Directory of Open Access Journals (Sweden)
Jianfeng Zhu
Full Text Available BACKGROUND: Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D and anteroposterior (A-P axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF emanating from the apical ectodermal ridge (AER. RESULTS: We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model's parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. CONCLUSIONS: The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early
Zhu, Jianfeng; Zhang, Yong-Tao; Alber, Mark S; Newman, Stuart A
2010-05-28
Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D) and anteroposterior (A-P) axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis) indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI) properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF) emanating from the apical ectodermal ridge (AER). We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model's parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early forms, with no requirement for an independent
Geometry and reproducibility in 360 degrees fundoplication.
Reardon, P R; Matthews, B D; Scarborough, T K; Preciado, A; Marti, J L; Kamelgard, J I
2000-08-01
In this study, we set out to precisely define two symmetrical points-a on the anterior fundic wall and b on the posterior fundic wall. These points, when advanced around a 60-Fr bougie-filled esophagus, will meet on the right side, to the right of the anterior vagus nerve, to create a reliable, reproducible, loose (i.e., or "floppy") 360 degrees fundoplication (FP). For the terms of this study, circumference = c; diameter = d; c/d = pi; pi = 3.14; and d(cm) = Fr/30. Using a flexible plastic ruler, we measured, in cadavers (n = 5) and intraoperatively (n = 16), esophageal c at the gastroesophageal junction (GEJ) with a 60-Fr bougie in place; d was calculated from c. The smallest measured value for c was 7.5 cm (d = 2.39 cm); the largest value for c was 10.0 cm (d = 3.18 cm). The mean value was 8.35 cm (d = 2.66 cm). Points a and b are established by measuring laterally from a point where the greater curve meets the GEJ in the bougie-filled esophagus. Point a is 6.0 cm laterally and 6.0 cm below the short gastric vessels on the anterior fundus; point b is 6.0 cm laterally in a symmetrical position on the posterior fundus. Connecting these three points as a line defines the inner c of the completed FP and measures 12.0 cm. This gives an internal d of 3.82 cm for the FP. This is >1 cm larger than d for the mean measured external esophageal c of 8.35 cm where d = 2.66 cm. This technique creates a correctly oriented, symmetrical, "floppy," true fundoplication. It avoids wrapping or twisting the fundus around the GEJ. The technique is easily taught and reproducible. Two points, measured a horizontal distance of 6.0 cm from the GEJ, symmetrically placed on the anterior (point a) and posterior (point b) fundus can be brought anterior (a) and posterior (b) to the esophagus and sutured to the right of the anterior vagus nerve to reliably and reproducibly create a "floppy" 360 degrees fundoplication.
Modelling Flow over Stepped Spillway with Varying Chute Geometry ...
African Journals Online (AJOL)
This study has modeled some characteristics of the flows over stepped spillway with varying chute geometry through a laboratory investigation. Using six physically built stepped spillway models, with each having six horizontal plain steps at 4cm constant height, 30 cm width and respective chute slope angles at 310, 320, ...
Effect of varying sample geometry on the failure properties of Zircaloy-4
Energy Technology Data Exchange (ETDEWEB)
Rawers, J.C.; Sizemore, J.
1987-01-01
In this study, the sample size of three-point bend samples was varied and the change in failure properties measured. Sample width, sample thickness and notch depth of a ductile material, Zircaloy-4, were varied while stress intensity, crack-open-displacement and failure energy were determined. In all tests the material showed elastic-plastic behavior. Statistical analysis was used to determine mathematical relationships between the sample geometry and the various failure parameters. It was then shown that the theoretical relationships between failure parameters needed modification for elastic-plastic failures.
Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A
2012-04-01
This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration. Copyright Â© 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan
2016-05-01
Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
Indian Academy of Sciences (India)
of geometry he completely changed our way of thinking. Later geometers were to spend entire lifetimes trying ... dimensions up to and including three it is difficult to think of dimensions beyond except abstractly -in one's .... form I. gij ai aj is positive for any collection of numbers. (aI, ... , an). Moreover, the given form can easily ...
Stope gully support and sidings geometry at all depths and at varying dip.
CSIR Research Space (South Africa)
Naidoo, K
2002-08-01
Full Text Available , provides a comprehensive review of gully practices industry-wide and derives a set of suitable guidelines for strike gully layouts. These examine the effects of both geometry and support at all depths in both gold and platinum mines, to reduce hazards... in the Witwatersrand gold mines. The review considers the recognition of factors that may contribute to poor gully ground conditions, past recommendations for gully layout and support, practices that mines have found successful, and areas where research work has...
DEFF Research Database (Denmark)
Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....
Jayasenthil, Adhikesavan; Solomon-Sathish, Emmanuel; Venkatalakshmi-Aparna, Potluri; Balagopal, Sunderasan
2016-01-01
Background The purpose of this study was to relate the fracture resistance of endodontically treated teeth in relation to post geometry. Material and Methods Forty single rooted mandibular premolars were instrumented by step - back technique and obturated by lateral condensation. Forty teeth were randomly divided into four groups: Reforpost glass fiber X-ray?, RelyX?, Exacto conical? and Parapost Fiber Lux?. The post spaces were prepared using respective drills and luted. The core build up wa...
DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations
Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.
2012-01-01
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745
Jayasenthil, Adhikesavan; Solomon-Sathish, Emmanuel; Venkatalakshmi-Aparna, Potluri; Balagopal, Sunderasan
2016-02-01
The purpose of this study was to relate the fracture resistance of endodontically treated teeth in relation to post geometry. Forty single rooted mandibular premolars were instrumented by step - back technique and obturated by lateral condensation. Forty teeth were randomly divided into four groups: Reforpost glass fiber X-ray®, RelyX®, Exacto conical® and Parapost Fiber Lux®. The post spaces were prepared using respective drills and luted. The core build up was done and metal crowns were luted. Fracture resistance was determined in universal testing machine. The statistical analysis was done using one way ANOVA and post hoc Tukey Kramer test. The teeth restored with Reforpost showed highest fracture resistance followed by Parapost and Exacto conical. The teeth restored with RelyX showed least fracture resistance. The teeth restored with Parapost had less unfavourable fracture followed by exacto conical. Parallel design had less number of catastrophic failure and had better fracture resistance. Fracture resistance, glass fiber post, post geometry, stress.
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein’s gravitational field equations exterior to astrophysically real or hypothetical time varying distribu- tions of mass or pressure within regions of spherical geometry. The single arbitrary function f in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein’s gravitational field equations tends out to be a gen- eralization of Newton’s gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration
Directory of Open Access Journals (Sweden)
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein's gravitational field equations exterior to astrophysically real or hypothetical time varying distributions of mass or pressure within regions of spherical geometry. The single arbitrary function $f$ in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein's gravitational field equations tends out to be a generalization of Newton's gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration.
Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)
2014-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.
Roy, Sannak Dutta; Ghosh, Manash; Chowdhury, Joydeep
2015-12-05
The SER(R)S spectra of Methylene Blue (MB) molecule adsorbed on gold nanocolloidal particles (AuNCs) have been investigated. The adsorptive parameters of the molecule adsorbed on AuNCs have been evaluated with the aid of Fluorescence Spectroscopy study. Fluorescence spectroscopic studies have been further applied to understand the concentration of probe molecule actually adsorbed on AuNC surfaces. Gigantic enhancements ∼10(6)-10(16) orders of magnitude have been recorded for the enhanced Raman bands in the SER(R)S spectra. Three-dimensional Finite Difference Time Domain (3D-FDTD) simulations studies have been carried out to predict the distributions of electric fields around the possible nanoaggregated hot geometries considered to be responsible for the huge enhancements of SER(R)S bands of the MB molecule. Copyright © 2015 Elsevier B.V. All rights reserved.
Watanabe, Toshihiro; Hagino, Kei; Sato, Toshiyuki
2014-08-01
Polymeric microneedles offer the advantages of being both mass-producible and inexpensive. However, their weakness lies in the fact that they are not adequate for sharp fabrication of a needle tip, which is an important factor for effective penetration. We hypothesized that effective penetration can be achieved using a high-velocity application system. Therefore, in the present study, we investigated the influence of various polymeric microneedle array geometries on skin permeability and irritation using such a system. Volar forearms of 16 healthy volunteers were treated using the microneedle system with four different parameters: applicator velocity (4.3, 6, and 8.5 m/s), tip radius (10, 15, and 20 μm), length (100, 200, and 300 μm), and number of needles (189 and 305 on a 50-mm(2) area). A higher velocity of piercing clearly enhanced skin permeability and damage. A larger tip radius resulted in lower skin permeability and irritation at an applicator velocity of 4.3 m/s but did not have an effect at 6 m/s. Skin permeability was positively variable, ranging from 100 to 200 μm of needle length, and needle number showed no influence in the range investigated. In conclusion, a faster application speed could significantly enhance skin permeability and damage and compensate for insufficient penetration of the larger tip radius and shorter needles, which are also important factors for effective insertion.
Directory of Open Access Journals (Sweden)
Olga Gziut
2015-05-01
Full Text Available Safety of Mg milling processes can be expressed by means of the form and the number of fractions of chips formed during milling. This paper presents the state of the art of magnesium alloys milling technology in the aspect of chip fragmentation. Furthermore, the impact of the depth of cut ap and the rake angle γ on the number of chip fractions was analysed in the study. These were conducted on AZ91HP magnesium cast alloy and milling was performed with carbide tools of varying rake angle values (γ = 5º and γ = 30º. It was observed that less intense chip fragmentation occurs with decreasing depth of cut ap. The number of chip fractions was lower at the tool rake angle of γ = 30º. The test results were formulated as technological recommendations according to the number of generated chip fractions.
Holme, Audun
1988-01-01
This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
Teaching of Geometry in Bulgaria
Bankov, Kiril
2013-01-01
Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…
Reproducibility of a reaming test
DEFF Research Database (Denmark)
Pilny, Lukas; Müller, Pavel; De Chiffre, Leonardo
2014-01-01
The reproducibility of a reaming test was analysed to document its applicability as a performance test for cutting fluids. Reaming tests were carried out on a drilling machine using HSS reamers. Workpiece material was an austenitic stainless steel, machined using 4.75 m•min−1 cutting speed and 0...... a built–up edge occurrence hindering a robust evaluation of cutting fluid performance, if the data evaluation is based on surface finish only. Measurements of hole geometry provide documentation to recognise systematic error distorting the performance test....
Reproducibility of a reaming test
DEFF Research Database (Denmark)
Pilny, Lukas; Müller, Pavel; De Chiffre, Leonardo
2012-01-01
The reproducibility of a reaming test was analysed to document its applicability as a performance test for cutting fluids. Reaming tests were carried out on a drilling machine using HSS reamers. Workpiece material was an austenitic stainless steel, machined using 4.75 m∙min-1 cutting speed and 0...... a built-up edge occurrence hindering a robust evaluation of cutting fluid performance, if the data evaluation is based on surface finish only. Measurements of hole geometry provide documentation to recognize systematic error distorting the performance test....
Energy Technology Data Exchange (ETDEWEB)
Robey, Robert W. [Los Alamos National Laboratory
2016-06-27
The purpose of this presentation is to consider issues of reproducibility, specifically it determines whether bitwise reproducible computation is possible, if computational research in DOE improves its publication process, and if reproducible results can be achieved apart from the peer review process?
Guggenheimer, Heinrich W
1977-01-01
This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
Roberts, Fred S.
The author cites work on visual perception which indicates that in order to study perception it is necessary to replace such classical geometrical notions as betweeness, straightness, perpendicularity, and parallelism with more general concepts. The term tolerance geometry is used for any geometry when primitive notions are obtained from the…
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Faulkner, T Ewan
2006-01-01
This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu
Graustein, William C
2006-01-01
This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry.Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Bénichou, O; Chevalier, C; Klafter, J; Meyer, B; Voituriez, R
2010-06-01
It has long been appreciated that the transport properties of molecules can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target-the first-passage time (FPT). Determining the FPT distribution in realistic confined geometries has until now, however, seemed intractable. Here, we calculate this FPT distribution analytically and show that transport processes as varied as regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, fall into the same universality classes. Beyond the theoretical aspect, this result changes our views on standard reaction kinetics and we introduce the concept of 'geometry-controlled kinetics'. More precisely, we argue that geometry-and in particular the initial distance between reactants in 'compact' systems-can become a key parameter. These findings could help explain the crucial role that the spatial organization of genes has in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
DEFF Research Database (Denmark)
2016-01-01
An example of how to use the magni.reproducibility package for storing metadata along with results from a computational experiment. The example is based on simulating the Mandelbrot set.......An example of how to use the magni.reproducibility package for storing metadata along with results from a computational experiment. The example is based on simulating the Mandelbrot set....
Saleem, Zain Hamid
In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Pottmann, Helmut; Eigensatz, Michael; Vaxman, A.; Wallner, Johannes
2015-01-01
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/08/0028-0033 ...
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
From a different perspective artists had all along pointed out that parallel lines do meet at the horizon (Figure 1). In fact all pairs of coplanar lines meet and parallel lines .... A more advanced treatment can be found in this book. D Hilbert and S Cohn-Vossen. Geometry and the Imagination. Chelsea, NY,. USA. 1952. A difficult ...
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
Directory of Open Access Journals (Sweden)
Leonardo Paris
2012-06-01
Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.
Reproducibility of surface roughness in reaming
DEFF Research Database (Denmark)
Müller, Pavel; De Chiffre, Leonardo
An investigation on the reproducibility of surface roughness in reaming was performed to document the applicability of this approach for testing cutting fluids. Austenitic stainless steel was used as a workpiece material and HSS reamers as cutting tools. Reproducibility of the results was evaluated...... of tool geometry and path. 2D and 3D reference measurements were done to ensure traceability of the measurement. Moreover, surface profiles were examined under the 3D optical microscope. Measuring uncertainty evaluation using statistical methods was applied. Surfaces produced with a low cutting speed were....... High reproducibility of different operators, especially when low cutting speed was applied, was achieved. From the surface profiles, an identification of individual feed marks from the tool is possible, tool replication being most clear from the 3D reference measurements....
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Nicolaidis, A.; Kiosses, V.
2012-09-01
It has been proposed that quantum mechanics and string theory share a common inner syntax, the relational logic of C. S. Peirce. Along this line of thought we consider the relations represented by spinors. Spinor composition leads to the emergence of Minkowski space-time. Inversely, the Minkowski space-time is istantiated by the Weyl spinors, while the merger of two Weyl spinors gives rise to a Dirac spinor. Our analysis is applied also to the string geometry. The string constraints are represented by real spinors, which create a parametrization of the string worldsheet identical to the Enneper-Weierstass representation of minimal surfaces. Further, a spinorial study of the AdS3 space-time reveals a Hopf fibration AdS3 → AdS2. The conformal symmetry inherent in AdS3 is pointed out. Our work indicates the hidden ties between logic-quantum mechanics-string theory-geometry and vindicates the Wheeler's proposal of pregeometry as a large network of logical propositions.
Nüst, Daniel; Konkol, Markus; Pebesma, Edzer; Kray, Christian; Klötgen, Stephanie; Schutzeichel, Marc; Lorenz, Jörg; Przibytzin, Holger; Kussmann, Dirk
2016-04-01
Open access is not only a form of publishing such that research papers become available to the large public free of charge, it also refers to a trend in science that the act of doing research becomes more open and transparent. When science transforms to open access we not only mean access to papers, research data being collected, or data being generated, but also access to the data used and the procedures carried out in the research paper. Increasingly, scientific results are generated by numerical manipulation of data that were already collected, and may involve simulation experiments that are completely carried out computationally. Reproducibility of research findings, the ability to repeat experimental procedures and confirm previously found results, is at the heart of the scientific method (Pebesma, Nüst and Bivand, 2012). As opposed to the collection of experimental data in labs or nature, computational experiments lend themselves very well for reproduction. Some of the reasons why scientists do not publish data and computational procedures that allow reproduction will be hard to change, e.g. privacy concerns in the data, fear for embarrassment or of losing a competitive advantage. Others reasons however involve technical aspects, and include the lack of standard procedures to publish such information and the lack of benefits after publishing them. We aim to resolve these two technical aspects. We propose a system that supports the evolution of scientific publications from static papers into dynamic, executable research documents. The DFG-funded experimental project Opening Reproducible Research (ORR) aims for the main aspects of open access, by improving the exchange of, by facilitating productive access to, and by simplifying reuse of research results that are published over the Internet. Central to the project is a new form for creating and providing research results, the executable research compendium (ERC), which not only enables third parties to
Mace, Ruth
2008-02-08
Reproducing in cities has always been costly, leading to lower fertility (that is, lower birth rates) in urban than in rural areas. Historically, although cities provided job opportunities, initially residents incurred the penalty of higher infant mortality, but as mortality rates fell at the end of the 19th century, European birth rates began to plummet. Fertility decline in Africa only started recently and has been dramatic in some cities. Here it is argued that both historical and evolutionary demographers are interpreting fertility declines across the globe in terms of the relative costs of child rearing, which increase to allow children to outcompete their peers. Now largely free from the fear of early death, postindustrial societies may create an environment that generates runaway parental investment, which will continue to drive fertility ever lower.
Assessing the reproducibility of discriminant function analyses
Directory of Open Access Journals (Sweden)
Rose L. Andrew
2015-08-01
Full Text Available Data are the foundation of empirical research, yet all too often the datasets underlying published papers are unavailable, incorrect, or poorly curated. This is a serious issue, because future researchers are then unable to validate published results or reuse data to explore new ideas and hypotheses. Even if data files are securely stored and accessible, they must also be accompanied by accurate labels and identifiers. To assess how often problems with metadata or data curation affect the reproducibility of published results, we attempted to reproduce Discriminant Function Analyses (DFAs from the field of organismal biology. DFA is a commonly used statistical analysis that has changed little since its inception almost eight decades ago, and therefore provides an opportunity to test reproducibility among datasets of varying ages. Out of 100 papers we initially surveyed, fourteen were excluded because they did not present the common types of quantitative result from their DFA or gave insufficient details of their DFA. Of the remaining 86 datasets, there were 15 cases for which we were unable to confidently relate the dataset we received to the one used in the published analysis. The reasons ranged from incomprehensible or absent variable labels, the DFA being performed on an unspecified subset of the data, or the dataset we received being incomplete. We focused on reproducing three common summary statistics from DFAs: the percent variance explained, the percentage correctly assigned and the largest discriminant function coefficient. The reproducibility of the first two was fairly high (20 of 26, and 44 of 60 datasets, respectively, whereas our success rate with the discriminant function coefficients was lower (15 of 26 datasets. When considering all three summary statistics, we were able to completely reproduce 46 (65% of 71 datasets. While our results show that a majority of studies are reproducible, they highlight the fact that many studies
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
Reproducing Kernels and Variable Bandwidth
Directory of Open Access Journals (Sweden)
R. Aceska
2012-01-01
Full Text Available We show that a modulation space of type ( is a reproducing kernel Hilbert space (RKHS. In particular, we explore the special cases of variable bandwidth spaces Aceska and Feichtinger (2011 with a suitably chosen weight to provide strong enough decay in the frequency direction. The reproducing kernel property is valid even if ( does not coincide with any of the classical Sobolev spaces because unbounded bandwidth (globally is allowed. The reproducing kernel will be described explicitly.
Reproducibility in a multiprocessor system
Energy Technology Data Exchange (ETDEWEB)
Bellofatto, Ralph A; Chen, Dong; Coteus, Paul W; Eisley, Noel A; Gara, Alan; Gooding, Thomas M; Haring, Rudolf A; Heidelberger, Philip; Kopcsay, Gerard V; Liebsch, Thomas A; Ohmacht, Martin; Reed, Don D; Senger, Robert M; Steinmacher-Burow, Burkhard; Sugawara, Yutaka
2013-11-26
Fixing a problem is usually greatly aided if the problem is reproducible. To ensure reproducibility of a multiprocessor system, the following aspects are proposed; a deterministic system start state, a single system clock, phase alignment of clocks in the system, system-wide synchronization events, reproducible execution of system components, deterministic chip interfaces, zero-impact communication with the system, precise stop of the system and a scan of the system state.
Notes on noncommutative geometry
Nikolaev, Igor
2015-01-01
The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. A brief survey of main parts of noncommutative geometry with historical remarks, bibliography and a list of exercises is attached. Our notes are intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts in the field.
modelling flow over stepped spillway with varying chute geometry
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... stepped Spillway, chute Slope, energy dissipated, hydraulic models. 1. Introduction. Stepped spillways (cascades) are commonly used for river training, debris dam structures, storm water sys- tems and aeration cascades [1]. Stepped cascade flows are characterized by the strong kinetic energy of flow.
Finite Geometries: a tool for better understanding of Euclidean Geometry
Directory of Open Access Journals (Sweden)
Antonio Maturo
2014-06-01
Full Text Available An effective tool to really understand Euclidean geometry is the study of alternative models and their applications. In fact, they allow you to understand the real extent of various axioms that, when viewed from the Euclidean geometry, seem obvious or even unnecessary. The work begins with a review of Hilbert's axiomatic, starting from more general point of view adopted by Albrecht Beutelspacher and Ute Rosenbaum in their book on the fundamentals of general projective geometry (1998, defined by a system of incidence axioms. Le Geometrie Finite: uno strumento per una migliore comprensione della Geometria Euclidea Uno strumento efficace per comprendere realmente la geometria euclidea è lo studio di modelli alternativi e delle loro applicazioni. Infatti essi permettono di capire la reale portata di vari assiomi che visti dall’interno della geometria euclidea sembrerebbero scontati o addirittura inutili. Il lavoro parte da una rivisitazione dell’assiomatica di Hilbert a partire dal punto di vista più generale adottato da Albrecht Beutelspacher e Ute Rosenbaum nel loro libro del 1998 sui fondamenti della geometria proiettiva generale, definita attraverso un sistema di assiomi di incidenza. Parole Chiave: Critica dei fondamenti; Geometrie finite; Assiomi di Hilbert; Applicazioni.
Reproducibility of scoring emphysema by HRCT
Energy Technology Data Exchange (ETDEWEB)
Malinen, A.; Partanen, K.; Rytkoenen, H.; Vanninen, R. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Radiology; Erkinjuntti-Pekkanen, R. [Kuopio Univ. Hospital (Finland). Dept. of Pulmonary Diseases
2002-04-01
Purpose: We evaluated the reproducibility of three visual scoring methods of emphysema and compared these methods with pulmonary function tests (VC, DLCO, FEV1 and FEV%) among farmer's lung patients and farmers. Material and Methods: Three radiologists examined high-resolution CT images of farmer's lung patients and their matched controls (n=70) for chronic interstitial lung diseases. Intraobserver reproducibility and interobserver variability were assessed for three methods: severity, Sanders' (extent) and Sakai. Pulmonary function tests as spirometry and diffusing capacity were measured. Results: Intraobserver -values for all three methods were good (0.51-0.74). Interobserver varied from 0.35 to 0.72. The Sanders' and the severity methods correlated strongly with pulmonary function tests, especially DLCO and FEV1. Conclusion: The Sanders' method proved to be reliable in evaluating emphysema, in terms of good consistency of interpretation and good correlation with pulmonary function tests.
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Open Science and Research Reproducibility.
Munafò, Marcus
2016-01-01
Many scientists, journals and funders are concerned about the low reproducibility of many scientific findings. One approach that may serve to improve the reliability and robustness of research is open science. Here I argue that the process of pre-registering study protocols, sharing study materials and data, and posting preprints of manuscripts may serve to improve quality control procedures at every stage of the research pipeline, and in turn improve the reproducibility of published work.
Extracting Entanglement Geometry from Quantum States
Hyatt, Katharine; Garrison, James R.; Bauer, Bela
2017-10-01
Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network—and hence the geometry—is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Contextual sensitivity in scientific reproducibility
Van Bavel, Jay J.; Mende-Siedlecki, Peter; Brady, William J.; Reinero, Diego A.
2016-01-01
In recent years, scientists have paid increasing attention to reproducibility. For example, the Reproducibility Project, a large-scale replication attempt of 100 studies published in top psychology journals found that only 39% could be unambiguously reproduced. There is a growing consensus among scientists that the lack of reproducibility in psychology and other fields stems from various methodological factors, including low statistical power, researcher’s degrees of freedom, and an emphasis on publishing surprising positive results. However, there is a contentious debate about the extent to which failures to reproduce certain results might also reflect contextual differences (often termed “hidden moderators”) between the original research and the replication attempt. Although psychologists have found extensive evidence that contextual factors alter behavior, some have argued that context is unlikely to influence the results of direct replications precisely because these studies use the same methods as those used in the original research. To help resolve this debate, we recoded the 100 original studies from the Reproducibility Project on the extent to which the research topic of each study was contextually sensitive. Results suggested that the contextual sensitivity of the research topic was associated with replication success, even after statistically adjusting for several methodological characteristics (e.g., statistical power, effect size). The association between contextual sensitivity and replication success did not differ across psychological subdisciplines. These results suggest that researchers, replicators, and consumers should be mindful of contextual factors that might influence a psychological process. We offer several guidelines for dealing with contextual sensitivity in reproducibility. PMID:27217556
Enhancing reproducibility: Failures from Reproducibility Initiatives underline core challenges.
Mullane, Kevin; Williams, Michael
2017-08-15
Efforts to address reproducibility concerns in biomedical research include: initiatives to improve journal publication standards and peer review; increased attention to publishing methodological details that enable experiments to be reconstructed; guidelines on standards for study design, implementation, analysis and execution; meta-analyses of multiple studies within a field to synthesize a common conclusion and; the formation of consortia to adopt uniform protocols and internally reproduce data. Another approach to addressing reproducibility are Reproducibility Initiatives (RIs), well-intended, high-profile, systematically peer-vetted initiatives that are intended to replace the traditional process of scientific self-correction. Outcomes from the RIs reported to date have questioned the usefulness of this approach, particularly when the RI outcome differs from other independent self-correction studies that have reproduced the original finding. As a failed RI attempt is a single outcome distinct from the original study, it cannot provide any definitive conclusions necessitating additional studies that the RI approach has neither the ability nor intent of conducting making it a questionable replacement for self-correction. A failed RI attempt also has the potential to damage the reputation of the author of the original finding. Reproduction is frequently confused with replication, an issue that is more than semantic with the former denoting "similarity" and the latter an "exact copy" - an impossible outcome in research because of known and unknown technical, environmental and motivational differences between the original and reproduction studies. To date, the RI framework has negatively impacted efforts to improve reproducibility, confounding attempts to determine whether a research finding is real. Copyright © 2017 Elsevier Inc. All rights reserved.
Affine and Projective Geometry
Bennett, M K
1995-01-01
An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory
Introduction to projective geometry
Wylie, C R
2008-01-01
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Reproducible Bioinformatics Research for Biologists
This book chapter describes the current Big Data problem in Bioinformatics and the resulting issues with performing reproducible computational research. The core of the chapter provides guidelines and summaries of current tools/techniques that a noncomputational researcher would need to learn to pe...
[Reproducibility of subjective refraction measurement].
Grein, H-J; Schmidt, O; Ritsche, A
2014-11-01
Reproducibility of subjective refraction measurement is limited by various factors. The main factors affecting reproducibility include the characteristics of the measurement method and of the subject and the examiner. This article presents the results of a study on this topic, focusing on the reproducibility of subjective refraction measurement in healthy eyes. The results of previous studies are not all presented in the same way by the respective authors and cannot be fully standardized without consulting the original scientific data. To the extent that they are comparable, the results of our study largely correspond largely with those of previous investigations: During repeated subjective refraction measurement, 95% of the deviation from the mean value was approximately ±0.2 D to ±0.65 D for the spherical equivalent and cylindrical power. The reproducibility of subjective refraction measurement in healthy eyes is limited, even under ideal conditions. Correct assessment of refraction results is only feasible after identifying individual variability. Several measurements are required. Refraction cannot be measured without a tolerance range. The English full-text version of this article is available at SpringerLink (under supplemental).
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Fractal geometry and computer graphics
Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele
1992-01-01
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...
Smith, James T
2000-01-01
A practical, accessible introduction to advanced geometry Exceptionally well-written and filled with historical and bibliographic notes, Methods of Geometry presents a practical and proof-oriented approach. The author develops a wide range of subject areas at an intermediate level and explains how theories that underlie many fields of advanced mathematics ultimately lead to applications in science and engineering. Foundations, basic Euclidean geometry, and transformations are discussed in detail and applied to study advanced plane geometry, polyhedra, isometries, similarities, and symmetry. An
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Euclidean geometry and transformations
Dodge, Clayton W
1972-01-01
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Geometry of curves and surfaces with Maple
Rovenski, Vladimir
2000-01-01
This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...
