (1960)

    International Nuclear Information System (INIS)

    Grison, E.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm 2 ), the temperature (until the boiling point) and the heat flux (until 250 W/cm 2 ). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [fr

  15. Two-component HLMC-gas flow instability and inhomogeneity phenomena in open-pool reactor

    International Nuclear Information System (INIS)

    Sergey I Shcherbakov

    2005-01-01

    Full text of publication follows: Consideration is being given to two-component gas-liquid flows with inhomogeneous gas content. The inhomogeneity of gas content over flow space can be caused by local mixing of gas and liquid, gas injection, gas-containing liquid jet penetration into the bulk of liquid without gas. The paper presents the computational results obtained using the direct non-stationary calculation with the TURBO-FLOW computer code. The results refer to flows near the liquid level, flows in downcomer gaps, collectors, elements with varying geometry (jet outlet into space, flow turn) for the pool-type reactors and experimental models. The following processes have been shown and discussed: formation of new liquid levels, entrainment of gas from the level, change in density composition of gas, flow stratification, effect of gas emergence rate and density convection on flow pattern. At gas phase transfer by liquid, two phenomena governing this transfer proceed: gas slip in liquid and density convection of non-uniformly aerated liquid. In horizontal flows, a vertical stratification of gas content always occurs. If the flow changes its direction to an upward one (collector at core inlet), the gas content maximum would be observed in channels nearest to the inlet. At the liquid level, the processes of gas separation from liquid and gas entrainment take place. The separation is a self-sustained process due to circulations arising near the level. The rate of gas entrainment is proportional to the rate of overflow and inversely proportional to the height of liquid level. At the downcomer region in case of its expansion, there occurs the instability of flow resulting in formation of liquid level and falling jet. The level is lower the more the gas content at inlet. The accumulation of gas occurs at sharp turns, encumbered regions (tube bundle), at all regions with upper (ceiling) constraints of flow. The flow instability being often observed in gas-liquid flows

  16. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty

    Directory of Open Access Journals (Sweden)

    Yu Tian

    2017-07-01

    Full Text Available Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks with varying levels of difficulty (difficult, medium, and easy and shyness (personality as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC were measured continuously while the participants (n = 40 played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR, moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.

  17. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty.

    Science.gov (United States)

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.

  18. Contact-free measurement of the flow field of a liquid metal inside a closed container

    Directory of Open Access Journals (Sweden)

    Heinicke Christiane

    2014-03-01

    Full Text Available The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  19. Vibration of heat exchange components in liquid and two-phase cross-flow

    International Nuclear Information System (INIS)

    Pettigrew, M.J.

    1978-05-01

    Heat exchange components must be analysed at the design stage to avoid flow-induced vibration problems. This paper presents information required to formulate flow-induced vibration excitation mechanisms in liquid and two-phase cross-flow. Three basic excitation mechanisms are considered, namely: 1) fluidelastic instability, 2) periodic wake shedding, and 3) response to random flow turbulence. The vibration excitation information is deduced from vibration response data for various types of tube bundles. Sources of information are: 1) fundamental studies on tube bundles, 2) model testing, 3) field measurements, and 4) operating experiences. Fluidelastic instability is formulated in terms of dimensionless flow velocity and dimensionless damping; periodic wake shedding in terms of Strouhal number and lift coefficient; and random turbulence excitation in terms of statistical parameters of random forces. Guidelines are recommended for design purposes. (author)

  20. Electrowetting of liquid polymer on petal-mimetic microbowl-array surfaces for formation of microlens array with varying focus on a single substrate

    Science.gov (United States)

    Li, Xiangmeng; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao

    2015-03-01

    In this paper, microlens array with varying focal lengths were fabricated on a single microbowl-array textured substrate. The solid microbowl-arrayed NOA61 (kind of polyurethane-based polymer with UV curablity) surface was resulted from nanoimprinting by polydimethylsiloxane (PDMS) mold. The PDMS mold was replicated from an SU-8 master which was generated by electron beam lithography. Such microbowl-arrayed surfaces demonstrate petal-mimetic highly adhesive hydrophobic wetting properties, which can promote an irreversible electrowetting (EW) effect and a dereased contact angle of water droplets as well as other liquid droplets by applying direct current (DC) voltage. To fabricate a microlens array with varying focal-lengths, liquid NOA61 was supplied from a syringe on the solid NOA61 microtextured film and DC voltage was applied succesively. After removing the DC voltage, these liquid NOA61 microdrops deposited on the solid microtextured NOA61 surface on tin-indium-oxide coated substrate could be solidified via UV irradiation, thus leading to microlens array with uneven numerical apertures on a single substrate. Numerical simulation was also done to verify the EW effect. Finally, optical imaging characterization was performed to confirm the varied focus of the NOA61 microdrops.

  1. Application of radial basis function in densitometry of stratified regime of liquid-gas two phase flows

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    In this paper, a novel method is proposed for predicting the density of liquid phase in stratified regime of liquid-gas two phase flows by utilizing dual modality densitometry technique and artificial neural network (ANN) model of radial basis function (RBF). The detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors for registering transmitted and scattered photons. At the first step, a Monte Carlo simulation model was utilized to obtain the optimum position for the scattering detector in dual modality densitometry configuration. At the next step, an experimental setup was designed based on obtained optimum position for detectors from simulation in order to generate the required data for training and testing the ANN. The results show that the proposed approach could be successfully applied for predicting the density of liquid phase in stratified regime of gas-liquid two phase flows with mean relative error (MRE) of less than 0.701. - Highlights: • Density of liquid phase in stratified regime of two phase flows was predicted. • Combination of dual modality densitometry technique and ANN was utilized. • Detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors. • MCNP simulation was done to obtain the optimum position for the scattering detector. • An experimental setup was designed to generate the required data for training the ANN.

  2. Effect of drag-reducing polymers on Tubing Performance Curve (TPC) in vertical gas-liquid flows

    NARCIS (Netherlands)

    Shoeibi Omrani, P.; Veltin, J.; Turkenburg, D.H.

