WorldWideScience

Sample records for varying coupling constants

  1. Non-minimally coupled varying constants quantum cosmologies

    International Nuclear Information System (INIS)

    Balcerzak, Adam

    2015-01-01

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase

  2. Spacetime-varying couplings and Lorentz violation

    International Nuclear Information System (INIS)

    Kostelecky, V. Alan; Lehnert, Ralf; Perry, Malcolm J.

    2003-01-01

    Spacetime-varying coupling constants can be associated with violations of local Lorentz invariance and CPT symmetry. An analytical supergravity cosmology with a time-varying fine-structure constant provides an explicit example. Estimates are made for some experimental constraints

  3. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  4. RNA structure and scalar coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  5. Running couplings and operator mixing in the gravitational corrections to coupling constants

    International Nuclear Information System (INIS)

    Anber, Mohamed M.; Donoghue, John F.; El-Houssieny, Mohamed

    2011-01-01

    The use of a running coupling constant in renormalizable theories is well known, but the implementation of this idea for effective field theories with a dimensional coupling constant is, in general, less useful. Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with varying conclusions. We sort through many of the issues involved, most particularly the idea of operator mixing and also the kinematics of crossing, using calculations in Yukawa and λφ 4 theories as illustrative examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such as λφ 4 , a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge theories, a running coupling fails to correctly account for the energy dependence of the interaction strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that operators which are normally discarded, such as those that vanish by the equations of motion, are required for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in the running of couplings is not useful or universal in the description of physical processes.

  6. Charge dependence of the pion-nucleon coupling constant

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2015-07-01

    Full Text Available On the basis of the Yukawa potential we study the pion-nucleon coupling constants for the neutral and charged pions assuming that nuclear forces at low energies are mainly determined by the exchange of virtual pions. We obtain the charged pseudovector pion-nucleon coupling constant f2π± = 0.0804(7 by making the use of experimental low-energy scattering parameters for the singlet pp- and np-scattering, and also by use of the neutral pseudovector pion-nucleon coupling constant f2π0 = 0.0749(7. Corresponding value of the charged pseudoscalar pion-nucleon coupling constant g2π0 / 4π = 14.55(13 is also determined. This calculated value of the charged pseudoscalar pion-nucleon coupling constant is in fully agreement with the experimental constant g2π0 / 4π = 14.52(26 obtained by the Uppsala Neutron Research Group. Our results show considerable charge splitting of the pion-nucleon coupling constant.

  7. Varying constants, black holes, and quantum gravity

    International Nuclear Information System (INIS)

    Carlip, S.

    2003-01-01

    Tentative observations and theoretical considerations have recently led to renewed interest in models of fundamental physics in which certain 'constants' vary in time. Assuming fixed black hole mass and the standard form of the Bekenstein-Hawking entropy, Davies, Davis and Lineweaver have argued that the laws of black hole thermodynamics disfavor models in which the fundamental electric charge e changes. I show that with these assumptions, similar considerations severely constrain 'varying speed of light' models, unless we are prepared to abandon cherished assumptions about quantum gravity. Relaxation of these assumptions permits sensible theories of quantum gravity with ''varying constants,'' but also eliminates the thermodynamic constraints, though the black hole mass spectrum may still provide some restrictions on the range of allowable models

  8. Globally Coupled Chaotic Maps with Constant Force

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.

  9. Direct 13C-1H coupling constants in the vinyl group of 1-vinylpyrazoles

    International Nuclear Information System (INIS)

    Afonin, A.V.; Voronov, V.K.; Es'kova, L.A.; Domnina, E.S.; Petrova, E.V.; Zasyad'ko, O.V.

    1987-01-01

    In a continuation of a study of the rotational isomerism of 1-vinylpyrazoles, they studied the direct 13 C- 1 H coupling constants in the vinyl group of 1-vinylpyrazole, 1-vinyl-4-bromopyrazole, 1-vinyl-3-methylpyrazole, 1-vinyl-5-methylpyrazole, 1-vinyl-3,5-dimethylpyrazole, and 1-vinyl-4-nitro-3,5-dimethylpyrazole. The 13 C- 1 H direct coupling constants in the vinyl group of 1-vinylpyrazoles are stereo-specific and vary with change in the conformer ratio

  10. Renormalization group equations with multiple coupling constants

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1975-01-01

    The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given

  11. Coupling constants deduced for the resonances in kaon photo-production

    International Nuclear Information System (INIS)

    Cheoun, M. K.; Kim, K. S.; Choi, T. K.

    2004-01-01

    We deduced the coupling constants of nucleon and hyperon resonances, which participate in kaon productions as intermediate states that are formed by electro-magnetic probes and that finally decay into hadronic final states. We used an isobaric model based on an effective Lagrangian approach to describe the processes, in which relevant coupling constants regarding related resonances are effectively determined by fitting available experimental data. Our scheme to deduce the coupling constants was as follows: First, we calculated the lower and the upper limits on the coupling constants by using the experimental decay data available until now and/or theoretical predictions, such as those from quark models and SU(3) symmetry. Second, we exploited those limits as physical constraints on our fitting scheme for the kaon photo-production data. Finally, the deduced values and regions of the coupling constants, which satisfy not only the reaction data but also the decay data, are presented as figures with respect to the strong and the electro-magnetic coupling constants, and their multiplicative values. Our results for the coupling constants give physical values that are more restricted than those allowed by the experimental data nowadays.

  12. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  13. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  14. Simple Model with Time-Varying Fine-Structure ``Constant''

    Science.gov (United States)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  15. The holographic dictionary for Beta functions of multi-trace coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Aharony, Ofer [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Gur-Ari, Guy [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305 (United States); Klinghoffer, Nizan [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel)

    2015-05-06

    Field theories with weakly coupled holographic duals, such as large N gauge theories, have a natural separation of their operators into ‘single-trace operators’ (dual to single-particle states) and ‘multi-trace operators’ (dual to multi-particle states). There are examples of large N gauge theories where the beta functions of single-trace coupling constants all vanish, but marginal multi-trace coupling constants have non-vanishing beta functions that spoil conformal invariance (even when all multi-trace coupling constants vanish). The holographic dual of such theories should be a classical solution in anti-de Sitter space, in which the boundary conditions that correspond to the multi-trace coupling constants depend on the cutoff scale, in a way that spoils conformal invariance. We argue that this is realized through specific bulk coupling constants that lead to a running of the multi-trace coupling constants. This fills a missing entry in the holographic dictionary.

  16. Long-range carbon-proton spin-spin coupling constants in conformational analysis

    International Nuclear Information System (INIS)

    Spoormaker, T.

    1979-01-01

    The author has collected a reliable set of data on long range 13 C- 1 H coupling constants in aliphatic compounds and developed the use of long range 13 C- 1 H coupling constants as a tool in the conformational analysis of aliphatic compounds. An empirical determination of the torsion angle dependence of the vicinal 13 C- 1 H coupling constant for model compounds is described and the dependence of long range 13 C- 1 H coupling constants on the electronegativity of substituents attached to the coupling pathway reported for the monohalogen substituted ethanes and propanes. The electronegativity dependence of the vicinal 13 C- 1 H coupling was studied in monosubstituted propanes whose substituents are elements from the first row of the periodic table and it is shown that the vicinal 13 C- 1 H coupling constant in aliphatic systems is a constitutive property. The geminal 13 C- 1 H coupling constants in ethyl, isopropyl and tert-butyl compounds, which have been substituted by an element of the first row of the periodic table or a haline atom, are reported and the influence of electronegative substituents on the vicinal 13 C- 1 H coupling constants in the individual rotamers of 13 CH 3 -C(X)H-C(Y)H- 1 H fragments discussed. The application of long range 13 C- 1 H coupling constants to the conformational analysis of CMP-N-Acetylneuraminic acid and 2,6-dichloro-1,4-oxathiane is described. (Auth.)

  17. Behaviour of coupling constants at high temperature in supersymmetric theories

    International Nuclear Information System (INIS)

    Swee Ping Chia.

    1986-04-01

    An analysis is presented of the temperature dependence of the coupling constants using the improved one-loop approximation in the Wess-Zumino model and the supersymmetric O(N) model. It is found that all the coupling constants, both bosonic (Φ 4 type) and Yukawa, approach constant nonzero values as T→∞. The asymptotic values of the bosonic couplings are slightly smaller than the corresponding zero-temperature values, and those of the Yukawa couplings are the same as the zero-temperature values. (author)

  18. Coupling constants (Tdn) and (Td*n) for local potentials

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Irgaziev, B.F.; Orlov, Yu.V.

    1976-01-01

    The coupling constants (Tdn) and (Td*n) are found solving the Faddeev equations with local potentials. It is shown that the polinomial extrapolation of the wave function to the nonphysical region of the variable Q 2 turns not to be sure for determination of the coupling constants

  19. Determination of the π3He3H coupling constant

    International Nuclear Information System (INIS)

    Nichitiu, F.; Sapozhnikov, M.G.

    1977-01-01

    Despersion relations for the real part of the antisymmetric amplitude of the π +-3 He scattering have been used in order to determine the π 3 He 3 H coupling constant. The coupling constant value determined by this method is larger than the elementary pion-nucleon coupling constant, but is in good agreement with the value obtained by another method. The obtained value is f 2 sub(π 3 He 3 H) = 0.12+-0.01. Shown is the importance of using the Coulomb corrections for dispersion relation calculations because the value of π 3 He 3 H coupling constant obtained with corrected total cross sections is larger by about 0.014 than the one obtained without these corrections. The best energy ranges for future π 3 He experiments are commented

  20. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. V. The direct carbon-carbon coupling constants in the vinyl group

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1988-03-10

    The direct spin-spin coupling constants in the vinyl group were measured in 100 mono-substituted ethylene derivatives. The inductive effect of the substituent was found to be the major factor in the variation of this constant and, in some cases, the stereospecific effect of the unshared electron pairs of heteratoms makes a significant contribution to the /sup 13/C-/sup 13/C coupling constants.

  1. Mimicking the cosmological constant: Constant curvature spherical solutions in a nonminimally coupled model

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Paramos, Jorge

    2011-01-01

    The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.

  2. Calculation of the Green functions by the coupling constant dispersion relations

    International Nuclear Information System (INIS)

    Bogomalny, E.B.

    1977-01-01

    The discontinuities of the Green functions on the cut in the complex plane of the coupling constant are calculated by the steepest descent method. The saddle points are given by the solutions of the classical field equations at those values of the coupling constant for which the classical theory has no ground state. The Green functions at the physical values of the coupling constant are determined by dispersion relations. (Auth.)

  3. The (φ4)3+1 theory with infinitesimal bare coupling constants

    International Nuclear Information System (INIS)

    Yotsuyanagi, I.

    1987-01-01

    We study the (φ 4 ) 3+1 theory by means of a variational method improved with a BCS-type vacuum state. We examine the theory with both negative and positive infinitesimal bare coupling constants, where the theory has been suggested to exist nontrivially and stably in the infinite ultraviolet cutoff limit. When the cutoff is sent to infinity, we find the instability of the vacuum energy at the end point value of the variational parameter in the case of the negative bare coupling constant. For the positive bare coupling constant, we can renormalize the vacuum energy without using the extremal condition with respect to the variational mass parameter. We do not find an instability for the whole range of parameters including the end point. We still have a possibility that the theory with this bare coupling constant is nontrivial and stable. (orig.)

  4. Spectra of magnetic chain graphs: coupling constant perturbations

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Manko, S. S.