Towards Reproducibility in Computational Hydrology
Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit
2017-04-01
Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (http://www.switch-on-vwsl.eu/participate/), which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as
Geometry Professionalized for Teachers.
Christofferson, Halbert Carl
Written in 1933, this book grew out of the author's concern that college matehmatics sequences of the day, although appropriate in algebra preparation, did not adequately prepare teachers of geometry. This book describes a course intended to remedy this by providing for both a comprehensive study of geometry as an axiomatically defined structure…
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Lyublinskaya, Irina; Funsch, Dan
2012-01-01
Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Supersymmetric Sigma Model Geometry
Directory of Open Access Journals (Sweden)
Ulf Lindström
2012-08-01
Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Extracting Entanglement Geometry from Quantum States.
Hyatt, Katharine; Garrison, James R; Bauer, Bela
2017-10-06
Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network-and hence the geometry-is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.
Geometry without topology as a new conception of geometry
Directory of Open Access Journals (Sweden)
Yuri A. Rylov
2002-01-01
geometry. In T-geometry, any space region is isometrically embeddable in the space, whereas in Riemannian geometry only convex region is isometrically embeddable. T-geometric conception appears to be more consistent logically, than the Riemannian one.
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Melzak, Z A
2008-01-01
Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. 1983 edition.
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Geometry of differential equations
Khovanskiĭ, A; Vassiliev, V
1998-01-01
This volume contains articles written by V. I. Arnold's colleagues on the occasion of his 60th birthday. The articles are mostly devoted to various aspects of geometry of differential equations and relations to global analysis and Hamiltonian mechanics.
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Elementary differential geometry
Pressley, Andrew
2001-01-01
Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...
Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio
2013-01-01
We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
McAteer, R. T. J.
2013-06-01
When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.
Evaluation of multichannel reproduced sound
DEFF Research Database (Denmark)
Choisel, Sylvain; Wickelmaier, Florian Maria
2007-01-01
A study was conducted with the goal of quantifying auditory attributes which underlie listener preference for multichannel reproduced sound. Short musical excerpts were presented in mono, stereo and several multichannel formats to a panel of forty selected listeners. Scaling of auditory attributes......, as well as overall preference, was based on consistency tests of binary paired-comparison judgments and on modeling the choice frequencies using probabilistic choice models. As a result, the preferences of non-expert listeners could be measured reliably at a ratio scale level. Principal components derived...... from the quantified attributes predict overall preference well. The findings allow for some generalizations within musical program genres regarding the perception of and preference for certain spatial reproduction modes, but for limited generalizations across selections from different musical genres....
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
Students Discovering Spherical Geometry Using Dynamic Geometry Software
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
Cecil, Thomas E
2015-01-01
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Optimization of Overtopping Wave Energy Converters by Geometry Control
DEFF Research Database (Denmark)
Victor, L.; Troch, P.; Kofoed, Jens Peter
2011-01-01
In this paper, the results of a study on the effects of geometry control on the performance of overtopping wave energy converters with a simple geometry built in coastal structures (simple OWECs) are presented. Empirical formulae, derived based on experimental tests on simple OWECs with varying...
Díaz, Oliver; García, Eloy; Oliver, Arnau; Martí, Joan; Martí, Robert
2017-03-01
Scattered radiation is an undesired signal largely present in most digital breast tomosynthesis (DBT) projection images as no physically rejection methods, i.e. anti-scatter grids, are regularly employed, in contrast to full- field digital mammography. This scatter signal might reduce the visibility of small objects in the image, and potentially affect the detection of small breast lesions. Thus accurate scatter models are needed to minimise the scattered radiation signal via post-processing algorithms. All prior work on scattered radiation estimation has assumed a rigid breast compression paddle (RP) and reported large contribution of scatter signal from RP in the detector. However, in this work, flexible paddles (FPs) tilting from 0° to 10° will be studied using Monte Carlo simulations to analyse if the scatter distribution differs from RP geometries. After reproducing the Hologic Selenia Dimensions geometry (narrow angle) with two (homogeneous and heterogeneous) compressed breast phantoms, results illustrate that the scatter distribution recorded at the detector varies up to 22% between RP and FP geometries (depending on the location), mainly due to the decrease in thickness of the breast observed for FP. However, the relative contribution from the paddle itself (3-12% of the total scatter) remains approximately unchanged for both setups and their magnitude depends on the distance to the breast edge.
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Eisenhart, L P
1927-01-01
The use of the differential geometry of a Riemannian space in the mathematical formulation of physical theories led to important developments in the geometry of such spaces. The concept of parallelism of vectors, as introduced by Levi-Civita, gave rise to a theory of the affine properties of a Riemannian space. Covariant differentiation, as developed by Christoffel and Ricci, is a fundamental process in this theory. Various writers, notably Eddington, Einstein and Weyl, in their efforts to formulate a combined theory of gravitation and electromagnetism, proposed a simultaneous generalization o
Graumann, Günter; Blum, Werner
1989-01-01
My conception of "practice-oriented-mathematical-education", which must be seen as one point of view side-by-side with others, has the aim to qualify pupils to master life and is based on a method of working on problems which are true to life. Therefore I plead for geometry teaching, where the formation of sound geometric concepts and the relevance of applications of geometry in everyday life is important. After discussing this conception a schedule of activities of everyday life where geomet...
Bishop, Richard L
2001-01-01
First published in 1964, this book served as a text on differential geometry to several generations of graduate students all over the world. The first half of the book (Chapters 1-6) presents basics of the theory of manifolds, vector bundles, differential forms, and Lie groups, with a special emphasis on the theory of linear and affine connections. The second half of the book (Chapters 7-11) is devoted to Riemannian geometry. Following the definition and main properties of Riemannian manifolds, the authors discuss the theory of geodesics, complete Riemannian manifolds, and curvature. Next, the
Hue geometry and horizontal connections.
Ben-Shahar, Ohad; Zucker, Steven W
2004-01-01
Primate visual systems support an elaborate specialization for processing color information. Concentrating on the hue component, we observe that, contrary to Mondrian-like assumptions, hue varies in a smooth manner for ecologically important natural imagery. To represent these smooth variations, and to support those information processing tasks that utilize hue, a piecewise smooth hue field is postulated. The geometry of hue-patch interactions is developed analogously to orientation-patch interactions in texture. The result is a model for long-range (horizontal) interactions in the color domain, the power of which is demonstrated on a number of examples. Implications for computer image processing, computer vision, visual neurophysiology and psychophysics are discussed.
DEFF Research Database (Denmark)
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Foundations of Basic Geometry. Jasbir S Chahal. General Article Volume 11 Issue 7 July 2006 pp 30-41. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/011/07/0030-0041. Keywords. Area ...
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
Diophantine geometry an introduction
Hindry, Marc
2000-01-01
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Towards relativistic quantum geometry
Directory of Open Access Journals (Sweden)
Luis Santiago Ridao
2015-12-01
Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Indian Academy of Sciences (India)
IAS Admin
face area and perimeter of various shapes like sphere, cone, cylinder and circle. But an equally important geo- metric object `torus' { a shape like a scooter tube or a doughnut { is not discussed in school geometry. This is perhaps due to the non availability of this shape at the time when Archimedes (287 BC{212 BC) was ...
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
Atiyah, M.; Dijkgraaf, R.; Hitchin, N.
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology.
Indian Academy of Sciences (India)
revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
Proyeksi Geometri Fuzzy pada Ruang
Directory of Open Access Journals (Sweden)
Muhammad Izzat Ubaidillah
2012-11-01
Full Text Available Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer discussion, which includes about coordinates of projection results, the mutual relation of each element and the thickness of each element. This research was conducted to describe and analyzing procedure fuzzy projective geometries on the plane and explain the differences between crisp projective geometries and fuzzy projective geometries on plane.
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Chang, Ji-ho
2015-01-01
Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...
Reproducibility of LCA models of crude oil production.
Vafi, Kourosh; Brandt, Adam R
2014-11-04
Scientific models are ideally reproducible, with results that converge despite varying methods. In practice, divergence between models often remains due to varied assumptions, incompleteness, or simply because of avoidable flaws. We examine LCA greenhouse gas (GHG) emissions models to test the reproducibility of their estimates for well-to-refinery inlet gate (WTR) GHG emissions. We use the Oil Production Greenhouse gas Emissions Estimator (OPGEE), an open source engineering-based life cycle assessment (LCA) model, as the reference model for this analysis. We study seven previous studies based on six models. We examine the reproducibility of prior results by successive experiments that align model assumptions and boundaries. The root-mean-square error (RMSE) between results varies between ∼1 and 8 g CO2 eq/MJ LHV when model inputs are not aligned. After model alignment, RMSE generally decreases only slightly. The proprietary nature of some of the models hinders explanations for divergence between the results. Because verification of the results of LCA GHG emissions is often not possible by direct measurement, we recommend the development of open source models for use in energy policy. Such practice will lead to iterative scientific review, improvement of models, and more reliable understanding of emissions.
Theory of reproducing kernels and applications
Saitoh, Saburou
2016-01-01
This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapt...
Dosimetric Algorithm to Reproduce Isodose Curves Obtained from a LINAC
Directory of Open Access Journals (Sweden)
Julio Cesar Estrada Espinosa
2014-01-01
Full Text Available In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel’s size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel’s size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo.
Dosimetric algorithm to reproduce isodose curves obtained from a LINAC.
Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian
2014-01-01
In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Caravelli, Francesco
2011-01-01
Quantum Graphity is an approach to quantum gravity based on a background independent formulation of condensed matter systems on graphs. We summarize recent results obtained on the notion of emergent geometry from the point of view of a particle hopping on the graph. We discuss the role of connectivity in emergent Lorentzian perturbations in a curved background and the Bose--Hubbard (BH) model defined on graphs with particular symmetries.
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
Emergent geometry, emergent forces
Selesnick, S. A.
2017-10-01
We give a brief account of some aspects of Finkelstein’s quantum relativity, namely an extension of it that derives elements of macroscopic geometry and the Lagrangians of the standard model including gravity from a presumed quantum version of spacetime. These emerge as collective effects in this quantal substrate. Our treatment, which is largely self-contained, differs mathematically from that originally given by Finkelstein. Dedicated to the memory of David Ritz Finkelstein
Integral geometry and valuations
Solanes, Gil
2014-01-01
Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...
Emergent complex network geometry.
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-05-18
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.
Slowly Varying Dilaton Cosmologies and Their Field Theory Duals
Energy Technology Data Exchange (ETDEWEB)
Awad, Adel; /British U. in Egypt /Ain Shams U., Cairo; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; /Kentucky U.; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC
2011-06-28
We consider a deformation of the AdS{sub 5} x S{sup 5} solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the AdS scale thereby introducing a small parameter {epsilon}. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the sugra solution to first non-trivial order in {epsilon}, and find that it is smooth, horizon free, and asymptotically AdS{sub 5} x S{sup 5} in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analysed in the dual SU(N) gauge theory on S{sup 3} with a time dependent coupling constant which varies slowly. When N{epsilon} << 1, we find that a quantum adiabatic approximation is applicable, and use it to argue that at late times the geometry becomes smooth AdS{sub 5} x S{sup 5} again. When N{epsilon} >> 1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the tHooft coupling this reproduces the supergravity results. For small 'tHooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS5 space with the possible presence of a small black hole.
Reproducibility principles, problems, practices, and prospects
Maasen, Sabine
2016-01-01
Featuring peer-reviewed contributions from noted experts in their fields of research, Reproducibility: Principles, Problems, Practices, and Prospects presents state-of-the-art approaches to reproducibility, the gold standard sound science, from multi- and interdisciplinary perspectives. Including comprehensive coverage for implementing and reflecting the norm of reproducibility in various pertinent fields of research, the book focuses on how the reproducibility of results is applied, how it may be limited, and how such limitations can be understood or even controlled in the natural sciences, computational sciences, life sciences, social sciences, and studies of science and technology. The book presents many chapters devoted to a variety of methods and techniques, as well as their epistemic and ontological underpinnings, which have been developed to safeguard reproducible research and curtail deficits and failures. The book also investigates the political, historical, and social practices that underlie repro...
Editors, LearningExpress
2010-01-01
Whether you're new to geometry or just looking for a refresher, this completely revised and updated third edition of Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day is an invaluable resource for both students and adults.
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Akopyan, A V
2007-01-01
The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Gruber, Peter M
1987-01-01
This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit
Dooner, David B
2012-01-01
Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
2015-01-01
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent
Haran, Shai
2015-01-01
We shall describe a simple generalization of commutative rings. The category GR of such "rings", contains the ordinary commutative rings (fully faithfully), but also the "integers" and "residue field" at a real or complex place of a field ; the "field with one element" (the initial object of GR ); the "arithmetical surface" ( the sum in the category GR of the integers with them self: Z(x)Z ) . We shall show that this geometry "see" the real and complex places of a number field (there is an Os...
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
Energy Technology Data Exchange (ETDEWEB)
Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oro, David Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griego, Jeffrey Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turchi, Peter John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reinovsky, Robert Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Joseph Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheng, Baolian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freeman, Matthew Stouten [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patten, Austin Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-04-14
There is a great interest in RMI as source of ejecta from metal shells. Previous experiments have explored wavelength amplitude (kA) variation but they have a small range of drive pressures and are in planer geometry. Simulations, both MD and hydro, have explored RMI in planer geometry. The ejecta source model from RMI is an area of active algorithm and code development in ASCI-IC Lagrangian Applications Project. PHELIX offers precise, reproducible variable driver for Hydro and material physics diagnoses with proton radiography.
The Economics of Reproducibility in Preclinical Research.
Directory of Open Access Journals (Sweden)
Leonard P Freedman
2015-06-01
Full Text Available Low reproducibility rates within life science research undermine cumulative knowledge production and contribute to both delays and costs of therapeutic drug development. An analysis of past studies indicates that the cumulative (total prevalence of irreproducible preclinical research exceeds 50%, resulting in approximately US$28,000,000,000 (US$28B/year spent on preclinical research that is not reproducible-in the United States alone. We outline a framework for solutions and a plan for long-term improvements in reproducibility rates that will help to accelerate the discovery of life-saving therapies and cures.
Learning Reproducibility with a Yearly Networking Contest
Canini, Marco
2017-08-10
Better reproducibility of networking research results is currently a major goal that the academic community is striving towards. This position paper makes the case that improving the extent and pervasiveness of reproducible research can be greatly fostered by organizing a yearly international contest. We argue that holding a contest undertaken by a plurality of students will have benefits that are two-fold. First, it will promote hands-on learning of skills that are helpful in producing artifacts at the replicable-research level. Second, it will advance the best practices regarding environments, testbeds, and tools that will aid the tasks of reproducibility evaluation committees by and large.
Thou Shalt Be Reproducible! A Technology Perspective
Directory of Open Access Journals (Sweden)
Patrick Mair
2016-07-01
Full Text Available This article elaborates on reproducibility in psychology from a technological viewpoint. Modernopen source computational environments are shown and explained that foster reproducibilitythroughout the whole research life cycle, and to which emerging psychology researchers shouldbe sensitized, are shown and explained. First, data archiving platforms that make datasets publiclyavailable are presented. Second, R is advocated as the data-analytic lingua franca in psychologyfor achieving reproducible statistical analysis. Third, dynamic report generation environments forwriting reproducible manuscripts that integrate text, data analysis, and statistical outputs such asfigures and tables in a single document are described. Supplementary materials are provided inorder to get the reader started with these technologies.
Transparent, reproducible and reusable research in pharmacoepidemiology
Gardarsdottir, Helga; Sauer, Brian C.; Liang, Huifang; Ryan, Patrick; Klungel, Olaf; Reynolds, Robert
2012-01-01
Background: Epidemiological research has been criticized as being unreliable. Scientific evidence is strengthened when the study procedures of important findings are transparent, open for review, and easily reproduced by different investigators and in various settings. Studies often have common
Archiving Reproducible Research with R and Dataverse
DEFF Research Database (Denmark)
Leeper, Thomas
2014-01-01
Reproducible research and data archiving are increasingly important issues in research involving statistical analyses of quantitative data. This article introduces the dvn package, which allows R users to publicly archive datasets, analysis files, codebooks, and associated metadata in Dataverse...
Reproducible research in vadose zone sciences
A significant portion of present-day soil and Earth science research is computational, involving complex data analysis pipelines, advanced mathematical and statistical models, and sophisticated computer codes. Opportunities for scientific progress are greatly diminished if reproducing and building o...
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust parame...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners.......The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...
Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam
2016-05-01
We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.
Reproducible Research, Uncertainty Quantification, and Verification & Validation
Barba, Lorena A.
2014-01-01
Slides used with my presentation in the SIAM Uncertainty Quantification Conference 2014, Minisymposium on "The Reliability of Computational Research Findings: Reproducible Research, Uncertainty Quantification, and Verification & Validation." The talk used an audience response system to collect True/False or Yes/No opinions on 13 statements/questions: 1) Computer simulations create scientific knowledge. 2) Simulation is a method 3) A reproducible simulation does not need to be acc...
Optimal seeding of self-reproducing systems.
Menezes, Amor A; Kabamba, Pierre T
2012-01-01
This article is motivated by the need to minimize the number of elements required to establish a self-reproducing system. One such system is a self-reproducing extraterrestrial robotic colony, which reduces the launch payload mass for space exploration compared to current mission configurations. In this work, self-reproduction is achieved by the actions of a robot on available resources. An important consideration for the establishment of any self-reproducing system is the identification of a seed, for instance, a set of resources and a set of robots that utilize them to produce all of the robots in the colony. This article outlines a novel algorithm to determine an optimal seed for self-reproducing systems, with application to a self-reproducing extraterrestrial robotic colony. Optimality is understood as the minimization of a cost function of the resources and, in this article, the robots. Since artificial self-reproduction is currently an open problem, the algorithm is illustrated with a simple robotic self-replicating system from the literature and with a more complicated self-reproducing example from nature.
Reproducibility of airway luminal size in asthma measured by HRCT.
Brown, Robert H; Henderson, Robert J; Sugar, Elizabeth A; Holbrook, Janet T; Wise, Robert A
2017-10-01
Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA, on behalf of the American Lung Association Airways Clinical Research Centers. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol 123: 876-883, 2017. First published July 13, 2017; doi:10.1152/japplphysiol.00307.2017.-High-resolution CT (HRCT) is a well-established imaging technology used to measure lung and airway morphology in vivo. However, there is a surprising lack of studies examining HRCT reproducibility. The CPAP Trial was a multicenter, randomized, three-parallel-arm, sham-controlled 12-wk clinical trial to assess the use of a nocturnal continuous positive airway pressure (CPAP) device on airway reactivity to methacholine. The lack of a treatment effect of CPAP on clinical or HRCT measures provided an opportunity for the current analysis. We assessed the reproducibility of HRCT imaging over 12 wk. Intraclass correlation coefficients (ICCs) were calculated for individual airway segments, individual lung lobes, both lungs, and air trapping. The ICC [95% confidence interval (CI)] for airway luminal size at total lung capacity ranged from 0.95 (0.91, 0.97) to 0.47 (0.27, 0.69). The ICC (95% CI) for airway luminal size at functional residual capacity ranged from 0.91 (0.85, 0.95) to 0.32 (0.11, 0.65). The ICC measurements for airway distensibility index and wall thickness were lower, ranging from poor (0.08) to moderate (0.63) agreement. The ICC for air trapping at functional residual capacity was 0.89 (0.81, 0.94) and varied only modestly by lobe from 0.76 (0.61, 0.87) to 0.95 (0.92, 0.97). In stable well-controlled asthmatic subjects, it is possible to reproducibly image unstimulated airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.NEW & NOTEWORTHY There is a surprising lack of
Faster, More Reproducible DESI-MS for Biological Tissue Imaging
Tillner, Jocelyn; Wu, Vincen; Jones, Emrys A.; Pringle, Steven D.; Karancsi, Tamas; Dannhorn, Andreas; Veselkov, Kirill; McKenzie, James S.; Takats, Zoltan
2017-10-01
A new, more robust sprayer for desorption electrospray ionization (DESI) mass spectrometry imaging is presented. The main source of variability in DESI is thought to be the uncontrolled variability of various geometric parameters of the sprayer, primarily the position of the solvent capillary, or more specifically, its positioning within the gas capillary or nozzle. If the solvent capillary is off-center, the sprayer becomes asymmetrical, making the geometry difficult to control and compromising reproducibility. If the stiffness, tip quality, and positioning of the capillary are improved, sprayer reproducibility can be improved by an order of magnitude. The quality of the improved sprayer and its potential for high spatial resolution imaging are demonstrated on human colorectal tissue samples by acquisition of images at pixel sizes of 100, 50, and 20 μm, which corresponds to a lateral resolution of 40-60 μm, similar to the best values published in the literature. The high sensitivity of the sprayer also allows combination with a fast scanning quadrupole time-of-flight mass spectrometer. This provides up to 30 times faster DESI acquisition, reducing the overall acquisition time for a 10 mm × 10 mm rat brain sample to approximately 1 h. Although some spectral information is lost with increasing analysis speed, the resulting data can still be used to classify tissue types on the basis of a previously constructed model. This is particularly interesting for clinical applications, where fast, reliable diagnosis is required. [Figure not available: see fulltext.
RefleX: X-ray absorption and reflection in active galactic nuclei for arbitrary geometries
Paltani, S.; Ricci, C.
2017-11-01
Reprocessed X-ray radiation carries important information about the structure and physical characteristics of the material surrounding the supermassive black hole (SMBH) in active galactic nuclei (AGN). We report here on a newly developed simulation platform, RefleX, which allows to reproduce absorption and reflection by quasi-arbitrary geometries. We show here the reliability of our approach by comparing the results of our simulations with existing spectral models such as pexrav, MYTorus and BNTorus. RefleX implements both Compton scattering on free electrons and Rayleigh scattering and Compton scattering on bound electrons. We show the effect of bound-electron corrections on a torus geometry simulated like in MYTorus. We release with this paper the RefleX executable, as well as RXTorus, a model that assumes absorption and reflection from a torus with a varying ratio of the minor to major axis of the torus. To allow major flexibility RXTorus is also distributed in three components: absorbed primary emission, scattered radiation and fluorescent lines. RXTorus is provided for different values of the abundance, and with (atomic configuration) or without (free-electron configuration) taking into account Rayleigh scattering and bound electrons. We apply the RXTorus model in both configurations on the XMM-Newton and NuSTAR spectrum of the Compton-thick AGN NGC 424 and find that the models are able to reproduce very well the observations, but that the assumption on the bound or free state of the electrons has significant consequences on the fit parameters. RefleX executable, user manual and example models are available at http://www.astro.unige.ch/reflex. A copy of the RefleX executable is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A31
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
Reproducibility in Data-Scarce Environments
Darch, P. T.
2016-12-01
Among the usual requirements for reproducibility are large volumes of data and computationally intensive methods. Many fields within earth sciences, however, do not meet these requirements. Data are scarce and data-intensive methods are not well established. How can science be reproducible under these conditions? What changes, both infrastructural and cultural, are needed to advance reproducibility? This paper presents findings from a long-term social scientific case study of an emergent and data scarce field, the deep subseafloor biosphere. This field studies interactions between microbial communities living in the seafloor and the physical environments they inhabit. Factors such as these make reproducibility seem a distant goal for this community: - The relative newness of the field. Serious study began in the late 1990s; - The highly multidisciplinary nature of the field. Researchers come from a range of physical and life science backgrounds; - Data scarcity. Domain researchers produce much of these data in their own onshore laboratories by analyzing cores from international ocean drilling expeditions. Allocation of cores is negotiated between researchers from many fields. These factors interact in multiple ways to inhibit reproducibility: - Incentive structures emphasize producing new data and new knowledge rather than reanalysing extant data; - Only a few steps of laboratory analyses can be reproduced - such as analysis of DNA sequences, but not extraction of DNA from cores -, due to scarcity of cores; - Methodological heterogeneity is a consequence of multidisciplinarity, as researchers bring different techniques from diverse fields. - Few standards for data collection or analysis are available at this early stage of the field; - While datasets from multiple biological and physical phenomena can be integrated into a single workflow, curation tends to be divergent. Each type of dataset may be subject to different disparate policies and contributed to different
Thermodynamics of Asymptotically Conical Geometries.
Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H
2015-06-12
We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.
Self-designing parametric geometries
Sobester, Andras
2015-01-01
The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...
Geometry aware Stationary Subspace Analysis
2016-11-22
JMLR: Workshop and Conference Proceedings 63:430–444, 2016 ACML 2016 Geometry -aware Stationary Subspace Analysis Inbal Horev inbal@ms.k.u-tokyo.ac.jp... geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to...Horev, F. Yger & M. Sugiyama. Geometry -aware SSA many theoretical and practical aspects have been addressed (see Sugiyama and Kawanabe (2012) for an in
Planetary Image Geometry Library
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Initiation to global Finslerian geometry
Akbar-Zadeh, Hassan
2006-01-01
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p
Guijosa, A
1999-01-01
This thesis explores some aspects of the recently uncovered connection between gauge theories and gravity, known as the AdS/CFT, or bulk-boundary, correspondence. This is a remarkable statement of equivalence between string or M-theory on certain backgrounds and field theories living on the boundaries of the corresponding spacetimes. Under the duality between four-dimensional N = 4 SU(N) superYang-Mills (SYM) and Type IIB string theory on AdS5 × S5, a baryon is mapped onto N fundamental strings terminating on a wrapped D5-brane. We examine the structure and energetics of this system from the vantage point of the fivebrane worldvolume action, making use of the Born-Infeld string approach. We construct supersymmetric fivebrane embeddings which correspond to gauge theory configurations with n external quarks, 0 ≤ n ≤ N. The extension of these solutions to the full asymptotically flat geometry of N D3-branes provides a detailed description of the creation of strings as the fivebrane is...
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2013-01-01
Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.
Speziale, Simone
2013-01-01
We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
Positive geometries and canonical forms
Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas
2017-11-01
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex
Smoothly Varying Bright Blazars
Van Alfen, Nicholas; Hindman, Lauren; Moody, Joseph Ward; Biancardi, Rochelle; Whipple, Parkes; Gaunt, Caleb
2018-01-01
It is becoming increasingly apparent that blazar light can vary sinusoidally with periods of hundreds of days to tens of years. Such behavior is expected of, among other things, jets coming from binary black holes. To look for general variability in lesser-known blazars and AGN, in 2015-2016 we monitored 182 objects with Johnson V-band magnitudes reported as being < 16. In all, this campaign generated 22,000 frames from 2,000 unique pointings. We find that approximately one dozen of these objects show evidence of smooth variability consistent with sinusoidal periods. We report on the entire survey sample, highlighting those that show sinusoidal variations.
How reproducible are the measurements of leaf fluctuating asymmetry?
Directory of Open Access Journals (Sweden)
Mikhail V. Kozlov
2015-06-01
Full Text Available Fluctuating asymmetry (FA represents small, non-directional deviations from perfect symmetry in morphological characters. FA is generally assumed to increase in response to stress; therefore, FA is frequently used in ecological studies as an index of environmental or genetic stress experienced by an organism. The values of FA are usually small, and therefore the reliable detection of FA requires precise measurements. The reproducibility of fluctuating asymmetry (FA was explored by comparing the results of measurements of scanned images of 100 leaves of downy birch (Betula pubescens conducted by 31 volunteer scientists experienced in studying plant FA. The median values of FA varied significantly among the participants, from 0.000 to 0.074, and the coefficients of variation in FA for individual leaves ranged from 25% to 179%. The overall reproducibility of the results among the participants was rather low (0.074. Variation in instruments and methods used by the participants had little effect on the reported FA values, but the reproducibility of the measurements increased by 30% following exclusion of data provided by seven participants who had modified the suggested protocol for leaf measurements. The scientists working with plant FA are advised to pay utmost attention to adequate and detailed description of their data acquisition protocols in their forthcoming publications, because all characteristics of instruments and methods need to be controlled to increase the quality and reproducibility of the data. Whenever possible, the images of all measured objects and the results of primary measurements should be published as electronic appendices to scientific papers.