    2014-01-01

    This paper discusses the effect of drag reducing polymers on the Tubing Performance Curve (TPC) of vertical air-water flows at near atmospheric conditions. The effect of polymer concentration, liquid and gas flow rates on the pressure drop curve (Tubing Performance Curve) was investigated

  3. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    International Nuclear Information System (INIS)

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure

  4. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  5. Transition of Gas-Liquid Stratified Flow in Oil Transport Pipes

    Directory of Open Access Journals (Sweden)

    D. Lakehal

    2011-12-01

    Full Text Available Large-Scale Simulation results of the transition of a gas-liquid stratified flow to slug flow regime in circular 3D oil transport pipes under turbulent flow conditions expressed. Free surface flow in the pipe is treated using the Level Set method. Turbulence is approached via the LES and VLES methodologies extended to interfacial two-phase flows. It is shown that only with the Level Set method the flow transition can be accurately predicted, better than with the two-fluid phase-average model. The transition from stratified to slug flow is found to be subsequent to the merging of the secondary wave modes created by the action of gas shear (short waves with the first wave mode (high amplitude long wave. The model is capable of predicting global flow features like the onset of slugging and slug speed. In the second test case, the model predicts different kinds of slugs, the so-called operating slugs formed upstream that fill entirely the pipe with water slugs of length scales of the order of 2-4 D, and lower size (1-1.5 D disturbance slugs, featuring lower hold-up (0.8-0.9. The model predicts well the frequency of slugs. The simulations revealed important parameter effects on the results, such as two-dimensionality, pipe length, and water holdup.

  6. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  7. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip : similarities with gas-liquid/liquid-liquid flows

    NARCIS (Netherlands)

    Yue, J.; Rebrov, E.; Schouten, J.C.

    2014-01-01

    We report a three-phase slug flow and parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 µm connected to a cross-flow mixer. The three-phase slug flow pattern is

  8. A new method of producing local enhancement of buoyancy in liquid flows

    Science.gov (United States)

    Bhat, G. S.; Narasimha, R.; Arakeri, V. H.

    1989-11-01

    We describe here a novel method of generating large volumetric heating in a liquid. The method uses the principle of ohmic heating of the liquid, rendered electrically conducting by suitable additives if necessary. Electrolysis is prevented by the use of high frequency alternating voltage and chemically treated electrodes. The technique is demonstrated by producing substantial heating in an initially neutral jet of water. Simple flow visualisation studies, made by adding dye to the jet, show marked changes in the growth and development of the jet with heat addition.

  9. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  10. Distribution characteristics of interfacial parameter in downward gas-liquid two-phase flow in vertical circular tube

    International Nuclear Information System (INIS)

    Liu Guoqiang; Yan Changqi; Tian Daogui; Sun Licheng

    2014-01-01

    Experimental study was performed on distribution characteristics of interfacial parameters of downward gas-liquid flow in a vertical circular tube with the measurement by a two-sensor optical fiber probe. The test section is a circular pipe with the inner diameter of 50 mm and the length of 2000 mm. The superficial velocities of the gas and the liquid phases cover the ranges of 0.004-0.077 m/s and 0.43-0.71 m/s, respectively. The results show that the distributions of the interfacial parameters in downward bubbly flows are quite different from those in upward bubbly flows. For the case of upward flow, the parameters present the 'wall-peak' or 'core-peak' distributions, but for the case of downward flow, they show 'wall-peak' or 'wide-peak' distributions. The average value of void fraction in vertical downward flow is about 119.6%-145.0% larger than that in upward flow, and the interfacial area concentration is about 18.8%-82.5% larger than that in upward flow. The distribution of interfacial parameters shows an obvious tendency of uniformity. (authors)

  11. Effects of physical properties on thermo-fluids cavitating flows

    Science.gov (United States)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  12. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    International Nuclear Information System (INIS)

    Ashwood, Andrea C.; Schubring, DuWayne; Shedd, Timothy A.

    2009-01-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s -1 and gas superficial velocities from 35 to 85 m s -1 , the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  13. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, Andrea C; Schubring, DuWayne; Shedd, Timothy A. [University of Wisconsin, Madison, WI (United States)], e-mail: cashwood@wisc.edu, e-mail: dlschubring@wisc.edu, e-mail: shedd@engr.wisc.edu

    2009-07-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s{sup -1} and gas superficial velocities from 35 to 85 m s{sup -1}, the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  14. A Comparison of Three Models to Predict Liquidity Flows between Banks Based on Daily Payments Transactions

    NARCIS (Netherlands)

    R.J.M.A. Triepels (Ron); H.A.M. Daniels (Hennie)

    2016-01-01

    textabstractThe analysis of payment data has become an important task for operators and overseers of financial market infrastructures. Payment data provide an accurate description of how banks manage their liquidity over time. In this paper we compare three models to predict future liquidity flows

  15. Direct numerical simulation of stratified gas-liquid flow

    International Nuclear Information System (INIS)

    Lombardi, P.; De Angelis, V.; Banerjee, S.

    1996-01-01

    Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates

  16. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    Science.gov (United States)

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  17. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  18. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  19. In line digital holography measurement for liquid-liquid flow: application to the characterization of emulsions produced in pulsed column

    International Nuclear Information System (INIS)

    Lamadie, F.

    2013-01-01

    Several processes used in research and industry are based on liquid-liquid extraction, a method designed for selective separation of products in a mixture. In liquid-liquid extraction, two immiscible liquids are contacted: an aqueous phase and an organic phase, one of which generally contains an extractant molecule capable of transferring the desired elements to the other phase. The transfer occurs at the contact surface between the two phases. After transfer, both phases are separated by settling. In practice, these operations are performed in industrial apparatus. In order to optimize the operation of these devices, it's important to determine the fundamental characteristics of the emulsion. These include parameters related to the fluid flow velocity as well as parameters related to fluid mixing such as the interfacial area, hold-up, and size distribution of the droplets population. Numerous imaging techniques can be used to measure these parameters. One of them, digital holography, is well-known for allowing complete reconstruction of information about a 3D flow in a single shot. This PhD work deals with a direct application of digital in line holography to droplets rising in a continuous liquid phase. The droplet size imposes a regime of intermediate-field diffraction hardly explored to date. Acquired diffraction patterns show that the usual dark disk model is not valid and that good agreement is obtained with a mixed model coupling thin lens with opaque disk. Hologram focusing is nevertheless performed with a dedicated automated method. A literature review has been conducted to identify the sharpest auto-focus function for our application. In a second step, in order to measure high retention rates, an inverse problem approach is applied on all the outliers and missing droplets. This hologram restitution treatment has been applied to experimental results with a comparison to independent measurements. The main results obtained with calibrated droplets are

  20. Frequency characteristics of liquid hydrogen cavitating flow over a NACA0015 hydrofoil

    Science.gov (United States)