    2015-01-01

    Roč. 48, č. 12 (2015), s. 125302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum graph * magnetic field * coupling constant perturbation * eigenvalues in gaps * weak coupling Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  5. gsub(ωrhoπ) coupling constant from QCD sum rules

    International Nuclear Information System (INIS)

    Eletsky, V.L.; Ioffe, B.L.; Kogan, Ya.I.

    1982-01-01

    QCD sum rules for the vertex function of two vector and one axial vector currents are used to calculate the gsub(ωrhoπ) coupling constant (where gsub(ωrhoπ) is a transition coupling constant for ω → rhoπ process). The obtained value, gsub(ωrhoπ) approximately 17 GeV -1 is in a good agreement with experimental data

  6. Observation of H-bond mediated 3hJH2H3coupling constants across Watson-Crick AU base pairs in RNA

    International Nuclear Information System (INIS)

    Luy, Burkhard; Richter, Uwe; DeJong, Eric S.; Sorensen, Ole W.; Marino, John P.

    2002-01-01

    3h J H2H3 trans-hydrogen bond scalar coupling constants have been observed for the first time in Watson-Crick AU base pairs in uniformly 15 N-labeled RNA oligonucleotides using a new 2h J NN -HNN-E. COSY experiment. The experiment utilizes adenosine H2 (AH2) for original polarization and detection, while employing 2h J NN couplings for coherence transfer across the hydrogen bonds (H-bonds). The H3 protons of uracil bases are unperturbed throughout the experiment so that these protons appear as passive spins in E. COSY patterns. 3h J H2H3 coupling constants can therefore be accurately measured in the acquisition dimension from the displacement of the E. COSY multiplet components, which are separated by the relatively large 1 J H3N3 coupling constants in the indirect dimension of the two-dimensional experiment. The 3h J H2H3 scalar coupling constants determined for AU base pairs in the two RNA hairpins examined here have been found to be positive and range in magnitude up to 1.8 Hz. Using a molecular fragment representation of an AU base pair, density functional theory/finite field perturbation theory (DFT/FPT) methods have been applied to attempt to predict the relative contributions of H-bond length and angular geometry to the magnitude of 3h J H2H3 coupling constants. Although the DFT/FPT calculations did not reproduce the full range of magnitude observed experimentally for the 3h J H2H3 coupling constants, the calculations do predict the correct sign and general trends in variation in size of these coupling constants. The calculations suggest that the magnitude of the coupling constants depends largely on H-bond length, but can also vary with differences in base pair geometry. The dependency of the 3h J H2H3 coupling constant on H-bond strength and geometry makes it a new probe for defining base pairs in NMR studies of nucleic acids

  7. Coupling-constant flows and dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Yamagishi, H.

    1981-01-01

    The Coleman-Weinberg theory is reformulated in terms of flows in coupling-constant space. It is shown that the existence of dynamical symmetry breaking is governed essentially by the b functions. An application is made to the massless Weinberg-Salam model

  8. Can coupling constants be related

    International Nuclear Information System (INIS)

    Nandi, Satyanarayan; Ng, Wing-Chiu.

    1978-06-01

    We analyze the conditions under which several coupling constants in field theory can be related to each other. When the relation is independent of the renormalization point, the relation between any g and g' must satisfy a differential equation as follows from the renormalization group equations. Using this differential equation, we investigate the criteria for the feasibility of a power-series relation for various theories, especially the Weinberg-Salam type (including Higgs bosons) with an arbitrary number of quark and lepton flavors. (orig./WL) [de

  9. Density-dependent coupling constants and charge symmetry breaking

    International Nuclear Information System (INIS)

    Barreiro, L.A.

    2001-01-01

    The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly. (author)

  10. Running coupling constants of the Luttinger liquid

    International Nuclear Information System (INIS)

    Boose, D.; Jacquot, J.L.; Polonyi, J.

    2005-01-01

    We compute the one-loop expressions of two running coupling constants of the Luttinger model. The obtained expressions have a nontrivial momentum dependence with Landau poles. The reason for the discrepancy between our results and those of other studies, which find that the scaling laws are trivial, is explained

  11. Achieving Synchronization in Arrays of Coupled Differential Systems with Time-Varying Couplings

    Directory of Open Access Journals (Sweden)

    Xinlei Yi

    2013-01-01

    Full Text Available We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs. Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous paper (Lu et al. (2007-2008, the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.

  12. Measurement of the strong coupling constant using τ decays

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  13. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Science.gov (United States)

    Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per

    2015-12-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  14. A new scheme for the running coupling constant in gauge theories using Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurachi, Masafumi [Los Alamos National Laboratory; Bilgici, Erek [AUSTRIA; Flachi, Antonion [KYOTO UNIV; Itou, Etsuko [KOGAKUIN UNIV; David Lin, C J [NATIONAL CHIAO-TUNG UNIV; Matsufuru, Hideo [KEK; Ohki, Hiroshi [KYOTO UNIV; Onogi, Tetsuya [KYOTO UNIV; Yamazaki, Takeshi [UNIV OF TSUKUBA

    2009-01-01

    We propose a new renormalization scheme of the running coupling constant in general gauge theories defined by using the Wilson loops. The renormalized coupling constant is obtained from the Cretz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter calculation is performed by adopting the zeta-function resummation techniques. We make a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.

  15. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  16. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    International Nuclear Information System (INIS)

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-01-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role

  17. Newtonian cosmology with a time-varying constant of gravitation

    International Nuclear Information System (INIS)

    McVittie, G.C.

    1978-01-01

    Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)

  18. Goldberger-Treiman constraint criterion for hyperon coupling constants

    International Nuclear Information System (INIS)

    General, Ignacio J.; Cotanch, Stephen R.

    2004-01-01

    The generalized Goldberger-Treiman relation is combined with the Dashen-Weinstein sum rule to provide a constraint equation between the g KΣN and g KΛN coupling constants. A comprehensive examination of the published phenomenological and theoretical hyperon couplings has yielded a much smaller set of values, spanning the intervals 0.80≤g KΣN /√(4π)≤2.72 and -3.90≤g KΛN /√(4π)≤-1.84, consistent with this criterion. The broken SU F (3) and Goldberger-Treiman hyperon couplings satisfy the constraint along with predictions from a Taylor series extrapolation using the same momentum variation as exhibited by g πNN

  19. New QCD sum rules for nucleon axial-vector coupling constants

    International Nuclear Information System (INIS)

    Lee, F.X.; Leinweber, D.B.; Jin, X.

    1997-01-01

    Two new sets of QCD sum rules for the nucleon axial-vector coupling constants are derived using the external-field technique and generalized interpolating fields. An in-depth study of the predicative ability of these sum rules is carried out using a Monte Carlo based uncertainty analysis. The results show that the standard implementation of the QCD sum rule method has only marginal predicative power for the nucleon axial-vector coupling constants, as the relative errors are large. The errors range from approximately 50% to 100% compared to the nucleon mass obtained from the same method, which has only a 10%- 25% error. The origin of the large errors is examined. Previous analyses of these coupling constants are based on sum rules that have poor operator product expansion convergence and large continuum contributions. Preferred sum rules are identified and their predictions are obtained. We also investigate the new sum rules with an alternative treatment of the problematic transitions which are not exponentially suppressed in the standard treatment. The alternative treatment provides exponential suppression of their contributions relative to the ground state. Implications for other nucleon current matrix elements are also discussed. copyright 1997 The American Physical Society

  20. Number of generations related to coupling constants by confusion

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.

    1987-01-01

    In the context of random dynamics, the mechanism of confusion is used to obtain a relation between the number of generations and standard model coupling constants. Preliminary results predict the existence of four generations. (orig.)

  1. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  2. The variation of the fine-structure constant from disformal couplings

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Mifsud, Jurgen [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa (Portugal)

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  3. The variation of the fine-structure constant from disformal couplings

    International Nuclear Information System (INIS)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J.

    2015-01-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory

  4. Determination of the pion-nucleon coupling constant

    International Nuclear Information System (INIS)

    Samaranayake, V.K.

    1977-06-01

    Forward dispersion relations are used to determine the pion-nucleon coupling constant and S-wave scattering lengths using a least squares fit with additional parameters introduced to take account of the uncertainties in the calculation of dispersion integrals. The values obtained are: f 2 = (78.0+- 2.1).10 -3 , a 1 -a 3 = (272.4+- 12.3).10 -3 , a 1 +2a 3 = (15.1+-10.4).10 -3

  5. Experimental test of the flavor independence of the quark-gluon coupling constant

    International Nuclear Information System (INIS)

    Althoff, M.; Braunschweig, W.; Kirschfink, F.J.; Luebelsmeyer, K.; Martyn, H.U.; Rimkus, J.; Rosskamp, P.; Sander, H.G.; Schmitz, D.; Siebke, H.; Wallraff, W.; Duchovni, E.; Karshon, U.; Mikenberg, G.; Mir, R.; Revel, D.; Ronat, E.; Shapira, A.; Yekutieli, G.; Baranko, G.; Barklow, T.; Caldwell, A.; Cherney, M.; Izen, J.M.; Mermikides, M.; Rudolph, G.; Strom, D.; Takashima, M.; Venkataramania, H.; Wicklund, E.; Sau Lan Wu; Zobernig, G.; Eisenberg, Y.; Eskreys, A.; Gather, K.; Hultschig, H.; Joos, P.; Koetz, U.; Kowalski, H.; Ladage, A.; Loehr, B.; Lueke, D.; Maettig, P.; Maettig, P.; Notz, D.; Nowak, R.J.; Pyrlik, J.; Rushton, M.; Schuette, W.; Trines, D.; Wolf, G.; Xiao, C.

    1984-01-01

    Reconstruction of charged Dsup(*)'s produced inclusively in e + e - annhilations at c.m. energies near 34.4 GeV is accomplished in the decay modes Dsup(*+) -> D 0 π + -> K - π + π 0 π + and Dsup(*+) -> D 0 π + -> K - π + π - π + π + and their charge conjugates. Using these and previously reported Dsup(*+) -> D 0 π + -> K - π + π + and Dsup(*+) -> D 0 π + -> K - π + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, αsub(s)sup(c)/αsub(s) = 1.00 +- 0.20 +- 0.20. Our result provides evidence that the quark-gluon coupling constant is independent of flavor. (orig.)

  6. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  7. Coupling constant corrections in a holographic model of heavy ion collisions

    NARCIS (Netherlands)

    Grozdanov, Sašo; Schee, Wilke van der

    2017-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We

  8. Re-Evaluation of Constant versus Varied Punishers Using Empirically Derived Consequences

    Science.gov (United States)

    Toole, Lisa M.; DeLeon, Iser G.; Kahng, Sung Woo; Ruffin, Geri E.; Pletcher, Carrie A.; Bowman, Lynn G.

    2004-01-01

    Charlop, Burgio, Iwata, and Ivancic [J. Appl. Behav. Anal. 21 (1988) 89] demonstrated that varied punishment procedures produced greater or more consistent reductions of problem behavior than a constant punishment procedure. More recently, Fisher and colleagues [Res. Dev. Disabil. 15 (1994) 133; J. Appl. Behav. Anal. 27 (1994) 447] developed a…

  9. The Effects of Constant versus Varied Reinforcers on Preference and Resistance to Change

    Science.gov (United States)

    Milo, Jessie-Sue; Mace, F. Charles; Nevin, John A.