Highly reproducible polyol synthesis for silver nanocubes
Han, Hye Ji; Yu, Taekyung; Kim, Woo-Sik; Im, Sang Hyuk
2017-07-01
We could synthesize the Ag nanocubes highly reproducibly by conducting the polyol synthesis using HCl etchant in dark condition because the photodecomposition/photoreduction of AgCl nanoparticles formed at initial reaction stage were greatly depressed and consequently the selective self-nucleation of Ag single crystals and their selective growth reaction could be promoted. Whereas the reproducibility of the formation of Ag nanocubes were very poor when we synthesize the Ag nanocubes in light condition due to the photoreduction of AgCl to Ag.
Improving functional magnetic resonance imaging reproducibility.
Pernet, Cyril; Poline, Jean-Baptiste
2015-01-01
The ability to replicate an entire experiment is crucial to the scientific method. With the development of more and more complex paradigms, and the variety of analysis techniques available, fMRI studies are becoming harder to reproduce. In this article, we aim to provide practical advice to fMRI researchers not versed in computing, in order to make studies more reproducible. All of these steps require researchers to move towards a more open science, in which all aspects of the experimental method are documented and shared. Only by sharing experiments, data, metadata, derived data and analysis workflows will neuroimaging establish itself as a true data science.
Reproducible statistical analysis with multiple languages
DEFF Research Database (Denmark)
Lenth, Russell; Højsgaard, Søren
2011-01-01
This paper describes the system for making reproducible statistical analyses. differs from other systems for reproducible analysis in several ways. The two main differences are: (1) Several statistics programs can be in used in the same document. (2) Documents can be prepared using OpenOffice or ......Office or \\LaTeX. The main part of this paper is an example showing how to use and together in an OpenOffice text document. The paper also contains some practical considerations on the use of literate programming in statistics....
Spatial geometry and special relativity
DEFF Research Database (Denmark)
Kneubil, Fabiana Botelho
2016-01-01
In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame-dependent and fr...
Geometry of the quantum universe
Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.
2010-01-01
A quantum universe with the global shape of a (Euclidean) de Sitter spacetime appears as dynamically generated background geometry in the causal dynamical triangulation (CDT) regularisation of quantum gravity. We investigate the micro- and macro-geometry of this universe, using geodesic shell
GPS: Geometry, Probability, and Statistics
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
REPRODUCIBILITY OF CHILDHOOD RESPIRATORY SYMPTOM QUESTIONS
BRUNEKREEF, B; GROOT, B; RIJCKEN, B; HOEK, G; STEENBEKKERS, A; DEBOER, A
The reproducibility of answers to childhood respiratory symptom questions was investigated by administering two childhood respiratory symptom questionnaires twice, with a one month interval, to the same population of Dutch school children. The questionnaires were completed by the parents of 410
Uniform and reproducible stirring in a microbioreactor
DEFF Research Database (Denmark)
Bolic, Andrijana; Eliasson Lantz, Anna; Rottwitt, Karsten
role in achieving successful cultivations by promoting uniform process conditions and – for aerobic cultivations – a high oxygen transfer rate. In this contribution, the development of a suitable, reliable and reproducible stirrer in a microbioreactor for batch and continuous cultivation of S...
Estimating the reproducibility of psychological science
Aarts, Alexander A.; Anderson, Joanna E.; Anderson, Christopher J.; Attridge, Peter R.; Attwood, Angela; Axt, Jordan; Babel, Molly; Bahník, Štěpán; Baranski, Erica; Barnett-Cowan, Michael; Bartmess, Elizabeth; Beer, Jennifer; Bell, Raoul; Bentley, Heather; Beyan, Leah; Binion, Grace; Borsboom, Denny; Bosch, Annick; Bosco, Frank A.; Bowman, Sara D.; Brandt, Mark J.; Braswell, Erin; Brohmer, Hilmar; Brown, Benjamin T.; Brown, Kristina; Brüning, Jovita; Calhoun-Sauls, Ann; Callahan, Shannon P.; Chagnon, Elizabeth; Chandler, Jesse; Chartier, Christopher R.; Cheung, Felix; Christopherson, Cody D.; Cillessen, Linda; Clay, Russ; Cleary, Hayley; Cloud, Mark D.; Conn, Michael; Cohoon, Johanna; Columbus, Simon; Cordes, Andreas; Costantini, Giulio; Alvarez, Leslie D Cramblet; Cremata, Ed; Crusius, Jan; DeCoster, Jamie; DeGaetano, Michelle A.; Penna, Nicolás Delia; Den Bezemer, Bobby; Deserno, Marie K.; Devitt, Olivia; Dewitte, Laura; Dobolyi, David G.; Dodson, Geneva T.; Donnellan, M. Brent; Donohue, Ryan; Dore, Rebecca A.; Dorrough, Angela; Dreber, Anna; Dugas, Michelle; Dunn, Elizabeth W.; Easey, Kayleigh; Eboigbe, Sylvia; Eggleston, Casey; Embley, Jo; Epskamp, Sacha; Errington, Timothy M.; Estel, Vivien; Farach, Frank J.; Feather, Jenelle; Fedor, Anna; Fernández-Castilla, Belén; Fiedler, Susann; Field, James G.; Fitneva, Stanka A.; Flagan, Taru; Forest, Amanda L.; Forsell, Eskil; Foster, Joshua D.; Frank, Michael C.; Frazier, Rebecca S.; Fuchs, Heather; Gable, Philip; Galak, Jeff; Galliani, Elisa Maria; Gampa, Anup; Garcia, Sara; Gazarian, Douglas; Gilbert, Elizabeth; Giner-Sorolla, Roger; Glöckner, Andreas; Goellner, Lars; Goh, Jin X.; Goldberg, Rebecca; Goodbourn, Patrick T.; Gordon-McKeon, Shauna; Gorges, Bryan; Gorges, Jessie; Goss, Justin; Graham, Jesse; Grange, James A.; Gray, Jeremy; Hartgerink, Chris; Hartshorne, Joshua; Hasselman, Fred; Hayes, Timothy; Heikensten, Emma; Henninger, Felix; Hodsoll, John; Holubar, Taylor; Hoogendoorn, Gea; Humphries, Denise J.; Hung, Cathy O Y; Immelman, Nathali; Irsik, Vanessa C.; Jahn, Georg; Jäkel, Frank; Jekel, Marc; Johannesson, Magnus; Johnson, Larissa G.; Johnson, David J.; Johnson, Kate M.; Johnston, William J.; Jonas, Kai; Joy-Gaba, Jennifer A.; Kappes, Heather Barry; Kelso, Kim; Kidwell, Mallory C.; Kim, Seung Kyung; Kirkhart, Matthew; Kleinberg, Bennett; Knežević, Goran; Kolorz, Franziska Maria; Kossakowski, Jolanda J.; Krause, Robert Wilhelm; Krijnen, Job; Kuhlmann, Tim; Kunkels, Yoram K.; Kyc, Megan M.; Lai, Calvin K.; Laique, Aamir; Lakens, Daniël; Lane, Kristin A.; Lassetter, Bethany; Lazarević, Ljiljana B.; Le Bel, Etienne P.; Lee, Key Jung; Lee, Minha; Lemm, Kristi; Levitan, Carmel A.; Lewis, Melissa; Lin, Lin; Lin, Stephanie; Lippold, Matthias; Loureiro, Darren; Luteijn, Ilse; MacKinnon, Sean; Mainard, Heather N.; Marigold, Denise C.; Martin, Daniel P.; Martinez, Tylar; Masicampo, E. J.; Matacotta, Josh; Mathur, Maya; May, Michael; Mechin, Nicole; Mehta, Pranjal; Meixner, Johannes; Melinger, Alissa; Miller, Jeremy K.; Miller, Mallorie; Moore, Katherine; Möschl, Marcus; Motyl, Matt; Müller, Stephanie M.; Munafo, Marcus; Neijenhuijs, Koen I.; Nervi, Taylor; Nicolas, Gandalf; Nilsonne, Gustav; Nosek, Brian A.; Nuijten, Michèle B.; Olsson, Catherine; Osborne, Colleen; Ostkamp, Lutz; Pavel, Misha; Penton-Voak, Ian S.; Perna, Olivia; Pernet, Cyril; Perugini, Marco; Pipitone, R. Nathan; Pitts, Michael C.; Plessow, Franziska; Prenoveau, Jason M.; Rahal, Rima Maria; Ratliff, Kate A.; Reinhard, David; Renkewitz, Frank; Ricker, Ashley A.; Rigney, Anastasia; Rivers, Andrew M.; Roebke, Mark; Rutchick, Abraham M.; Ryan, Robert S.; Sahin, Onur; Saide, Anondah; Sandstrom, Gillian M.; Santos, David; Saxe, Rebecca; Schlegelmilch, René; Schmidt, Kathleen; Scholz, Sabine; Seibel, Larissa; Selterman, Dylan Faulkner; Shaki, Samuel; Simpson, William B.; Sinclair, H. Colleen; Skorinko, Jeanine L M; Slowik, Agnieszka; Snyder, Joel S.; Soderberg, Courtney; Sonnleitner, Carina; Spencer, Nick; Spies, Jeffrey R.; Steegen, Sara; Stieger, Stefan; Strohminger, Nina; Sullivan, Gavin B.; Talhelm, Thomas; Tapia, Megan; Te Dorsthorst, Anniek; Thomae, Manuela; Thomas, Sarah L.; Tio, Pia; Traets, Frits; Tsang, Steve; Tuerlinckx, Francis; Turchan, Paul; Valášek, Milan; Van't Veer, Anna E.; Van Aert, Robbie; Van Assen, Marcel; Van Bork, Riet; Van De Ven, Mathijs; Van Den Bergh, Don; Van Der Hulst, Marije; Van Dooren, Roel; Van Doorn, Johnny; Van Renswoude, Daan R.; Van Rijn, Hedderik; Vanpaemel, Wolf; Echeverría, Alejandro Vásquez; Vazquez, Melissa; Velez, Natalia; Vermue, Marieke; Verschoor, Mark; Vianello, Michelangelo; Voracek, Martin; Vuu, Gina; Wagenmakers, Eric-Jan; Weerdmeester, Joanneke; Welsh, Ashlee; Westgate, Erin C.; Wissink, Joeri; Wood, Michael; Woods, Andy; Wright, Emily; Wu, Sining; Zeelenberg, Marcel; Zuni, Kellylynn
2015-01-01
Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available.
Estimating the reproducibility of psychological science
Aarts, Alexander A.; Anderson, Joanna E.; Anderson, Christopher J.; Attridge, Peter R.; Attwood, Angela; Axt, Jordan; Babel, Molly; Bahnik, Stepan; Baranski, Erica; Barnett-Cowan, Michael; Bartmess, Elizabeth; Beer, Jennifer; Bell, Raoul; Bentley, Heather; Beyan, Leah; Binion, Grace; Borsboom, Denny; Bosch, Annick; Bosco, Frank A.; Bowman, Sara D.; Brandt, Mark J.; Braswell, Erin; Brohmer, Hilmar; Brown, Benjamin T.; Brown, Kristina; Bruening, Jovita; Calhoun-Sauls, Ann; Chagnon, Elizabeth; Callahan, Shannon P.; Chandler, Jesse; Chartier, Christopher R.; Cheung, Felix; Cillessen, Linda; Christopherson, Cody D.; Clay, Russ; Cleary, Hayley; Cloud, Mark D.; Cohn, Michael; Cohoon, Johanna; Columbus, Simon; Cordes, Andreas; Costantini, Giulio; Alvarez, Leslie D. Cramblet; Cremata, Ed; Crusius, Jan; DeCoster, Jamie; DeGaetano, Michelle A.; Della Penna, Nicolas; den Bezemer, Bobby; Deserno, Marie K.; Devitt, Olivia; Dewitte, Laura; Dobolyi, David G.; Dodson, Geneva T.; Donnellan, M. Brent; Donohue, Ryan; Dore, Rebecca A.; Dorrough, Angela; Dreber, Anna; Dugas, Michelle; Dunn, Elizabeth W.; Easey, Kayleigh; Eboigbe, Sylvia; Eggleston, Casey; Embley, Jo; Epskamp, Sacha; Errington, Timothy M.; Estel, Vivien; Farach, Frank J.; Feather, Jenelle; Fedor, Anna; Fernandez-Castilla, Belen; Fiedler, Susann; Field, James G.; Fitneva, Stanka A.; Flagan, Taru; Forest, Amanda L.; Forsell, Eskil; Foster, Joshua D.; Frank, Michael C.; Frazier, Rebecca S.; Fuchs, Heather; Gable, Philip; Galak, Jeff; Galliani, Elisa Maria; Gampa, Anup; Garcia, Sara; Gazarian, Douglas; Gilbert, Elizabeth; Giner-Sorolla, Roger; Gloeckner, Andreas; Goellner, Lars; Goh, Jin X.; Goldberg, Rebecca; Goodbourn, Patrick T.; Gordon-McKeon, Shauna; Gorges, Bryan; Gorges, Jessie; Goss, Justin; Graham, Jesse; Grange, James A.; Gray, Jeremy; Hartgerink, Chris; Hartshorne, Joshua; Hasselman, Fred; Hayes, Timothy; Heikensten, Emma; Henninger, Felix; Hodsoll, John; Holubar, Taylor; Hoogendoorn, Gea; Humphries, Denise J.; Hung, Cathy O. -Y.; Immelman, Nathali; Irsik, Vanessa C.; Jahn, Georg; Jaekel, Frank; Jekel, Marc; Johannesson, Magnus; Johnson, Larissa G.; Johnson, David J.; Johnson, Kate M.; Johnston, William J.; Jonas, Kai; Joy-Gaba, Jennifer A.; Kappes, Heather Barry; Kelso, Kim; Kidwell, Mallory C.; Kim, Seung Kyung; Kirkhart, Matthew; Kleinberg, Bennett; Knezevic, Goran; Kolorz, Franziska Maria; Kossakowski, Jolanda J.; Krause, Robert Wilhelm; Krijnen, Job; Kuhlmann, Tim; Kunkels, Yoram K.; Kyc, Megan M.; Lai, Calvin K.; Laique, Aamir; Lakens, Daniel; Lane, Kristin A.; Lassetter, Bethany; Lazarevic, Ljiljana B.; LeBel, Etienne P.; Lee, Key Jung; Lee, Minha; Lemm, Kristi; Levitan, Carmel A.; Lewis, M.; Lin, Lin; Lin, Stephanie; Lippold, Matthias; Loureiro, Darren; Luteijn, Ilse; Mackinnon, Sean; Mainard, Heather N.; Marigold, Denise C.; Martin, Daniel P.; Martinez, Tylar; Masicampo, E. J.; Matacotta, Josh; Mathur, Maya; May, Michael; Mechin, Nicole; Mehta, Pranjal; Meixner, Johannes; Melinger, Alissa; Miller, Jeremy K.; Miller, Mallorie; Moore, Katherine; Moeschl, Marcus; Motyl, Matt; Mueller, Stephanie M.; Munafo, Marcus; Neijenhuijs, Koen I.; Nervi, Taylor; Nicolas, Gandalf; Nilsonne, Gustav; Nosek, Brian A.; Nuijten, Michele B.; Olsson, Catherine; Osborne, Colleen; Ostkamp, Lutz; Pavel, Misha; Penton-Voak, Ian S.; Perna, Olivia; Pernet, Cyril; Perugini, Marco; Pipitone, R. Nathan; Pitts, Michael; Plessow, Franziska; Prenoveau, Jason M.; Rahal, Rima-Maria; Ratliff, Kate A.; Reinhard, David; Renkewitz, Frank; Ricker, Ashley A.; Rigney, Anastasia; Rivers, Andrew M.; Roebke, Mark; Rutchick, Abraham M.; Ryan, Robert S.; Sahin, Onur; Saide, Anondah; Sandstrom, Gillian M.; Santos, David; Saxe, Rebecca; Schmidt, Kathleen; Schlegelmilch, Rene; Seibel, Larissa; Scholz, Sabine; Selterman, Dylan Faulkner; Shaki, Samuel; Simpson, William B.; Sinclair, H. Colleen; Skorinko, Jeanine L. M.; Slowik, Agnieszka; Snyder, Joel S.; Soderberg, Courtney; Sonnleitner, Carina; Spencer, Nick; Spies, Jeffrey R.; Steegen, Sara; Stieger, Stefan; Strohminger, Nina; Sullivan, Gavin B.; Talhelm, Thomas; Tapia, Megan; te Dorsthorst, Anniek; Thomae, Manuela; Thomas, Sarah L.; Tio, Pia; Traets, Frits; Tsang, Steve; Tuerlinckx, Francis; Turchan, Paul; Valasek, Milan; van 't Veer, Anna E.; Van Aert, Robbie; van Assen, M.A.L.M.; van Bork, Riet; van de Ven, Mathijs; van den Bergh, Don; van der Hulst, Marije; van Dooren, Roel; van Doorn, Johnny; van Renswoude, Daan R.; van Rijn, Hedderik; Vanpaemel, Wolf; Echeverria, Alejandro Vasquez; Vazquez, Melissa; Velez, Natalia; Vermue, Marieke; Verschoor, Mark; Vianello, Michelangelo; Voracek, Martin; Vuu, Gina; Wagenmakers, Eric-Jan; Weerdmeester, Joanneke; Welsh, Ashlee; Westgate, Erin C.; Wissink, Joeri; Wood, Michael; Woods, Andy; Wright, Emily; Wu, Sining; Zeelenberg, Marcel; Zuni, Kellylynn
2015-01-01
INTRODUCTION Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. Scientific claims should not gain credence because of the status or authority of their originator but by the replicability of their supporting evidence. Even research
PSYCHOLOGY. Estimating the reproducibility of psychological science
Krause, Robert Wilhelm; Scholz, Sabine; van Rijn, Hedderik; Wagenmakers, Eric-Jan
2015-01-01
Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available.
ITK: enabling reproducible research and open science.
McCormick, Matthew; Liu, Xiaoxiao; Jomier, Julien; Marion, Charles; Ibanez, Luis
2014-01-01
Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature. Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK) in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification. This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46.
ITK: Enabling Reproducible Research and Open Science
Directory of Open Access Journals (Sweden)
Matthew Michael McCormick
2014-02-01
Full Text Available Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature.Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification.This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46.
Does systematic variation improve the reproducibility of animal experiments?
Jonker, R.M.; Guenther, A.; Engqvist, L.; Schmoll, T.
2013-01-01
Reproducibility of results is a fundamental tenet of science. In this journal, Richter et al.1 tested whether systematic variation in experimental conditions (heterogenization) affects the reproducibility of results. Comparing this approach with the current standard of ensuring reproducibility
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig
2013-03-24
Standard particle theory is based on quantized matter embedded in a classical geometry. Here, a complementary model is proposed, based on classical matter -- massive bodies, without quantum properties -- embedded in a quantum geometry. It does not describe elementary particles, but may be a better, fully consistent quantum description for position states in laboratory-scale systems. Gravitational theory suggests that the geometrical quantum system has an information density of about one qubit per Planck length squared. If so, the model here predicts that the quantum uncertainty of geometry creates a new form of noise in the position of massive bodies, detectable by interferometers.
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Differential geometry curves, surfaces, manifolds
Kühnel, Wolfgang
2015-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so
Differential geometry and symmetric spaces
Helgason, Sigurdur
2001-01-01
Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects. For instance, even though there
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
An improved combinatorial geometry model for arbitrary geometry in DSMC
Kargaran, H.; Minuchehr, A.; Zolfaghari, A.
2017-03-01
This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.
Inter-examiner reproducibility of tests for lumbar motor control
Directory of Open Access Journals (Sweden)
Elkjaer Arne
2011-05-01
Full Text Available Abstract Background Many studies show a relation between reduced lumbar motor control (LMC and low back pain (LBP. However, test circumstances vary and during test performance, subjects may change position. In other words, the reliability - i.e. reproducibility and validity - of tests for LMC should be based on quantitative data. This has not been considered before. The aim was to analyse the reproducibility of five different quantitative tests for LMC commonly used in daily clinical practice. Methods The five tests for LMC were: repositioning (RPS, sitting forward lean (SFL, sitting knee extension (SKE, and bent knee fall out (BKFO, all measured in cm, and leg lowering (LL, measured in mm Hg. A total of 40 subjects (14 males, 26 females 25 with and 15 without LBP, with a mean age of 46.5 years (SD 14.8, were examined independently and in random order by two examiners on the same day. LBP subjects were recruited from three physiotherapy clinics with a connection to the clinic's gym or back-school. Non-LBP subjects were recruited from the clinic's staff acquaintances, and from patients without LBP. Results The means and standard deviations for each of the tests were 0.36 (0.27 cm for RPS, 1.01 (0.62 cm for SFL, 0.40 (0.29 cm for SKE, 1.07 (0.52 cm for BKFO, and 32.9 (7.1 mm Hg for LL. All five tests for LMC had reproducibility with the following ICCs: 0.90 for RPS, 0.96 for SFL, 0.96 for SKE, 0.94 for BKFO, and 0.98 for LL. Bland and Altman plots showed that most of the differences between examiners A and B were less than 0.20 cm. Conclusion These five tests for LMC displayed excellent reproducibility. However, the diagnostic accuracy of these tests needs to be addressed in larger cohorts of subjects, establishing values for the normal population. Also cut-points between subjects with and without LBP must be determined, taking into account age, level of activity, degree of impairment and participation in sports. Whether reproducibility of these
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Additive Manufacturing: Reproducibility of Metallic Parts
Directory of Open Access Journals (Sweden)
Konda Gokuldoss Prashanth
2017-02-01
Full Text Available The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti—hexagonal closed packed structure fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency in results within the experimental errors. Similar reproducible results were observed for sliding wear and corrosion experiments. The other metal/alloy systems also show repeatable tensile properties, with the tensile curves overlapping until the yield point. The curves may then follow the same path or show a marginal deviation (~10 MPa until they reach the ultimate tensile strength and a negligible difference in ductility levels (of ~0.3% is observed between the samples. The results show that selective laser melting is a reliable fabrication method to produce metallic materials with consistent and reproducible properties.
varying elastic parameters distributions
Moussawi, Ali
2014-12-01
The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.
Higgs mass in noncommutative geometry
Energy Technology Data Exchange (ETDEWEB)
Devastato, A.; Martinetti, P. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Lizzi, F. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Departament de Estructura i Constituents de la Materia, Universitat de Barcelona, Marti y Franques, Barcelona, Catalonia (Spain)
2014-09-11
In the noncommutative geometry approach to the standard model, an extra scalar field σ - initially suggested by particle physicist to stabilize the electroweak vacuum - makes the computation of the Higgs mass compatible with the 126 GeV experimental value. We give a brief account on how to generate this field from the Majorana mass of the neutrino, following the principles of noncommutative geometry. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Systematic Methodology for Reproducible Optimizing Batch Operation
DEFF Research Database (Denmark)
Bonné, Dennis; Jørgensen, Sten Bay
2006-01-01
This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...... contribution furthermore presents how the asymptotic convergence of Iterative Learning Control is combined with the closed-loop performance of Model Predictive Control to form a robust and asymptotically stable optimal controller for ensuring reliable and reproducible operation of batch processes...
Reproducibility in cyclostratigraphy: initiating an intercomparison project
Sinnesael, Matthias; De Vleeschouwer, David; Zeeden, Christian; Claeys, Philippe
2017-04-01
The study of astronomical climate forcing and the application of cyclostratigraphy have experienced a spectacular growth over the last decades. In the field of cyclostratigraphy a broad range in methodological approaches exist. However, comparative study between the different approaches is lacking. Different cases demand different approaches, but with the growing importance of the field, questions arise about reproducibility, uncertainties and standardization of results. The radioisotopic dating community, in particular, has done far-reaching efforts to improve reproducibility and intercomparison of radioisotopic dates and their errors. To satisfy this need in cyclostratigraphy, we initiate a comparable framework for the community. The aims are to investigate and quantify reproducibility of, and uncertainties related to cyclostratigraphic studies and to provide a platform to discuss the merits and pitfalls of different methodologies, and their applicabilities. With this poster, we ask the feedback from the community on how to design this comparative framework in a useful, meaningful and productive manner. In parallel, we would like to discuss how reproducibility should be tested and what uncertainties should stand for in cyclostratigraphy. On the other hand, we intend to trigger interest for a cyclostratigraphic intercomparison project. This intercomparison project would imply the analysis of artificial and genuine geological records by individual researchers. All participants would be free to determine their method of choice. However, a handful of criterions will be required for an outcome to be comparable. The different results would be compared (e.g. during a workshop or a special session), and the lessons learned from the comparison could potentially be reported in a review paper. The aim of an intercomparison project is not to rank the different methods according to their merits, but to get insight into which specific methods are most suitable for which
Bad Behavior: Improving Reproducibility in Behavior Testing.
Andrews, Anne M; Cheng, Xinyi; Altieri, Stefanie C; Yang, Hongyan
2018-01-24
Systems neuroscience research is increasingly possible through the use of integrated molecular and circuit-level analyses. These studies depend on the use of animal models and, in many cases, molecular and circuit-level analyses. Associated with genetic, pharmacologic, epigenetic, and other types of environmental manipulations. We illustrate typical pitfalls resulting from poor validation of behavior tests. We describe experimental designs and enumerate controls needed to improve reproducibility in investigating and reporting of behavioral phenotypes.
Repeatability and Reproducibility of Virtual Subjective Refraction.
Perches, Sara; Collados, M Victoria; Ares, Jorge
2016-10-01
To establish the repeatability and reproducibility of a virtual refraction process using simulated retinal images. With simulation software, aberrated images corresponding with each step of the refraction process were calculated following the typical protocol of conventional subjective refraction. Fifty external examiners judged simulated retinal images until the best sphero-cylindrical refraction and the best visual acuity were achieved starting from the aberrometry data of three patients. Data analyses were performed to assess repeatability and reproducibility of the virtual refraction as a function of pupil size and aberrometric profile of different patients. SD values achieved in three components of refraction (M, J0, and J45) are lower than 0.25D in repeatability analysis. Regarding reproducibility, we found SD values lower than 0.25D in the most cases. When the results of virtual refraction with different pupil diameters (4 and 6 mm) were compared, the mean of differences (MoD) obtained were not clinically significant (less than 0.25D). Only one of the aberrometry profiles with high uncorrected astigmatism shows poor results for the M component in reproducibility and pupil size dependence analysis. In all cases, vision achieved was better than 0 logMAR. A comparison between the compensation obtained with virtual and conventional subjective refraction was made as an example of this application, showing good quality retinal images in both processes. The present study shows that virtual refraction has similar levels of precision as conventional subjective refraction. Moreover, virtual refraction has also shown that when high low order astigmatism is present, the refraction result is less precise and highly dependent on pupil size.
ShortScience.org - Reproducing Intuition
Cohen, Joseph Paul; Lo, Henry Z.
2017-01-01
We present ShortScience.org, a platform for post-publication discussion of research papers. On ShortScience.org, the research community can read and write summaries of papers in order to increase accessible and reproducibility. Summaries contain the perspective and insight of other readers, why they liked or disliked it, and their attempt to demystify complicated sections. ShortScience.org has over 600 paper summaries, all of which are searchable and organized by paper, conference, and year. ...
How to Write a Reproducible Paper
Irving, D. B.
2016-12-01
The geosciences have undergone a computational revolution in recent decades, to the point where almost all modern research relies heavily on software and code. Despite this profound change in the research methods employed by geoscientists, the reporting of computational results has changed very little in academic journals. This lag has led to something of a reproducibility crisis, whereby it is impossible to replicate and verify most of today's published computational results. While it is tempting to decry the slow response of journals and funding agencies in the face of this crisis, there are very few examples of reproducible research upon which to base new communication standards. In an attempt to address this deficiency, this presentation will describe a procedure for reporting computational results that was employed in a recent Journal of Climate paper. The procedure was developed to be consistent with recommended computational best practices and seeks to minimize the time burden on authors, which has been identified as the most important barrier to publishing code. It should provide a starting point for geoscientists looking to publish reproducible research, and could be adopted by journals as a formal minimum communication standard.
A Framework for Reproducible Latent Fingerprint Enhancements.
Carasso, Alfred S
2014-01-01
Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology.
The Common Geometry Module (CGM).
Energy Technology Data Exchange (ETDEWEB)
Tautges, Timothy James
2004-12-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.
Cupping - is it reproducible? Experiments about factors determining the vacuum.