    Zhu, Jiakai; Wang, Shunhao; Qiu, Limin; Zhi, Xiaoqin; Zhang, Xiaobin

    2018-03-01

    Large eddy simulation on unsteady cavitating flow of liquid hydrogen over a three-dimensional NACA0015 hydrofoil with the attack angle (α) of 6° are carried out to investigate the dynamic features of cavity with the existence of thermal effects. The numerical model considers the compressibility of both liquid and vapor phase, and is validated by comparing the results with the available experimental data. Special emphasis is put on analyzing the frequency characteristics of cavitation cloud. Strouhal number (St) is plotted against σ/2α (σ is cavitation number), and the water cavitation data reported by Andrt et al. are also used as a reference. It is found that the St number for LH2 cavitation is much smaller than the water, in which the thermal effects are generally not considered, at the same σ/2α value when it is greater than about 2.0, while it returns to the same level as water when σ/2α decreases to below 2.0. The reason is primarily ascribed to the thermal effects, and the detailed explanations are given based on the recognitions that the shedding mechanism of cavitation clouds is predominated by the combined action of the vortex flow and thermal effects. While, when σ/2α decreases to a critical value, the relative effect of the thermal effects on the cavitation dynamics is greatly weakened compared with the mechanism due to the vortex flow, like those in isothermal cavitation flow in traditional fluids. The results provide a deeper understanding of the cryogenic fluid cavitation flow.

  1. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-01-01

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds

  2. A Comparison of Three Models to Predict Liquidity Flows between Banks Based on Daily Payments Transactions

    NARCIS (Netherlands)

    Triepels, Ron; Daniels, Hennie

    2016-01-01

    The analysis of payment data has become an important task for operators and overseers of financial market infrastructures. Payment data provide an accurate description of how banks manage their liquidity over time. In this paper we compare three models to predict future liquidity flows from payment

  3. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  4. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  5. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  6. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  7. PDBD with continuous liquids flows in a discharge reactor

    International Nuclear Information System (INIS)

    Rodríguez-Méndez, B G; Gutiérrez-León, D G; López-Callejas, R; Valencia-Alvarado, R; Muñoz-Castro, A E; Mercado-Cabrera, A; Peña-Eguiluz, R; Belman-Flores, J M; De la Piedad-Beneitez, A

    2015-01-01

    This paper presents the design, construction and testing of a cylindrical pulsed dielectric barrier discharge (PDBD) reactor aimed to microbiological elimination of Escherichia coli ATCC 8739 bacteria. In the reactor, water flowed continuously and to countercurrent an oxygen gas was injected. The water pumping was carried out with a peristaltic pump type, stainless steel and aluminum constructed, and water was recirculated through norprene tubing. The considered parameters in order to promote energetic efficiency were: the residence time of the water contaminated with bacteria, flow rate of the liquid, shape and material used to build electrodes and dielectric, pressure, and gas injection flow rate. The pulsed power supply parameters are featured by 25-30 kV high voltage, 500 Hz frequency and 30 μs width. The outcome elimination of E. coli bacteria at 10 3 , 10 4 and 10 6 CFU/mL concentrations reached an efficiency over 0.5 log-order in absence of oxygen; while >2 log-orders when oxygen gas was injected during the process. (paper)

  8. Study on flow characteristics of chemically reacting liquid jet

    International Nuclear Information System (INIS)

    Hong Seon Dae; Okamoto, Koji; Takata, Takashi; Yamaguchi, Akira

    2004-07-01

    Tube rupture accidents in steam generators of sodium-cooled fast breeder reactors are important for safety because the rupture may propagates to neighboring tubes due to sodium-water reaction. In order to clarify the thermal-hydraulic phenomena in the accidents, the flow pattern and the interface in multi-phase flow must be investigated. The JNC cooperative research scheme on the nuclear fuel cycle with the University of Tokyo has been carried to develop a simultaneous measurement system of concentration and velocity profiles and to evaluate influence of chemical reaction on mixing phenomena. In the experiments, aqueous liquor of acetic acid and ammonium hydroxide are selected as a simulant fluid instead of liquid sodium and water vapor. The following conclusions are obtained in this research. Laser Induced Fluorescence (LIF) technique was adopted to measure reacting zone and pH distribution in chemically reacting liquid round free jet. As a result, it was found that the chemical reaction, which took place at the interface between the jet and outer flow, suppressed the mixing phenomenon (in 2001 research). Dynamic Particle Image Velocimetry (PIV) method was developed to measure instantaneous velocity profile with high temporal resolution. In the Dynamic PIV, a high-speed video camera coupled with a high-speed laser pulse generator was implemented. A time-line trend of interfacial area in the free jet was investigated with the Dynamic PIV. This technique was also applied to a complicated geometry (in 2002 research). A new algorithms for image analysis was developed to evaluated the Dynamic PIV data in detail. The characteristics of the mixing phenomenon with reacting jet such as the turbulent kinetic energy and the Reynolds stress were estimated in a spatial and temporal spectrum (in 2003 research). (author)

  9. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  10. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  11. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  12. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    International Nuclear Information System (INIS)

    Li, R N; Wang, H Y; Han, W; Shen, Z J; Ma, W

    2013-01-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance

  13. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-01-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  14. Flow-induced vibration of steam generator helical tubes subjected to external liquid cross flow and internal two-phase flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2005-01-01

    Full text of publication follows: This paper addresses the potential flow-induced vibration problems in a helically-coiled tube steam generator of integral-type nuclear reactor, of which the tubes are subjected to liquid cross flow externally and multi-phase flow externally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helical type tubes with various conditions, a finite element analysis code is used. Based on the results of both helical coiled tube steam generator thermal-hydraulic and coiled tube modal analyses, turbulence-induced vibration and fluid-elastic instability analyses are performed. And then the potential for damages on the tubes due to either turbulence-induced vibration or fluid-elastic instability is assessed. In the assessment, special emphases are put on the detailed investigation for the effects of support conditions, coil diameter, and helix pitch on the modal, vibration amplitude and instability characteristics of tubes, from which a technical information and basis needed for designers and regulatory reviewers can be derived. (authors)

  15. Hydrodynamics of adiabatic inverted annular flow: an experimental study

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.