    2010-01-01

    Previous research has demonstrated that factors such as reinforcer frequency, amount, and delay have similar effects on resistance to change and preference. In the present study, 4 boys with autism made choices between a constant reinforcer (one that was the same food item every trial) and a varied food reinforcer (one that varied randomly between…

  10. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  11. Chiral 2d theories from N=4 SYM with varying coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Craig [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Schäfer-Nameki, Sakura [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2017-04-19

    We study 2d chiral theories arising from 4d N=4 Super-Yang Mills (SYM) with varying coupling τ. The 2d theory is obtained by dimensional reduction of N=4 SYM on a complex curve with a partial topological twist that accounts for the non-constant τ. The resulting 2d theories can preserve (0,n) with n=2,4,6,8 chiral supersymmetry, and have a natural realization in terms of strings from wrapped D3-branes in F-theory. We determine the twisted dimensional reduction, as well as the spectrum and anomaly polynomials of the resulting strings in various dimensions. We complement this by considering the dual M-theory configurations, which can either be realized in terms of M5-branes wrapped on complex surfaces, or M2-branes on curves that result in 1d supersymmetric quantum mechanics.

  12. Assessing the viability of successful reconstruction of the dynamics of dark energy using varying fundamental couplings

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Losano, L., E-mail: losano@fisica.ufpb.br [Departamento de Fisica, Universidade Federal da Paraiba, 58051-970 Joao Pessoa, Paraiba (Brazil); Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Menezes, R., E-mail: rmenezes@dce.ufpb.br [Departamento de Ciencias Exatas, Universidade Federal da Paraiba, 58297-000 Rio Tinto, PB (Brazil); Departamento de Fisica, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraiba (Brazil); Oliveira, J.C.R.E., E-mail: jespain@fe.up.pt [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Engenharia Fisica da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2012-10-31

    We assess the viability of successful reconstruction of the evolution of the dark energy equation of state using varying fundamental couplings, such as the fine structure constant or the proton-to-electron mass ratio. We show that the same evolution of the dark energy equation of state parameter with cosmic time may be associated with arbitrary variations of the fundamental couplings. Various examples of models with the same (different) background evolution and different (the same) time variation of fundamental couplings are studied in the Letter. Although we demonstrate that, for a broad family of models, it is possible to redefine the scalar field in such a way that its dynamics is that of a standard quintessence scalar field, in general such redefinition leads to the breakdown of the linear relation between the scalar field and the variation of fundamental couplings. This implies that the assumption of a linear coupling is not sufficient to guarantee a successful reconstruction of the dark energy dynamics and consequently additional model dependent assumptions about the scalar field responsible for the dark energy need to be made.

  13. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    Science.gov (United States)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  14. Coupling constants and the nonrelativistic quark model with charmonium potential

    International Nuclear Information System (INIS)

    Chaichian, M.; Koegerler, R.

    1978-01-01

    Hadronic coupling constants of the vertices including charm mesons are calculated in a nonrelativistic quark model. The wave functions of the mesons which enter the corresponding overlap integrals are obtained from the charmonium picture as quark-antiquark bound state solutions of the Schroedinger equation. The model for the vertices takes into account in a dynamical way the SU 4 breakings through different masses of quarks and different wave functions in the overlap integrals. All hadronic vertices involving scalar, pseudoscalar, vector, pseudovector and tensor mesons are calculated up to an overall normalization constant. Regularities among the couplings of mesons and their radial excitations are observed: i) Couplings decrease with increasing order of radial excitations; ii) In general they change sign if a particle is replaced by its next radial excitation. The k-dependence of the vertices is studied. This has potential importance in explaining the unorthodox ratios in different decay channels. Having got the hadronic couplings radiative transitions are obtained with the current coupled to mesons and their recurrences. The resulting width values are smaller than those conventionally obtained in the naive quark model. The whole picture is only adequate for nonrelativistic configurations, as for the members of the charmonium- or of the UPSILON-family and most calculations have been done for transitions among charmed states. To see how far nonrelativistic concepts can be applied, couplings of light mesons are also considered. (author)

  15. Precise strength of the $\\pi$NN coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Rahm, J; Blomgren, J; Olsson, N; Thomas, A W

    1998-01-01

    We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives $g^2_c$(GMO) = 13.99(24).

  16. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  17. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  18. Capillary electrophoresis - inductively coupled plasma mass spectrometry (CE-ICPMS) coupling to assess pentavalent actinides thermodynamic constants

    International Nuclear Information System (INIS)

    Topin, S.; Baglan, N.; Aupiais, J.

    2009-01-01

    Full text: Aiming to investigate plutonium speciation at trace levels, we coupled capillary electrophoresis, a high resolution separation technique with inductively coupled plasma mass spectrometry, a detector with high sensitivity for plutonium. The research work performed to optimize the coupling is discussed based on the following criteria: the migration time, the resolution and the detection limit. The capabilities of the analytical tool are demonstrated by determining thermodynamic constants for pentavalent plutonium, and neptunium as a reference, in the presence of inorganic ligands. (author)

  19. Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R. [Department of Physics, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi, 46000 (Pakistan)

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  20. Strong-coupling constant at three loops in momentum subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.; Russian Academy of Sciences, Moscow; Kniehl, B.A.; Steinhauser, M.

    2008-12-01

    In this paper we compute the three-loop corrections to the β function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  1. Strong-coupling constant at three loops in momentum subtraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Chetyrkin, K.G. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Steinhauser, M. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-12-15

    In this paper we compute the three-loop corrections to the {beta} function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM {beta} function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  2. gVSγ coupling constant in light cone QCD

    International Nuclear Information System (INIS)

    Aydin, C.; Keskin, F.; Yilmaz, A. H.; Aydin, S. H.

    2011-01-01

    We recalculated the coupling constants g φσγ , g φa 0 γ , g ωσγ , g a 0 ωγ , g ρσγ , and g a 0 ργ by taking into account the contributions of the three-particle up to twist-4 distribution amplitudes of the photon involving quark-gluon and quark-anti-quark-photon fields in the light-cone sum-rule framework.

  3. Precise strength of the πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Rahm, J.; Blomgren, J.; Olsson, N.; Thomas, A. W.

    1999-01-01

    We report here a preliminary value for the πNN coupling constant deduced from the Goldberger-Miyazawa-Oehme sum rule for forward πN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives g 2 c =13.99(24)

  4. Scale solutions and coupling constant in electrodynamics of vector particles

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Boos, E.E.; Kurennoy, S.S.

    1980-01-01

    A new approach in nonrenormalizable gauge theories is studied, the electrodynamics of vector particles being taken as an example. One and two-loop approximations in Schwinger-Dyson set of equations are considered with account for conditions imposed by gauge invariance. It is shown, that solutions with scale asymptotics can occur in this case but only for a particular value of coupling constant. This value in solutions obtained is close to the value of the fine structure constant α=1/137

  5. The thermal coupling constant and the gap equation in the λ φ 4D model

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.

    1998-05-01

    By the concurrent use of two different resummation methods, the composite operator formalism and the Dyson-Schwinger equation, we re-examine the behaviour at finite temperature of the O(N)-symmetric λψ 4 model in a generic D-dimensional Euclidean space. In the cases D = 3 and D = 4, an analysis of the thermal behaviour of the renormalized squared mass and coupling constant are done for all temperatures. It results that the thermal renormalized squared mass is positive and increases monotonically with the temperature. The behavior of the thermal coupling constant is quite different in odd or even dimensional space. In D = 3, the thermal coupling constant decreases up to a minimum value different from zero and ten grows up monotonically as the temperature increases. In the case D = 4, it is found that the thermal renormalized coupling constant tends in the high temperature limit to a constant asymptotic value. Also for general D-dimensional Euclidean space, we are able to obtain a formula for the critical temperature of the second order phase transition. This formula agrees with previous known values at D = 3 and D 4. (author)

  6. Muon capture on nuclei and the induced pseudoscalar coupling constant

    International Nuclear Information System (INIS)

    Hasinoff, M.D.

    1996-11-01

    Ordinary and radiative muon capture reactions are reviewed with regards to the evidence for a renormalization of the induced pseudoscalar coupling constant inside the nucleus. Emphasis is placed on the new results which have become available since the WEIN-92 conference. (authors)

  7. Direct determinations of the πNN coupling constants

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; ); Loiseau, B.

    1998-01-01

    A novel extrapolation method has been used to deduce directly the charged πNN coupling constant from backward np differential scattering cross sections. The extracted value, g c 2 = 14.52(026)is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g c 2 about 13.97(30). (author)

  8. Freezing of the QCD coupling constant and the pion form factor

    International Nuclear Information System (INIS)

    Aguilar, A.C.; Mihara, A.; Natale, A.A.

    2003-01-01

    The possibility that the QCD coupling constant (α s ) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the 'frozen' the QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment. (author)

  9. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  10. Determination of the pion-nucleon coupling constant and scattering lengths

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2002-01-01

    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.17+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0786(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0017+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0900+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pi...

  11. Exponential stability of fuzzy cellular neural networks with constant and time-varying delays

    International Nuclear Information System (INIS)

    Liu Yanqing; Tang Wansheng

    2004-01-01

    In this Letter, the global stability of delayed fuzzy cellular neural networks (FCNN) with either constant delays or time varying delays is proposed. Firstly, we give the existence and uniqueness of the equilibrium point by using the theory of topological degree and the properties of nonsingular M-matrix and the sufficient conditions for ascertaining the global exponential stability by constructing a suitable Lyapunov functional. Secondly, the criteria for guaranteeing the global exponential stability of FCNN with time varying delays are given and the estimation of exponential convergence rate with regard to speed of vary of delays is presented by constructing a suitable Lyapunov functional

  12. Conditions for the absence of infinite renormalization in masses and coupling constants

    International Nuclear Information System (INIS)

    Terrab, E.S.C.

    1985-01-01

    A model of scalar, pseudo-scalar and spin 1/2 particle interaction is studied. After reformulation of the problem in function of auxiliary fields, perturbative calculations up to one loop are developed, finding out certain relations among characteristics constants of system, which assure (until the considered order) the absence of infinite renormalization in masses and coupling constants. (M.C.K.) [pt

  13. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    International Nuclear Information System (INIS)

    Hrycyna, Orest; Szydłowski, Marek

    2015-01-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory

  14. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    Energy Technology Data Exchange (ETDEWEB)

    Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  15. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  16. Temperature dependence of (+)-catechin pyran ring proton coupling constants as measured by NMR and modeled using GMMX search methodology

    Science.gov (United States)

    Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway

    1997-01-01

    The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...

  17. Cold fission description with constant and varying mass asymmetries

    International Nuclear Information System (INIS)

    Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P.; Goncalves, M.; Garcia, F.; Guzman, F.

    1998-01-01

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of 234 U cold fission are satisfactorily reproduced. (author)

  18. Self-consistent calculation of the coupling constant in the Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cherny, A.Yu.; Brand, J.

    2004-01-01

    A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme that admit analytical estimations are considered and compared to the literature. In addition to the well-known cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction, external, and release energies in low dimensions are also evaluated and contributions due to short-range correlations are found to be substantial

  19. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  20. Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2016-08-01

    Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.

  1. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    International Nuclear Information System (INIS)

    Poleshchuk, O. K.; Branchadell, V.; Ritter, R. A.; Fateev, A. V.

    2008-01-01

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  2. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    Energy Technology Data Exchange (ETDEWEB)

    Poleshchuk, O. K., E-mail: poleshch@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation); Branchadell, V. [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Ritter, R. A.; Fateev, A. V. [Tomsk State Pedagogical University (Russian Federation)

    2008-01-15

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  3. The holomorphicity of the gauge coupling constant in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Li, H.