Huber, R; Emerich, M; Braeunig, M
2011-04-01
Cupping is a traditional method for treating pain which is investigated nowadays in clinical studies. Because the methods for producing the vacuum vary considerably we tested their reproducibility. In a first set of experiments (study 1) four methods for producing the vacuum (lighter flame 2 cm (LF1), lighter flame 4 cm (LF2), alcohol flame (AF) and mechanical suction with a balloon (BA)) have been compared in 50 trials each. The cupping glass was prepared with an outlet and stop-cock, the vacuum was measured with a pressure-gauge after the cup was set to a soft rubber pad. In a second series of experiments (study 2) we investigated the stability of pressures in 20 consecutive trials in two experienced cupping practitioners and ten beginners using method AF. In study 1 all four methods yielded consistent pressures. Large differences in magnitude were, however, observed between methods (mean pressures -200±30 hPa with LF1, -310±30 hPa with LF2, -560±30 hPa with AF, and -270±16 hPa with BA). With method BA the standard deviation was reduced by a factor 2 compared to the flame methods. In study 2 beginners had considerably more difficulty obtaining a stable pressure yield than advanced cupping practitioners, showing a distinct learning curve before reaching expertise levels after about 10-20 trials. Cupping is reproducible if the exact method is described in detail. Mechanical suction with a balloon has the best reproducibility. Beginners need at least 10-20 trials to produce stable pressures. Copyright © 2010 Elsevier Ltd. All rights reserved.
Reproducibility of UAV-based photogrammetric surface models
Anders, Niels; Smith, Mike; Cammeraat, Erik; Keesstra, Saskia
2016-04-01
Soil erosion, rapid geomorphological change and vegetation degradation are major threats to the human and natural environment in many regions. Unmanned Aerial Vehicles (UAVs) and Structure-from-Motion (SfM) photogrammetry are invaluable tools for the collection of highly detailed aerial imagery and subsequent low cost production of 3D landscapes for an assessment of landscape change. Despite the widespread use of UAVs for image acquisition in monitoring applications, the reproducibility of UAV data products has not been explored in detail. This paper investigates this reproducibility by comparing the surface models and orthophotos derived from different UAV flights that vary in flight direction and altitude. The study area is located near Lorca, Murcia, SE Spain, which is a semi-arid medium-relief locale. The area is comprised of terraced agricultural fields that have been abandoned for about 40 years and have suffered subsequent damage through piping and gully erosion. In this work we focused upon variation in cell size, vertical and horizontal accuracy, and horizontal positioning of recognizable landscape features. The results suggest that flight altitude has a significant impact on reconstructed point density and related cell size, whilst flight direction affects the spatial distribution of vertical accuracy. The horizontal positioning of landscape features is relatively consistent between the different flights. We conclude that UAV data products are suitable for monitoring campaigns for land cover purposes or geomorphological mapping, but special care is required when used for monitoring changes in elevation.
Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx).
Colen, T P; Tjon-Fo-sang, M J; Mulder, P G; Lemij, H G
2000-10-01
To determine the reproducibility of measurements with the Nerve Fiber Analyzer, a scanning laser polarimeter designed for quantifying glaucoma in healthy patients and patients with glaucoma. The authors also assessed the variance of measurements between instruments. Measurements were made with the third generation Nerve Fiber Analyzer, the GDx. The study consisted of three parts. In the first part, the authors measured the right eyes of 10 healthy volunteers on 5 consecutive days. In the second part, 45 patients with glaucoma underwent Nerve Fiber Analyzer measurements of one randomly selected eye on two separate days in a 5-week period. For all 14 available parameters, reproducibility of measurements was expressed in terms of 95% limits of agreement and as the intraclass correlation coefficient. The Nerve Fiber Analyzer software has an option of creating a mean image from a selection of single images; for both parts of the study, the reproducibility of measurements was calculated for a "single image," and a "mean-of-three" image. In the third part of the study, 17 volunteers underwent repeated Nerve Fiber Analyzer measurement sessions on each of three different instruments. Using multivariate analysis of variance, the authors determined the variance of measurements between instruments. The reproducibility of measurements varied considerably across parameters. Limits of agreement in mean images for superior maximum and inferior maximum were 7.2 microm and 7.7 microm, respectively in the healthy volunteers, and 8.7 microm and 7.9 microm, respectively in the patients with glaucoma. For healthy patients, the intraclass correlation coefficient was greater than 90% in 10 of 14 parameters. In patients with glaucoma, the intraclass correlation coefficient was greater than 90% in 13 of 14 parameters. Some parameters reproduced better in a mean than in a single image; these differences, however, were small and generally not statistically significant. The between
Quantum geometry and gravitational entropy
Energy Technology Data Exchange (ETDEWEB)
Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan
2007-05-29
Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.
Euclidean geometry and its subgeometries
Specht, Edward John; Calkins, Keith G; Rhoads, Donald H
2015-01-01
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...
Guide to Computational Geometry Processing
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François
be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...
Variable geometry Darrieus wind machine
Pytlinski, J. T.; Serrano, D.
1983-08-01
A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.
Optimization and experimental validation of electrostatic adhesive geometry
Ruffatto, D.; Shah, J.; Spenko, M.
This paper introduces a method to optimize the electrode geometry of electrostatic adhesives for robotic gripping, attachment, and manipulation applications. Electrostatic adhesion is achieved by applying a high voltage potential, on the order of kV, to a set of electrodes, which generates an electric field. The electric field polarizes the substrate material and creates an adhesion force. Previous attempts at creating electro-static adhesives have shown them to be effective, but researchers have made no effort to optimize the electrode configuration and geometry. We have shown that by optimizing the geometry of the electrode configuration, the electric field strength, and therefore the adhesion force, is enhanced. To accomplish this, Comsol Multiphysics was utilized to evaluate the average electric field generated by a given electrode geometry. Several electrode patterns were evaluated, including parallel conductors, concentric circles, Hilbert curves (a fractal geometry) and spirals. The arrangement of the electrodes in concentric circles with varying electrode widths proved to be the most effective. The most effective sizing was to use the smallest gap spacing allowable coupled with a variable electrode width. These results were experimentally validated on several different surfaces including drywall, wood, tile, glass, and steel. A new manufacturing process allowing for the fabrication of thin, conformal electro-static adhesive pads was utilized. By combining the optimized electrode geometry with the new fabrication process we are able to demonstrate a marked improvement of up to 500% in shear pressure when compared to previously published values.
[Reproducibility of a questionnaire for studying climacteric].
Vázquez-Benítez, E; Garrido-Latorre, F; MacGregor, C; Tamayo-Orozco, J; López-Carrillo, L; Parra, S; Santibañez-Moreno, G
1996-01-01
This study evaluated the reproducibility of a questionnaire concerned with the clinical and epidemiological aspects of menopause. The study population consisted of a hundred perimenopausal Mexican women seeking care at gynecology and obstetric health care services. Their participation was voluntary and they answered the same questionnaire two times with a 15-30 day lag between each application. The Kappa coefficient was high (0.81-1.0) for categorical variables such as: type of menstrual cycles, type of menopause, breast-feeding, use of estrogen during menopause and use of hormonal contraceptives. The Kappa coefficient was moderate (0.7-0.8) for symptoms related to menopause such as hot flashes, sweating, painful coitus, vaginal dryness and a decrease in libido. Mean differences were calculated for continuous variables such as age at menarche, age at menopause, time using estrogen and the duration of breast-feeding, the majority had a value of zero and 95% confidence intervals for these mean differences included the null value. The questionnaire also included other characteristics such as tobacco consumption and a short food frequency questionnaire, which showed high concordance (Kappa 0.7-1.0). The results of this study show that this questionnaire has a high level of reproducibility and can be useful as a research tool to explore menopause in Mexican women.
Reproducibility in Research: Systems, Infrastructure, Culture
Directory of Open Access Journals (Sweden)
Tom Crick
2017-11-01
Full Text Available The reproduction and replication of research results has become a major issue for a number of scientific disciplines. In computer science and related computational disciplines such as systems biology, the challenges closely revolve around the ability to implement (and exploit novel algorithms and models. Taking a new approach from the literature and applying it to a new codebase frequently requires local knowledge missing from the published manuscripts and transient project websites. Alongside this issue, benchmarking, and the lack of open, transparent and fair benchmark sets present another barrier to the verification and validation of claimed results. In this paper, we outline several recommendations to address these issues, driven by specific examples from a range of scientific domains. Based on these recommendations, we propose a high-level prototype open automated platform for scientific software development which effectively abstracts specific dependencies from the individual researcher and their workstation, allowing easy sharing and reproduction of results. This new e-infrastructure for reproducible computational science offers the potential to incentivise a culture change and drive the adoption of new techniques to improve the quality and efficiency – and thus reproducibility – of scientific exploration.
N/Z dependence of balance energy throughout the colliding geometries
Gautam, Sakshi; Puri, Rajeev K.
2011-01-01
We study the N/Z dependence of balance energy throughout the mass range for colliding geometry varying from central to peripheral ones. Our results indicate that balance energy decreases linearly with increase in N/Z ratio for all the masses throughout the colliding geometry range. Also, the N/Z dependence of balance energy is sensitive to symmetry energy.
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
Introduction to topology and geometry
Stahl, Saul
2014-01-01
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Geometry-dependent atomic multipole models for the water molecule.
Loboda, O; Millot, C
2017-10-28
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Movement timing and invariance arise from several geometries.
Directory of Open Access Journals (Sweden)
Daniel Bennequin
2009-07-01
Full Text Available Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle, instantaneous speed depends on movement curvature (captured by the 2/3 power law, and complex movements are composed of simpler elements (movement compositionality. No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops. Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility
Movement Timing and Invariance Arise from Several Geometries
Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar
2009-01-01
Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain
Teaching Activity-Based Taxicab Geometry
Ada, Tuba
2013-01-01
This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
Math Sense: Algebra and Geometry.
Howett, Jerry
This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…
College geometry a unified development
Kay, David C
2011-01-01
""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273
GEOMETRY AND COMPLEXITY IN ARCHITECTURE
Directory of Open Access Journals (Sweden)
RUSU Maria Ana
2015-06-01
Full Text Available As Constantin Brancuși (1876-1956 said „Simplicity is complexity itself“, simplicity and regularity through the use of basic geometric forms has always played a central role in architectural design, during the 20th century. A diachronic perspective, shows as the use of geometry and mathematics to describe built form provided a common basis for communication between the processes of design, fabrication and stability. Classic ways of representing geometry, based on descriptive methods, favor precise language of bidimensionality easy to represent in a rectangular coordinate system. In recent years, the importance of geometry has been re-emphasized by significant advances in the digital age, where computers are increasingly used in design, fabrication and construction to explore the art of the possible. Contemporary architecture transcend the limitations of Euclidean geometry and create new forms that are emerging through the convergence of complex systems, computational design and robotic fabrication devices, but which can also achieve higher levels of performance. Freeform architectural shapes and structures play an increasingly important role in 21st century architectural design. Through a series of examples, the paper relates to contemporary architectural explorations of complex, curvilinear surfaces in the digital age and discusses how it has required rethinking the mode in which we traditionally operate as architects. The analysis creates the possibility of comparisons between original and current design.
Analogical Reasoning in Geometry Education
Magdas, Ioana
2015-01-01
The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Srimath
group, taxicab number, Carmi- chael number. Algebraic Methods in Plane Geometry. 2. Cubic Curves. Shailesh A Shirali. Shailesh Shirali heads a. Community Mathematics. Center at Rishi Valley. School (KFI). He has a ..... Ian Stewart and David Tall, Algebraic Number Theory and Fermat's Last. Theorem, A K Peters, 2002.
Fractal geometry and stochastics IV
Bandt, Christoph
2010-01-01
Over the years fractal geometry has established itself as a substantial mathematical theory in its own right. This book collects survey articles covering many of the developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals.
Learners engaging with transformation geometry
African Journals Online (AJOL)
able to move flexibly between the modes and who displayed a deep understanding of the concepts. ... However the strand remains in the curriculum for Grades R to 9, and will still provide rich learning opportunities ... There is limited available research on learners' understanding and learning of transformation geometry.
Optimization Problems in Elementary Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 6. Optimization Problems in Elementary Geometry. A K Mallik. General Article Volume 13 Issue 6 June 2008 pp 561-582 ... Author Affiliations. A K Mallik1. Department Of Mechanical Engineering, Indian Institute of Technology, Kanpur, India.
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
M. Deza; M. Laurent (Monique)
1997-01-01
htmlabstractCuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
Axiomatic Differential Geometry Ⅱ-4
Nishimura, Hirokazu
2012-01-01
In our previous paper (Axiomatic Differential Geometry II-3) we havediscussed the general Jacobi identity, from which the Jacobi identity ofvector fields follows readily. In this paper we derive Jacobi-like identitiesof tangent-vector-valued forms from the general Jacobi identity.
Axiomatic Differential Geometry II-3
Nishimura, Hirokazu
2012-01-01
As the fourth paper of our series of papers concerned with axiomatic differential geometry, this paper is devoted to the general Jacobi identity supporting the Jacobi identity of vector fields. The general Jacobi identity can be regarded as one of the few fundamental results belonging properly to smootheology.
Axiomatic Differential Geometry II-4
Nishimura, Hirokazu
2012-01-01
In our previous paper (Axiomatic Differential Geometry II-3) we have discussed the general Jacobi identity, from which the Jacobi identity of vector fields follows readily. In this paper we derive Jacobi-like identities of tangent-vector-valued forms from the general Jacobi identity.
Improving Student Reasoning in Geometry
Wong, Bobson; Bukalov, Larisa
2013-01-01
In their years of teaching geometry, Wong and Bukalov realized that the greatest challenge has been getting students to improve their reasoning. Many students have difficulty writing formal proofs--a task that requires a good deal of reasoning. Wong and Bukalov reasoned that the solution was to divide the lessons into parallel tasks, allowing…
Fubini theorem in noncommutative geometry
Sukochev, Fedor; Zanin, Dmitriy
2016-01-01
We discuss the Fubini formula in Alain Connes' noncommutative geometry. We present a sufficient condition on spectral triples for which a Fubini formula holds true. The condition is natural and related to heat semigroup asymptotics. We provide examples of spectral triples for which the Fubini formula fails.
Magnetofection: A Reproducible Method for Gene Delivery to Melanoma Cells
Directory of Open Access Journals (Sweden)
Lara Prosen
2013-01-01
Full Text Available Magnetofection is a nanoparticle-mediated approach for transfection of cells, tissues, and tumors. Specific interest is in using superparamagnetic iron oxide nanoparticles (SPIONs as delivery system of therapeutic genes. Magnetofection has already been described in some proof-of-principle studies; however, fine tuning of the synthesis of SPIONs is necessary for its broader application. Physicochemical properties of SPIONs, synthesized by the co-precipitation in an alkaline aqueous medium, were tested after varying different parameters of the synthesis procedure. The storage time of iron(II sulfate salt, the type of purified water, and the synthesis temperature did not affect physicochemical properties of SPIONs. Also, varying the parameters of the synthesis procedure did not influence magnetofection efficacy. However, for the pronounced gene expression encoded by plasmid DNA it was crucial to functionalize poly(acrylic acid-stabilized SPIONs (SPIONs-PAA with polyethyleneimine (PEI without the adjustment of its elementary alkaline pH water solution to the physiological pH. In conclusion, the co-precipitation of iron(II and iron(III sulfate salts with subsequent PAA stabilization, PEI functionalization, and plasmid DNA binding is a robust method resulting in a reproducible and efficient magnetofection. To achieve high gene expression is important, however, the pH of PEI water solution for SPIONs-PAA functionalization, which should be in the alkaline range.
Femoral articular geometry and patellofemoral stability.
Iranpour, Farhad; Merican, Azhar M; Teo, Seow Hui; Cobb, Justin P; Amis, Andrew A
2017-06-01
Patellofemoral instability is a major cause of anterior knee pain. The aim of this study was to examine how the medial and lateral stability of the patellofemoral joint in the normal knee changes with knee flexion and measure its relationship to differences in femoral trochlear geometry. Twelve fresh-frozen cadaveric knees were used. Five components of the quadriceps and the iliotibial band were loaded physiologically with 175N and 30N, respectively. The force required to displace the patella 10mm laterally and medially at 0°, 20°, 30°, 60° and 90° knee flexion was measured. Patellofemoral contact points at these knee flexion angles were marked. The trochlea cartilage geometry at these flexion angles was visualized by Computed Tomography imaging of the femora in air with no overlying tissue. The sulcus, medial and lateral facet angles were measured. The facet angles were measured relative to the posterior condylar datum. The lateral facet slope decreased progressively with flexion from 23°±3° (mean±S.D.) at 0° to 17±5° at 90°. While the medial facet angle increased progressively from 8°±8° to 36°±9° between 0° and 90°. Patellar lateral stability varied from 96±22N at 0°, to 77±23N at 20°, then to 101±27N at 90° knee flexion. Medial stability varied from 74±20N at 0° to 170±21N at 90°. There were significant correlations between the sulcus angle and the medial facet angle with medial stability (r=0.78, pgeometry with knee flexion to patellofemoral stability. Copyright © 2017 Elsevier B.V. All rights reserved.
Reproducibility and reusability of scientific software
Shamir, Lior
2017-01-01
Information science and technology has been becoming an integral part of astronomy research, and due to the consistent growth in the size and impact of astronomical databases, that trend is bound to continue. While software is a vital part information systems and data analysis processes, in many cases the importance of the software and the standards of reporting on the use of source code has not yet elevated in the scientific communication process to the same level as other parts of the research. The purpose of the discussion is to examine the role of software in the scientific communication process in the light of transparency, reproducibility, and reusability of the research, as well as discussing software in astronomy in comparison to other disciplines.
The NANOGrav Observing Program: Automation and Reproducibility
Brazier, Adam; Cordes, James; Demorest, Paul; Dolch, Timothy; Ferdman, Robert; Garver-Daniels, Nathaniel; Hawkins, Steven; Lam, Michael Timothy; Lazio, T. Joseph W.
2018-01-01
The NANOGrav Observing Program is a decades-long search for gravitational waves using pulsar timing which relies, for its sensitivity, on large data sets from observations of many pulsars. These are constructed through an intensive, long-term observing campaign. The nature of the program requires automation in the transfer and archiving of the large volume of raw telescope data, the calibration of those data, and making these resulting data products—required for diagnostic and data exploration purposes—available to NANOGrav members. Reproducibility of results is a key goal in this project, and essential to its success; it requires treating the software itself as a data product of the research, while ensuring easy access by, and collaboration between, members of NANOGrav, the International Pulsar Timing Array consortium (of which NANOGrav is a key member), as well as the wider astronomy community and the public.
Poor reproducibility of allergic rhinitis SNP associations.
Directory of Open Access Journals (Sweden)
Daniel Nilsson
Full Text Available Replication of reported associations is crucial to the investigation of complex disease. More than 100 SNPs have previously been reported as associated with allergic rhinitis (AR, but few of these have been replicated successfully. To investigate the general reproducibility of reported AR-associations in candidate gene studies, one Swedish (352 AR-cases, 709 controls and one Singapore Chinese population (948 AR-cases, 580 controls were analyzed using 49 AR-associated SNPs. The overall pattern of P-values indicated that very few of the investigated SNPs were associated with AR. Given published odds ratios (ORs most SNPs showed high power to detect an association, but no correlations were found between the ORs of the two study populations or with published ORs. None of the association signals were in common to the two genome-wide association studies published in AR, indicating that the associations represent false positives or have much lower effect-sizes than reported.
PSYCHOLOGY. Estimating the reproducibility of psychological science.
2015-08-28
Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams. Copyright © 2015, American Association for the Advancement of Science.
National Aeronautics and Space Administration — Some target signatures of interest in drought monitoring, flooding assessment, fire damage assessment, coastal changes, urban changes, etc. may need to be tracked...
de Bruin, Daniel M.; Bremmer, Rolf H.; Kodach, Vitali M.; de Kinkelder, Roy; van Marle, Jan; van Leeuwen, Ton G.; Faber, Dirk J.
2010-01-01
Current innovations in optical imaging, measurement techniques, and data analysis algorithms express the need for reliable testing and comparison methods. We present the design and characterization of silicone elastomer-based optical phantoms. Absorption is included by adding a green dye and
DEFF Research Database (Denmark)
Shin, K. W.; Andersen, Poul
2015-01-01
The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached...... eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES...... results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used...
Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges
Haskell, John P.; Ritchie, Mark E.; Olff, Han
2002-01-01
Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and
Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges
Haskell, J.P.; Ritchie, M.E.; Olff, H.
2002-01-01
Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology(1-4). Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour,
Julias, Margaret; Buettner, Helen M; Shreiber, David I.
2010-01-01
During traditional acupuncture, fine needles are inserted subcutaneously and rotated, which causes loose fascial tissue to wind around the needle. This coupling is stronger at acupuncture points, which tend to fall above intermuscular fascial planes, than control points, which lay above skeletal muscle. These different anatomical constraints may affect the mechanical coupling. Fascia at acupuncture points is bounded on two sides by skeletal muscle, but at control points is essentially unbound...
Julias, Margaret; Buettner, Helen M; Shreiber, David I
2011-02-01
During traditional acupuncture, fine needles are inserted subcutaneously and rotated, which causes loose fascial tissue to wind around the needle. This coupling is stronger at acupuncture points, which tend to fall above intermuscular fascial planes, than control points, which lay above skeletal muscle. These different anatomical constraints may affect the mechanical coupling. Fascia at acupuncture points is bounded on two sides by skeletal muscle, but at control points is essentially unbounded. These differences were approximated in simple in vitro models. To emulate the narrower boundary within the intermuscular plane, type I collagen was cast in circular gels of different radii. To model the channel-like nature of these planes, collagen was cast in elliptical gels with major and minor axes matching the large and small circular gels, respectively, and in planar gels constrained on two sides. Acupuncture needles were inserted into the gels and rotated via a computer-controlled motor while capturing the evolution of fiber alignment under cross-polarization. Small circular gels aligned faster, but failed earlier than large circular gels. Rotation in elliptical and planar gels generated more alignment-per-revolution than circular gels. Planar gels were particularly resistant to failure. Fiber alignment in circular gels was isotropic, but was stronger in the direction of the minor axis in elliptical and planar gels. In fibroblast-populated gels, cells followed the alignment of the collagen fibers, and also became denser in regions of stronger alignment. These results suggest that the anatomy at acupuncture points provides unique boundaries that accentuate the mechanical response to needle manipulation. 2010 Wiley-Liss, Inc.
Shin, K. W.; Andersen, P.
2015-12-01
The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.
DEFF Research Database (Denmark)
Kepler, Jørgen Asbøl; Hansen, Michael Rygaard
2007-01-01
thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance....
2015-05-20
funded Center of Excellence grant for Education , Research and Engineering: The number of undergraduates funded by your agreement who graduated during...computer models and 3D printed ant robots are shown below. Snake Bot We used the 3D printed to rapidly design a modular, easily-modified snake
Indian Academy of Sciences (India)
Limit: (of a sequence) A point such that the points of the sequence eventually approach it to within any previously specified distance. Some of the Greek mathematicians were quite confused! For example, let us take an empty cup and put it under a tap. Assume that it is half full in a minute. It is then 3/4-th full in another half.
Indian Academy of Sciences (India)
cartographer in the days before aerial travel) can determine the curvature. Hence the beauty of a surface is skin deep and yet is naturally associated with it! SERIES I ARTICLE cartographic surveys he was carrying out for the ruler of Germany) gave a new interpretation to Euler's theory. First consider the length of the vector t ...
Indian Academy of Sciences (India)
In order to utilise this Descartes devised the following scheme. By. fIXing a point, the origin, on a line it becomes possible to talk of a directed distance as a positive or negative number depending on whether the end point is to one or the other side of the origin. Similarly, he assigned a pair of numbers to every point of the.
Reproducible and deterministic production of aspheres
Leitz, Ernst Michael; Stroh, Carsten; Schwalb, Fabian
2015-10-01
Aspheric lenses are ground in a single point cutting mode. Subsequently different iterative polishing methods are applied followed by aberration measurements on external metrology instruments. For an economical production, metrology and correction steps need to be reduced. More deterministic grinding and polishing is mandatory. Single point grinding is a path-controlled process. The quality of a ground asphere is mainly influenced by the accuracy of the machine. Machine improvements must focus on path accuracy and thermal expansion. Optimized design, materials and thermal management reduce thermal expansion. The path accuracy can be improved using ISO 230-2 standardized measurements. Repeated interferometric measurements over the total travel of all CNC axes in both directions are recorded. Position deviations evaluated in correction tables improve the path accuracy and that of the ground surface. Aspheric polishing using a sub-aperture flexible polishing tool is a dwell time controlled process. For plano and spherical polishing the amount of material removal during polishing is proportional to pressure, relative velocity and time (Preston). For the use of flexible tools on aspheres or freeform surfaces additional non-linear components are necessary. Satisloh ADAPT calculates a predicted removal function from lens geometry, tool geometry and process parameters with FEM. Additionally the tooĺs local removal characteristics is determined in a simple test. By oscillating the tool on a plano or spherical sample of the same lens material, a trench is created. Its 3-D profile is measured to calibrate the removal simulation. Remaining aberrations of the desired lens shape can be predicted, reducing iteration and metrology steps.
The geometry of Strombolian explosions: insights from Doppler radar measurements
Gouhier, Mathieu; Donnadieu, Franck
2010-12-01
Observations of Strombolian volcanic explosions were carried out at Etna's southeast crater on 2001 July 4 using a ground-based pulsed Doppler radar (VOLDORAD). To obtain quantitative constraints on the geometry of the explosions, we modelled synthetic Doppler spectra by combining the outputs of a ballistic model to compute the theoretical velocities of gas and particles, and an electromagnetic scattering model to calculate the synthetic echo power. This allowed us to reproduce the shapes of recorded Doppler spectra for each volcanic explosion. We examined the geometrical distribution of ejected pyroclasts for about 200 explosions and found two main types of explosion, each showing a distinctive spectral signature. The first type, characterized by the triangular shape of their Doppler spectra, represents 34 per cent of the explosions. This spectrum shape is related to a Gaussian distribution of the pyroclast ejection angles, where most of the volcanic material is ejected vertically within a narrow cone, with the particle concentration decreasing radially. The second type represents about 12 per cent of the explosions, and is characterized by a top-hat-shaped spectrum. It is produced by a uniform distribution of pyroclast ejection angles. In this case, the bubbles tend to burst above the crater rim and eject the ballistic clasts hemispherically without preferential orientation. The majority of the Strombolian explosions analysed (54 per cent) are intermediate between these end-member shapes, and show a triangular spectra truncated by a plateau. They result from a uniform distribution of ejection angles around the jet axis. The continuous radar recordings allowed us to carry out a statistical analysis on the geometrical features of the same 200 Strombolian explosions. Thus we find that 40° is a statistically representative aperture of the dispersion cone characterized by uniform ejecta distribution for explosions having a plateau component (i.e. 2/3 of all
Energy Technology Data Exchange (ETDEWEB)
Alexander S. Rattner; Donna Post Guillen; Alark Joshi
2012-12-01
Photo- and physically-realistic techniques are often insufficient for visualization of simulation results, especially for 3D and time-varying datasets. Substantial research efforts have been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. While these efforts have yielded valuable visualization results, a great deal of work has been reproduced in studies as individual research groups often develop purpose-built platforms. Additionally, interoperability between illustrative visualization software is limited due to specialized processing and rendering architectures employed in different studies. In this investigation, a generalized framework for illustrative visualization is proposed, and implemented in marmotViz, a ParaView plugin, enabling its use on variety of computing platforms with various data file formats and mesh geometries. Detailed descriptions of the region-of-interest identification and feature-tracking algorithms incorporated into this tool are provided. Additionally, implementations of multiple illustrative effect algorithms are presented to demonstrate the use and flexibility of this framework. By providing a framework and useful underlying functionality, the marmotViz tool can act as a springboard for future research in the field of illustrative visualization.
Geometry of Superluminal Light-Echo Pair Events
Nemiroff, Robert J.