    1983-01-01

    For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting

  16. Evolution of the structure of a gas-liquid two-phase flow in a large vertical pipe

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Matthias Beyer; Helmar Carl; Sabine Gregor; Dirk Lucas; Peter Schuetz; Frank-Peter Weiss

    2005-01-01

    Full text of publication follows: Experimental results on the evolution of the radial gas fraction profiles, gas velocity profiles and bubble size distributions in a gas-liquid two-phase flow along a large vertical pipe of 194 mm inner diameter are presented. The tests were performed at the TOPFLOW facility in Rossendorf, where two wire-mesh sensors were used to measure sequences of two-dimensional distributions of local instantaneous gas fraction within the complete pipe cross-section with a lateral resolution of 3 mm and a sampling frequency of 2500 Hz. This data is the basis for a fast flow visualization and for the calculation of the mentioned profiles. The gas fraction profiles were obtained by averaging the sequences over time, velocities were measured by cross-correlation of the signals of the two sensors, which were located on a short (63 mm) distance behind each other. The high resolution of the mesh sensors allows to identify regions of connected measuring points in the data array, which are filled with the gas phase. This method was used to obtain the bubble size distributions. In the experiments, the superficial velocities ranged from 0.04 to 8 m/s for the gas phase and from 0.04 to 1.6 m/s for the liquid. In this way, the experiments cover the range from bubbly to churn turbulent flow regimes. The evolution of the flow structure was studied by varying the distance between the gas injection and the sensor position. This distance was changed by the help of a so-called variable gas injection set-up. It consists of 6 gas injection units, each of them equipped with three rings of orifices in the pipe wall for the gas injection. These rings are fed with the gas phase from ring chambers, which can be individually controlled by valves. The middle ring has orifices of 4 mm diameter, while the upper and the lower rings have nozzles of 1 mm diameter. In this way, 18 different inlet lengths and two different gas injection geometries can be chosen. The latter

  17. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.; Kastengren, Alan L.

    2017-08-02

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfield to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.

  18. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, Scott J. [Aerospace Systems Directorate, Air Force Research Laboratory, Arnold AFB, TN (United States); Lin, Kuo-Cheng [Taitech, Inc., Beavercreek, OH (United States); Carter, Campbell D. [Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States); Kastengren, Alan L. [Argonne National Laboratory, X-Ray Science Division, Advanced Photon Source, Argonne, IL (United States)

    2017-09-15

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through X-ray radiography and X-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an X-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfield to be examined (as Be has relatively low X-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveals a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry. (orig.)

  19. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  20. Influences of viscous losses and end effects on liquid metal flow in electromagnetic pumps

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Seo, Joon Ho; Hong, Sang Hee; Cho, Su won; Nam, Ho Yun; Cho, Man

    1996-01-01

    Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current (υxB) generated by the liquid metal movement across the magnetic field rather than the one

  1. Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-01-01

    The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt

  2. Energy performance of an innovative liquid desiccant dehumidification system with a counter-flow heat and mass exchanger using potassium formate

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2014-01-01

    An innovative micro-scale liquid desiccant dehumidification system is numerically investigated. The liquid desiccant dehumidification unit employs a counter-flow low-cost and efficient heat and mass exchange core, improving the thermal performance and eliminating desiccant carryover...... that the dehumidifier effectiveness is directly proportional to the intake air temperature, intake air relative humidity and liquid desiccant flow rate where the effectiveness is inversely proportional to the intake air velocity and the heat exchanger air channel height....

  3. Source modulation-correlation measurement for fissile mass flow in gas or liquid fissile streams

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.A.; Valentine, T.E.; Abston, R.A.; Mattingly, J.K.; Mullens, J.A.

    1996-01-01

    The method of monitoring fissile mass flow on all three legs of a blending point, where the input is high-enriched uranium (HEU) and low-enriched uranium (LEU) and the product is PEU, can yield the fissile stream velocity and, with calibration, the [sup235]U content. The product of velocity and content integrated over the pipe gives the fissile mass flow in each leg. Also, the ratio of fissile contents in each pipe: HEU/LEU, HEU/PEU, and PEU/LEU, are obtained. By modulating the source on the input HEU pipe differently from that on the output pipe, the HEU gas can be tracked through the blend point. This method can be useful for monitoring flow velocity, fissile content, and fissile mass flow in HEU blenddown of UF[sub 6] if the pressures are high enough to contain some of the induced fission products. This method can also be used to monitor transfer of fissile liquids and other gases and liquids that emit radiation delayed from particle capture. These preliminary experiments with the Oak Ridge apparatus show that the method will work and the modeling is adequate

  4. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  5. Liquid metal flow in a finite-length cylinder with a rotating magnetic field

    International Nuclear Information System (INIS)

    Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.

    1993-01-01

    A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)

  6. CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media

    International Nuclear Information System (INIS)

    Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.

    1982-01-01

    1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium

  7. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng

    2012-01-01

    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  8. Performance of a liquid-junction interface for capillary electrophoresis mass spectrometry using continuous-flow fast-atom bombardment

    NARCIS (Netherlands)

    Reinhoud, N.J.; Niessen, W.M.A.; Tjaden, U.R.; Gramberg, L.G.; Verheij, E.R.; Greef, J. van der

    1989-01-01

    The on-line coupling of capillary electrophoresis and mass spectrometry using a continuous-flow fast-atom bombardment system in combination with a liquid-junction interface is described. The influence of the liquid-junction coupling on the efficiency and the resolution is investigated. Qualitative

  9. The influence of temperature, viscosity and pH on the relaxation time T1 in flowing liquids

    International Nuclear Information System (INIS)

    Toczylowska, B.

    1995-01-01

    The designed and constructed at the Institute of Biocybernetics and Biomedical Engineering facility for the relaxation time (T 1 ) measurements of liquids flow has been presented. The influence of temperature, viscosity and pH has been determined for several liquids, especially physiological fluids

  10. PIV study of non-Marangoni surface flows in thin liquid films induced by single- and multi-point thermodes

    Science.gov (United States)

    Cui, Nai-Yi; Wang, Song-Po

    2018-03-01

    The non-Marangoni directional flows, which can occur in only very thin liquid films, have been studied using particle image velocimetry techniques. Single- and multi-point thermodes have been used in this study for generating the flows. The results show that the direction of these flows is governed by the variation trend of the thickness of the film and the shape of the temperature profile. A hot thermode always drives a thick-to-thin flow, whereas a cold thermode always drives a flow in the opposite direction. Increasing the temperature difference between the thermode and the ambience, or decreasing the thickness of the liquid film, can accelerate the flow speed. However, the flow speed cannot exceed an upper limit. When more than one thermode was used, different flow patterns, including thick-to-thin streams driven by hot thermodes and thin-to-thick streams driven by cold thermodes, could be formed. The experimental results strongly suggest that these flows were not driven by thermo-capillary forces but by a newly proposed thermo-dynamic mechanism.