    1993-01-01

    Holomorphicity is the analytical dependence of the gauge coupling function, f = 1/g 2 + Θ/8π 2 , on the chiral fields in supergravity and supersymmetric gauge theories. The holomorphic property of 1/g 2 in supersymmetric gauge theories is studied by calculating its dependence on the mass matrix. The general representations of the mass matrix allowed by the constraints of gauge invariance is considered, and calculate the one- and two-loop corrections to 1/g 2 for both super QED and super Yang-Mills theories. For the massive mass matrix it is shown that one- and two-loop corrections to the gauge coupling constant are holomorphic. The reason for two-loop holomorphicity is that the second order logarithmic terms cancel out. For the mass matrix with at least one zero mode, it is recognized that there are two distinct cases which we call pseudo massive and intrinsically massless. For the case of pseudo mass matrix, the reducible representation of the gauge group is (i) complex with equal numbers of irreducible representations and their conjugates, (ii) real, or (iii) pseudo-real. Even though there are massless modes, it is found that the dependence of the gauge coupling constant on the mass matrix is holomorphic. This holomorphicity follows because the mass matrix can be perturbed to regularize the infrared divergence. For the case of intrinsically massless mass matrix, a reducible complex representation with unequal numbers of irreducible representations and their conjugates. The author shows that loop corrections to the gauge coupling constant are non-holomorphic. The reason is an infrared momentum cutoff is used which spins holomorphicity. The results show that, for the pseudo massive case, even though there is an infrared divergence, the one- and two-loop corrections are still holomorphic. Hence, it is concluded that non-holomorphicity is caused by the unbalanced numbers of families and antifamilies in the complex representation

  4. How Precisely can we Determine the $\\piNN$ Coupling Constant from the Isovector GMO Sum Rule?

    CERN Document Server

    Loiseau, B; Thomas, A W

    1999-01-01

    The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths.

  5. Global synchronization in arrays of delayed neural networks with constant and delayed coupling

    International Nuclear Information System (INIS)

    Cao Jinde; Li Ping; Wang Weiwei

    2006-01-01

    This Letter investigates the global exponential synchronization in arrays of coupled identical delayed neural networks (DNNs) with constant and delayed coupling. By referring to Lyapunov functional method and Kronecker product technique, some sufficient conditions are derived for global synchronization of such systems. These new synchronization criteria offer some adjustable matrix parameters, which is of important significance in the design and applications of such coupled DNNs, and the results improve and extend the earlier works. Finally, an example is given to illustrate the theoretical results

  6. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, E G [Department of Mathematics and Statistics, University of Waikato, Hamilton (New Zealand); Miller, W Jr; Post, S [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: miller@ima.umn.edu

    2010-01-22

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  7. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Kalnins, E G; Miller, W Jr; Post, S

    2010-01-01

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  8. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    Energy Technology Data Exchange (ETDEWEB)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es [Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  9. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Rasmus; Sauer, Stephan P. A. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  10. The effective baryon-lepton coupling constant and the parity of leptons

    International Nuclear Information System (INIS)

    Lucha, W.; Stremnitzer, H.

    1981-01-01

    Using a phenomenological ansatz for the Lagrangian of baryon- and lepton-number violating interactions the effective baryon-lepton coupling constant is calculated within the framework of a relativistic quark model. Apart from a calculation of B-number violating cross-sections and decays this ansatz allows for a definition of the parity of leptons relative to baryons. (Auth.)

  11. The nucleon axial isoscalar coupling constant and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.; Kogan, Ya.I.

    1984-01-01

    The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model

  12. Cosmic no-hair theorem with a varying cosmological constant on brane scenario

    CERN Document Server

    Chakraborty, S

    2002-01-01

    In this work, we have studied cosmic no-hair theorem for homogeneous anisotropic Bianchi models with a varying cosmological constant (LAMBDA) in Randall-Sundrum braneworld-type scenarios. The matter fields are confined over the 3-brane onto which the five-dimensional Weyl tensor has a non-vanishing projection. The variation of LAMBDA is taken to be the recently proposed form of Vishwakarma and its generalization. In the first case, the universe will isotropize after power-law inflation while there is exponential expansion in the second case.

  13. Chiral symmetry effect on the pion-nucleon coupling constant; O efeito da simetria quiral na constante de acoplamento pion-nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanilse da Silva

    1997-12-31

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.

  14. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    DEFF Research Database (Denmark)

    Hoeck, Casper; Gotfredsen, Charlotte Held; Sørensen, Ole W.

    2017-01-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization...

  15. Precision determination of the strong coupling constant within a global PDF analysis

    NARCIS (Netherlands)

    Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria

    2018-01-01

    We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO

  16. Possible generalization of the method of evolution in the coupling constant

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Solovtsova, O.P.

    1980-01-01

    Two possible generalizations of the method of evolution in the coupling constant are presented. The consideration is given for a concrete case of the three-body problem: the πd scattering at the zeroth pion energy. It is shown that two approaches provide the value for the πd scattering length which is close to that obtained by solving the Faddeev equations [ru

  17. Coupling between eddy current and deflection in cantilevered beams in magnetic fields

    International Nuclear Information System (INIS)

    Hua, T.Q.

    1986-01-01

    Experiments were performed to investigate the coupling between eddy currents and deflection in cantilevered beams in longitudinal and transverse magnetic fields. This coupling effect reduces the current, deflection, and material stress to levels far less severe than would be predicted if coupling is disregarded. The experiments were conducted using the FELIX (Fusion ELectromagnetic Induction experiment) facility at the Argonne National Laboratory. The beams, which provide a simple model for the limiter blades in a tokamak fusion reactor, are subjected to crossed time-varying and constant magnetic fields. The time-varying field simulates the decaying field during a plasma disruption and the constant field models the toroidal field. Several test pieces are employed to allow variations in thicknesses and mechanical and electrical properties. Various magnetic field levels and decay time constants of time-varying are used to study the extent of the coupling from weak to strong coupling. The ratios of constant field to time-varying field are kept in the range from 10:1 to 20:1 as would be appropriate to tokamak limiters. Major parameters measured as functions of time are beam deflection, measured with an electro-optical device; total circulating current, measured with a Rogowski coil; strain recorded by strain gauges; and magnetic fields measured with Hall probes

  18. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...... of spin-spin coupling constants involving tellurium, was developed. The SOPPA methods show much better performance as compared to 15 those of DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while...

  19. The renormalised π NN coupling constant and the P-wave phase shifts in the cloudy bag model

    International Nuclear Information System (INIS)

    Pearce, B.C.; Afnan, I.R.

    1986-02-01

    Most applications of the cloudy bag model to π N scattering involve unitarising the bare diagrams arising from the Lagrangian by iterating in a Lippmann-Schwinger equation. However analyses of the renormalisation of the coupling constant proceed by iterating the Lagrangian to a given order in the bare coupling constant. These two different approaches means there is an inconsistency between the calculation of phase shifts and the calculation of renormalisation. A remedy to this problem is presented that has the added advantage of improving the fit to the phase shifts in the P 11 channel. This is achieved by using physical values of the coupling constant in the crossed diagram which reduces the repulsion rather than adds attraction. This approach can be justified by examining equations for the π π N system that incorporate three-body unitarity

  20. Weakly Coupled Oscillators in a Slowly Varying World

    OpenAIRE

    Park, Youngmin; Ermentrout, Bard

    2016-01-01

    We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through ...

  1. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    DEFF Research Database (Denmark)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper

    2016-01-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants ...... are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured....

  2. Restrictions on the masses and coupling constants of excited intermediate bosons

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Nogteva, A.V.

    1985-01-01

    The properties of the intermediate bosons are discussed in the framework of composite models which include not only the W +- and Z 0 bosons but also their excited states with large masses. The influence of the excited states on the values of the masses of the W +- and Z 0 bosons is investigated. Restrictions on the masses and coupling constants of the excited intermediate bosons are obtained

  3. Meson-baryon coupling constants from a chiral-invariant SU(3) Lagrangian and application to NN scattering

    International Nuclear Information System (INIS)

    Stoks, V.G.J.

    1997-01-01

    We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)

  4. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    International Nuclear Information System (INIS)

    Mei, Sun; Chang-Yan, Zeng; Li-Xin, Tian

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand–supply of energy resource in some regions of China

  5. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    Science.gov (United States)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  6. The /sup 13/C-/sup 13/C spin-spin coupling constants and the conformational equilibrium of alkyl phenyl sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Krividin, L.B.; Kalabin, G.A.

    1985-08-10

    The authors measure the direct geminal and vicinal spinspin coupling constants between the C-13 nuclei of the phenyl group in the series of alkyl phenyl sulfides C/sub 6/H/sub 5/SR. It was shown that the variation in most of the discussed constants is determined by the ratio of the planar and orthogonal conformers. Linear relationships were obtained between the C-13-C-13 constants and the fractions of the planar conformer. The C-13-C-13 spin-spin coupling constants in the planar and orthogonal conformers of the compounds were calculated by means of empirical relationships.

  7. Perturbation theory at large order in more than one coupling constant for a field theory with fermions

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.

    1980-01-01

    We have considered the problem of evaluating the large order estimates of perturbation theory in a quantum field theory with more than one coupling constant. The theory considered is four dimensional and possesses instanton-type solutions. It contains a Boson field coupled with a Fermion through the usual g anti psi psi phi type interaction, along with the self-interaction of the Boson lambda phi 4 . Our analysis reveals a phenomenon not observed in a theory with only one coupling constant. One gets different kinds of behavior in different regions of the (lambda, g) plane. The results are quite encouraging for the application to more realistic field theories

  8. Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes

    DEFF Research Database (Denmark)

    Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav

    2018-01-01

    We have investigated the performance of the most popular relativistic density functional theory methods, zeroth order regular approximation (ZORA) and 4-component Dirac-Kohn-Sham (DKS), in the calculation of the recently measured hyperfine coupling constants of ReIV and IrIV in their hexafluorido...

  9. Should the coupling constants be mass dependent in the relativistic mean field models

    International Nuclear Information System (INIS)

    Levai, P.; Lukacs, B.

    1986-05-01

    Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)

  10. 13C, 1H spin-spin coupling constants. Pt. 4

    International Nuclear Information System (INIS)

    Aydin, R.; Guenther, H.

    1979-01-01

    One-bond, geminal, and vicinal 13 C, 1 H coupling constants have been determined for adamantane using α-and β-[D]adamantane and the relation sup(n)J( 13 C, 1 H)=6,5144sup(n)J( 13 C, 2 H) for the conversion of the measured sup(n)J( 13 C, 2 H) values. It is shown that the magnitude of 3 Jsub(trans) is strongly influenced by the substitution pattern. Relative H,D isotope effects for 13 C chemical shifts are given. (orig.) [de

  11. Renormalization group analysis of the temperature dependent coupling constant in massless theory

    International Nuclear Information System (INIS)

    Yamada, Hirofumi.

    1987-06-01

    A general analysis of finite temperature renormalization group equations for massless theories is presented. It is found that in a direction where momenta and temperature are scaled up with their ratio fixed the coupling constant behaves in the same manner as in zero temperature and that asymptotic freedom at short distances is also maintained at finite temperature. (author)

  12. The varying cosmological constant: a new approximation to the Friedmann equations and universe model

    Science.gov (United States)

    Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.

    2018-05-01

    We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.

  13. Nuclear matter studies with density-dependent meson-nucleon coupling constants

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.

    1997-01-01

    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society

  14. Strong coupling constant from Adler function in lattice QCD

    Science.gov (United States)

    Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo

    2016-09-01

    We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.