2017-01-01
Light echoes, shadows, and ionization fronts can and do move faster than light, both in the lab and out in the cosmos. In general, though, a single observer cannot tell the speed of such echoes without distance information -- unless a very specific geometry arises: the radial component crosses c. The observer then sees this crossing location as the site where a pair of bright light echoes is created or annihilated. This pair event tells the observer that a precise speed occurs, a speed that does not scale with distance and so can potentially be leveraged to reveal geometry and distance information. A few simple scattering surface geometries are shown illuminated by a point flash, including linear and circular filaments. In practice, useful astronomical flash sources include novae and supernovae, although in theory any uniquely varying source of stellar variability could be sufficient.
Response to Comment on "Estimating the reproducibility of psychological science"
Anderson, Christopher J; Bahník, Štěpán; Barnett-Cowan, Michael; Bosco, Frank A; Chandler, Jesse; Chartier, Christopher R; Cheung, Felix; Christopherson, Cody D; Cordes, Andreas; Cremata, Edward J; Della Penna, Nicolas; Estel, Vivien; Fedor, Anna; Fitneva, Stanka A; Frank, Michael C; Grange, James A; Hartshorne, Joshua K; Hasselman, Fred; Henninger, Felix; van der Hulst, Marije; Jonas, Kai J; Lai, Calvin K; Levitan, Carmel A; Miller, Jeremy K; Moore, Katherine S; Meixner, Johannes M; Munafò, Marcus R; Neijenhuijs, Koen I; Nilsonne, Gustav; Nosek, Brian A; Plessow, Franziska; Prenoveau, Jason M; Ricker, Ashley A; Schmidt, Kathleen; Spies, Jeffrey R; Stieger, Stefan; Strohminger, Nina; Sullivan, Gavin B; van Aert, Robbie C M; van Assen, Marcel A L M; Vanpaemel, Wolf; Vianello, Michelangelo; Voracek, Martin; Zuni, Kellylynn
2016-01-01
Gilbert et al. conclude that evidence from the Open Science Collaboration's Reproducibility Project: Psychology indicates high reproducibility, given the study methodology. Their very optimistic assessment is limited by statistical misconceptions and by causal inferences from selectively
Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?
Directory of Open Access Journals (Sweden)
Seppo E. Iso-Ahola
2017-06-01
Full Text Available Scientific evidence has recently been used to assert that certain psychological phenomena do not exist. Such claims, however, cannot be made because (1 scientific method itself is seriously limited (i.e., it can never prove a negative; (2 non-existence of phenomena would require a complete absence of both logical (theoretical and empirical support; even if empirical support is weak, logical and theoretical support can be strong; (3 statistical data are only one piece of evidence and cannot be used to reduce psychological phenomena to statistical phenomena; and (4 psychological phenomena vary across time, situations and persons. The human mind is unreproducible from one situation to another. Psychological phenomena are not particles that can decisively be tested and discovered. Therefore, a declaration that a phenomenon is not real is not only theoretically and empirically unjustified but runs counter to the propositional and provisional nature of scientific knowledge. There are only “temporary winners” and no “final truths” in scientific knowledge. Psychology is a science of subtleties in human affect, cognition and behavior. Its phenomena fluctuate with conditions and may sometimes be difficult to detect and reproduce empirically. When strictly applied, reproducibility is an overstated and even questionable concept in psychological science. Furthermore, statistical measures (e.g., effect size are poor indicators of the theoretical importance and relevance of phenomena (cf. “deliberate practice” vs. “talent” in expert performance, not to mention whether phenomena are real or unreal. To better understand psychological phenomena, their theoretical and empirical properties should be examined via multiple parameters and criteria. Ten such parameters are suggested.
Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?
Iso-Ahola, Seppo E
2017-01-01
Scientific evidence has recently been used to assert that certain psychological phenomena do not exist. Such claims, however, cannot be made because (1) scientific method itself is seriously limited (i.e., it can never prove a negative); (2) non-existence of phenomena would require a complete absence of both logical (theoretical) and empirical support; even if empirical support is weak, logical and theoretical support can be strong; (3) statistical data are only one piece of evidence and cannot be used to reduce psychological phenomena to statistical phenomena; and (4) psychological phenomena vary across time, situations and persons. The human mind is unreproducible from one situation to another. Psychological phenomena are not particles that can decisively be tested and discovered. Therefore, a declaration that a phenomenon is not real is not only theoretically and empirically unjustified but runs counter to the propositional and provisional nature of scientific knowledge. There are only "temporary winners" and no "final truths" in scientific knowledge. Psychology is a science of subtleties in human affect, cognition and behavior. Its phenomena fluctuate with conditions and may sometimes be difficult to detect and reproduce empirically. When strictly applied, reproducibility is an overstated and even questionable concept in psychological science. Furthermore, statistical measures (e.g., effect size) are poor indicators of the theoretical importance and relevance of phenomena (cf. "deliberate practice" vs. "talent" in expert performance), not to mention whether phenomena are real or unreal. To better understand psychological phenomena, their theoretical and empirical properties should be examined via multiple parameters and criteria. Ten such parameters are suggested.
Reproducibility of adolescent sedentary activity questionnaire (ASAQ in Brazilian adolescents
Directory of Open Access Journals (Sweden)
Roseane de Fátima Guimarães
2013-04-01
Full Text Available The aim of this studywas to assess the validity and reproducibility of a self report questionnaire on sedentary behavior (Adolescent Sedentary Activity Questionnaire: ASAQ among Brazilian adolescents. The sample consisted of 122 adolescents (62 females aged between 12 and 17 years. ASAQ was developed and validated for adolescents in Australia (Hardy et al, 2007, and for its use in Brazil a transcultural adaptation to Portuguese was done, followed by an assessment of ASAQ’s contents by experts. Then, ASAQ was administered within schools, on a typical school day, followed by a retest administration four days later. Total sedentary time was calculated for weekdays and weekends. Total sedentary time was calculated for weekdays and weekends. Intra-class correlation coefficient (ICC and confidence interval (CI95% were calculated for both sexes. QASA (acronym for ASAQ Portuguese version has 13 questions divided into five categories: screen recreation, educational, transportation, cultural activities, and social activities. ICC for total time spent on sedentary behavior was 0,88(CI95%=0.82-0.91 for weekdays, and 0,77 (CI95%= 0.68-0.84 for weekends. Between categories of sedentary behavior, ICC values varied from 0.75(CI95%=0.65-0.83 for transportation to 0.94 (CI95%=0.92-0.96 for screen recreation on weekdays, and from 0.40 (CI95%=0.15-0.58 for transportation to0.90 (CI95%=0.86-0.93 for screen recreation on weekends. In general, ASAQ hada satisfactory reproducibility for the assessment of sedentary behaviors among young people in Brazil.
Reproducibility of corpus cavernosum electromyography in healthy young man
Jiang, X.; Frantzen, J.; Holsheimer, J.; Meuleman, E.
2005-01-01
Research on reproducibility of corpus cavernosum electromyography (CC-EMG) is relevant because reproducible signals indicate a biological phenomenon and not an artefact. Reproducible signals are also required to use CC-EMG as a diagnostic tool for erectile dysfunction. The aim of this study was to
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Geometry of area without length
Ho, Pei-Ming; Inami, Takeo
2016-01-01
To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
The geometry of celestial mechanics
Geiges, Hansjörg
2016-01-01
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Differential geometry and mathematical physics
Rudolph, Gerd
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Hyperbolic geometry for colour metrics.
Farup, Ivar
2014-05-19
It is well established from both colour difference and colour order perpectives that the colour space cannot be Euclidean. In spite of this, most colour spaces still in use today are Euclidean, and the best Euclidean colour metrics are performing comparably to state-of-the-art non-Euclidean metrics. In this paper, it is shown that a transformation from Euclidean to hyperbolic geometry (i.e., constant negative curvature) for the chromatic plane can significantly improve the performance of Euclidean colour metrics to the point where they are statistically significantly better than state-of-the-art non-Euclidean metrics on standard data sets. The resulting hyperbolic geometry nicely models both qualitatively and quantitatively the hue super-importance phenomenon observed in colour order systems.
Groups and Geometries : Siena Conference
Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria
1998-01-01
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...
General Relativity by Kawaguchi geometry
Directory of Open Access Journals (Sweden)
Tanaka Erico
2013-09-01
Full Text Available We construct a parameterisation invariant Lagrange theory of fields up to second order by using multivector bundles and Kawaguchi geometry. In this setup, the spacetime is an dynamical object which is a submanifold of the greater manifold, and the actual spacetime is the solution of Euler-Lagrange equations. Such theory is a reasonable mathematical foundation to describe an extended theory of Einstein’s general relativity, and is capable of being a stage for unification with other physical fields.
Geometry Dependence of Stellarator Turbulence
Energy Technology Data Exchange (ETDEWEB)
H.E. Mynick, P. Xanthopoulos and A.H. Boozer
2009-08-10
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.
Topics in modern differential geometry
Verstraelen, Leopold
2017-01-01
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Introduction to geometry and relativity
2013-01-01
This book provides a lucid introduction to both modern differential geometry and relativity for advanced undergraduates and first-year graduate students of applied mathematics and physical sciences. This book meets an overwhelming need for a book on modern differential geometry and relativity that is student-friendly, and which is also suitable for self-study. The book presumes a minimal level of mathematical maturity so that any student who has completed the standard Calculus sequence should be able to read and understand the book. The key features of the book are: Detailed solutions are provided to the Exercises in each chapter; Many of the missing steps that are often omitted from standard mathematical derivations have been provided to make the book easier to read and understand; A detailed introduction to Electrodynamics is provided so that the book is accessible to students who have not had a formal course in this area; In its treatment of modern differential geometry, the book employs both a modern, c...
Aspects of differential geometry II
Gilkey, Peter
2015-01-01
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...
Reproducibility of neuroimaging analyses across operating systems.
Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C
2015-01-01
Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.
The origin of replicators and reproducers
Szathmáry, Eörs
2006-01-01
Replicators are fundamental to the origin of life and evolvability. Their survival depends on the accuracy of replication and the efficiency of growth relative to spontaneous decay. Infrabiological systems are built of two coupled autocatalytic systems, in contrast to minimal living systems that must comprise at least a metabolic subsystem, a hereditary subsystem and a boundary, serving respective functions. Some scenarios prefer to unite all these functions into one primordial system, as illustrated in the lipid world scenario, which is considered as a didactic example in detail. Experimentally produced chemical replicators grow parabolically owing to product inhibition. A selection consequence is survival of everybody. The chromatographized replicator model predicts that such replicators spreading on surfaces can be selected for higher replication rate because double strands are washed away slower than single strands from the surface. Analysis of real ribozymes suggests that the error threshold of replication is less severe by about one order of magnitude than thought previously. Surface-bound dynamics is predicted to play a crucial role also for exponential replicators: unlinked genes belonging to the same genome do not displace each other by competition, and efficient and accurate replicases can spread. The most efficient form of such useful population structure is encapsulation by reproducing vesicles. The stochastic corrector model shows how such a bag of genes can survive, and what the role of chromosome formation and intragenic recombination could be. Prebiotic and early evolution cannot be understood without the models of dynamics. PMID:17008217
Laryngeal Electromyography: Are the Results Reproducible?
Crespo, Agrício N; Kimaid, Paulo A T; Machado Júnior, Almiro José; Wolf, Aline E
2015-07-01
Laryngeal electromyography (LEMG) is an auxiliary diagnostic technique that is used to study neurologic diseases that affect the larynx. This study aimed to verify the reproducibility and accordance of LEMG findings obtained by different approaches applied to the same intrinsic laryngeal muscle in patients with neurologic disorders of the larynx. This study is prospective, blind, randomized, and controlled. Forty subjects (20 males and 20 females) aged between 21 and 78 years underwent LEMG of the thyroarytenoid muscles by different techniques, with a total of 120 insertion sites for analysis. The electrophysiological findings were grouped as follows: (1) equal LEMG findings; (2) different LEMG findings but in agreement on the same electromyographic pattern; and (3) different LEMG findings and in discord on the same electromyographic pattern. We found 5% discordance in the LEMG findings between the sites analyzed. LEMG is an important and useful technique, but caution must be taken to avoid misinterpretation and the wrong muscle approach. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Workflow to numerically reproduce laboratory ultrasonic datasets
Directory of Open Access Journals (Sweden)
A. Biryukov
2014-12-01
Full Text Available The risks and uncertainties related to the storage of high-level radioactive waste (HLRW can be reduced thanks to focused studies and investigations. HLRWs are going to be placed in deep geological repositories, enveloped in an engineered bentonite barrier, whose physical conditions are subjected to change throughout the lifespan of the infrastructure. Seismic tomography can be employed to monitor its physical state and integrity. The design of the seismic monitoring system can be optimized via conducting and analyzing numerical simulations of wave propagation in representative repository geometry. However, the quality of the numerical results relies on their initial calibration. The main aim of this paper is to provide a workflow to calibrate numerical tools employing laboratory ultrasonic datasets. The finite difference code SOFI2D was employed to model ultrasonic waves propagating through a laboratory sample. Specifically, the input velocity model was calibrated to achieve a best match between experimental and numerical ultrasonic traces. Likely due to the imperfections of the contact surfaces, the resultant velocities of P- and S-wave propagation tend to be noticeably lower than those a priori assigned. Then, the calibrated model was employed to estimate the attenuation in a montmorillonite sample. The obtained low quality factors (Q suggest that pronounced inelastic behavior of the clay has to be taken into account in geophysical modeling and analysis. Consequently, this contribution should be considered as a first step towards the creation of a numerical tool to evaluate wave propagation in nuclear waste repositories.
Directory of Open Access Journals (Sweden)
Hirpara Kieran M
2011-07-01
Full Text Available Abstract Background Tensioning of anterior cruciate ligament (ACL reconstruction grafts affects the clinical outcome of the procedure. As yet, no consensus has been reached regarding the optimum initial tension in an ACL graft. Most surgeons rely on the maximal sustained one-handed pull technique for graft tension. We aim to determine if this technique is reproducible from patient to patient. Findings We created a device to simulate ACL reconstruction surgery using Ilizarov components and porcine flexor tendons. Six experienced ACL reconstruction surgeons volunteered to tension porcine grafts using the device to see if they could produce a consistent tension. None of the surgeons involved were able to accurately reproduce graft tension over a series of repeat trials. Conclusions We conclude that the maximal sustained one-handed pull technique of ACL graft tensioning is not reproducible from trial to trial. We also conclude that the initial tension placed on an ACL graft varies from surgeon to surgeon.
LENUS (Irish Health Repository)
O'Neill, Barry J
2011-07-20
Abstract Background Tensioning of anterior cruciate ligament (ACL) reconstruction grafts affects the clinical outcome of the procedure. As yet, no consensus has been reached regarding the optimum initial tension in an ACL graft. Most surgeons rely on the maximal sustained one-handed pull technique for graft tension. We aim to determine if this technique is reproducible from patient to patient. Findings We created a device to simulate ACL reconstruction surgery using Ilizarov components and porcine flexor tendons. Six experienced ACL reconstruction surgeons volunteered to tension porcine grafts using the device to see if they could produce a consistent tension. None of the surgeons involved were able to accurately reproduce graft tension over a series of repeat trials. Conclusions We conclude that the maximal sustained one-handed pull technique of ACL graft tensioning is not reproducible from trial to trial. We also conclude that the initial tension placed on an ACL graft varies from surgeon to surgeon.
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Geometry success in 20 minutes a day
LLC, LearningExpress
2014-01-01
Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr
Experimental challenges to reproduce seismic fault motion
Shimamoto, T.
2011-12-01
This presentation briefly reviews scientific and technical development in the studies of intermediate to high-velocity frictional properties of faults and summarizes remaining technical challenges to reproduce nucleation to growth processes of large earthquakes in laboratory. Nearly 10 high-velocity or low to high-velocity friction apparatuses have been built in the last several years in the world and it has become possible now to produce sub-plate velocity to seismic slip rate in a single machine. Despite spreading of high-velocity friction studies, reproducing seismic fault motion at high P and T conditions to cover the entire seismogenic zone is still a big challenge. Previous studies focused on (1) frictional melting, (2) thermal pressurization, and (3) high-velocity gouge behavior without frictional melting. Frictional melting process was solved as a Stefan problem with very good agreement with experimental results. Thermal pressurization has been solved theoretically based on measured transport properties and has been included successfully in the modeling of earthquake generation. High-velocity gouge experiments in the last several years have revealed that a wide variety of gouges exhibit dramatic weakening at high velocities (e.g., Di Toro et al., 2011, Nature). Most gouge experiments were done under dry conditions partly to separate gouge friction from the involvement of thermal pressurization. However, recent studies demonstrated that dehydration or degassing due to mineral decomposition can occur during seismic fault motion. Those results not only provided a new view of looking at natural fault zones in search of geological evidence of seismic fault motion, but also indicated that thermal pressurization and gouge weakening can occur simultaneously even in initially dry gouge. Thus experiments with controlled pore pressure are needed. I have struggled to make a pressure vessel for wet high-velocity experiments in the last several years. A technical
van den Berkmortel, F; Wollersheim, H; van Langen, H; Thien, T
1998-06-01
To determine reproducibility figures of dynamic arterial wall properties such as cross-sectional compliance (CC) and distensibility (DC) in subjects with increased cardiovascular risk, in comparison with healthy adults. A total of 34 persons were divided into three groups with varying cardiovascular risk factors. Diameters (D) and diameter changes (deltaD) during the heart cycle of both common carotid (CCA) and right common femoral (CFA) arteries were measured by a vessel wall movement detector system. Blood pressures (BP) were recorded non-invasively by a semi-automated oscillometric device. CC (=piD(deltaD/2deltaP) in unit mm2/kPa) and DC (=2deltaD/D)/deltaP in unit 10(-3)/kPa) were calculated from the above-mentioned parameters. Measurements were performed twice during one visit and twice again with a time interval of at least 3 days to determine intra-observer intra- and intersession variability. Reproducibility figures of CC and DC of the CCA varied between 8 and 12%, and between 13 and 22% for the CFA. Intra-observer intra- and intersession variability were similar in the three groups. In our studies the reproducibility of dynamic vascular wall properties determined by ultrasound was good. Despite differences in the absolute values for CC and DC in groups with increased cardiovascular risk, mean reproducibility figures remained at a similar level (8-12%) as in healthy volunteers.
Vibration Analysis of Composite Beams with Sinusoidal Periodically Varying Interfaces
Li, Botong; Liu, Chein-Shan; Zhu, Liangliang
2017-12-01
As an increasing variety of composite materials with complex interfaces are emerging, we develop a theory to investigate composite beams and shed some light on new physical insights into composite beams with sinusoidal periodically varying interfaces. For the natural vibration of composite beams with continuous or periodically varying interfaces, the governing equation has been derived according to the generalised Hamiltonian principle. For composite beams having different boundary conditions, we transform the governing equations into integral equations and solve them by using the sinusoidal functions as test functions as well as the basis of the vibration modes. Due to the orthogonality of the sinusoidal functions, expansion coefficients in closed form can be found. Therefore, the proposed iterative schemes, with the help of the Rayleigh quotient and boundary functions, can quickly find the eigenvalues and free vibration modes. The obtained natural frequencies agree well with those obtained using the finite element method. In addition, the proposed method can be extended easily to laminated composite beams in more general cases or complex components and geometries in vibration engineering. The effects of different material properties of the upper and lower components and varying interface geometry function on the frequency of the composite beams are examined. According to our investigation, the natural frequency of a laminated beam with a continuous or periodically varying interface can be changed by altering the density or elastic modulus. We also show the responses of the frequencies of the components to the varying periodic interface.
Slab2 - Updated subduction zone geometries and modeling tools
Portner, D. E.; Hayes, G. P.; Furtney, M.; Moore, G.; Flamme, H. E.; Hearne, M. G.
2016-12-01
The U.S. Geological Survey database of global subduction zone geometries (Slab1.0) combines a variety of geophysical data sets (earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow subduction zone, bathymetry, trench locations, and sediment thickness information) to image the shape of subducting slabs in three dimensions, at approximately 85% of the world's convergent margins. The database is used extensively for a variety of purposes from earthquake source imaging to magnetotelluric modeling. Gaps in Slab1.0 exist where input data are sparse and/or where slabs are geometrically complex (and difficult to image with an automated approach). Slab1.0 also does not include information on the uncertainty in the modeled geometrical parameters, or the input data used to image them, and provides no means for others to reproduce the models it describes. Now near completion, Slab2 will update and replace Slab1.0 by: (1) extending modeled slab geometries to the full extent of all known global subduction zones; (2) incorporating regional data sets (e.g., tomography models) that may describe slab geometry more comprehensively than do previously used teleseismic data; (3) providing information on the uncertainties in each modeled slab surface; (4) modifying our modeling approach to a fully-three dimensional data interpolation, rather than following the 2-D to 3-D steps of Slab1.0; (5) adding further layers to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling; (6) migrating the slab modeling code base to a more universally distributable language, Python; and (7) providing the code base and input data we use to create our models, such that the community can both reproduce the slab geometries, and add their own data sets to ours to further improve upon those models in the future. In this presentation we will describe our progress made in creating Slab2, and provide information on
Modelling and simulation of gas explosions in complex geometries
Energy Technology Data Exchange (ETDEWEB)
Saeter, Olav
1998-12-31
This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.
Blow-Ups in Generalized Complex Geometry
van der Leer Duran, J.L.
2016-01-01
Generalized complex geometry is a theory that unifies complex geometry and symplectic geometry into one single framework. It was introduced by Hitchin and Gualtieri around 2002. In this thesis we address the following question: given a generalized complex manifold together with a submanifold, does
Geometry in the Early Years: A Commentary
Dindyal, Jaguthsing
2015-01-01
The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
Directory of Open Access Journals (Sweden)
Bruchholz U. E.
2009-10-01
Full Text Available The geometry of the space-time is deduced from gravitational and electromagnetic fields. We have to state that Rainich's "already unified field theory" is the ground work of the proposed theory. The latter is deduced independently on Rainich. Rainich's analogies are brilliantly validated. His formulae are verified this way. Further reaching results and insights demonstrate that Rainich's theory is viable. In final result, we can formulate an enhanced equivalence principle. It is the equivalence of Newton's force with the Lorentz force.
The Geometry Of Preposition Meanings
Directory of Open Access Journals (Sweden)
Peter Gärdenfors
2015-12-01
Full Text Available This article presents a unified approach to the semantics of prepositions based on the theory of conceptual spaces. Following the themes of my recent book The Geometry of Meaning, I focus on the convexity of their meanings and on which semantic domains are expressed by prepositions. As regards convexity, using polar coordinates turns out to provide the most natural representation. In addition to the spatial domain, I argue that for many prepositions, the force domain is central. In contrast to many other analyses, I also defend the position that prepositions have a central meaning and that other meanings can be derived via a limited class of semantic transformations.
The geometry of musical chords.
Tymoczko, Dmitri
2006-07-07
A musical chord can be represented as a point in a geometrical space called an orbifold. Line segments represent mappings from the notes of one chord to those of another. Composers in a wide range of styles have exploited the non-Euclidean geometry of these spaces, typically by using short line segments between structurally similar chords. Such line segments exist only when chords are nearly symmetrical under translation, reflection, or permutation. Paradigmatically consonant and dissonant chords possess different near-symmetries and suggest different musical uses.
Porous media geometry and transports
Adler, Pierre
1992-01-01
The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr
Integral geometry and representation theory
Gel'fand, I M; Vilenkin, N Ya
1966-01-01
Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one.This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of comp
Projective differential geometry of submanifolds
Akivis, M A
1993-01-01
In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are s
An invitation to noncommutative geometry
Marcolli, Matilde
2008-01-01
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke
Projective geometry and projective metrics
Busemann, Herbert
2005-01-01
The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio
Number Theory, Analysis and Geometry
Goldfeld, Dorian; Jones, Peter
2012-01-01
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
Exceptional geometry and Borcherds superalgebras
Energy Technology Data Exchange (ETDEWEB)
Palmkvist, Jakob [Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843 (United States)
2015-11-05
We study generalized diffeomorphisms in exceptional geometry with U-duality group E{sub n(n)} from an algebraic point of view. By extending the Lie algebra e{sub n} to an infinite-dimensional Borcherds superalgebra, involving also the extension to e{sub n+1}, the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n≤7. The closure of the transformations then follows from the Jacobi identity and the grading of e{sub n+1} with respect to e{sub n}.
Exceptional geometry and Borcherds superalgebras
Palmkvist, Jakob
2015-11-01
We study generalized diffeomorphisms in exceptional geometry with U-duality group E n( n) from an algebraic point of view. By extending the Lie algebra {e}_n to an infinite-dimensional Borcherds superalgebra, involving also the extension to {e}_{n+1} , the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n ≤ 7. The closure of the transformations then follows from the Jacobi identity and the grading of {e}_{n+1} with respect to {e}_n.
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Precision and reproducibility in AMS radiocarbon measurements.
Energy Technology Data Exchange (ETDEWEB)
Hotchkis, M.A.; Fink, D.; Hua, Q.; Jacobsen, G.E.; Lawson, E. M.; Smith, A.M.; Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)
1996-12-31
Accelerator Mass Spectrometry (AMS) is a technique by which rare radioisotopes such as {sup 14}C can be measured at environmental levels with high efficiency. Instead of detecting radioactivity, which is very weak for long-lived environmental radioisotopes, atoms are counted directly. The sample is placed in an ion source, from which a negative ion beam of the atoms of interest is extracted, mass analysed, and injected into a tandem accelerator. After stripping to positive charge states in the accelerator HV terminal, the ions are further accelerated, analysed with magnetic and electrostatic devices and counted in a detector. An isotopic ratio is derived from the number of radioisotope atoms counted in a given time and the beam current of a stable isotope of the same element, measured after the accelerator. For radiocarbon, {sup 14}C/{sup 13}C ratios are usually measured, and the ratio of an unknown sample is compared to that of a standard. The achievable precision for such ratio measurements is limited primarily by {sup 14}C counting statistics and also by a variety of factors related to accelerator and ion source stability. At the ANTARES AMS facility at Lucas Heights Research Laboratories we are currently able to measure {sup 14}C with 0.5% precision. In the two years since becoming operational, more than 1000 {sup 14}C samples have been measured. Recent improvements in precision for {sup 14}C have been achieved with the commissioning of a 59 sample ion source. The measurement system, from sample changing to data acquisition, is under common computer control. These developments have allowed a new regime of automated multi-sample processing which has impacted both on the system throughput and the measurement precision. We have developed data evaluation methods at ANTARES which cross-check the self-consistency of the statistical analysis of our data. Rigorous data evaluation is invaluable in assessing the true reproducibility of the measurement system and aids in
Computational geometry algorithms and applications
de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried
1997-01-01
Computational geometry emerged from the field of algorithms design and anal ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...
Fuzzy Logic for Incidence Geometry
2016-01-01
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133
Entanglement classification with algebraic geometry
Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.
2017-05-01
We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.
Foundations of arithmetic differential geometry
Buium, Alexandru
2017-01-01
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Energy Technology Data Exchange (ETDEWEB)
Chai, J.C.; Patankar, S.V. (Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering); Lee, H.S. (NASA, Cleveland, OH (United States). Lewis Research Center)
1994-09-01
This article presents a blocked-off-region procedure to model radiative transfer in irregular geometries using a Cartesian coordinates finite-column method (FVM). Straight-edged, inclined and curved boundaries can be treated. It is capable of handling participating or transparent media enclosed by black or reflecting walls. With this procedure, irregular geometries can be specified through the problem specification portion of the program. Four test problems are used to show that the procedure is capable of reproducing available results for inclined and curved walls, transparent, nonscattering, and anisotropically scattering media.
Reproducibility in density functional theory calculations of solids
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn; Blaha, Peter; Blügel, Stefan; Blum, Volker; Caliste, Damien; Castelli, Ivano E.; Clark, Stewart J; Dal Corso, Andrea; de Gironcoli, Stefano; Deutsch, Thierry; Dewhurst, John Kay; Di Marco, Igor; Draxl, Claudia
2016-01-01
NTRODUCTION The reproducibility of results is one of the underlying principles of science. An observation can only be accepted by the scientific community when it can be confirmed by independent studies. However, reproducibility does not come easily. Recent works have painfully exposed cases where previous conclusions were not upheld. The scrutiny of the scientific community has also turned to research involving computer programs, finding that reproducibility depends more strongly on imple...
Interobserver reproducibility of radiographic evaluation of lumbar spine instability.