  11. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  12. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  13. Numerical Thermodynamic Analysis of Two-Phase Solid-Liquid Abrasive Flow Polishing in U-Type Tube

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-08-01

    Full Text Available U-type tubes are widely used in military and civilian fields and the quality of the internal surface of their channel often determines the merits and performance of a machine in which they are incorporated. Abrasive flow polishing is an effective method for improving the channel surface quality of a U-type tube. Using the results of a numerical analysis of the thermodynamic energy balance equation of a two-phase solid-liquid flow, we carried out numerical simulations of the heat transfer and surface processing characteristics of a two-phase solid-liquid abrasive flow polishing of a U-type tube. The distribution cloud of the changes in the inlet turbulent kinetic energy, turbulence intensity, turbulent viscosity, and dynamic pressure near the wall of the tube were obtained. The relationships between the temperature and the turbulent kinetic energy, between the turbulent kinetic energy and the velocity, and between the temperature and the processing velocity were also determined to develop a theoretical basis for controlling the quality of abrasive flow polishing.

  14. Holographic cinematography of time-varying reflecting and time-varying phase objects using a Nd:YAG laser

    Science.gov (United States)

    Decker, A. J.

    1982-01-01

    The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.

  15. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    Damsohn, M.

    2011-01-01

    time-averaged liquid film thickness decreases with decreasing liquid flow rate, increasing gas flow rate and increasing gas density. By the introduction of spacers, the liquid film is strongly structured into streaks downstream of the spacer in a distinct pattern depending on the spacer shape. The streaks are mainly generated by the effect of circumferential vector components of the gas shear stresses on the gas-liquid interface, which are generated by the spacer. The resulting local decrease of liquid mass flow rate can be interpreted as a deficiency of a given spacer geometry, since it may promote dryout under BWR conditions in close proximity to the spacer. Furthermore spacers increase the droplet deposition compared to an open channel flow, thus increasing the mass flow rate in the liquid film and the dryout margin. Spacer vanes enhance the droplet deposition by an enhanced turbulence of the gas core, a deflection of the gas streamlines and the direct impact of droplets on the spacer vanes. The contribution of each phenomenon to the deposition rate depends on the spacer design and flow conditions present. For the studied generic spacer geometries and experimental conditions, the contribution of the direct impact is dominant, while the contribution of enhanced turbulence seems to be negligible. Additional to the described phenomenon, droplet break-up occurs in spacer proximity, either by the impact on the spacer or by the high velocity gradients of the gas flow in the spacer. This break-up may change the contribution of the deposition effects. It is shown that a Lagrangian droplet tracking on basis of the same gas flow field used as input for the film thickness model can qualitatively reproduce most of the relevant effects observed in the experiments. Furthermore the model gives the right quantitative tendencies when flow parameters are varied. The combination of adiabatic experiments of the presented kind, complemented by the proposed simplified CFD modeling, can

  16. Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2017-11-01

    We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.

  17. Stratification of bubbly horizontal flows: modeling and experimental validation

    International Nuclear Information System (INIS)

    Bottin, M.

    2010-01-01

    Hot films and optical probes enabled the acquisition of measurements in bubbly flows at 5, 20 and 40 diameters from the inlet of the vein on the METERO facility which test section is a horizontal circular pipe of 100 mm inner diameter. The distribution of the different phases, the existence of coalescence and sedimentation mechanisms, the influence of the liquid and gas flow rates, the radial and axial evolutions are analyzed thanks to fast camera videos and numerous and varied experimental results (void fraction, bubbles sizes, interfacial area, mean and fluctuating velocities and turbulent kinetic energy of the liquid phase). Some models, based on the idea that the flow reaches an equilibrium state sufficiently far from the inlet of the pipe, were developed to simulate mean interfacial area and turbulent kinetic energy transports in bubbly flows. (author)

  18. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  19. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    Science.gov (United States)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  20. Analysis and computer simulation for transient flow in complex system of liquid piping

    International Nuclear Information System (INIS)

    Mitry, A.M.

    1985-01-01

    This paper is concerned with unsteady state analysis and development of a digital computer program, FLUTRAN, that performs a simulation of transient flow behavior in a complex system of liquid piping. The program calculates pressure and flow transients in the liquid filled piping system. The analytical model is based on the method of characteristics solution to the fluid hammer continuity and momentum equations. The equations are subject to wide variety of boundary conditions to take into account the effect of hydraulic devices. Water column separation is treated as a boundary condition with known head. Experimental tests are presented that exhibit transients induced by pump failure and valve closure in the McGuire Nuclear Station Low Level Intake Cooling Water System. Numerical simulation is conducted to compare theory with test data. Analytical and test data are shown to be in good agreement and provide validation of the model

  1. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  2. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  3. Multi-dimensional modeling of gas-liquid two-phase flows. Application to the simulation of ascending bubble flows in vertical ducts

    International Nuclear Information System (INIS)

    Morel, Ch.

    1997-01-01

    The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.)

  4. Gas/liquid separator for BWR type reactor

    International Nuclear Information System (INIS)

    Soma, Naoshi; Akimoto, Seiichi; Yokoyama, Iwao.

    1993-01-01

    A two phase gas/liquid flow generated at a heating portion of a nuclear reactor is swirled by inlet vanes. The phase gas/liquid flow uprises as a vortex flow in a vortex cylinder, and a liquid phase of a high density gathers at the outer circumference of the vortex cylinder. The liquid phase gathered at the outer circumference is collected at the inlet of a discharge flow channel which protrude into the vortex cylinder and in a three-step structure, and introduced into a recycling liquid phase passing through the discharge flow channel for liquid phase. There is provided a structure that separated liquid collected at the lowermost state in the inlet of the three-step discharge flow channel inlet descends in the discharge flow channel, then uprises in an uprising flow channel and is introduced into the recycling liquid phase by way of a discharge flow channel exit. The height of the discharge flow channel exit is determined equal to that of a liquid level of the recycling liquid phase during rated operation of the reactor. Accordingly, even in a case where the liquid level in the recycling liquid phase is lowered, the liquid level of the uprising flow channel is kept equal to that during rated operation. (I.N.)

  5. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    International Nuclear Information System (INIS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Creel, J.; Arenius, D.; Garcia, S.

    2010-01-01

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN 2 shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  6. Electromagnetic device for confining a liquid metal and regulating the flow rate

    International Nuclear Information System (INIS)

    Garnier, Marcel; Moreau, R.J.