  15. $K^{\\pm}n$ forward dispersion relations and the KN$\\Sigma$ coupling constant

    CERN Document Server

    Baillon, Paul; Ferro-Luzzi, M; Jenni, Peter; Perreau, J M; Tripp, R D; Ypsilantis, Thomas; Déclais, Y; Séguinot, Jacques

    1976-01-01

    Recent measurements of the K/sup -/n forward scattering amplitude at 1.2, 1.4, 2.6 GeV/c are used in a once-subtracted dispersion relation to determine the value of the KN Sigma coupling constant. The result is g/sub Sigma //sup 2/=1.9+or-3.2, in agreement with the prediction of the SU(3) theory.

  16. Observational constraints on holographic dark energy with varying gravitational constant

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Xu, Lixin [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Saridakis, Emmanuel N. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Setare, M.R., E-mail: lvjianbo819@163.com, E-mail: msaridak@phys.uoa.gr, E-mail: rezakord@ipm.ir, E-mail: lxxu@dlut.edu.cn [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.

  17. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    Science.gov (United States)

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  18. The influence of fragmentation models on the determination of the strong coupling constant in e+e- annihilation into hadrons

    International Nuclear Information System (INIS)

    Behrend, H.J.; Chen, C.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.; D'Agostini, G.; Apel, W.D.; Banerjee, S.; Bodenkamp, J.; Chrobaczek, D.; Engler, J.; Fluegge, G.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Hopp, G.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Klarsfeld, A.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Veillet, J.J.; Field, J.H.; George, R.; Goldberg, M.; Grossetete, B.; Hamon, O.; Kapusta, F.; Kovacs, F.; London, G.; Poggioli, L.; Rivoal, M.; Aleksan, R.; Bouchez, J.; Carnesecchi, G.; Cozzika, G.; Ducros, Y.; Gaidot, A.; Jadach, S.; Lavagne, Y.; Pamela, J.; Pansart, J.P.; Pierre, F.

    1983-01-01

    Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant αsub(s). Although within one model the value of αsub(s) varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach. (orig.)

  19. Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay

    International Nuclear Information System (INIS)

    Zhang Qun-Jiao; Zhao Jun-Chan

    2012-01-01

    This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)

  20. The πHe3H3 coupling constant estimation using the Chew-Low equation

    International Nuclear Information System (INIS)

    Mach, R.; Nichitiu, F.

    1976-01-01

    A semi-phenomenological analysis of the π +- He 3 elastic scattering at 98, 120, 135 and 156 Mev is presented. An information of the πHe 3 H 3 coupling constant using the Chew-Low plot for the P 33 partial wave is obtained. (author)

  1. The πHe3H3 coupling constant estimation using the Chew-Low equation

    International Nuclear Information System (INIS)

    Mach, R.; Nichitiu, F.

    1975-01-01

    In this paper it is presented an estimation of the πHe 3 H 3 coupling constant using the Chew-Low equation and a semi-phenomenological analysis of the π -+ He 3 elastic differential cross sections at 98, 120, 135 and 156 MeV

  2. Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides

    Science.gov (United States)

    Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-07-01

    Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also

  3. On the usefulness of the 't Hooft and Adler transformations of the running coupling constant in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Hagiwara, K.

    1982-01-01

    It is argued that the 't Hooft transformation of the running coupling constant, in which the two-loop renormalization group (RG) function becomes exact, will be useful in the framework of perturbative quantum chromodynamics at least to three-loop order. On the other hand, the coupling constant expansion obtained by the Adler transformation, in which the RG equation takes its one-loop form, may suffer from large corrections in a finite order. (orig.)

  4. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    Energy Technology Data Exchange (ETDEWEB)

    Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl

    2017-02-15

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  5. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    International Nuclear Information System (INIS)

    Plyushchay, Mikhail S.

    2017-01-01

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  6. Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling

    International Nuclear Information System (INIS)

    Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang

    2009-01-01

    A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)

  7. Non-perturbative computation of the strong coupling constant on the lattice

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli

    2015-01-01

    We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.

  8. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  9. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-01-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation ...

  10. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    Science.gov (United States)

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  11. The cosmological constant as an eigenvalue of the Hamiltonian constraint in a varying speed of light theory

    Energy Technology Data Exchange (ETDEWEB)

    Garattini, Remo [Univ. degli Studi di Bergamo, Dalmine (Italy). Dept. of Engineering and Applied Sciences; I.N.F.N., Sezione di Milano, Milan (Italy); De Laurentis, Mariafelicia [Tomsk State Pedagogical Univ. (Russian Federation). Dept. of Theoretical Physics; INFN, Sezione di Napoli (Italy); Complutense Univ. di Monte S. Angelo, Napoli (Italy)

    2017-01-15

    In the framework of a Varying Speed of Light theory, we study the eigenvalues associated with the Wheeler-DeWitt equation representing the vacuum expectation values associated with the cosmological constant. We find that the Wheeler-DeWitt equation for the Friedmann-Lemaitre-Robertson-Walker metric is completely equivalent to a Sturm-Liouville problem provided that the related eigenvalue and the cosmological constant be identified. The explicit calculation is performed with the help of a variational procedure with trial wave functionals related to the Bessel function of the second kind K{sub ν}(x). After having verified that in ordinary General Relativity no eigenvalue appears, we find that in a Varying Speed of Light theory this is not the case. Nevertheless, instead of a single eigenvalue, we discover the existence of a family of eigenvalues associated to a negative power of the scale. A brief comment on what happens at the inflationary scale is also included. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Chemically induced dynamic nuclear polarization in systems containing large hyperfine coupling constants

    International Nuclear Information System (INIS)

    Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.

    1989-01-01

    Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets

  13. Bounds on the g/sub K//sub N//sub Σ/ 2 coupling constant from positivity and charge-exchange data

    International Nuclear Information System (INIS)

    Antolin, J.

    1987-01-01

    Positivity of the imaginary part of the forward K - n elastic amplitude on the unphysical cut allows the calculation of bounds on the g/sub K//sub N//sub Σ/ 2 coupling constant using the forward differential cross sections of the charge-exchange reaction K - p→K-bar 0 n, the scarce K - n real-part data, and a Stieltjes parametrization of the K - p real-part data. The bounds on the coupling constant are 2.11 2 - n amplitude: (0.35 +- 0.05) +- (0.16 +- 0.04)i GeV/c

  14. Radiative muon capture and induced pseudoscalar coupling constant in nuclear matter

    International Nuclear Information System (INIS)

    Cheoun, Myung Ki; Kim, K S; Choi, T K

    2003-01-01

    Radiative muon capture is studied to investigate the induced pseudoscalar coupling constant g P in nuclear matter. According to the recent TRIUMF experiment for μ - p → nν μ γ, the g P was surprisingly larger than the value obtained from μ - p → nν μ experiment by as much as 44%. The result may affect seriously theoretical interpretations of the experimental results for the radiative muon captures in finite nuclei. In view of the recent TRIUMF result, the radiative muon capture in nuclear matter is revisited in a framework of the relativistic mean field theory

  15. The GMO sumrule and the πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2000-01-01

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π - p and π - d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data g c 2 (GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or f c 2 / 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π - p and π - d scattering lengths our analysis leads also to accurate values for (1/2)(a π - p +a π - n ) and (1/2) (a π - p -a π - n ). (orig.)

  16. The GMO Sumrule and the πNN Coupling Constant

    Science.gov (United States)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).

  17. Measurement of the strong coupling constant αs with hadronic jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Gouzevitch, Maxime

    2008-12-01

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant α s . The jets have been selected in the NC DIS events at large momentum transvers 150 2 2 within the limits of the detector acceptance -0.8 Lab T B >5. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on α s (m Z ) has been obtained with the combination ob the three observables at Q 2 >150 GeV 2 : α s (m Z )=0.1180±0.0007(exp.) -0.0034 +0.0050 (th.)±0.0017 (pdf.).

  18. Signatures of van der Waals binding: A coupling-constant scaling analysis

    Science.gov (United States)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  19. Top and Higgs mass predictions in supersymmetric SU(5) model with big top quark Yukawa coupling constant

    International Nuclear Information System (INIS)

    Krasnikov, N.V.; Rodenberg, R.

    1993-01-01

    From the requirement of the absence of the Landau pole singularity for the effective top quark Yukawa coupling constant up to Planck scale in SU(5) supersymmetric model we find an upper bound m t ≤ 187 GeV for the top quark mass. For the SU(5) fixed point renormalization group solution for top quark Yukawa coupling constant which can be interpreted as the case of composite superhiggs we find that m t ≥ 140 GeV. Similar bound takes place in all models with big anti h t (m t ). For m t ≤ 160 GeV we find also that the Higgs boson is lighter than m Z and hence it can be discovered at LEP2

  20. SQSQh: 1H-detected SQ-SQ Experiment for Determination of Signed Silicon-Carbon Coupling Constants

    Czech Academy of Sciences Publication Activity Database

    Blechta, Vratislav; Schraml, Jan

    2010-01-01

    Roč. 48, č. 6 (2010), s. 464-470 ISSN 0749-1581 R&D Projects: GA AV ČR IAA400720706 Institutional research plan: CEZ:AV0Z40720504 Keywords : nmr * sqsq sequence * sign of coupling constant Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.247, year: 2010

  1. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  2. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  3. Effects of the amount and schedule of varied practice after constant practice on the adaptive process of motor learning

    Directory of Open Access Journals (Sweden)

    Umberto Cesar Corrêa

    2014-12-01

    Full Text Available This study investigated the effects of different amounts and schedules of varied practice, after constant practice, on the adaptive process of motor learning. Participants were one hundred and seven children with a mean age of 11.1 ± 0.9 years. Three experiments were carried out using a complex anticipatory timing task manipulating the following components in the varied practice: visual stimulus speed (experiment 1; sequential response pattern (experiment 2; and visual stimulus speed plus sequential response pattern (experiment 3. In all experiments the design involved three amounts (18, 36, and 63 trials, and two schedules (random and blocked of varied practice. The experiments also involved two learning phases: stabilization and adaptation. The dependent variables were the absolute, variable, and constant errors related to the task goal, and the relative timing of the sequential response. Results showed that all groups worsened the performances in the adaptation phase, and no difference was observed between them. Altogether, the results of the three experiments allow the conclusion that the amounts of trials manipulated in the random and blocked practices did not promote the diversification of the skill since no adaptation was observed.

  4. The inductively coupled plasma as a source for the measurement of fundamental spectroscopic constants

    International Nuclear Information System (INIS)

    Farnsworth, P.B.

    1993-01-01

    Inductively coupled plasmas (ICPs) are stable, robust sources for the generation of spectra from neutral and singly ionized atoms. They are used extensively for analytical spectrometry, but have seen limited use for the measurement of fundamental spectroscopic constants. Several properties of the ICP affect its suitability for such fundamental measurements. They include: spatial structure, spectral background, noise characteristics, electron densities and temperatures, and the state of equilibrium in the plasma. These properties are particularly sensitive to the means by which foreign atoms are introduced into the plasma. With some departures from the operating procedures normally used in analytical measurements, the ICP promise to be a useful source for the measurement of fundamental atomic constants. (orig.)