Segundo, Saulo de Tarso de Sá Pereira; Valesin, Edgar Santiago; Lenza, Mario; Santos, Durval do Carmo Barros; Rosemberg, Laercio Alberto; Ferretti, Mario
2016-01-01
To measure the interobserver reproducibility of the radiographic evaluation of lumbar spine instability. Measurements of the dynamic radiographs of the lumbar spine in lateral view were performed, evaluating the anterior translation and the angulation among the vertebral bodies. The tests were evaluated at workstations of the organization, through the Carestream Health Vue RIS (PACS), version 11.0.12.14 Inc. 2009© system. Agreement in detecting cases of radiographic instability among the observers varied from 88.1 to 94.4%, and the agreement coefficients AC1 were all above 0.8, indicating excellent agreement. The interobserver analysis performed among orthopedic surgeons with different levels of training in dynamic radiographs of the spine obtained high reproducibility and agreement. However, some factors, such as the manual method of measurement and the presence of vertebral osteophytes, might have generated a few less accurate results in this comparative evaluation of measurements. Mensurar a reprodutibilidade interobservadores da avaliação radiográfica da instabilidade da coluna lombar. Foram realizadas mensurações das radiografias dinâmicas de coluna lombar na incidência em perfil, avaliando-se a translação anterior e a angulação entre os corpos vertebrais. Os exames foram avaliados em workstations da própria instituição, por meio do sistema Vue RIS (PACS) da Carestream Health, versão 11.0.12.14 Inc. 2009©. A proporção de concordância em detecção de casos de instabilidade radiográfica entre os observadores variou de 88,1 a 94,4%, e os coeficientes de concordância AC1 estiveram todos acima de 0,8, indicando concordância excelente. A análise interobservadores realizada entre médicos ortopedistas com diferentes níveis de treinamento em radiografias dinâmicas da coluna vertebral obteve elevada reprodutibilidade e concordância. No entanto, alguns fatores, como método manual de aferição e a presença de osteófitos vertebrais, podem
Reproducibility of single-subject functional connectivity measurements
National Research Council Canada - National Science Library
Anderson, J S; Ferguson, M A; Lopez-Larson, M; Yurgelun-Todd, D
2011-01-01
.... We collected data to characterize how much imaging time is necessary to obtain reproducible quantitative functional connectivity measurements needed for a reliable single-subject diagnostic test...
Layout for Assessing Dynamic Posture: Development, Validation, and Reproducibility.
Noll, Matias; Candotti, Cláudia Tarragô; da Rosa, Bruna Nichele; Sedrez, Juliana Adami; Vieira, Adriane; Loss, Jefferson Fagundes
2016-01-01
To determine the psychometric properties of the layout for assessing dynamic posture (LADy). The study was divided into 2 phases: (1) development of the instrument and (2) determination of validity and reproducibility. The LADy was designed to evaluate the position adopted in 9 dynamic postures. The results confirmed the validity and reproducibility of the instrument. From a total of 51 criteria assessing 9 postures, 1 was rejected. The reproducibility for each of the criteria was classified as moderate to excellent. The LADy constitutes a valid and reproducible instrument for the evaluation of dynamic postures in children 11 to 17 years old. It is low cost and applicable in the school environment.
General construction of reproducing kernels on a quaternionic Hilbert space
Thirulogasanthar, K.; Ali, S. Twareque
A general theory of reproducing kernels and reproducing kernel Hilbert spaces on a right quaternionic Hilbert space is presented. Positive operator-valued measures and their connection to a class of generalized quaternionic coherent states are examined. A Naimark type extension theorem associated with the positive operator-valued measures is proved in a right quaternionic Hilbert space. As illustrative examples, real, complex and quaternionic reproducing kernels and reproducing kernel Hilbert spaces arising from Hermite and Laguerre polynomials are presented. In particular, in the Laguerre case, the Naimark type extension theorem on the associated quaternionic Hilbert space is indicated.
Einstein Equations from Varying Complexity
Czech, Bartłomiej
2018-01-01
A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einstein's equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Kinematic dynamos in spheroidal geometries
Ivers, D. J.
2017-10-01
The kinematic dynamo problem is solved numerically for a spheroidal conducting fluid of possibly large aspect ratio with an insulating exterior. The solution method uses solenoidal representations of the magnetic field and the velocity by spheroidal toroidal and poloidal fields in a non-orthogonal coordinate system. Scaling of coordinates and fields to a spherical geometry leads to a modified form of the kinematic dynamo problem with a geometric anisotropic diffusion and an anisotropic current-free condition in the exterior, which is solved explicitly. The scaling allows the use of well-developed spherical harmonic techniques in angle. Dynamo solutions are found for three axisymmetric flows in oblate spheroids with semi-axis ratios 1≤a/c≤25. For larger aspect ratios strong magnetic fields may occur in any region of the spheroid, depending on the flow, but the external fields for all three flows are weak and concentrated near the axis or periphery of the spheroid.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Spinors in Physics and Geometry
Trautman, A.; Furlan, G.
1988-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Killing Spinors According to O. Hijazi and Applications * Self-Duality Conditions Satisfied by the Spin Connections on Spheres * Maslov Index and Half - Forms * Spin - 3/2 Fields on Black Hole Spacetimes * Indecomposable Conformal Spinors and Operator Product Expansions in a Massless QED Model * Nonlinear Spinor Representations * Nonlinear Wave Equations for Intrinsic Spinor Coordinates * Twistors - "Spinors" of SU(2,2), Their Generalizations and Achievements * Spinors, Reflections and Clifford Algebras: A Review * overline {SL}(n, R) Spinors for Particles, Gravity and Superstrings * Spinors on Compact Riemann Surfaces * Simple Spinors as Urfelder * Applications of Cartan Spinors to Differential Geometry in Higher Dimensions * Killing Spinors on Spheres and Projective Spaces * Spinor Structures on Homogeneous Riemannian Spaces * Classical Strings and Minimal Surfaces * Representing Spinors with Differential Forms * Inequalities for Spinors Norms in Clifford Algebras * The Importance of Spin * The Theory of World Spinors * Final List of Participants
The geometry of dynamical triangulations
Ambjørn, Jan; Marzuoli, Annalisa
1997-01-01
We discuss the geometry of dynamical triangulations associated with 3-dimensional and 4-dimensional simplicial quantum gravity. We provide analytical expressions for the canonical partition function in both cases, and study its large volume behavior. In the space of the coupling constants of the theory, we characterize the infinite volume line and the associated critical points. The results of this analysis are found to be in excellent agreement with the MonteCarlo simulations of simplicial quantum gravity. In particular, we provide an analytical proof that simply-connected dynamically triangulated 4-manifolds undergo a higher order phase transition at a value of the inverse gravitational coupling given by 1.387, and that the nature of this transition can be concealed by a bystable behavior. A similar analysis in the 3-dimensional case characterizes a value of the critical coupling (3.845) at which hysteresis effects are present.
Conformal geometry and quasiregular mappings
Vuorinen, Matti
1988-01-01
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...
Dialogues about geometry and light
Bermudez, David; Leonhardt, Ulf
2015-01-01
Throughout human history, people have used sight to learn about the world, but only in relatively recent times the science of light has been developed. Egyptians and Mesopotamians made the first known lenses out of quartz, giving birth to what was later known as optics. On the other hand, geometry is a branch of mathematics that was born from practical studies concerning lengths, areas and volumes in the early cultures, although it was not put into axiomatic form until the 3rd century BC. In this work, we will discuss the connection between these two timeless topics and show some new things in old things". There has been several works in this direction, but taking into account the didactic approach of the Enrico Fermi Summer School, we would like to address the subject and our audience in a new light.
Integrable systems, geometry, and topology
Terng, Chuu-Lian
2006-01-01
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...
Noncommutative geometry of multicore bions
Karczmarek, Joanna L.; Sibilia, Ariel
2013-01-01
We find new BPS solutions to the nonabelian theory on a world-volume of parallel D1-branes. Our solutions describe two parallel, separated bundles of N D1-branes expanding out to form a single orthogonal D3-brane. This configuration corresponds to two charge N magnetic monopoles in the world-volume of a single D3-brane, deforming the D3-brane into two parallel spikes. We obtain the emergent surface corresponding to our nonabelian D1-brane configuration and demonstrate, at finite N , a surprisingly accurate agreement with the shape of the D3-brane world-volume as obtained from the abelian Born-Infeld action. Our solution provides an explicit realization of topology change in noncommutative geometry at finite N.
Towards Reproducible Descriptions of Neuronal Network Models
Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard
2009-01-01
Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain. PMID:19662159
Towards reproducible descriptions of neuronal network models.
Directory of Open Access Journals (Sweden)
Eilen Nordlie
2009-08-01
Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.
Digital breast tomosynthesis geometry calibration
Wang, Xinying; Mainprize, James G.; Kempston, Michael P.; Mawdsley, Gordon E.; Yaffe, Martin J.
2007-03-01
Digital Breast Tomosynthesis (DBT) is a 3D x-ray technique for imaging the breast. The x-ray tube, mounted on a gantry, moves in an arc over a limited angular range around the breast while 7-15 images are acquired over a period of a few seconds. A reconstruction algorithm is used to create a 3D volume dataset from the projection images. This procedure reduces the effects of tissue superposition, often responsible for degrading the quality of projection mammograms. This may help improve sensitivity of cancer detection, while reducing the number of false positive results. For DBT, images are acquired at a set of gantry rotation angles. The image reconstruction process requires several geometrical factors associated with image acquisition to be known accurately, however, vibration, encoder inaccuracy, the effects of gravity on the gantry arm and manufacturing tolerances can produce deviations from the desired acquisition geometry. Unlike cone-beam CT, in which a complete dataset is acquired (500+ projections over 180°), tomosynthesis reconstruction is challenging in that the angular range is narrow (typically from 20°-45°) and there are fewer projection images (~7-15). With such a limited dataset, reconstruction is very sensitive to geometric alignment. Uncertainties in factors such as detector tilt, gantry angle, focal spot location, source-detector distance and source-pivot distance can produce several artifacts in the reconstructed volume. To accurately and efficiently calculate the location and angles of orientation of critical components of the system in DBT geometry, a suitable phantom is required. We have designed a calibration phantom for tomosynthesis and developed software for accurate measurement of the geometric parameters of a DBT system. These have been tested both by simulation and experiment. We will present estimates of the precision available with this technique for a prototype DBT system.
Atomic forces for geometry-dependent point multipole and gaussian multipole models.
Elking, Dennis M; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G
2010-11-30
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In this study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives partial derivative D(m'm)(l)/partial derivative Omega. The force equations can be applied to electrostatic models based on atomic point multipoles or gaussian multipole charge density. Hydrogen-bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. 2010 Wiley Periodicals, Inc.
Projective geometry solved problems and theory review
Fortuna, Elisabetta; Pardini, Rita
2016-01-01
This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of ...
A variable-geometry combustor used to study primary and secondary zone stoichiometry
Briehl, D.; Schultz, D. F.; Ehlers, R. C.
1983-01-01
A combustion program is underway to evaluate fuel quality effects on gas turbine combustors. A rich-lean variable geometry combustor design was chosen to evaluate fuel quality effects over a wide range of primary and secondary zone equivalence ratios at simulated engine operating conditions. The first task of this effort, was to evaluate the performance of the variable geometry combustor. The combustor incorporates three stations of variable geometry to control primary and secondary zone equivalence ratio and overall pressure loss. Geometry changes could be made while a test was in progress through the use of remote control actuators. The primary zone liner was water cooled to eliminate the concern of liner durability. Emissions and performance data were obtained at simulated engine conditions of 80 percent and full power. Inlet air temperature varied from 611 to 665K, inlet total pressure varied from 1.02 to 1.24 MPa, reference velocity was a constant 1400 K.
INFLUENCE OF SUPERPLASTICIZER AND VARYING ...
African Journals Online (AJOL)
This paper presents the results of the study on the influence of superplasticizer and varying aggregate size on the drying shrinkage and compressive strength of laterised concrete. Four different samples of laterised concrete were made from prescribed mix ratio of 1:1:2 which include; two control specimens made with ...
Optimistlik Karlovy Vary / Jaan Ruus
Ruus, Jaan, 1938-2017
2007-01-01
42. Karlovy Vary rahvusvahelise filmifestivali auhinnatud filmidest (žürii esimees Peter Bart). Kristallgloobuse sai Islandi-Saksamaa "Katseklaasilinn" (režii Baltasar Kormakur), parimaks režissööriks tunnistati norralane Bard Breien ("Negatiivse mõtlemise kunst"). Austraallase Michael James Rowlandi "Hea õnne teekond" sai žürii eripreemia
Esmaklassiline Karlovy Vary / Jaanus Noormets
Noormets, Jaanus
2007-01-01
Ilmar Raagi mängufilm "Klass" võitis 42. Karlovy Vary rahvusvahelise filmifestivalil kaks auhinda - ametliku kõrvalvõistlusprogrammi "East of the West" eripreemia "Special mention" ja Euroopa väärtfilmikinode keti Europa Cinemas preemia. Ka Asko Kase lühifilmi "Zen läbi prügi linastumisest ning teistest auhinnasaajatest ning osalejatest
DEFF Research Database (Denmark)
Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae
We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly...
Eestlased Karlovy Varys / J. R.
J. R.
2007-01-01
Ilmar Raagi mängufilm "Klass" osaleb 42. Karlovy Vary rahvusvahelise filmifestivali võistlusprogrammis "East of the West" ja Asko Kase lühimängufilm "Zen läbi prügi" on valitud festivali kõrvalprogrammi "Forum of Independents"
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small
Directory of Open Access Journals (Sweden)
Guang-Ming Hu
2017-01-01
This stream example demonstrates the subtleties of stream flow and the importance of flood discharge in shaping the channel geometry. Although it is difficult to scale up this example to a large river system that carves geomorphic landscape, this case shows how river geometries vary from the traditional patterns due to different gradient.
Homotopy deform method for reproducing kernel space for ...
Indian Academy of Sciences (India)
In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM).
Reproducibility in protein profiling by MALDI-TOF mass spectrometry
DEFF Research Database (Denmark)
Albrethsen, Jakob
2007-01-01
BACKGROUND: Protein profiling with high-throughput sample preparation and MALDI-TOF MS analysis is a new potential tool for diagnosis of human diseases. However, analytical reproducibility is a significant challenge in MALDI protein profiling. This minireview summarizes studies of reproducibility...
Completely reproducible description of digital sound data with cellular automata
Energy Technology Data Exchange (ETDEWEB)
Wada, Masato; Kuroiwa, Jousuke; Nara, Shigetoshi
2002-12-30
A novel method of compressive and completely reproducible description of digital sound data by means of rule dynamics of CA (cellular automata) is proposed. The digital data of spoken words and music recorded with the standard format of a compact disk are reproduced completely by this method with use of only two rules in a one-dimensional CA without loss of information.
Participant Nonnaiveté and the reproducibility of cognitive psychology
R.A. Zwaan (Rolf); D. Pecher (Diane); G. Paolacci (Gabriele); S. Bouwmeester (Samantha); P.P.J.L. Verkoeijen (Peter); K. Dijkstra (Katinka); R. Zeelenberg (René)
2017-01-01
textabstractMany argue that there is a reproducibility crisis in psychology. We investigated nine well-known effects from the cognitive psychology literature—three each from the domains of perception/action, memory, and language, respectively—and found that they are highly reproducible. Not only can
Issues and achievements of the reproducibility movement in systems biology
Waltemath, Dagmar
2016-01-01
Most scientific discoveries rely on previous or other findings.A lack of transparency and openness led to what many consider the "reproducibility crisis" in systems biology and systems medicine. The crisis arose from missing standards and inappropriate support of standards in software tools. As a consequence, numerous results in low- and high-profile publications cannot be reproduced.
Reproducible diagnosis of Chronic Lymphocytic Leukemia by flow cytometry
DEFF Research Database (Denmark)
Rawstron, Andy C; Kreuzer, Karl-Anton; Soosapilla, Asha
2018-01-01
The diagnostic criteria for CLL rely on morphology and immunophenotype. Current approaches have limitations affecting reproducibility and there is no consensus on the role of new markers. The aim of this project was to identify reproducible criteria and consensus on markers recommended for the di...
Causes of film property reproducibility problem in magnetron ...
African Journals Online (AJOL)
Causes of reproducibility problem in thin film deposition using magnetron sputtering have been identified. To remedy this problem, one must calibrate deposition rate after installation of a new target or magnetron and should repeat such calibrations as frequently as possible in order to obtain films with reproducible ...
46 CFR 56.30-3 - Piping joints (reproduces 110).
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Piping joints (reproduces 110). 56.30-3 Section 56.30-3... APPURTENANCES Selection and Limitations of Piping Joints § 56.30-3 Piping joints (reproduces 110). The type of piping joint used shall be suitable for the design conditions and shall be selected with consideration of...
N=1 Special Geometry, Mixed Hodge Variations and Toric Geometry
Lerche, Wolfgang; Warner, Nicholas P
2002-01-01
We study the superpotential of a certain class of N=1 supersymmetric type II compactifications with fluxes and D-branes. We show that it has an important two-dimensional meaning in terms of a chiral ring of the topologically twisted theory on the world-sheet. In the open-closed string B-model, this chiral ring is isomorphic to a certain relative cohomology group V, which is the appropriate mathematical concept to deal with both the open and closed string sectors. The family of mixed Hodge structures on V then implies for the superpotential to have a certain geometric structure. This structure represents a holomorphic, N=1 supersymmetric generalization of the well-known N=2 special geometry. It defines an integrable connection on the topological family of open-closed B-models, and a set of special coordinates on the space \\cal M of vev's in N=1 chiral multiplets. We show that it can be given a very concrete and simple realization for linear sigma models, which leads to a powerful and systematic method for comp...
2017-09-19
titanium, and nickel, reflecting key industrial alloys . The set of conditions also includes a range of geometry, including plate, disk, and...for measurements. 2.2.3. Titanium Electron Beam Welded Plate Titanium alloy electron beam (EB) welded plate specimens were fabricated using one...right to use , modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT (Maximum 200 words) This paper examines precision of
Automorphisms in Birational and Affine Geometry
Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail
2014-01-01
The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...
Subsectors, Dynkin diagrams and new generalised geometries
Strickland-Constable, Charles
2017-08-01
We examine how generalised geometries can be associated with a labelled Dynkin diagram built around a gravity line. We present a series of new generalised geometries based on the groups Spin( d, d) × ℝ + for which the generalised tangent space transforms in a spinor representation of the group. In low dimensions these all appear in subsectors of maximal supergravity theories. The case d = 8 provides a geometry for eight-dimensional backgrounds of M theory with only seven-form flux, which have not been included in any previous geometric construction. This geometry is also one of a series of "half-exceptional" geometries, which "geometrise" a six-form gauge field. In the appendix, we consider exam-ples of other algebras appearing in gravitational theories and give a method to derive the Dynkin labels for the "section condition" in general. We argue that generalised geometry can describe restrictions and subsectors of many gravitational theories.
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Reproducibility of attachment level recordings using an electronic and a conventional probe.
Villata, L; Baelum, V
1996-12-01
This study describes the variations in the reproducibility of attachment level recordings for different subjects at different examinations. Twenty patients with different degrees of periodontal disease were recruited and examined bi-monthly for their attachment levels using an electronic probe in two quadrants and a conventional probe in the other two quadrants. At each of the 7 examinations attachment level recordings were repeated with the appropriate probe after approximately 30 minutes. Results demonstrate that the reproducibility of attachment level recordings was slightly better for the conventional probe than for the electronic probe. Attachment level recording reproducibility varied considerably between subjects and between examinations for the same subject. Aggregation of attachment level recordings in the form of mean tooth values or mean individual values reduced the range of the differences, but considerable between-subject and between-examination variation was still seen. These results indicate that no single uniformly valid estimate of attachment level reproducibility exists which can be used to set diagnostic thresholds such that a minimum number of incorrect diagnoses are made.
The influence of Hausdorff dimension on plasmonic antennas with Pascal's triangle geometry
Sederberg, S.; Elezzabi, A. Y.
2011-06-01
We introduce fractal geometry to the common bowtie antenna and investigate the influence of a key fractal parameter, Hausdorff dimension, on the broadband spectral response of the antenna. Length scaling trends are presented for antennas having various Hausdorff dimensions. We show that antennas with Pascal's triangle geometry accommodate resonances that are red-shifted when compared to a standard bowtie antenna having the same size. Furthermore, increasing the Hausdorff dimension of the antenna blue shifts its resonance. By designing nanoplasmonic antennas with Pascal's triangle geometry, the resonance conditions may be varied while the antenna dimensions are kept constant.
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
A vector space approach to geometry
Hausner, Melvin
2010-01-01
The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.
Applications of Affine and Weyl geometry
García-Río, Eduardo; Nikcevic, Stana
2013-01-01
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia
Introduction to non-Euclidean geometry
Wolfe, Harold E
2012-01-01
One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc
Topics in Cubic Special Geometry
Bellucci, Stefano; Roychowdhury, Raju
2011-01-01
We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...
Latent geometry of bipartite networks
Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2017-03-01
Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
The geometry of population genetics
Akin, Ethan
1979-01-01
The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono graph I hope to show that his ideas illuminate many aspects of pop ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...
Linguistic geometry for technologies procurement
Stilman, Boris; Yakhnis, Vladimir; Umanskiy, Oleg; Boyd, Ron
2005-05-01
In the modern world of rapidly rising prices of new military hardware, the importance of Simulation Based Acquisition (SBA) is hard to overestimate. With SAB, DOD would be able to test, develop CONOPS for, debug, and evaluate new conceptual military equipment before actually building the expensive hardware. However, only recently powerful tools for real SBA have been developed. Linguistic Geometry (LG) permits full-scale modeling and evaluation of new military technologies, combinations of hardware systems and concepts of their application. Using LG tools, the analysts can create a gaming environment populated with the Blue forces armed with the new conceptual hardware as well as with appropriate existing weapons and equipment. This environment will also contain the intelligent enemy with appropriate weaponry and, if desired, with a conceptual counters to the new Blue weapons. Within such LG gaming environment, the analyst can run various what-ifs with the LG tools providing the simulated combatants with strategies and tactics solving their goals with minimal resources spent.
Fractal Geometry and Stochastics V
Falconer, Kenneth; Zähle, Martina
2015-01-01
This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott, Michał Rams, Pablo Shmerkin, and András Te...
Investigating reproducibility and tracking provenance - A genomic workflow case study.
Kanwal, Sehrish; Khan, Farah Zaib; Lonie, Andrew; Sinnott, Richard O
2017-07-12
Computational bioinformatics workflows are extensively used to analyse genomics data, with different approaches available to support implementation and execution of these workflows. Reproducibility is one of the core principles for any scientific workflow and remains a challenge, which is not fully addressed. This is due to incomplete understanding of reproducibility requirements and assumptions of workflow definition approaches. Provenance information should be tracked and used to capture all these requirements supporting reusability of existing workflows. We have implemented a complex but widely deployed bioinformatics workflow using three representative approaches to workflow definition and execution. Through implementation, we identified assumptions implicit in these approaches that ultimately produce insufficient documentation of workflow requirements resulting in failed execution of the workflow. This study proposes a set of recommendations that aims to mitigate these assumptions and guides the scientific community to accomplish reproducible science, hence addressing reproducibility crisis. Reproducing, adapting or even repeating a bioinformatics workflow in any environment requires substantial technical knowledge of the workflow execution environment, resolving analysis assumptions and rigorous compliance with reproducibility requirements. Towards these goals, we propose conclusive recommendations that along with an explicit declaration of workflow specification would result in enhanced reproducibility of computational genomic analyses.
Energy Technology Data Exchange (ETDEWEB)
Okumura, Y. [Dept. of Physics, Boston Univ., MA (United States); Kase, H. [Dept. of Physics, Daido Inst. of Technology, Nagoya (Japan); Morita, K. [Dept. of Physics, Nagoya Univ. (Japan)
2001-04-01
The standard model is reconstructed in a generalized differential geometry (GDG) based on the idea of a real structure as proposed by Coquereaux et al. and Connes. The GDG considered in this article is a kind of non-commutative geometry (NCG) on the discrete space that successfully reproduces the Higgs mechanism of the spontaneously broken gauge theory. Here, a GDG is a direct generalization of the differential geometry on an ordinary continuous manifold to the product space of this manifold with a discrete manifold. In a GDG, a one-form basis {chi} on the discrete space is incorporated in addition to the one-form basis dx{sup {mu}} on Minkowski space, rather than {gamma}{sup 5} as in Connes's original work. Although the Lagrangians obtained in this way are the same as those obtained in our previous formulation of GDG, the basic formalism becomes very simply and clear. (orig.)
Reproducibility of High-Throughput Plate-Reader Experiments in Synthetic Biology.
Chavez, Michael; Ho, Jonathan; Tan, Cheemeng
2017-02-17
Plate-reader assays are commonly conducted to quantify the performance of synthetic biological systems. However, on the basis of a survey of 100 publications, we find that most publications do not report critical experimental settings of plate reader assays, suggesting widespread issues in their reproducibility. Specifically, critical plate reader settings, including shaking time and covering method, either vary between laboratories or are not reported by the publications. Here, we demonstrate that the settings of plate reader assays have a significant impact on bacterial growth, recombinant gene expression, and biofilm formation. Furthermore, we show that the plate reader settings affect the apparent activity, sensitivity, and chemical kinetics of synthetic constructs, as well as alter the apparent effectiveness of antibiotics. Our results suggest the critical need for consistent reporting of plate reader protocols to ensure the reproducibility of the protocols. In addition, our work provides data for the setup of plate reader protocols in synthetic biology experiments.
Reproducible and controllable induction voltage adder for scaled beam experiments
Energy Technology Data Exchange (ETDEWEB)
Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko [Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)
2016-08-15
A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.
Evolutionary-based Design and Control of Geometry Aims for AMD-manufacturing of Ti-6Al-4V Parts
Möller, Mauritz; Baramsky, Nicolaj; Ewald, Ake; Emmelmann, Claus; Schlattmann, Josef
Additive Metal Deposition (AMD) is an additive manufacturing process building parts based on a nozzle-fed powder by laser assisted solidification. The AMD technology offers unique advantages for the production of near net-shape parts. In contrast to the powder bed-based technologies it provides a high productivity grade. Today AMD lacks reproducible process strategies manufacturing large parts in narrow tolerances. The building height of a single layer and the geometrical shape of a whole part alter progressively with increasing part dimensions - consecutively leading to a higher effort in the manufacturing-process development for such parts. To reduce this effort, in this paper first an iterative identification of optimal process parameters is performed by following an evolutionary algorithm under varied BC. Based on the geometry-related parameter sets, tolerances are defined. The process strategies and tolerances are validated for a prototype application considering the defined quality aims. Finally the results are discussed and summarized in an a-priori process design guideline for AMD Ti6Al4V-parts.
The LHC Pre-series Dipole Cold Mass Geometry
Bajko, M; Savary, F; Skoczen, B; Veness, R J M; Jeanneret, J B
2004-01-01
In order to provide the necessary mechanical aperture for the LHC beam, the main dipole cold masses have to match precisely the nominal circular trajectory of the particles beam. The requirements on the dipole cold mass geometry are dictated by the LHC beam optics and by the allowed limits of mechanical deformation of the interconnection bellows. Keeping the tight tolerances that are imposed necessitates a well controlled bending process and the use of a high accuracy 3D measuring instrument for checking the geometry of the cold mass throughout many manufacturing stages up to the final inspection. The dipole cold mass pre-series production started in 2000. It is almost completed at the three sites. In this paper, we report on the problems encountered to shape correctly the cold masses, their effect on interconnection of the dipole cold masses and on the mechanical aperture. On one side measures to improve the production process in terms of accuracy and reproducibility were taken, on the other side the assembl...
Pierson, Jeffery L; Small, Scott R; Rodriguez, Jose A; Kang, Michael N; Glassman, Andrew H
2015-07-01
Design parameters affecting initial mechanical stability of tapered, splined modular titanium stems (TSMTSs) are not well understood. Furthermore, there is considerable variability in contemporary designs. We asked if spline geometry and stem taper angle could be optimized in TSMTS to improve mechanical stability to resist axial subsidence and increase torsional stability. Initial stability was quantified with stems of varied taper angle and spline geometry implanted in a foam model replicating 2cm diaphyseal engagement. Increased taper angle and a broad spline geometry exhibited significantly greater axial stability (+21%-269%) than other design combinations. Neither taper angle nor spline geometry significantly altered initial torsional stability. Copyright © 2015 Elsevier Inc. All rights reserved.