    1977-01-01

    The description is given of a device for confining a liquid metal jet, characterized in that it comprises in combination, at the jet outlet nozzle, (a) means for producing a high pressure in the jet composed of a coil around the nozzle and located on its outlet, in combination with facilities for passing a high frequency alternating current through the coil and (b) means for suppressing this high pressure. It is stated that this device has many uses, particularly for allowing the use of a relatively large diameter orifice, hence not subject to the risk of clogging, in order to produce a jet with a relatively small diameter. This invention particularly concerns the application of this device for regulating a flow of liquid metal at an outlet orifice located at the lower end of a receptacle containing this liquid metal [fr

  7. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  8. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Zhang, Jiaqi; Cheng, Peng

    2018-05-01

    To understand the atomization characteristics and atomization mechanism of the gas-liquid swirl coaxial (GLSC) injector, a back-lighting photography technique has been employed to capture the instantaneous spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of gas liquid ratio (GLR) on the spray pattern, Sauter mean diameter (SMD), diameter-velocity distribution and mass flow rate distribution were analyzed and discussed. The results show that the atomization of the GLSC injector is dominated by the film breakup when the GLR is small, and violent gas-liquid interaction when the GLR is large enough. The film breakup dominated spray can be divided into gas acceleration region and film breakup region while the violent gas-liquid interaction dominated spray can be divided into the gas acceleration region, violent gas-liquid interaction region and big droplets breakup region. The atomization characteristics of the GLSC injector is significantly influenced by the GLR. From the point of atomization performance, the increase of GLR has positive effects. It decreases the global Sauter mean diameter (GSMD) and varies the SMD distribution from a hollow cone shape (GLR = 0) to an inverted V shape, and finally slanted N shape. However, from the point of spatial distribution, the increase of GLR has negative effects, because the mass flow rate distribution becomes more nonuniform.

  9. Application of Light Reflection Visualization for Measuring Organic-Liquid Saturation for Two-Phase Systems in Two-Dimensional Flow Cells.

    Science.gov (United States)

    DiFilippo, Erica L; Brusseau, Mark L

    2011-11-01

    A simple, noninvasive imaging technique was used to obtain in situ measurements of organic-liquid saturation in a two-phase system under dynamic conditions. Efficacy of the light reflection visualization (LRV) imaging method was tested through comparison of measured and known volumes of organic liquid for experiments conducted with a two-dimensional flow cell. Two sets of experiments were conducted, with source-zone configurations representing two archetypical residual-and-pool architectures. LRV measurements were collected during the injection of organic liquid and during a dissolution phase induced by water flushing. There was a strong correlation between measured and known organic-liquid volumes, with the LRV-measured values generally somewhat lower than the known volumes. Errors were greater for the system wherein organic liquid was present in multiple zones comprised of porous media of different permeabilities, and for conditions of multiphase flow. This method proved effective at determining organic-liquid distribution in a two-phase system using minimal specialized equipment.

  10. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain

    Science.gov (United States)

    Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.

    2018-01-01

    In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil

  11. Liquid-metal flow through a thin-walled elbow in a plane perpendicular to a uniform magnetic field

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper presents analytical solutions for the liquid-metal flow through two straight pipes connected by a smooth elbow with the same inside radius. The pipes and the elbow lie in a plane which is perpendicular to a uniform, applied magnetic field. The strength of the magnetic field is assumed to be sufficiently strong that inertial and viscous effects are negligible. This assumption is appropriate for the liquid-lithium flow in the blanket of a magnetic confinement fusion reactor, such as a tokamak. The pipes and the elbow have thin metal walls

  12. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  13. Summary on experimental methods for statistical transient analysis of two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Delhaye, J.M.; Jones, O.C. Jr.

    1976-06-01

    Much work has been done in the study of two-phase gas-liquid flows. Although it has been recognized superficially that such flows are not homogeneous in general, little attention has been paid to the inherent discreteness of the two-phase systems. Only relatively recently have fluctuating characteristics of two-phase flows been studied in detail. As a result, new experimental devices and techniques have been developed for use in measuring quantities previously ignored. This report reviews and summarizes most of these methods in an effort to emphasize the importance of the fluctuating nature of these flows and as a guide to further research in this field

  14. State-of-the-art review of liquid loading in gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Barbosa, J.R. Jr. [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). Dept. of Mechanical Engineering

    2013-08-01

    Gas wells suffering from liquid loading are incapable of removing the liquid associated with produced gas from the wellbore. This phenomenon is initiated when the upward gas velocity in the well falls below a critical value at which point the liquid that was initially flowing upwards, begins to fall back. This liquid accumulates downhole, where it increases the hydrostatic back-pressure on the reservoir, destabilises the multiphase flow in the well (following flow regime changes), decreases production rate and, in severe cases, kills the well. The typical liquid loading sequence begins with a gas flow rate that is high enough to transport all liquids to surface and there is no liquid fall-back in the well. However, as the gas velocity slows or the liquid content in the well rises, there is insufficient energy in the well to carry all liquids to surface and some begins to flow backwards. As the hydrostatic head downhole increases, the liquid column that has accumulated in the well can re-enter the near-wellbore region of the reservoir. This results in the well becoming 'unloaded' so that it can flow once more, with the gas carrying all liquids to surface. However, the reinjection of liquids into the reservoir may cause formation damage, which will impair the well productivity. This cycle continues, providing the typical intermittent response of liquid-loaded gas wells, until the reservoir potential starts to fall or the liquid yield rises. Diagnosing liquid loading is often difficult as the affected well(s) may continue production without any substantial performance impairment for a long period of time. Typical symptoms of liquid loading include sharp drops in the cumulative production decline curve, the onset of liquid slugs in the surface facilities, abrupt changes in the flowing pressure gradient, low temperature spikes at the wellhead and declining water production or condensate-gas-ratio. Many remedial lifting options have been developed for use in

  15. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [Swedish Institute of Space Physics, Kiruna (Sweden); Livadiotis, G. [Southwest Research Institute, San Antonio, Texas (United States)

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying along the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.