  5. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-07-01

    Full Text Available By recurring to Geometric Probability methods, it is shown that the coupling constants, αEM; αW; αC associated with Electromagnetism, Weak and the Strong (color force are given by the ratios of the ratios of the measures of the Shilov boundaries Q2=S1×RP1; Q3=S2×RP1; S5, respectively, with respect to the ratios of the measures μ[Q5]/μN[Q5] associated with the 5D conformally compactified real Minkowski spacetime ˉ M5 that has the same topology as the Shilov boundary Q5 of the 5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain D5=SO(5,2/SO(5×SO(2 corresponds to the conformal relativistic curved 10 real-dimensional phase space H10 associated with a particle moving in the 5D Anti de Sitter space AdS5. The geometric coupling constant associated to the gravitational force can also be obtained from the ratios of the measures involving Shilov boundaries. We also review our derivation of the observed vacuum energy density based on the geometry of de Sitter (Anti de Sitter spaces.

  6. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)

    2012-06-04

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  7. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    International Nuclear Information System (INIS)

    Sergyeyev, Artur

    2012-01-01

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  8. How precisely can the difference method determine the $\\pi$NN coupling constant?

    CERN Document Server

    Loiseau, B

    2000-01-01

    The Coulomb-like backward peak of the neutron-proton scattering differentialcross section is due to one-pion exchange. Extrapolation to the pion pole ofprecise data should allow to obtain the value of the charged pion-nucleoncoupling constant. This was classically attempted by the use of a smoothphysical function, the Chew function, built from the cross section. To improveaccuracy of such an extrapolation one has introduced a difference method. Itconsists of extrapolating the difference between the Chew function based onexperimental data and that built from a model where the pion-nucleon couplingis exactly known. Here we cross-check to which precision can work this novelextrapolation method by applying it to differences between models and betweendata and models. With good reference models and for the 162 MeV neutron-protonUppsala single energy precise data with a normalisation error of 2.3 , thevalue of the charged pion-nucleon coupling constant is obtained with anaccuracy close to 1.8

  9. gDsDK*0 and gBsDK*0 coupling constants in QCD sum rules

    International Nuclear Information System (INIS)

    Şahin, S; Sundu, H; Azizi, K

    2012-01-01

    In the present study, we calculate the strong coupling constants g D s DK* 0 (800) and g B s DK* 0 (800) within the three-point QCD sum rules approach. We evaluate the correlation function of the considered vertices taking into account both D[B] and K* 0 (800) mesons as off-shell states.

  10. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  11. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  12. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...

  13. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    International Nuclear Information System (INIS)

    Bhowmik, Anal; Majumder, Sonjoy; Roy, Sourav; Dutta, Narendra Nath

    2017-01-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies. (paper)

  14. Slowly varying dilaton cosmologies and their field theory duals

    International Nuclear Information System (INIS)

    Awad, Adel; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; Trivedi, Sandip P.

    2009-01-01

    We consider a deformation of the AdS 5 xS 5 solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the anti-de Sitter (AdS) scale thereby introducing a small parameter ε. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the supergravity (sugra) solution to first nontrivial order in ε, and find that it is smooth, horizon-free, and asymptotically AdS 5 xS 5 in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analyzed in the dual SU(N) gauge theory on S 3 with a time dependent coupling constant which varies slowly. When Nε 5 xS 5 again. When Nε>>1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the 't Hooft coupling this reproduces the supergravity results. For small 't Hooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS 5 space with the possible presence of a small black hole.

  15. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  16. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Science.gov (United States)

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-01

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  17. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  18. A constant gradient planar accelerating structure for linac use

    International Nuclear Information System (INIS)

    Kang, Y.W.; Matthews, P.J.; Kustom, R.L.

    1995-01-01

    Planar accelerating millimeter-wave structures have been studied during the last few years at Argonne National Laboratory in collaboration with Technical University of Berlin. The cavity structures are intended to be manufactured by using x-ray lithography microfabrication technology. A complete structure consists of two identical planar half structures put together face-to-face. Since microfabrication technology can make a since-depth indentation on a planar substrate, realizing the constant impedance structure was possible but a constant gradient structure was difficult; changing the group velocity along the structure while maintaining the gap and the depth of the indentation constant was difficult. A constant gradient structure has been devised by introducing a cut between the adjacent cavity cells along the beam axis of each half structure. The width of the cut is varied along the longitudinal axis of the structure to have proper coupling between the cells. The result of the computer simulation on such structures is shown

  19. A New Experiment for the Measurement of nJ(C,P) Coupling Constants Including 3J(C4'i,Pi) and 3J(C4'i,Pi+1) in Oligonucleotides

    International Nuclear Information System (INIS)

    Richter, Christian; Reif, Bernd; Woerner, Karlheinz; Quant, Stefanie; Marino, John P.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    1998-01-01

    A new experiment for the measurement of nJ(C,P) coupling constants along the phosphodiester backbone in RNA and DNA based on a quantitative-J HCP experiment is presented. In addition to coupling constants, in which a carbon atom couples to only one phosphorus atom, both the intraresidual 3J(C4'i,Pi) and the sequential 3J(C4'i,Pi+1) for the C4' resonances that couple to two phosphorus atoms can be obtained. Coupling constants obtained by this new method are compared to values obtained from the P-FIDS experiment. Together with 3J(H,P) coupling constants measured using the P-FIDS experiment, the backbone angles β and element of can be determined

  20. Uppsala neutron-proton scattering measurements and the πNN coupling constant

    International Nuclear Information System (INIS)

    Olsson, N.; Blomgren, J.; Conde, H.; Dangtip, S.; Elmgren, K.; Rahm, J.; Roennqvist, T.; Zorro, R.; Loiseau, B.

    2000-01-01

    The differential np scattering cross section has been measured at 96 MeV and 162 MeV at backward angles at the neutron beam facility of the The Svedberg Laboratory in Uppsala. The angular distributions have been normalized to the experimental total np cross section. Between 150 and 180 , the angular distributions are steeper than for most previous measurements and nucleon-nucleon potential predictions, but for all the angular range covered, the data agree very well in shape with the recent PSI data. At 180 , the difference versus older data amounts to about 10%, implying serious consequences because of the fundamental importance of this cross section. Values of the charged πNN coupling constant have been extracted from the data. (orig.)

  1. Determination of the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton

    CERN Document Server

    Akulov, Y A

    2002-01-01

    Data on the chemical shifts of half-lives for atomic and molecular tritium were used to determine the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton (G sub A /G sub V) sub t = -1.2646 +- 0.0035

  2. Observational constraints on f(T) gravity from varying fundamental constants

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rafael C.; Bonilla, Alexander [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil); Pan, Supriya [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India); Saridakis, Emmanuel N. [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); National Technical University of Athens, Physics Division, Athens (Greece); Baylor University, CASPER, Physics Department, Waco, TX (United States)

    2017-04-15

    We use observations related to the variation of fundamental constants, in order to impose constraints on the viable and most used f(T) gravity models. In particular, for the fine-structure constant we use direct measurements obtained by different spectrographic methods, while for the effective Newton constant we use a model-dependent reconstruction, using direct observational Hubble parameter data, in order to investigate its temporal evolution. We consider two f(T) models and we quantify their deviation from Λ CDM cosmology through a sole parameter. Our analysis reveals that this parameter can be slightly different from its Λ CDM value, however, the best-fit value is very close to the Λ CDM one. Hence, f(T) gravity is consistent with observations, nevertheless, as every modified gravity, it may exhibit only small deviations from Λ CDM cosmology, a feature that must be taken into account in any f(T) model-building. (orig.)

  3. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  4. Stochastic Resonance in a System of Coupled Chaotic Oscillators

    International Nuclear Information System (INIS)

    Krawiecki, A.

    1999-01-01

    Noise-free stochastic resonance is investigated numerically in a system of two coupled chaotic Roessler oscillators. Periodic signal is applied either additively or multiplicatively to the coupling term. When the coupling constant is varied the oscillators lose synchronization via attractor bubbling or on-off intermittency. Properly chosen signals are analyzed which reflect the sequence of synchronized (laminar) phases and non-synchronized bursts in the time evolution of the oscillators. Maximum of the signal-to-noise ratio as a function of the coupling constant is observed. Dependence of the signal-to-noise ratio on the frequency of the periodic signal and parameter mismatch between the oscillators is investigated. Possible applications of stochastic resonance in the recovery of signals in secure communication systems based on chaotic synchronization are briefly discussed. (author)

  5. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution

    International Nuclear Information System (INIS)

    Furrer, Julien; John, Michael; Kessler, Horst; Luy, Burkhard

    2007-01-01

    The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA 4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRD d,X -HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished

  6. 1,2-Difluoroethane: the angular dependance on 1J(CF) coupling constants is independent of hyperconjugation.

    Science.gov (United States)

    Freitas, Matheus P; Bühl, Michael; O'Hagan, David

    2012-02-28

    1,2-Difluoroethane is widely recognised to adopt a lower energy gauche rather than anti conformation; this gauche effect has its origin in hyperconjugation; however, surprisingly the (1)J(CF) coupling constant is not influenced by hyperconjugation; instead, its magnitude changes with the overall molecular dipole. This journal is © The Royal Society of Chemistry 2012

  7. Astrophysical Probes of Varying Constants and Unification

    International Nuclear Information System (INIS)

    Martins, C J A P

    2016-01-01

    The observational evidence for the acceleration of the universe demonstrates that canonical theories of gravitation and particle physics are incomplete, if not incorrect. A new generation of astronomical facilities will soon carry out precision consistency tests of the standard cosmological model and search for evidence of new physics beyond it. I describe recent work of CAUP's Dark Side team on some of these tests, focusing on the stability of nature's fundamental couplings and tests of unification scenarios. (paper)

  8. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  9. Loss of incoherence and determination of coupling constants in quantum gravity

    International Nuclear Information System (INIS)

    Giddings, S.B.; Strominger, A.

    1988-01-01

    The wave function of an interacting 'family' of one large 'parent' and many Planck-sized 'baby' universes is computed in a semiclassical approximation using an adaptation of Hartle-Hawking initial conditions. A recently discovered gravitational instanton which exists for general relativity coupled to axions is employed. The outcome of a single experiment in the parent universe is in general described by a mixed state, even if the initial state is pure. However, a sequence of measurements rapidly collapses the wave function of the family of universes into one of an infinite number of 'coherent' states for which quantum incoherence is not observed in the parent universe. This provides a concrete illustration of an unexpected phenomena whose existence has been argued for on quite general grounds by Coleman: Quantum incoherence due to information loss to baby universes is not experimentally observable. We further argue that all coupling constants governing dynamics in the parent universe depend on the parameters describing the particular coherent state into which the family wave function collapses. In particular, generically terms that violate any global symmetries will be induced in the effective action for the parent universe. These last results have much broader applicability than our specific model. (orig.)

  10. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  11. Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality

    International Nuclear Information System (INIS)

    Xu, Wei; Xu, Hao; Zhao, Liu

    2014-01-01

    The thermodynamic phase space of Gauss-Bonnet (GB) AdS black holes is extended, taking the inverse of the GB coupling constant as a new thermodynamic pressure P GB . We studied the critical behavior associated with P GB in the extended thermodynamic phase space at fixed cosmological constant and electric charge. The result shows that when the black holes are neutral, the associated critical points can only exist in five dimensional GB-AdS black holes with spherical topology, and the corresponding critical exponents are identical to those for the Van der Waals system. For charged GB-AdS black holes, it is shown that there can be only one critical point in five dimensions (for black holes with either spherical or hyperbolic topologies), which also requires the electric charge to be bounded within some appropriate range; while in d < 5 dimensions, there can be up to two different critical points at the same electric charge, and the phase transition can occur only at temperatures which are not in between the two critical values. (orig.)

  12. The focusing effect of electromagnetic waves in two-dimensional photonic crystals with gradually varying lattice constant

    Directory of Open Access Journals (Sweden)

    F Bakhshi Garmi

    2016-02-01

    Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.