A reproducing kernel hilbert space approach for q-ball imaging.
Kaden, Enrico; Kruggel, Frithjof
2011-11-01
Diffusion magnetic resonance (MR) imaging has enabled us to reveal the white matter geometry in the living human brain. The Q-ball technique is widely used nowadays to recover the orientational heterogeneity of the intra-voxel fiber architecture. This article proposes to employ the Funk-Radon transform in a Hilbert space with a reproducing kernel derived from the spherical Laplace-Beltrami operator, thus generalizing previous approaches that assume a bandlimited diffusion signal. The function estimation problem is solved within a Tikhonov regularization framework, while a Gaussian process model allows for the selection of the smoothing parameter and the specification of confidence bands. Shortcomings of Q-ball imaging are discussed.
Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows
Schilling, Steve P.; Iverson, Richard M.
1997-01-01
Large debris flows can pose hazards to people and property downstream from volcanoes. We have developed a rapid, reproducible, objective, and inexpensive method to delineate distal debris-flow hazard zones. Our method employs the results of scaling and statistical analyses of the geometry of volcanic debris flows (lahars) to predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume. We use a range of specified lahar volumes to evaluate A and B. In a Geographic Information System (GIS) we employ the resulting range of predicted A and B to delineate gradations in inundation hazard, which is highest near the volcano and along valley thalwegs and diminishes as distances from the volcano and elevations above valley floors increase. Comparison of our computer-generated hazard maps with those constructed using traditional, field-based methods indicates that our method can provide an accurate means of delineating lahar hazard zones.
Harmonic functions with varying coefficients
Directory of Open Access Journals (Sweden)
Jacek Dziok
2016-05-01
Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.
PREFACE: Water in confined geometries
Rovere, Mauro
2004-11-01
The study of water confined in complex systems in solid or gel phases and/or in contact with macromolecules is relevant to many important processes ranging from industrial applications such as catalysis and soil chemistry, to biological processes such as protein folding or ionic transport in membranes. Thermodynamics, phase behaviour and the molecular mobility of water have been observed to change upon confinement depending on the properties of the substrate. In particular, polar substrates perturb the hydrogen bond network of water, inducing large changes in the properties upon freezing. Understanding how the connected random hydrogen bond network of bulk water is modified when water is confined in small cavities inside a substrate material is very important for studies of stability and the enzymatic activity of proteins, oil recovery or heterogeneous catalysis, where water-substrate interactions play a fundamental role. The modifications of the short-range order in the liquid depend on the nature of the water-substrate interaction, hydrophilic or hydrophobic, as well as on its spatial range and on the geometry of the substrate. Despite extensive study, both experimentally and by computer simulation, there remain a number of open problems. In the many experimental studies of confined water, those performed on water in Vycor are of particular interest for computer simulation and theoretical studies since Vycor is a porous silica glass characterized by a quite sharp distribution of pore sizes and a strong capability to absorb water. It can be considered as a good candidate for studying the general behaviour of water in hydrophilic nanopores. But there there have been a number of studies of water confined in more complex substrates, where the interpretation of experiments and computer simulation is more difficult, such as in zeolites or in aerogels or in contact with membranes. Of the many problems to consider we can mention the study of supercooled water. It is
Quantum groups: Geometry and applications
Energy Technology Data Exchange (ETDEWEB)
Chu, Chong -Sun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Theoretical Physics Group; Univ. of California, Berkeley, CA (United States)
1996-05-13
The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.
Algebra and Geometry of Hamilton's Quaternions
Indian Academy of Sciences (India)
IAS Admin
Inspired by the relation between the algebra of complex numbers and plane geometry, William. Rowan Hamilton sought an algebra of triples for application to three-dimensional geometry. Un- able to multiply and divide triples, he invented a non-commutative division algebra of quadru- ples, in what he considered his most ...
Cognitive Styles, Dynamic Geometry and Measurement Performance
Pitta-Pantazi, Demetra; Christou, Constantinos
2009-01-01
This paper reports the outcomes of an empirical study undertaken to investigate the effect of students' cognitive styles on achievement in measurement tasks in a dynamic geometry learning environment, and to explore the ability of dynamic geometry learning in accommodating different cognitive styles and enhancing students' learning. A total of 49…
Reasoning by Contradiction in Dynamic Geometry
Baccaglini-Frank, Anna; Antonini, Samuele; Leung, Allen; Mariotti, Maria Alessandra
2013-01-01
This paper addresses contributions that dynamic geometry systems (DGSs) may give in reasoning by contradiction in geometry. We present analyses of three excerpts of students' work and use the notion of pseudo object, elaborated from previous research, to show some specificities of DGS in constructing proof by contradiction. In particular, we…
Visual and Analytic Strategies in Geometry
Kospentaris, George; Vosniadou, Stella; Kazic, Smaragda; Thanou, Emilian
2016-01-01
We argue that there is an increasing reliance on analytic strategies compared to visuospatial strategies, which is related to geometry expertise and not on individual differences in cognitive style. A Visual/Analytic Strategy Test (VAST) was developed to investigate the use of visuo-spatial and analytic strategies in geometry in 30 mathematics…
Symposium on Differential Geometry and Differential Equations
Berger, Marcel; Bryant, Robert
1987-01-01
The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.
A Multivariate Model of Achievement in Geometry
Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha
2014-01-01
Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…
Making Euclidean Geometry Compulsory: Are We Prepared?
Van Putten, Sonja; Howie, Sarah; Stols, Gerrit
2010-01-01
This study investigated the attitude towards, as well as the level of understanding of Euclidean geometry in pre-service mathematics education (PME) students. In order to do so, a case study was undertaken within which a one group pre-post-test procedure was conducted around a geometry module, and a representative group of students was interviewed…
Varying Constants, Gravitation and Cosmology.
Uzan, Jean-Philippe
2011-01-01
Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
Varying Constants, Gravitation and Cosmology
Directory of Open Access Journals (Sweden)
Jean-Philippe Uzan
2011-03-01
Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
Applications Of Nonclassical Geometry To String Theory
Zunger, Y
2003-01-01
String theory is built on a foundation of geometry. This thesis examines several applications of geometry beyond the classical Riemannian geometry of curved surfaces. The first part considers the use of extended spaces with internal dimensions to each point (“twistors”) to probe systems with a great deal of symmetry but complicated dynamics. These systems are of critical interest in understanding holographic phenomena in string theory and the origins of entropy. We develop a twistor formulation of coset spaces and use this to write simplified actions for particles and strings on anti-de Sitter space, which are easier to quantize than the ordinary (highly nonlinear) actions. In the second part, we consider two aspects of noncommutative geometry, a generalization of ordinary geometry where points are “fuzzed out” and functions of space become noncommuting operators. We first examine strings with one endpoint on a D-brane in a background magnetic field. (Strings with both ...
Special metrics and group actions in geometry
Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi
2017-01-01
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
Energy Technology Data Exchange (ETDEWEB)
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
McAndrew, Erica M.; Morris, Wendy L.; Fennell, Francis
2017-01-01
Use of mathematics-related literature can engage students' interest and increase their understanding of mathematical concepts. A quasi-experimental study of two second-grade classrooms assessed whether daily inclusion of geometry-related literature in the classroom improved attitudes toward geometry and achievement in geometry. Consistent with the…
Visuospatial Working Memory in Intuitive Geometry, and in Academic Achievement in Geometry
Giofre, David; Mammarella, Irene C.; Ronconi, Lucia; Cornoldi, Cesare
2013-01-01
A study was conducted on the involvement of visuospatial working memory (VSWM) in intuitive geometry and in school performance in geometry at secondary school. A total of 166 pupils were administered: (1) six VSWM tasks, comprising simple storage and complex span tasks; and (2) the intuitive geometry task devised by Dehaene, Izard, Pica, and…
Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry
Mammana, M. F.; Micale, B.; Pennisi, M.
2012-01-01
We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…
Homotopy deform method for reproducing kernel space for ...
Indian Academy of Sciences (India)
2016-09-23
s12043-016-1269-8. Homotopy deform method for reproducing kernel space for nonlinear boundary value problems. MIN-QIANG XU. ∗ and YING-ZHEN LIN. School of Science, Zhuhai Campus, Beijing Institute of Technology, ...
Virtual Reference Environments: a simple way to make research reproducible.
Hurley, Daniel G; Budden, David M; Crampin, Edmund J
2015-09-01
'Reproducible research' has received increasing attention over the past few years as bioinformatics and computational biology methodologies become more complex. Although reproducible research is progressing in several valuable ways, we suggest that recent increases in internet bandwidth and disk space, along with the availability of open-source and free-software licences for tools, enable another simple step to make research reproducible. In this article, we urge the creation of minimal virtual reference environments implementing all the tools necessary to reproduce a result, as a standard part of publication. We address potential problems with this approach, and show an example environment from our own work. © The Author 2014. Published by Oxford University Press.
Virtual Reference Environments: a simple way to make research reproducible
National Research Council Canada - National Science Library
Hurley, Daniel G; Budden, David M; Crampin, Edmund J
2015-01-01
.... Although reproducible research is progressing in several valuable ways, we suggest that recent increases in internet bandwidth and disk space, along with the availability of open-source and free...
The reproducibility of random amplified polymorphic DNA (RAPD ...
African Journals Online (AJOL)
RAPD) profiles of Streptococcus thermophilus strains by using the polymerase chain reaction (PCR). Several factors can cause the amplification of false and non reproducible bands in the RAPD profiles. We tested three primers, OPI-02 MOD, ...
On The Reproducibility of Seasonal Land-surface Climate
Energy Technology Data Exchange (ETDEWEB)
Phillips, T J
2004-10-22
The sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the ''reproducibility'' of continental climate for different initial conditions, spatio-temporal correlations are computed across paired realizations of eleven model land-surface variables in which the seasonal cycle is either included or excluded--the former case being pertinent to climate simulation, and the latter to seasonal anomaly prediction. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation. However, the overall degree of reproducibility depends strongly on the particular land-surface anomaly considered. It is also shown that the predictability of a land-surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability metrics. Implications of these results for climate model intercomparison projects and for operational forecasts of seasonal continental climate also are elaborated.
Systematic heterogenization for better reproducibility in animal experimentation.
Richter, S Helene
2017-08-31
The scientific literature is full of articles discussing poor reproducibility of findings from animal experiments as well as failures to translate results from preclinical animal studies to clinical trials in humans. Critics even go so far as to talk about a "reproducibility crisis" in the life sciences, a novel headword that increasingly finds its way into numerous high-impact journals. Viewed from a cynical perspective, Fett's law of the lab "Never replicate a successful experiment" has thus taken on a completely new meaning. So far, poor reproducibility and translational failures in animal experimentation have mostly been attributed to biased animal data, methodological pitfalls, current publication ethics and animal welfare constraints. More recently, the concept of standardization has also been identified as a potential source of these problems. By reducing within-experiment variation, rigorous standardization regimes limit the inference to the specific experimental conditions. In this way, however, individual phenotypic plasticity is largely neglected, resulting in statistically significant but possibly irrelevant findings that are not reproducible under slightly different conditions. By contrast, systematic heterogenization has been proposed as a concept to improve representativeness of study populations, contributing to improved external validity and hence improved reproducibility. While some first heterogenization studies are indeed very promising, it is still not clear how this approach can be transferred into practice in a logistically feasible and effective way. Thus, further research is needed to explore different heterogenization strategies as well as alternative routes toward better reproducibility in animal experimentation.
Directory of Open Access Journals (Sweden)
Anandharaman Veerapathran
Full Text Available BACKGROUND: Although interferon-gamma release assays (IGRA are promising alternatives to the tuberculin skin test, interpretation of repeated testing results is hampered by lack of evidence on optimal cut-offs for conversions and reversions. A logical start is to determine the within-person variability of T-cell responses during serial testing. METHODOLOGY/PRINCIPAL FINDINGS: We performed a pilot study in India, to evaluate the short-term reproducibility of QuantiFERON-TB Gold In Tube assay (QFT among 14 healthcare workers (HCWs who underwent 4 serial QFT tests on day 0, 3, 9 and 12. QFT ELISA was repeated twice on the same sets of specimens. We assessed two types of reproducibility: 1 test-retest reproducibility (between-test variability, and 2 within-person reproducibility over time. Test-retest reproducibility: with dichotomous test results, extremely high concordance was noticed between two tests performed on the same sets of specimens: of the 56 samples, the test and re-test results agreed for all but 2 individuals (kappa = 0.94. Discordance was noted in subjects who had IFN-gamma values around the cut-off point, with both increases and decreases noted. With continuous IFN-gamma results, re-test results tended to produce higher estimates of IFN-gamma than the original test. Within-person reproducibility: when continuous IFN-gamma data were analyzed, the within-person reproducibility was moderate to high. While persons with negative QFT results generally stayed negative, positive results tended to vary over time. Our data showed that increases of more than 16% in the IFN-gamma levels are statistically improbable in the short-term. CONCLUSIONS: Conservatively assuming that long-term variability might be at least twice higher than short-term, we hypothesize that a QFT conversion requires two conditions to be met: 1 change from negative to positive result, and 2 at least 30% increase in the baseline IFN-gamma response. Larger studies are needed
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that
basement reservoir geometry and properties
Walter, bastien; Geraud, yves; Diraison, marc
2017-04-01
Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre
Barrow, John D
2014-01-01
In a recent paper we demonstrated how the simplest model for varying alpha may be interpreted as the effect of a dielectric material, generalized to be consistent with Lorentz invariance. Unlike normal dielectrics, such a medium cannot change the speed of light, and its dynamics obey a Klein-Gordon equation. This work immediately suggests an extension of the standard theory, even if we require compliance with Lorentz invariance. Instead of a wave equation, the dynamics may satisfy a local algebraic relation involving the permittivity and the properties of the electromagnetic field, in analogy with more conventional dielectric (but still preserving Lorentz invariance). We develop the formalism for such theories and investigate some phenomenological implications. The problem of the divergence of the classical self-energy can be solved, or at least softened, in this framework. Some interesting new cosmological solutions for the very early universe are found, including the possibility of a bounce, inflation and e...
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Diurnally-Varying Lunar Hydration
Hendrix, A. R.; Hurley, D.; Retherford, K. D.; Mandt, K.; Greathouse, T. K.; Farrell, W. M.; Vilas, F.
2016-12-01
Dayside, non-polar lunar hydration signatures have been observed by a handful of instruments and present insights into the lunar water cycle. In this study, we utilize the unique measurements from the current Lunar Reconnaissance Orbiter (LRO) mission to study the phenomenon of diurnally-varying dayside lunar hydration. The Lyman Alpha Mapping Project (LAMP) onboard LRO senses a strong far-ultraviolet water absorption edge indicating hydration in small abundances in the permanently shadowed regions as well as on the lunar dayside. We report on diurnal variability in hydration in different terrain types. We investigate the importance of different sources of hydration, including solar wind bombardment and meteoroid bombardment, by observing trends during magnetotail and meteor stream crossings.
Long, Q; Ariff, B; Zhao, S Z; Thom, S A; Hughes, A D; Xu, X Y
2003-04-01
The combined magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) modeling approach is playing an increasingly important role in advancing our understanding of the relationship between hemodynamics and arterial disease. Nevertheless, such a modeling approach involves a number of uncertainties associated with various stages of the process. The present study is concerned with the reproducibility of geometry reconstruction, one of the most crucial steps in the modeling process. The reproducibility test was conducted on the right carotid bifurcation of eight normal human subjects, each of whom were scanned twice using the same MR protocol with an in-plane resolution of 0.625 mm. Models constructed from different scans of the same subject were compared and assessed using four quantitative measures: centerline distance, cross-sectional area, contour shape factors, and mean radius difference. The difference in the maximum carotid bulb area between the two scans was found to be impact of geometrical differences on CFD-predicted flow patterns and wall shear stress (WSS) will be investigated and discussed in a separate paper. Copyright 2003 Wiley-Liss, Inc.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
Energy Technology Data Exchange (ETDEWEB)
Rousculp, Christopher L. [Los Alamos National Laboratory; Oro, David Michael [Los Alamos National Laboratory; Griego, Jeffrey Randall [Los Alamos National Laboratory; Turchi, Peter John [Los Alamos National Laboratory; Reinovsky, Robert Emil [Los Alamos National Laboratory; Bradley, Joseph Thomas [Los Alamos National Laboratory; Cheng, Baolian [Los Alamos National Laboratory; Freeman, Matthew Stouten [Los Alamos National Laboratory; Patten, Austin Randall [Los Alamos National Laboratory
2016-03-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
Energy Technology Data Exchange (ETDEWEB)
Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oro, David Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Margolin, Len G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griego, Jeffrey Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reinovsky, Robert Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turchi, Peter John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-06
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.
Moving KML geometry elements within Google Earth
Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin
2014-11-01
During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.
Reproducing impact ionization mass spectra of E and F ring ice grains at different impact speeds
Klenner, F.; Reviol, R.; Postberg, F.
2017-09-01
As impact speeds of E and F ring ice grains impinging onto the target of impact ionization mass spectrometers in space can vary greatly, the resulting cationic or anionic mass spectra can have very different appearances. The mass spectra can be accurately reproduced with an analog experimental setup IR-FL-MALDI-ToF-MS (Infrared Free Liquid Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry). We compare mass spectra of E and F ring ice grains taken by the Cosmic Dust Analyzer (CDA) onboard Cassini recorded at different impact speeds with our analog spectra and prove the capability of the analog experiment.
Reproducibility of hohlraum-driven implosion symmetry on the National Ignition Facility
Directory of Open Access Journals (Sweden)
Kyrala G.A.
2013-11-01
Full Text Available Indirectly driven Symcap capsules are used at the NIF to obtain information about ignition capsule implosion performance, in particular shape. Symcaps replace the cryogenic fuel layer with an equivalent ablator mass and can be similarly diagnosed. Symcaps are good symmetry surrogates to an ignition capsule after the peak of the drive, radiation-hydrodynamics simulations predict that doping of the symcaps vary the behavior of the implosion. We compare the equatorial shapes of a symcap doped with Si or Ge, as well as examine the reproducibility of the shape measurement using two symcaps with the same hohlraum and laser conditions.
Performance of Traffic Noise Barriers with Varying Cross-Section
Directory of Open Access Journals (Sweden)
Sanja Grubeša
2011-05-01
Full Text Available The efficiency of noise barriers largely depends on their geometry. In this paper, the performance of noise barriers was simulated using the numerical Boundary Element Method (BEM. Traffic noise was particularly considered with its standardized noise spectrum adapted to human hearing. The cross-section of the barriers was varied with the goal of finding the optimum shape in comparison to classical rectangular barriers. The barrier performance was calculated at different receiver points for a fixed barrier height and source position. The magnitude of the insertion loss parameter was used to evaluate the performance change, both in one-third octave bands and as the broadband mean insertion loss value. The proposed barriers of varying cross-section were also compared with a typical T-shape barrier of the same height.
Discrete quantum geometries and their effective dimension
Energy Technology Data Exchange (ETDEWEB)
Thuerigen, Johannes
2015-07-02
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
Wormhole inspired by non-commutative geometry
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Karmakar, Sreya, E-mail: sreya.karmakar@gmail.com [Department of Physics, Calcutta Institute of Engineering and Management, Kolkata 700040, West Bengal (India); Karar, Indrani, E-mail: indrani.karar08@gmail.com [Department of Mathematics, Saroj Mohan Institute of Technology, Guptipara, West Bengal (India); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering & Ceramic Technology, Kolkata 700010, West Bengal (India)
2015-06-30
In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.
Digital and discrete geometry theory and algorithms
Chen, Li
2014-01-01
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a
Wormhole inspired by non-commutative geometry
Directory of Open Access Journals (Sweden)
Farook Rahaman
2015-06-01
Full Text Available In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV. A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.
Information geometry near randomness and near independence
Arwini, Khadiga A
2008-01-01
This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.
Fractal geometry mathematical foundations and applications
Falconer, Kenneth
2013-01-01
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applica
Differential geometry and topology of curves
Animov, Yu
2001-01-01
Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.
Introduction into integral geometry and stereology
DEFF Research Database (Denmark)
Kiderlen, Markus
This text is the extended version of two talks held at the Summer Academy Stochastic Geometry, Spatial Statistics and Random Fields in the Soellerhaus, Germany, in September 2009. It forms (with slight modifications) a chapter of the Springer lecture notes Lectures on Stochastic Geometry, Spatial...... Statistics and Random Fields and is a self-containing introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulas and results of Blaschke-Petkantschin type. Therefore, Crofton's formula...
Circadian phase, circadian period and chronotype are reproducible over months.
Kantermann, Thomas; Eastman, Charmane I
2017-11-17
The timing of the circadian clock, circadian period and chronotype varies among individuals. To date, not much is known about how these parameters vary over time in an individual. We performed an analysis of the following five common circadian clock and chronotype measures: 1) the dim light melatonin onset (DLMO, a measure of circadian phase), 2) phase angle of entrainment (the phase the circadian clock assumes within the 24-h day, measured here as the interval between DLMO and bedtime/dark onset), 3) free-running circadian period (tau) from an ultradian forced desynchrony protocol (tau influences circadian phase and phase angle of entrainment), 4) mid-sleep on work-free days (MSF from the Munich ChronoType Questionnaire; MCTQ) and 5) the score from the Morningness-Eveningness Questionnaire (MEQ). The first three are objective physiological measures, and the last two are measures of chronotype obtained from questionnaires. These data were collected from 18 individuals (10 men, eight women, ages 21-44 years) who participated in two studies with identical protocols for the first 10 days. We show how much these circadian rhythm and chronotype measures changed from the first to the second study. The time between the two studies ranged from 9 months to almost 3 years, depending on the individual. Since the full experiment required living in the laboratory for 14 days, participants were unemployed, had part-time jobs or were freelance workers with flexible hours. Thus, they did not have many constraints on their sleep schedules before the studies. The DLMO was measured on the first night in the lab, after free-sleeping at home and also after sleeping in the lab on fixed 8-h sleep schedules (loosely tailored to their sleep times before entering the laboratory) for four nights. Graphs with lines of unity (when the value from the first study is identical to the value from the second study) showed how much each variable changed from the first to the second study. The
Effect of tool geometry on friction stir spot welding of polypropylene sheets
Directory of Open Access Journals (Sweden)
M. K. Bilici
2012-10-01
Full Text Available The effects of tool geometry and properties on friction stir spot welding properties of polypropylene sheets were studied. Four different tool pin geometries, with varying pin angles, pin lengths, shoulder diameters and shoulder angles were used for friction stir spot welding. All the welding operations were done at the room temperature. Lap-shear tensile tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments the effect of tool geometry on friction stir spot weld formation and weld strength were determined. The optimum tool geometry for 4 mm thick polypropylene sheets were determined. The tapered cylindrical pin gave the biggest and the straight cylindrical pin gave the lowest lap-shear fracture load.
Designer Curved-Space Geometry for Relativistic Fermions in Weyl Metamaterials
Westström, Alex; Ojanen, Teemu
2017-10-01
Weyl semimetals are recently discovered materials supporting emergent relativistic fermions in the vicinity of band-crossing points known as Weyl nodes. The positions of the nodes and the low-energy spectrum depend sensitively on the time-reversal and inversion symmetry breaking in the system. We introduce the concept of Weyl metamaterials where the particles experience a 3D curved geometry and gauge fields emerging from smooth spatially varying time-reversal- and inversion-breaking fields. The Weyl metamaterials can be fabricated from semimetal or insulator parent states where the geometry can be tuned, for example, through inhomogeneous magnetization. We derive an explicit connection between the effective geometry and the local symmetry-breaking configuration. This result opens the door for a systematic study of 3D designer geometries and gauge fields for relativistic carriers. The Weyl metamaterials provide a route to novel electronic devices as highlighted by a remarkable 3D electron lens effect.
Using prediction markets to estimate the reproducibility of scientific research
Dreber, Anna; Pfeiffer, Thomas; Almenberg, Johan; Isaksson, Siri; Wilson, Brad; Chen, Yiling; Nosek, Brian A.; Johannesson, Magnus
2015-01-01
Concerns about a lack of reproducibility of statistically significant results have recently been raised in many fields, and it has been argued that this lack comes at substantial economic costs. We here report the results from prediction markets set up to quantify the reproducibility of 44 studies published in prominent psychology journals and replicated in the Reproducibility Project: Psychology. The prediction markets predict the outcomes of the replications well and outperform a survey of market participants’ individual forecasts. This shows that prediction markets are a promising tool for assessing the reproducibility of published scientific results. The prediction markets also allow us to estimate probabilities for the hypotheses being true at different testing stages, which provides valuable information regarding the temporal dynamics of scientific discovery. We find that the hypotheses being tested in psychology typically have low prior probabilities of being true (median, 9%) and that a “statistically significant” finding needs to be confirmed in a well-powered replication to have a high probability of being true. We argue that prediction markets could be used to obtain speedy information about reproducibility at low cost and could potentially even be used to determine which studies to replicate to optimally allocate limited resources into replications. PMID:26553988
The role of the IACUC in ensuring research reproducibility.
Silverman, Jerald; Macy, James; Preisig, Patricia A
2017-03-22
There is a "village" of people impacting research reproducibility, such as funding panels, the IACUC and its support staff, institutional leaders, investigators, veterinarians, animal facilities, and professional journals. IACUCs can contribute to research reproducibility by ensuring that reviews of animal use requests, program self-assessments and post-approval monitoring programs are sufficiently thorough, the animal model is appropriate for testing the hypothesis, animal care and use is conducted in a manner that is compliant with external and institutional requirements, and extraneous variables are minimized. The persons comprising the village also must have a shared vision that guards against reproducibility problems while simultaneously avoids being viewed as a burden to research. This review analyzes and discusses aspects of the IACUC's "must do" and "can do" activities that impact the ability of a study to be reproduced. We believe that the IACUC, with support from and when working synergistically with other entities in the village, can contribute to minimizing unintended research variables and strengthen research reproducibility.
Validation and reproducibility of an Australian caffeine food frequency questionnaire.
Watson, E J; Kohler, M; Banks, S; Coates, A M
2017-08-01
The aim of this study was to measure validity and reproducibility of a caffeine food frequency questionnaire (C-FFQ) developed for the Australian population. The C-FFQ was designed to assess average daily caffeine consumption using four categories of food and beverages including; energy drinks; soft drinks/soda; coffee and tea and chocolate (food and drink). Participants completed a seven-day food diary immediately followed by the C-FFQ on two consecutive days. The questionnaire was first piloted in 20 adults, and then, a validity/reproducibility study was conducted (n = 90 adults). The C-FFQ showed moderate correlations (r = .60), fair agreement (mean difference 63 mg) and reasonable quintile rankings indicating fair to moderate agreement with the seven-day food diary. To test reproducibility, the C-FFQ was compared to itself and showed strong correlations (r = .90), good quintile rankings and strong kappa values (κ = 0.65), indicating strong reproducibility. The C-FFQ shows adequate validity and reproducibility and will aid researchers in Australia to quantify caffeine consumption.
Structure analysis for plane geometry figures
Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi
2013-12-01
As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.
Gravity, Cartan geometry, and idealized waywisers
Westman, H F
2012-01-01
The primary aim of this paper is to provide a simple and concrete interpretation of Cartan geometry by pointing out that it is nothing but the mathematics of idealized waywisers. Waywisers, also called hodometers, are instruments traditionally used to measure distances. The mathematical representation of an idealized waywiser consists of a choice of symmetric space called a {\\em model space} and represents the `wheel' of the idealized waywiser. The geometry of a manifold is then completely characterized by a pair of variables $\\{V^A(x),A^{AB}(x)\\}$, each of which admit simple interpretations: $V^A$ is the point of contact between the waywiser's idealized wheel and the manifold whose geometry one wishes to characterize, and $A^{AB}=A_\\mu^{\\ AB}dx^\\mu$ is a connection one-form dictating how much the idealized wheel of the waywiser has rotated when rolled along the manifold. The familiar objects from differential geometry (e.g. metric $g_{\\mu\
Geometry, structure and randomness in combinatorics
Nešetřil, Jaroslav; Pellegrini, Marco
2014-01-01
This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include: graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.
Homological mirror symmetry and tropical geometry
Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia
2014-01-01
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...