  16. Measurements of local liquid velocity and interfacial parameters of air-water bubbly flows in a horizontal tube

    International Nuclear Information System (INIS)

    Yang Jian; Zhang Mingyuan; Zhang Chaojie; Su Yuliang

    2002-01-01

    Distribution of local kinematic parameters of air-water bubbly flows in a horizontal tube with an ID of 35 mm was investigated. The local liquid velocity was measured with a cylindrical hot film probe, and local void fraction, bubble frequency and bubble velocity were measured with a double-sensor probe. It was found that the axial liquid velocity has a same profile as that of single liquid phase flow in the lower part of the tube, and it suffers a sudden reduction in the upper part of the tube. With increasing airflow rate, the liquid velocity would increase in the lower part of the tube, and further decrease at the upper part of the tube, respectively. Most bubbles are congested at the upper part of the tube, and the void fraction and bubble frequencies have similar profile and both are asymmetrical with the tube axis with their maximum values located near the upper tube wall

  17. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric J [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-12

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  18. Niobium corrosion in flowing liquid sodium between 400 and 600 degrees C

    International Nuclear Information System (INIS)

    Sannier, J.; Champeix, L.; Darras, R.; Graff, W.

    1966-10-01

    The corrosion of niobium and two of its alloys was studied under temperature, flow rate, and purity conditions of liquid sodium similar to those likely to occur in a fast neutron reactor. The results are discussed with reference to the following parameters: purification method used for the sodium, temperature, metallurgical condition of the structural metal. Generally speaking, an important role is played by the oxygen content of the liquid metal towards the corrosion of the niobium: although the metal behaves very satisfactorily when a hot trap purification is used, it undergoes corrosion in the presence of sodium which has been purified only by a cold trap. (authors) [fr

  19. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    International Nuclear Information System (INIS)

    Verzhinskaya, A.B.; Saskovets, V.V.; Borovik, T.F.

    1984-01-01

    The system of N 2 O 4 based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number

  20. Experimental study of nitrogen oxide absorption by a liquid nitrogen tetroxide flow

    Energy Technology Data Exchange (ETDEWEB)

    Verzhinskaya, A B; Saskovets, V V; Borovik, T F

    1984-01-01

    The system of N/sub 2/O/sub 4/ based coolant regeneration needs productive and efficient absorbers, providing effective production of nitrogen oxide, decreasing upon NPP operation at the expense of radiation-thermal decomposition. The experimental istallation flowsheet for studying the nitrogen oxide absorbtion by liquid nitrogen tetroxide is given. The experiments have been carried out in removable test sections, looked like helical tubes with internal steam-and-liquid mixture flow and external water cooling. Six test sections with variable geometry factors have been manufactured. The plotted results of the experiments are given as dependences of extraction level and mass transfer volumetric coefficients on the geometry factor, pressure and Froude number.

  1. Marangoni-buoyancy convection in binary fluids under varying noncondensable concentrations

    Science.gov (United States)

    Li, Yaofa; Yoda, Minami

    2014-11-01

    Marangoni-buoyancy convection in binary fluids in the presence of phase change is a complex and poorly understood problem. Nevertheless, this flow is of interest in evaporative cooling because solutocapillary stresses could reduce film dryout. Convection was therefore studied in methanol-water (MeOH-H2O) layers of depth h ~ 1 - 3 mm confined in a sealed rectangular cell driven by horizontal temperature differences of ~6° C applied over ~ 5 cm. Particle-image velocimetry (PIV) was used to study how varying the fraction of noncondensables (i.e., air) ca from ~ 7 mol% to ambient conditions in the vapor space affects soluto- and thermocapillary stresses in this flow. Although solutocapillary stresses can be used to drive the flow towards hot regions, solutocapillarity appears to have the greatest effect on the flow at small ca, because noncondensables suppress phase change and hence the gradient in the liquid-phase composition at the interface. Surprisingly, convection at ca ~ 50 % leads to a very weak flow and significant condensation in the central portion of the layer i.e., away from the heated and cooled walls). Supported by ONR.

  2. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    International Nuclear Information System (INIS)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J.; Wang, D.F.

    2015-01-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  3. Prediction of gas volume fraction in fully-developed gas-liquid flow in a vertical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Islam, A.S.M.A.; Adoo, N.A.; Bergstrom, D.J., E-mail: nana.adoo@usask.ca [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); Wang, D.F. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    An Eulerian-Eulerian two-fluid model has been implemented for the prediction of the gas volume fraction profile in turbulent upward gas-liquid flow in a vertical pipe. The two-fluid transport equations are discretized using the finite volume method and a low Reynolds number κ-ε turbulence model is used to predict the turbulence field for the liquid phase. The contribution to the effective turbulence by the gas phase is modeled by a bubble induced turbulent viscosity. For the fully-developed flow being considered, the gas volume fraction profile is calculated using the radial momentum balance for the bubble phase. The model potentially includes the effect of bubble size on the interphase forces and turbulence model. The results obtained are in good agreement with experimental data from the literature. The one-dimensional formulation being developed allows for the efficient assessment and further development of both turbulence and two-fluid models for multiphase flow applications in the nuclear industry. (author)

  4. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  5. Probability model of solid to liquid-like transition of a fluid suspension after a shear flow onset

    Czech Academy of Sciences Publication Activity Database

    Nouar, C.; Říha, Pavel

    2008-01-01

    Roč. 34, č. 5 (2008), s. 477-483 ISSN 0301-9322 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : laminar suspension flow * liquid-liquid interface * probability model Subject RIV: BK - Fluid Dynamics Impact factor: 1.497, year: 2008

  6. Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field

    International Nuclear Information System (INIS)

    Molokov, S.

    1993-01-01

    Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab

  7. Parallel segmented outlet flow high performance liquid chromatography with multiplexed detection

    International Nuclear Information System (INIS)

    Camenzuli, Michelle; Terry, Jessica M.; Shalliker, R. Andrew; Conlan, Xavier A.; Barnett, Neil W.; Francis, Paul S.

    2013-01-01

    Graphical abstract: -- Highlights: •Multiplexed detection for liquid chromatography. •‘Parallel segmented outlet flow’ distributes inner and outer portions of the analyte zone. •Three detectors were used simultaneously for the determination of opiate alkaloids. -- Abstract: We describe a new approach to multiplex detection for HPLC, exploiting parallel segmented outlet flow – a new column technology that provides pressure-regulated control of eluate flow through multiple outlet channels, which minimises the additional dead volume associated with conventional post-column flow splitting. Using three detectors: one UV-absorbance and two chemiluminescence systems (tris(2,2′-bipyridine)ruthenium(III) and permanganate), we examine the relative responses for six opium poppy (Papaver somniferum) alkaloids under conventional and multiplexed conditions, where approximately 30% of the eluate was distributed to each detector and the remaining solution directed to a collection vessel. The parallel segmented outlet flow mode of operation offers advantages in terms of solvent consumption, waste generation, total analysis time and solute band volume when applying multiple detectors to HPLC, but the manner in which each detection system is influenced by changes in solute concentration and solution flow rates must be carefully considered