  13. Nuclear spin-spin coupling constants of linear carbon chains terminated by coronene molecules: a first principles study

    International Nuclear Information System (INIS)

    Oliveira, Joao Paulo Cavalcante; Mota, F. de Brito; Rivelino, Roberto

    2011-01-01

    Full text. Carbon nano wires made of long linear atomic chains have attracted considerable interest due to their potential applications in nano electronics. We report a density-functional-theory study of the nuclear spin-spin coupling constants for nano assemblies made of two coronene molecules bridged by carbon linear chains, considering distinct sizes and spin multiplicities. Also, we examine the effects of two terminal conformations (syn and anti) of the terminal anchor pieces on the magnetic properties of the carbon chains via 13 C NMR calculations. Our results reveal that simplified chemical models such as those based on cumulenes or polyynes are not appropriate to describe the linear chains with sp 2 terminations. For these types of atomic chains, the electronic ground state of the even-numbered chains can be singlet or triplet, whereas the ground state of the odd-numbered chains can be doublet or quartet. We discuss how the 13 C NMR chemical shift absorption is affected by increasing the size and changing the parity of the linear carbon chains. We have found that the J coupling constants between the carbon atoms in the linear chains present a well-defined pattern, in good accordance with our electronic structure calculations. For example, in the -C 4 - units we obtain couplings of 43.8, 114.5, 84.6, 114.5, and 43.8 Hz from one end to the other

  14. ATA and the electron phonon coupling constant in calculating TA of super conducting alloys [Paper No. : V-2

    International Nuclear Information System (INIS)

    Chatterjee, P.; Chatterjee, S.

    1978-01-01

    The theoretical formula of McMillan has been very successful in explaining the superconducting transition temperature. In this theory the electron-phonon coupling constant was very difficult to calculate from a purely theoretical stand point until Gyorffy and Gaspari gave a theoretical formulation from the multiple scattering point of view. This theory has been very successful in explaining Tsub(c) of many superconducting elements and compounds. For the disordered solid, such as substitution alloys, this theory fails because of the breakdown of the translational symmetry used in the multiple scattering theory of Gyorffy and Gaspari. This problem can however be solved if we average the Green's function in random phase approximation (ATA). In this work we have reformulated Gyorffy and Gaspari's expression of the electron phonon coupling constant in the random phase approximation. This theory has been utilised to alloys of Nb and Mo with different concentrations. The agreement between theory and experiment appears to be very good. (author)

  15. Cosmological constants and variations

    International Nuclear Information System (INIS)

    Barrow, John D

    2005-01-01

    We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates

  16. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    Science.gov (United States)

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  17. Λ( t ) cosmology induced by a slowly varying Elko field

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, S.H.; Pinho, A.S.S.; Silva, J.M. Hoff da [Universidade Estadual Paulista (Unesp), Faculdade de Engenharia, Guaratinguetá, Departamento de Física e Química Av. Dr. Ariberto Pereira da Cunha 333, 12516-410—Guaratinguetá, SP (Brazil); Jesus, J.F., E-mail: shpereira@feg.unesp.br, E-mail: alexandre.pinho510@gmail.com, E-mail: hoff@feg.unesp.br, E-mail: jfjesus@itapeva.unesp.br [Universidade Estadual Paulista (Unesp), Campus Experimental de Itapeva, R. Geraldo Alckmin, 519 Itapeva, SP (Brazil)

    2017-01-01

    In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model Λ( t )=Λ{sub *}+3β H {sup 2}, where Λ{sub *} and β are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parameters Ω {sub m} and β, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.

  18. Measurement of 2J(H,C)- and 3J(H,C)-coupling constants by α/β selective HC(C)H-TOCSY

    International Nuclear Information System (INIS)

    Duchardt, Elke; Richter, Christian; Reif, Bernd; Glaser, Steffen J.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    2001-01-01

    A new heteronuclear NMR pulse sequence for the measurement of n J(C,H) coupling constants, the α/βselective HC(C)H-TOCSY, is described. It is shown that the S 3 E element (Meissner et al., 1997a,b) can be used to obtain spin state selective coherence transfer in molecules, in which adjacent CH moieties are labeled with 13 C. Application of the α/β selective HC(C)H-TOCSY to a 10nt RNA tetraloop 5'-CGCUUUUGCG-3', in which the four uridine residues are 13 C labeled in the sugar moiety, allowed measurement of two bond and three bond J(C,H) coupling constants, which provide additional restraints to characterize the sugar ring conformation of RNA in cases of conformational averaging

  19. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  20. Radiative muon capture and renormalization of the induced pseudoscalar coupling constant in nuclei

    International Nuclear Information System (INIS)

    Hasinoff, M.D.; Armstrong, D.S.; Azuelos, G.

    1992-08-01

    Radiative Muon Capture (RMC), μ - Z → ν μ (Z - 1)γ, is a weak semi-leptonic process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , of the weak hadronic current. After a brief introduction and review of the general theoretical background relevant to RMC, the most recent data from TRIUMF and PSI are presented and compared to the latest theoretical calculations. The extracted g p values are compared to the PCAC prediction for RMC on a free proton to determine whether or not there is any significant renormalization of g p inside the nuclear medium. A progress report on the TRIUMF RMC experiment on hydrogen is also presented. refs., 12 figs., 3 tabs

  1. Inverse Scattering, the Coupling Constant Spectrum, and the Riemann Hypothesis

    International Nuclear Information System (INIS)

    Khuri, N. N.

    2002-01-01

    It is well known that the s-wave Jost function for a potential, λV, is an entire function of λ with an infinite number of zeros extending to infinity. For a repulsive V, and at zero energy, these zeros of the 'coupling constant', λ, will all be real and negative, λ n (0) n n =1/2+iγ n . Thus, finding a repulsive V whose coupling constant spectrum coincides with the Riemann zeros will establish the Riemann hypothesis, but this will be a very difficult and unguided search.In this paper we make a significant enlargement of the class of potentials needed for a generalization of the above idea. We also make this new class amenable to construction via inverse scattering methods. We show that all one needs is a one parameter class of potentials, U(s;x), which are analytic in the strip, 0≤Res≤1, Ims>T 0 , and in addition have an asymptotic expansion in powers of [s(s-1)] -1 , i.e. U(s;x)=V 0 (x)+gV 1 (x)+g 2 V 2 (x)+...+O(g N ), with g=[s(s-1)] -1 . The potentials V n (x) are real and summable. Under suitable conditions on the V n 's and the O(g N ) term we show that the condition, ∫ 0 ∞ vertical bar f 0 (x) vertical bar 2 V 1 (x) dx≠0, where f 0 is the zero energy and g=0 Jost function for U, is sufficient to guarantee that the zeros g n are real and, hence, s n =1/2+iγ n , for γ n ≥T 0 .Starting with a judiciously chosen Jost function, M(s,k), which is constructed such that M(s,0) is Riemann's ξ(s) function, we have used inverse scattering methods to actually construct a U(s;x) with the above properties. By necessity, we had to generalize inverse methods to deal with complex potentials and a nonunitary S-matrix. This we have done at least for the special cases under consideration.For our specific example, ∫ 0 ∞ vertical bar f 0 (x) vertical bar 2 V 1 (x) dx=0 and, hence, we get no restriction on Img n or Res n . The reasons for the vanishing of the above integral are given, and they give us hints on what one needs to proceed further. The problem

  2. The determination of the weak neutral current coupling constants and limits on the electromagnetic properties of the muon neutrino

    International Nuclear Information System (INIS)

    Callas, J.L.

    1987-05-01

    The goal of this thesis is to determine experimentally the cross section for nu/sub μ/e → nu/sub μ/e scattering from a sample of over 100 expected nu/sub μ/e → nu/sub μ/e events collected by the E734 neutrino detector in BNL wide band neutrino beam. By combining these results with results from an anti-neutrino determination of the cross section for anti nu/sub μ/e → anti nu/sub μ/e scattering in the form of a ratio of cross sections, the weak coupling constants for the electron, g/sub V/ and g/sub A/ can be determined in a model independent way to within a four fold ambiguity where three of the ambiguities can be eliminated by results from e + e - experiments. The predictions of the Standard Model for the weak coupling constants can then be tested and a precise determination of the electroweak mixing parameter, sin 2 θ/sub W/ can be made

  3. On the calculation of {sup 3}J{sub {alpha}{beta}}-coupling constants for side chains in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Denise [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Allison, Jane R. [Massey University Albany, Centre for Theoretical Chemistry and Physics, Institute for Natural Sciences (New Zealand); Eichenberger, Andreas P.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2012-07-15

    Structural knowledge about proteins is mainly derived from values of observables, measurable in NMR spectroscopic or X-ray diffraction experiments, i.e. absorbed or scattered intensities, through theoretically derived relationships between structural quantities such as atom positions or torsional angles on the one hand and observable quantities such as squared structure factor amplitudes, NOE intensities or {sup 3}J-coupling constants on the other. The standardly used relation connecting {sup 3}J-couplings to torsional angles is the Karplus relation, which is used in protein structure refinement as well as in the evaluation of simulated properties of proteins. The accuracy of the simple and generalised Karplus relations is investigated using side-chain structural and {sup 3}J{sub {alpha}{beta}}-coupling data for three different proteins, Plastocyanin, Lysozyme, and FKBP, for which such data are available. The results show that the widely used Karplus relations are only a rough estimate for the relation between {sup 3}J{sub {alpha}{beta}}-couplings and the corresponding {chi}{sub 1}-angle in proteins.

  4. On the Convergence of the ccJ-pVXZ and pcJ-n Basis Sets in CCSD Calculations of Nuclear Spin-Spin Coupling Constants

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2018-01-01

    The basis set convergence of nuclear spin-spin coupling constants (SSCC) calculated at the coupled cluster singles and doubles (CCSD) level has been investigated for ten difficult molecules. Eight of the molecules contain fluorine atoms and nine contain double or triple bonds. Results obtained...

  5. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  6. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    Science.gov (United States)

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  7. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  8. Determination of the pion-nucleon coupling constant and scattering lengths

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2002-01-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π - p and π - d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g c 2 (GMO)/4π=14.11±0.05(statistical)±0.19(systematic) or f c 2 /4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (a π - p +a π - n )/2=[-12±2(statistical)±8(systematic)]x10 -4 m π -1 and (a π - p -a π - n )/2=[895±3(statistical)±13 (systematic)]x10 -4 m π -1 . For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length

  9. Bardeen-Cooper-Schrieffer universal constants generalized

    International Nuclear Information System (INIS)

    Hazaimeh, A.H.

    1992-01-01

    Weak- and moderate-coupling BCS superconductivity theory is shown to admit a more general T c formula, wherein T c approaches zero somewhat faster than with the familiar BCS T c -formula. This theory leads to a departure from the universal behavior of the gap-to-T c ratio and is consistent with some recent empirical values for exotic superconductors. This ratio is smaller than the universal BCS value of 3.53 in a way which is consistent with weak electron-boson coupling. Similarly, other universal constants related to specific heat and critical magnetic field are modified. In this dissertation, The author investigates the latter constants for weak-coupling and moderate-coupling and carry out detailed comparisons with experimental data for the cuprates and with the corresponding predictions of strong-coupling theory. This effort is to elucidate the nature of these superconductors with regards to coupling strength within an electron-boson mechanism

  10. The BFKL Pomeron with running coupling constant: how much of its hard nature survives?

    International Nuclear Information System (INIS)

    Haakman, L.P.A.; Kancheli, O.V.; Koch, J.H.