Track Geometry Measurement System Software Manual
1978-04-01
The Track Geometry Measurement System (TGMS) was developed through the United States Department of Transportation's, Urban Mass Transportation Administration by the Transportation Systems Center in Cambridge, Massachusetts under its Test and Evaluati...
10th China-Japan Geometry Conference
Miyaoka, Reiko; Tang, Zizhou; Zhang, Weiping
2016-01-01
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists. The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, sympl...
The Soap-Bubble-Geometry Contest.
Morgan, Frank; Melnick, Edward R.; Nicholson, Ramona
1997-01-01
Presents an activity on soap-bubble geometry using a guessing contest, explanations, and demonstrations that allow students to mesh observation and mathematical reasoning to discover that mathematics is much more than just number crunching. (ASK)
ARC Code TI: Geometry Manipulation Protocol (GMP)
National Aeronautics and Space Administration — The Geometry Manipulation Protocol (GMP) is a library which serializes datatypes between XML and ANSI C data structures to support CFD applications. This library...
Quasi-crystalline geometry for architectural structures
DEFF Research Database (Denmark)
Weizierl, Barbara; Wester, Ture
2001-01-01
. The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden......Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... ratio) as basic elements for aperiodic 3D geometries and B: to raise aperiodic Penrose tilings and its binary substitutions from their 2D basis into 3D QC geometries and describe the structural behaviour for these spatial configurations....
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Robot Geometry and the High School Curriculum.
Meyer, Walter
1988-01-01
Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)
Energy Technology Data Exchange (ETDEWEB)
Bejarano, Cecilia; Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)
The geometry of René Descartes
Descartes, René
1954-01-01
The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." - John Stuart Mill.
The elements of non-Euclidean geometry
Sommerville, D MY
2012-01-01
Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.
Tame geometry with application in smooth analysis
Yomdin, Yosef
2004-01-01
The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.
Gait phase varies over velocities.
Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan
2014-02-01
We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification. Copyright © 2013 Elsevier B.V. All rights reserved.
Shrestha, Archana; Koju, Rajendra Prasad; Beresford, Shirley A A; Chan, Kwun Chuen Gary; Connell, Frederik A; Karmacharya, Biraj Man; Shrestha, Pramita; Fitzpatrick, Annette L
2017-08-01
We developed a food frequency questionnaire (FFQ) designed to measure the dietary practices of adult Nepalese. The present study examined the validity and reproducibility of the FFQ. To evaluate the reproducibility of the FFQ, 116 subjects completed two 115-item FFQ across a four-month interval. Six 24-h dietary recalls were collected (1 each month) to assess the validity of the FFQ. Seven major food groups and 23 subgroups were clustered from the FFQ based on macronutrient composition. Spearman correlation coefficients evaluating reproducibility for all food groups were greater than 0.5, with the exceptions of oil. The correlations varied from 0.41 (oil) to 0.81 (vegetables). All crude spearman coefficients for validity were greater than 0.5 except for dairy products, pizzas/pastas and sausage/burgers. The FFQ was found to be reliable and valid for ranking the intake of food groups for Nepalese dietary intake.
Geometry and quantization of moduli spaces
Andersen, Jørgen; Riera, Ignasi
2016-01-01
This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.
Non-relativistic geometry of holographic screens
Moosa, Mudassir
2017-06-01
We propose that the intrinsic geometry of holographic screens should be described by the Newton-Cartan geometry. As a test of this proposal, we show that the evolution equations of the screen can be written in a covariant form in terms of a stress tensor, an energy current, and a momentum one-form. We derive the expressions for the stress tensor, energy density, and momentum one-form using Brown-York action formalism.
Perspectives in Analysis, Geometry, and Topology
Itenberg, I V; Passare, Mikael
2012-01-01
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Angular and geometry dependence of coercivity and remanence nickel nanotube isolated
Energy Technology Data Exchange (ETDEWEB)
Gomes, J.L.; Davila, Y.G.; Garcia, R.P.; Del Toro, A.D.; Martins, I.G.; Hernandez, E.P. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)
2016-07-01
Fell text: During the last decade, interesting properties of magnetic nanotubes have attracted great attention. Besides their basic properties, there is evidence that they can be used in the production of magnetic devices. More recently, magnetic nanotubes have been grown motivating intense research in the field. Magnetic measurements, numerical simulations and analytical calculations on such tubes have identied two main states: an in-plane magnetic ordering, namely, the uxclosure vortex state, and a uniform state with all the magnetic moments pointing parallel to the axis of the tube. Nanotubes exhibit a core-free magnetic conguration leading to uniform switching elds, guaranteeing reproducibility and due to their low density they can oat in solutions making them suitable for applications in biotechnology. For the analysis of the magnetic properties of nanotubes through computer simulation, the internal energy has the following contributions: Exchange of interaction, magnetocrystalline anisotropy, demagnetizing energy, anisotropy of form and Zeeman energy. Geometrically, tubes are characterized by their external and internal radii, R and a, respectively, and length H. It is convenient to dene the ratio, beta = a / R, so that beta = 0 represents a solid cylinder and beta - -> 1 corresponds to a very narrow tube. It was made a study of the anisotropic magnetization, varying the angle of application of the magnetic field, an angle 0° ≤ theta ≤ 90° with the axis z. In our work, we used the internal radius equal to 20 nm and the outer radius of 40 nm, that is the ratio beta = 0.5, the length of the nanotube is 10⌃-3 m. The magneticmicro-simulation is performed using the typical parameters Ni: saturation magnetization, MS = 4,85.10⌃5 A/m, your exchange constant, A = 9,0.10⌃12 J / m. Arrays nanotubes nickel are investigated through micromagnetic simulation by Object Oriented Micromagnetic Framework (OOMMF). We analyze the results for the hysteresis loop
Effect of realistic vehicle seats, cushion length, and lap belt geometry on child ATD kinematics.
2011-12-01
This series of sled tests examined the effect of using real vehicle seats on child ATD performance. Cushion length was varied from production length of 450 mm to a shorter length of 350 mm. Lap belt geometry was set to rear, mid, and forward anchorag...
Metaresearch for Evaluating Reproducibility in Ecology and Evolution.
Fidler, Fiona; Chee, Yung En; Wintle, Bonnie C; Burgman, Mark A; McCarthy, Michael A; Gordon, Ascelin
2017-03-01
Recent replication projects in other disciplines have uncovered disturbingly low levels of reproducibility, suggesting that those research literatures may contain unverifiable claims. The conditions contributing to irreproducibility in other disciplines are also present in ecology. These include a large discrepancy between the proportion of "positive" or "significant" results and the average statistical power of empirical research, incomplete reporting of sampling stopping rules and results, journal policies that discourage replication studies, and a prevailing publish-or-perish research culture that encourages questionable research practices. We argue that these conditions constitute sufficient reason to systematically evaluate the reproducibility of the evidence base in ecology and evolution. In some cases, the direct replication of ecological research is difficult because of strong temporal and spatial dependencies, so here, we propose metaresearch projects that will provide proxy measures of reproducibility.
Cytotoxic testing for food allergy: evaluation of reproducibility and correlation.
Benson, T E; Arkins, J A
1976-10-01
Cytotoxic food tests still present conflicting opinions concerning their validity. Nine atopic patients with or without a history of food allergy were studied along with 5 nonatopic patients. All tests were conducted in a double-blind fashion with 6 determinations for each of 10 food antigens. Reproducibility of the test (5/6 positive or negative) was demonstrated with wheat, milk, yeast, chocolate, and orange. In the nonatopic group, reproducible results were obtained for wheat, egg, yeast, chocolate, and chicken. Clinical correlation with 11 foods in 7 patients was demonstrated. However, there were 46 positive tests without correlation and 2 negative tests with positive histories. Therefore, there appears to be reproducibility of the tests to only 3 foods but no apparent correlation with clinical symptoms. At the present time, cytotoxic tests offer no reliable help in establishing the diagnosis of food allergy.
Progress toward openness, transparency, and reproducibility in cognitive neuroscience.
Gilmore, Rick O; Diaz, Michele T; Wyble, Brad A; Yarkoni, Tal
2017-05-01
Accumulating evidence suggests that many findings in psychological science and cognitive neuroscience may prove difficult to reproduce; statistical power in brain imaging studies is low and has not improved recently; software errors in analysis tools are common and can go undetected for many years; and, a few large-scale studies notwithstanding, open sharing of data, code, and materials remain the rare exception. At the same time, there is a renewed focus on reproducibility, transparency, and openness as essential core values in cognitive neuroscience. The emergence and rapid growth of data archives, meta-analytic tools, software pipelines, and research groups devoted to improved methodology reflect this new sensibility. We review evidence that the field has begun to embrace new open research practices and illustrate how these can begin to address problems of reproducibility, statistical power, and transparency in ways that will ultimately accelerate discovery. © 2017 New York Academy of Sciences.
Metaresearch for Evaluating Reproducibility in Ecology and Evolution
Fidler, Fiona; Chee, Yung En; Wintle, Bonnie C.; Burgman, Mark A.; McCarthy, Michael A.; Gordon, Ascelin
2017-01-01
Abstract Recent replication projects in other disciplines have uncovered disturbingly low levels of reproducibility, suggesting that those research literatures may contain unverifiable claims. The conditions contributing to irreproducibility in other disciplines are also present in ecology. These include a large discrepancy between the proportion of “positive” or “significant” results and the average statistical power of empirical research, incomplete reporting of sampling stopping rules and results, journal policies that discourage replication studies, and a prevailing publish-or-perish research culture that encourages questionable research practices. We argue that these conditions constitute sufficient reason to systematically evaluate the reproducibility of the evidence base in ecology and evolution. In some cases, the direct replication of ecological research is difficult because of strong temporal and spatial dependencies, so here, we propose metaresearch projects that will provide proxy measures of reproducibility. PMID:28596617
CRKSPH - A Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme
Frontiere, Nicholas; Owen, J Michael
2016-01-01
We present a formulation of smoothed particle hydrodynamics (SPH) that employs a first-order consistent reproducing kernel function, exactly interpolating linear fields with particle tracers. Previous formulations using reproducing kernel (RK) interpolation have had difficulties maintaining conservation of momentum due to the fact the RK kernels are not, in general, spatially symmetric. Here, we utilize a reformulation of the fluid equations such that mass, momentum, and energy are all manifestly conserved without any assumption about kernel symmetries. Additionally, by exploiting the increased accuracy of the RK method's gradient, we formulate a simple limiter for the artificial viscosity that reduces the excess diffusion normally incurred by the ordinary SPH artificial viscosity. Collectively, we call our suite of modifications to the traditional SPH scheme Conservative Reproducing Kernel SPH, or CRKSPH. CRKSPH retains the benefits of traditional SPH methods (such as preserving Galilean invariance and manif...
Reproducibility of brain metabolite concentration measurements in lesion free white matter at 1.5 T.
Busch, Martin H J; Vollmann, Wolfgang; Mateiescu, Serban; Stolze, Manuel; Deli, Martin; Garmer, Marietta; Grönemeyer, Dietrich H W
2015-09-29
Post processing for brain spectra has a great influence on the fit quality of individual spectra, as well as on the reproducibility of results from comparable spectra. This investigation used pairs of spectra, identical in system parameters, position and time assumed to differ only in noise. The metabolite amplitudes of fitted time domain spectroscopic data were tested on reproducibility for the main brain metabolites. Proton spectra of white matter brain tissue were acquired with a short spin echo time of 30 ms and a moderate repetition time of 1500 ms at 1.5 T. The pairs were investigated with one time domain post-processing algorithm using different parameters. The number of metabolites, the use of prior knowledge, base line parameters and common or individual damping were varied to evaluate the best reproducibility. The protocols with most reproducible amplitudes for N-acetylaspartate, creatine, choline, myo-inositol and the combined Glx line of glutamate and glutamine in lesion free white matter have the following common features: common damping of the main metabolites, a baseline using only the points of the first 10 ms, no additional lipid/macromolecule lines and Glx is taken as the sum of separately fitted glutamate and glutamine. This parameter set is different to the one delivering the best individual fit results. All spectra were acquired in "lesion free" (no lesion signs found in MR imaging) white matter. Spectra of brain lesions, for example tumors, can be drastically different. Thus the results are limited to lesion free brain tissue. Nevertheless the application to studies is broad, because small alterations in brain biochemistry of lesion free areas had been detected nearby tumors, in patients with multiple sclerosis, drug abuse or psychiatric disorders. Main metabolite amplitudes inside healthy brain can be quantified with a normalized root mean square deviation around 5 % using CH3 of creatine as reference. Only the reproducibility of myo
Reproducibility of psychophysics and electroencephalography during offset analgesia.
Nilsson, M; Piasco, A; Nissen, T D; Graversen, C; Gazerani, P; Lucas, M-F; Dahan, A; Drewes, A M; Brock, C
2014-07-01
Offset analgesia (OA) is a pain-inhibiting mechanism, defined as a disproportionately large decrease in pain perception in response to a discrete decrease in noxious stimulus intensity. Hence, the aims were (1) to investigate whether psychophysics and electroencephalography (EEG) can be assessed simultaneously during OA and (2) to assess whether OA is reproducible within the same day as well as between different days. Two separate studies investigated OA: Study I (13 healthy volunteers; seven men; 25.5 ± 0.65 years) aimed at determining the feasibility of recording psychophysics and EEG simultaneously during OA. Study II (18 healthy volunteers; 12 men; 34 ± 3.15 years) assessed reproducibility of OA in terms of psychophysics and EEG. Subjects were presented to a 30-s OA heat stimulus paradigm on the volar forearm and psychophysics, and EEG recordings were obtained throughout the procedure. Reproducibility was assessed within the same day and between different days, using intraclass correlation coefficients (ICCs). Additionally, the reproducible psychophysical parameters were correlated to relevant EEG frequency bands. Simultaneous recording of psychophysics and EEG affects the frequency distribution in terms of alpha suppression. Reproducibility was proven for the psychophysics and EEG frequency bands both within the same day (all ICCs > 0.62) and between different days (all ICCs > 0.66, except for the delta band). Correlations between psychophysics and EEG were found in the theta (4-8 Hz), alpha (8-12 Hz) and gamma (32-80 Hz) bands (all p < 0.01). OA is a robust and reproducible model for experimental pain research, making it suitable for future research. © 2013 European Pain Federation - EFIC®
Effective Form of Reproducing the Total Financial Potential of Ukraine
Directory of Open Access Journals (Sweden)
Portna Oksana V.
2015-03-01
Full Text Available Development of scientific principles of reproducing the total financial potential of the country and its effective form is an urgent problem both in theoretical and practical aspects of the study, the solution of which is intended to ensure the active mobilization and effective use of the total financial potential of Ukraine, and as a result — its expanded reproduction as well, which would contribute to realization of the internal capacities for stabilization of the national economy. The purpose of the article is disclosing the essence of the effective form of reproducing the total financial potential of the country, analyzing the results of reproducing the total financial potential of Ukraine. It has been proved that the basis for the effective form of reproducing the total financial potential of the country is the volume and flow of resources, which are associated with the «real» economy, affect the dynamics of GDP and define it, i.e. resource and process forms of reproducing the total financial potential of Ukraine (which precede the effective one. The analysis of reproducing the total financial potential of Ukraine has shown that in the analyzed period there was an increase in the financial possibilities of the country, but steady dynamics of reduction of the total financial potential was observed. If we consider the amount of resources involved in production, creating a net value added and GDP, it occurs on a restricted basis. Growth of the total financial potential of Ukraine is connected only with extensive quantitative factors rather than intensive qualitative changes.
Language-Agnostic Reproducible Data Analysis Using Literate Programming.
Directory of Open Access Journals (Sweden)
Boris Vassilev
Full Text Available A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir.
Language-Agnostic Reproducible Data Analysis Using Literate Programming.
Vassilev, Boris; Louhimo, Riku; Ikonen, Elina; Hautaniemi, Sampsa
2016-01-01
A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing) that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir.
Hyperellipsoidal statistical classifications in a reproducing kernel Hilbert space.
Liang, Xun; Ni, Zhihao
2011-06-01
Standard support vector machines (SVMs) have kernels based on the Euclidean distance. This brief extends standard SVMs to SVMs with kernels based on the Mahalanobis distance. The extended SVMs become a special case of the Euclidean distance when the covariance matrix in a reproducing kernel Hilbert space is degenerated to an identity. The Mahalanobis distance leads to hyperellipsoidal kernels and the Euclidean distance results in hyperspherical ones. In this brief, the Mahalanobis distance-based kernel in a reproducing kernel Hilbert space is developed systematically. Extensive experiments demonstrate that the hyperellipsoidal kernels slightly outperform the hyperspherical ones, with fewer SVs.
Comparability and reproducibility of apex cardiogram recorded with six different transducer systems.
Willems, J L; Denef, B; Kesteloot, H; De Geest, H
1979-06-01
A comparison was made in 7 dogs of the results obtained by 6 different apex cardiographic transducers applied before, during, and after controlled infusion of angiotensin and isoprenaline. The electrocardiogram, internal phonocardiogram, aortic and left ventricular pressure using a Telco micromanometer, and apex cardiogram were recorded simultaneously on magnetic tape and paper. Digital computer techniques were used to derive various measurements. The comparison of the 6 transducer systems was made expecially with respect to measurements derived from the normalised derivative, calculated using total as well as developed pressure or displacement. Measurements derived from left ventricular pressure were very reproducible. Differences in results of 'contractility' indices varied between 0.5 and 1.9 per cent. Indices from the apex cardiogram using 6 different transducer systems showed variations up to 20 per cent, with mean values varying between 3.2 and 8.1 per cent. There was a systematic deviation for one transducer system, which was responsible for a significant part of the observed variability. It may be concluded that in order to assure maximal reproducibility, technical characteristics of the apex cardiograph transducer should be taken into account and an optimal recording technique should be used.
Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard
2017-11-27
Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .
Kabeláč, Martin; Valdes, Haydee; Sherer, Edward C.; Cramer, Christopher J.; Hobza, Pavel
2007-12-01
A new database of nucleic acid base trimers has been developed that includes 141 geometries and stabilization energies obtained at the RI-MP2 level of theory with the TZVPP basis set. Compared to other databases, this one includes considerably more complicated structures; the various intermolecular interactions in the trimers are quite heterogeneous and in particular include simultaneous hydrogen bonding and stacking interactions, which is similar to the situation in real biomolecules. Validation against these benchmark data is therefore a more demanding task for approximate models, since correct descriptions of all energy terms is unlikely to be accomplished by fortuitous cancellations of systematic errors. The density functionals TPSS (both with and without an empirical dispersion term), PWB6K, M05-2X, and BH&H, and the self-consistent charge density functional tight binding method augmented with an empirical dispersion term (SCC-DFTB-D) were assessed for their abilities to accurately compute structures and energies. The best reproduction of the BSSE corrected RI-MP2 stabilization energies was achieved by the TPSS functional (TZVPP basis set) combined with empirical dispersion; removal of the dispersion correction leads to significantly degraded performance. The M05-2X and PWB6K functionals performed very well in reproducing the RI-MP2 geometries, but showed a systematic moderate underestimation of the magnitude of base stacking interactions. The SCC-DFTB-D method predicts geometries in fair agreement with RI-MP2; given its computational efficiency it represents a good option for initial scanning of potential energy surfaces of biopolymers. BH&H gives geometries of comparable quality to the other functionals but significantly overestimates interaction energies other than stacking. The whole database of geometries and interaction energies of the complexes can be found on the web page: http://www.rsc.org/suppdata/CP/b7/b707182e/index.sht.
Geometry-induced protein pattern formation.
Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin
2016-01-19
Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.
Finsler geometry of nonlinear elastic solids with internal structure
Clayton, J. D.
2017-02-01
Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem
Geometry The Language of Space and Form (Revised Edition)
Tabak, John
2011-01-01
Geometry, Revised Edition describes geometry in antiquity. Beginning with a brief description of some of the geometry that preceded the geometry of the Greeks, it takes up the story of geometry during the European Renaissance as well as the significant mathematical progress in other areas of the world. It also discusses the analytic geometry of Ren Descartes and Pierre Fermat, the alternative coordinate systems invented by Isaac Newton, and the solid geometry of Leonhard Euler. Also included is an overview of the geometry of one of the most successful mathematicians of the 19th century, Bernha
Reproducible cavitation activity in water-particle suspensions
Borkent, B.M.; Arora, M.; Ohl, C.D.
2007-01-01
The study of cavitation inception in liquids rarely yields reproducible data, unless special control is taken on the cleanliness of the experimental environment. In this paper, an experimental technique is demonstrated which allows repeatable measurements of cavitation activity in liquid-particle
Inter simple sequence repeat (ISSR) markers as reproducible and ...
African Journals Online (AJOL)
Rose is one of the most important cultivated ornamental plants in the world. A molecular approach using inter-simple sequence repeat (ISSR) markers was applied to seven species of Rosa. To obtain clear and reproducible bands on 2% agarose gels, 9 ISSR primers and 5 parameters (annealing temperature, DNA ...
Reproducible and expedient rice regeneration system using in vitro ...
African Journals Online (AJOL)
Yomi
2012-01-03
Jan 3, 2012 ... Inevitable prerequisite for expedient regeneration in rice is the selection of totipotent explant and developing an apposite combination of growth hormones. Here, we reported a reproducible regeneration protocol in which basal segments of the stem of the in vitro grown rice plants were used as ex-plant.
Latin America Today: An Atlas of Reproducible Pages. Revised Edition.
World Eagle, Inc., Wellesley, MA.
This document contains reproducible maps, charts and graphs of Latin America for use by teachers and students. The maps are divided into five categories (1) the land; (2) peoples, countries, cities, and governments; (3) the national economies, product, trade, agriculture, and resources; (4) energy, education, employment, illicit drugs, consumer…
Reproducibility and Reliability of Repeated Quantitative Fluorescence Angiography
DEFF Research Database (Denmark)
Nerup, Nikolaj; Knudsen, Kristine Bach Korsholm; Ambrus, Rikard
2017-01-01
that the camera can detect. As the emission of fluorescence is dependent of the excitatory light intensity, reduction of this may solve the problem. The aim of the present study was to investigate the reproducibility and reliability of repeated quantitative FA during a reduction of excitatory light....
Language actively reproduces the socio-economic inequalities in ...
African Journals Online (AJOL)
Language actively reproduces the socio-economic inequalities in society:an exploration of gender power dynamicsin the Gutu District of Zimbabwe. ... social interaction by means of our sense of certain mannerisms, styles and behaviours – both verbal and non-verbal – but also use this to express our sense of identity.
Reproducibility of Tactile Assessments for Children with Unilateral Cerebral Palsy
Auld, Megan Louise; Ware, Robert S.; Boyd, Roslyn Nancy; Moseley, G. Lorimer; Johnston, Leanne Marie
2012-01-01
A systematic review identified tactile assessments used in children with cerebral palsy (CP), but their reproducibility is unknown. Sixteen children with unilateral CP and 31 typically developing children (TDC) were assessed 2-4 weeks apart. Test-retest percent agreements within one point for children with unilateral CP (and TDC) were…
Reproducibility of abdominal fat assessment by ultrasound and computed tomography
Energy Technology Data Exchange (ETDEWEB)
Mauad, Fernando Marum; Chagas-Neto, Francisco Abaete; Benedeti, Augusto Cesar Garcia Saab; Nogueira-Barbosa, Marcello Henrique; Muglia, Valdair Francisco; Carneiro, Antonio Adilton Oliveira; Muller, Enrico Mattana; Elias Junior, Jorge, E-mail: fernando@fatesa.edu.br [Faculdade de Tecnologia em Saude (FATESA), Ribeirao Preto, SP (Brazil); Universidade de Fortaleza (UNIFOR), Fortaleza, CE (Brazil). Departmento de Radiologia; Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Departmento de Medicina Clinica; Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Hospital Mae de Deus, Porto Alegre, RS (Brazil)
2017-05-15
Objective: To test the accuracy and reproducibility of ultrasound and computed tomography (CT) for the quantification of abdominal fat in correlation with the anthropometric, clinical, and biochemical assessments. Materials and Methods: Using ultrasound and CT, we determined the thickness of subcutaneous and intra-abdominal fat in 101 subjects-of whom 39 (38.6%) were men and 62 (61.4%) were women-with a mean age of 66.3 years (60-80 years). The ultrasound data were correlated with the anthropometric, clinical, and biochemical parameters, as well as with the areas measured by abdominal CT. Results: Intra-abdominal thickness was the variable for which the correlation with the areas of abdominal fat was strongest (i.e., the correlation coefficient was highest). We also tested the reproducibility of ultrasound and CT for the assessment of abdominal fat and found that CT measurements of abdominal fat showed greater reproducibility, having higher intraobserver and interobserver reliability than had the ultrasound measurements. There was a significant correlation between ultrasound and CT, with a correlation coefficient of 0.71. Conclusion: In the assessment of abdominal fat, the intraobserver and interobserver reliability were greater for CT than for ultrasound, although both methods showed high accuracy and good reproducibility. (author)
Reproducible and expedient rice regeneration system using in vitro ...
African Journals Online (AJOL)
Inevitable prerequisite for expedient regeneration in rice is the selection of totipotent explant and developing an apposite combination of growth hormones. Here, we reported a reproducible regeneration protocol in which basal segments of the stem of the in vitro grown rice plants were used as ex-plant. Using the protocol ...
Reproducibility in density functional theory calculations of solids
DEFF Research Database (Denmark)
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn
2016-01-01
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We...
Reproducibility of corneal, macular and retinal nerve fiber layer ...
African Journals Online (AJOL)
Abstract. Purpose: To determine the intra-session and inter-session reproducibility of corneal, macular and retinal nerve fiber layer thick- ness (RNFL) measurements with the iVue-100 optical coherence tomography in normal eyes. Methods: These parameters were measured in the right eyes of 50 healthy participants with ...
Intercenter reproducibility of binary typing for Staphylococcus aureus
van Leeuwen, Willem B.; Snoeijers, Sandor; van der Werken-Libregts, Christel; Tuip, Anita; van der Zee, Anneke; Egberink, Diane; de Proost, Monique; Bik, Elisabeth; Lunter, Bjorn; Kluytmans, Jan; Gits, Etty; van Duyn, Inge; Heck, Max; van der Zwaluw, Kim; Wannet, Wim; Noordhoek, Gerda T.; Mulder, Sije; Renders, Nicole; Boers, Miranda; Zaat, Sebastiaan; van der Riet, Daniëlle; Kooistra, Mirjam; Talens, Adriaan; Dijkshoorn, Lenie; van der Reyden, Tanny; Veenendaal, Dick; Bakker, Nancy; Cookson, Barry; Lynch, Alisson; Witte, Wolfgang; Cuny, Christa; Blanc, Dominique; Vernez, Isabelle; Hryniewicz, Waleria; Fiett, Janusz; Struelens, Marc; Deplano, Ariane; Landegent, Jim; Verbrugh, Henri A.; van Belkum, Alex
2002-01-01
The reproducibility of the binary typing (BT) protocol developed for epidemiological typing of Staphylococcus aureus was analyzed in a biphasic multicenter study. In a Dutch multicenter pilot study, 10 genetically unique isolates of methicillin-resistant S. aureus (MRSA) were characterized by the BT
Reproducibility of Manual Platelet Estimation Following Automated Low Platelet Counts
Directory of Open Access Journals (Sweden)
Zainab S Al-Hosni
2016-11-01
Full Text Available Objectives: Manual platelet estimation is one of the methods used when automated platelet estimates are very low. However, the reproducibility of manual platelet estimation has not been adequately studied. We sought to assess the reproducibility of manual platelet estimation following automated low platelet counts and to evaluate the impact of the level of experience of the person counting on the reproducibility of manual platelet estimates. Methods: In this cross-sectional study, peripheral blood films of patients with platelet counts less than 100 × 109/L were retrieved and given to four raters to perform manual platelet estimation independently using a predefined method (average of platelet counts in 10 fields using 100× objective multiplied by 20. Data were analyzed using intraclass correlation coefficient (ICC as a method of reproducibility assessment. Results: The ICC across the four raters was 0.840, indicating excellent agreement. The median difference of the two most experienced raters was 0 (range: -64 to 78. The level of platelet estimate by the least-experienced rater predicted the disagreement (p = 0.037. When assessing the difference between pairs of raters, there was no significant difference in the ICC (p = 0.420. Conclusions: The agreement between different raters using manual platelet estimation was excellent. Further confirmation is necessary, with a prospective study using a gold standard method of platelet counts.