  8. Parallel segmented outlet flow high performance liquid chromatography with multiplexed detection

    Energy Technology Data Exchange (ETDEWEB)

    Camenzuli, Michelle [Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, NSW (Australia); Terry, Jessica M. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia); Shalliker, R. Andrew, E-mail: r.shalliker@uws.edu.au [Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, NSW (Australia); Conlan, Xavier A.; Barnett, Neil W. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia); Francis, Paul S., E-mail: paul.francis@deakin.edu.au [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia)

    2013-11-25

    Graphical abstract: -- Highlights: •Multiplexed detection for liquid chromatography. •‘Parallel segmented outlet flow’ distributes inner and outer portions of the analyte zone. •Three detectors were used simultaneously for the determination of opiate alkaloids. -- Abstract: We describe a new approach to multiplex detection for HPLC, exploiting parallel segmented outlet flow – a new column technology that provides pressure-regulated control of eluate flow through multiple outlet channels, which minimises the additional dead volume associated with conventional post-column flow splitting. Using three detectors: one UV-absorbance and two chemiluminescence systems (tris(2,2′-bipyridine)ruthenium(III) and permanganate), we examine the relative responses for six opium poppy (Papaver somniferum) alkaloids under conventional and multiplexed conditions, where approximately 30% of the eluate was distributed to each detector and the remaining solution directed to a collection vessel. The parallel segmented outlet flow mode of operation offers advantages in terms of solvent consumption, waste generation, total analysis time and solute band volume when applying multiple detectors to HPLC, but the manner in which each detection system is influenced by changes in solute concentration and solution flow rates must be carefully considered.

  9. Formative evaluation of a mobile liquid portion size estimation interface for people with varying literacy skills.

    Science.gov (United States)

    Chaudry, Beenish Moalla; Connelly, Kay; Siek, Katie A; Welch, Janet L

    2013-12-01

    Chronically ill people, especially those with low literacy skills, often have difficulty estimating portion sizes of liquids to help them stay within their recommended fluid limits. There is a plethora of mobile applications that can help people monitor their nutritional intake but unfortunately these applications require the user to have high literacy and numeracy skills for portion size recording. In this paper, we present two studies in which the low- and the high-fidelity versions of a portion size estimation interface, designed using the cognitive strategies adults employ for portion size estimation during diet recall studies, was evaluated by a chronically ill population with varying literacy skills. The low fidelity interface was evaluated by ten patients who were all able to accurately estimate portion sizes of various liquids with the interface. Eighteen participants did an in situ evaluation of the high-fidelity version incorporated in a diet and fluid monitoring mobile application for 6 weeks. Although the accuracy of the estimation cannot be confirmed in the second study but the participants who actively interacted with the interface showed better health outcomes by the end of the study. Based on these findings, we provide recommendations for designing the next iteration of an accurate and low literacy-accessible liquid portion size estimation mobile interface.

  10. Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries

    International Nuclear Information System (INIS)

    Voinov, O.V.

    2004-01-01

    The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru

  11. Contribution to the dynamical study of gas-liquid two-phase flows

    International Nuclear Information System (INIS)

    Lewi, Joseph.

    1975-01-01

    A single system of equations valid for two-phase flows at any time and anywhere was searched for. The mathematical theory of distributions was used. The results obtained was applied to the turbulent flow of an emulsion in a canal of constant section. It is shown that the use of distribution conservation equations makes it possible to determine the shapes of the mean velocity profiles, to obtain a relation between the friction coefficient and a Reynolds number introduced in a logical way, and to express the total pressure drop in the canal. Three experiments were carried out to compare the performance of various optical methods used for displaying bubble liquid-gas flows, and, within the limits of these methods, to study the interaction between the bubbles and the sensible end of variable impedance probe, and the granulometry of the emulsion in the vicinity of the probe [fr

  12. Microchannel-flowed-plasma modification of octadecyltrichlorosilane self-assembled-monolayers for liquid crystal alignment

    International Nuclear Information System (INIS)

    Zheng, W.; Chiang, C.-Y.; Underwood, I.

    2013-01-01

    We report that a chemical patterning technique based on local plasma modification of self-assembled monolayers has been utilized to fabricate surfaces for domain liquid crystal alignment. Highly hydrophobic octadecyltrichlorosilane monolayers deposited on glass substrates coated with Indium-Tin-Oxide were brought into contact with elastomeric stamps comprising trenches on a micro scale, and then exposed to an oxygen plasma. In the regions exposed to the plasma the monolayer was etched away leaving a patterned surface that exhibited surface energy differences between surface domains. The surfaces that bear the micropatterns have been shown to be capable of producing patterned alignment of nematic liquid crystal. - Highlights: • Chemical surface-patterning is used to fabricate liquid crystal alignment surface. • Highly hydrophobic octadecyltrichlorosilane monolayer is deposited on substrate. • O 2 plasma flow is used to etch the monolayer to form patterned surface. • The patterned surface exhibits surface energy differences between surface domains. • The surface borne the micropatterns is capable of domain liquid crystal alignment

  13. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  14. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  15. Storing of Extracts in Polypropylene Microcentrifuge Tubes Yields Contaminant Peak During Ultra-flow Liquid Chromatographic Analysis.

    Science.gov (United States)

    Kshirsagar, Parthraj R; Hegde, Harsha; Pai, Sandeep R

    2016-05-01

    This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at -4°C. Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis. The contaminant peak detected was prominent, sharp detectable at 9.176 ± 0.138 min on a Waters 250-4.6 mm, 4 μ, Nova-Pak C18 column with mobile phase consisting of methanol:water (70:30). It was evident from the study that long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peak. Further, this may mislead in future reporting an unnatural compound by researchers. Long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peakContamination peak with higher area under the curve (609993) was obtained in ultra-flow liquid chromatographic run for methanol stored in PP microcentrifuge tubesContamination peak was detected at retention time 9.113 min with a lambda max of 220.38 nm and 300 mAU intensity on the given chromatographic conditionsGlass vials serve better option over PP microcentrifuge tubes for storing biological samples. Abbreviations used: UFLC: Ultra Flow Liquid Chromatography; LC: Liquid Chromatography; MS: Mass spectrometry; AUC: Area Under Curve.

  16. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    Science.gov (United States)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  17. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  18. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    International Nuclear Information System (INIS)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-01-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  19. Flow induced crystallisation of penetrable particles

    Science.gov (United States)

    Scacchi, Alberto; Brader, Joseph M.

    2018-03-01

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  20. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.