    1998-01-01

    We discuss the BFKL equation with a running gauge coupling and identify in its solutions the contributions originating from different transverse momentum scales. We show that for a running coupling constant the distribution of the gluons making up the BFKL pomeron shifts to smaller transverse momenta so that the dominant part of pomeron can have a non-perturbative origin. It is demonstrated how this soft physics enters into the BFKL solution through the boundary condition. We consider twokinematical regimes leading to different behaviour of the rapidity andtransverse momentum dependence of the gluon distribution. In the diffusion approximation to the BFKL kernel with running α s , we find a sequence of poles which replaces the cut for fixed α s . The second regime corresponds to the singular part of the kernel, which gives the dominant contribution in the limit of very large transverse momenta. Finally, a simple more general picture is obtained for the QCD pomeron in hard processes: it is of soft, non-perturbative nature, but has hard ends of DGLAP type. (orig.)

  11. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    Science.gov (United States)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  12. Effect of the nitrogen unshared electron pair on the direct /sup 13/C-/sup 13/C spin-spin coupling constant of a neighboring bond in oximes

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, V.V.; Krivdin, L.B.; Kalabin, G.A.; Trofimov, B.A.

    1986-11-20

    The authors have previously established that the direct /sup 13/C-/sup 13/C coupling constants are stereospecific relative to the orientation of unshared electron pairs (UEP) of nitrogen and oxygen atoms. Here they show that the nitrogen UEP produces a positive contribution to the direct /sup 13/C-/sup 13/C coupling constant of an adjacent syn-periplanar carbon-carbon bond and not to a negative contribution of the corresponding constant of the anti-periplanar bond. Thus, the observed effect is not a consequence of the interaction of the heteroatom UEP with the anti-bonding orbital of the adjacent anti-periplanar bond (n/sub o-o/* interaction) as in the case of anomeric and related effects.

  13. Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume

    International Nuclear Information System (INIS)

    Khan, A.A.; Goeckeler, M.; Haegler, P.

    2006-03-01

    We present data for the axial coupling constant g A of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g A based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)

  14. Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.A.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen (DE). Physik-Department, Theoretische Physik] (and others)

    2006-03-15

    We present data for the axial coupling constant g{sub A} of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g{sub A} based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)

  15. Evaluation of the strong coupling constant {alpha}{sub s} using the ATLAS inclusive jet cross-section data

    Energy Technology Data Exchange (ETDEWEB)

    Malaescu, B. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Starovoitov, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    We perform a determination of the strong coupling constant using the latest ATLAS inclusive jet cross section data, from proton-proton collisions at {radical}(s)=7 TeV, and their full information on the bin-to-bin correlations. Several procedures for combining the statistical information from the different data inputs are studied and compared. The theoretical prediction is obtained using NLO QCD, and it also includes non-perturbative corrections. Our determination uses inputs with transverse momenta between 45 and 600 GeV, the running of the strong coupling being also tested in this range. Good agreement is observed when comparing our result with the world average at the Z-boson scale, as well as with the most recent results from the Tevatron. (orig.)

  16. The ATLAS Measurements of Jet Production and the Strong Coupling Constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density in the parton distribution function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8 TeV and 13 TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the dijet cross section at a center-of-mass energy of 13 TeV as a function of the dijet invariant mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (...

  17. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  18. Ab initio calculations and experimental measurement of the deuterium quadrupole coupling constant in Na2PDO3

    International Nuclear Information System (INIS)

    Trudeau, J.D.; Schwartz, J.L.; Farrar, T.C.

    1991-01-01

    The deuterium quadrupole coupling constant, χ D , in the PDO 3 2- anion has been measured in solution by NMR spin-lattice (T 1 ) relaxation time measurements and it has been calculated via ab initio methods. The experimental value of 94.7 ± 0.5 kHz is in excellent agreement with the ab initio value of 95.0 kHz. The activation energy for the ion reorientation is 2.23 ± 0.01 kJ mol -1

  19. Wormholes and the cosmological constant problem.

    Science.gov (United States)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  20. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    Science.gov (United States)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  1. Synchronization of coupled stochastic complex-valued dynamical networks with time-varying delays via aperiodically intermittent adaptive control

    Science.gov (United States)

    Wang, Pengfei; Jin, Wei; Su, Huan

    2018-04-01

    This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.

  2. CAL3JHH: a Java program to calculate the vicinal coupling constants (3J H,H) of organic molecules.

    Science.gov (United States)

    Aguirre-Valderrama, Alonso; Dobado, José A

    2008-12-01

    Here, we present a free web-accessible application, developed in the JAVA programming language for the calculation of vicinal coupling constant (3J(H,H)) of organic molecules with the H-Csp3-Csp3-H fragment. This JAVA applet is oriented to assist chemists in structural and conformational analyses, allowing the user to calculate the averaged 3J(H,H) values among conformers, according to its Boltzmann populations. Thus, the CAL3JHH program uses the Haasnoot-Leeuw-Altona equation, and, by reading the molecule geometry from a protein data bank (PDB) file format or from multiple pdb files, automatically detects all the coupled hydrogens, evaluating the data needed for this equation. Moreover, a "Graphical viewer" menu allows the display of the results on the 3D molecule structure, as well as the plotting of the Newman projection for the couplings.

  3. np scattering measurements at 162 MeV and the πNN coupling constant

    International Nuclear Information System (INIS)

    Rahm, J.; Blomgren, J.; Conde, H.; Dangtip, S.; Elmgren, K.; Olsson, N.; Roennqvist, T.; Zorro, R.; Ringbom, A.; Tibell, G.; Jonsson, O.; Nilsson, L.; Renberg, P.U.; Ericson, T.E.O.; Loiseau, B.

    1999-01-01

    The differential np scattering cross sections has been measured at 162 MeV in the angular range θ c.m. = 72 angle - 180 angle, using the neutron beam facility at the Svedberg Laboratory in Uppsala. Special attention was paid to the absolute normalization of the data. In the angular range 150 angle - 180 angle, the data are steeper then those of most previous measurements and predictions from energy-dependent partial-wave analyses, or nucleon-nucleon potentials. Moreover, a value of the charged πNN coupling constant, g π± 2 = 14.52 ± 0.26 (f π± 2 = 0.0803 ± 0.0014), is deduced from the data, using a novel extrapolation method. This is in good agreement with the classical text book value, but higher than those determined in recent partial-wave analyses of the nucleon-nucleon data base. (authors)

  4. PSYCHE CPMG-HSQMBC: An NMR Spectroscopic Method for Precise and Simple Measurement of Long-Range Heteronuclear Coupling Constants.

    Science.gov (United States)

    Timári, István; Szilágyi, László; Kövér, Katalin E

    2015-09-28

    Among the NMR spectroscopic parameters, long-range heteronuclear coupling constants convey invaluable information on torsion angles relevant to glycosidic linkages of carbohydrates. A broadband homonuclear decoupled PSYCHE CPMG-HSQMBC method for the precise and direct measurement of multiple-bond heteronuclear couplings is presented. The PSYCHE scheme built into the pulse sequence efficiently eliminates unwanted proton-proton splittings from the heteronuclear multiplets so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between peak maxima of pure antiphase doublets. Moreover, PSYCHE CPMG-HSQMBC can provide significant improvement in sensitivity as compared to an earlier Zangger-Sterk-based method. Applications of the proposed pulse sequence are demonstrated for the extraction of (n)J((1)H,(77)Se) and (n)J((1)H,(13)C) values, respectively, in carbohydrates; further extensions can be envisioned in any J-based structural and conformational studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant

    International Nuclear Information System (INIS)

    Goepfert, M.; Mack, G.

    1981-07-01

    We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g 2 , and obeys and bound α >= const x msub(D)β -1 for small ag 2 , with β = 4π 2 /g 2 and m 2 sub(D) = (2β/a 3 )esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D) -2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag 2 are found. Renormalization group aspects are discussed. (orig.)

  6. Analysis of the interactions between difluoroacetylene and one or two hydrogen fluoride molecules based on calculated spin–spin coupling constants

    DEFF Research Database (Denmark)

    Provasi, Patricio F.; Caputo, María Cristina; Sauer, Stephan P. A.

    2012-01-01

    A theoretical study of FCCF:(HF)n complexes, with n = 1 and 2, has been carried out by means of ab initio computational methods. Two types of complexes are formed: those with FH···p interactions and those with FH···FC hydrogen bonds. The indirect spin–spin coupling constants have been calculated ...

  7. How universe evolves with cosmological and gravitational constants

    Directory of Open Access Journals (Sweden)

    She-Sheng Xue

    2015-08-01

    Full Text Available With a basic varying space–time cutoff ℓ˜, we study a regularized and quantized Einstein–Cartan gravitational field theory and its domains of ultraviolet-unstable fixed point gir≳0 and ultraviolet-stable fixed point guv≈4/3 of the gravitational gauge coupling g=(4/3G/GNewton. Because the fundamental operators of quantum gravitational field theory are dimension-2 area operators, the cosmological constant is inversely proportional to the squared correlation length Λ∝ξ−2. The correlation length ξ characterizes an infrared size of a causally correlate patch of the universe. The cosmological constant Λ and the gravitational constant G are related by a generalized Bianchi identity. As the basic space–time cutoff ℓ˜ decreases and approaches to the Planck length ℓpl, the universe undergoes inflation in the domain of the ultraviolet-unstable fixed point gir, then evolves to the low-redshift universe in the domain of ultraviolet-stable fixed point guv. We give the quantitative description of the low-redshift universe in the scaling-invariant domain of the ultraviolet-stable fixed point guv, and its deviation from the ΛCDM can be examined by low-redshift (z≲1 cosmological observations, such as supernova Type Ia.

  8. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    International Nuclear Information System (INIS)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  9. Modelling of coupled heat and electric field distribution during ohmic heating of solid foods with varying sizes

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Bøknæs, Niels; Nielsen, P.L.

    factors leading to variations and uncertainties in prediction of the right process parameters. The current work is focused on modelling of OH of solid food pieces of varying sizes cooked in one batch. A 3D mathematical model of coupled heat transfer and electric field during OH of shrimps has been...

  10. Switching phase states in two van der Pol oscillators coupled by ttochastically time-varying resistor

    OpenAIRE

    Uwate, Y; Nishio, Y; Stoop, R

    2009-01-01

    We explore the synchronization and switching behavior of a system of two identical van der Pol oscillators coupled by a stochastically timevarying resistor. Triggered by the time-varying resistor, the system of oscillators switches between synchronized and anti-synchronized behavior. We find that the preference of the synchronized/antisynchronized state is determined by the ratio of the probabilities of the two resistor states. The length of the phases of maintained resistor states, however, ...

  11. Synchronization between Different Networks with Time-Varying Delay and Its Application in Bilayer Coupled Public Traffic Network

    Directory of Open Access Journals (Sweden)

    Wenju Du

    2016-01-01

    Full Text Available In order to study the dynamic characteristics of urban public traffic network, this paper establishes the conventional bus traffic network and the urban rail traffic network based on the space R modeling method. Then regarding these two networks as the subnetwork, the paper presents a new bilayer coupled public traffic network through the transfer relationship between subway and bus, and this model well reflects the connection between the passengers and bus operating vehicles. Based on the synchronization theory of coupling network with time-varying delay and taking “Lorenz system” as the network node, the paper studies the synchronization of bilayer coupled public traffic network. Finally, numerical results are given to show the impact of public traffic dispatching, delayed departure, the number of public bus stops between bus lines, and the number of transfer stations between two traffic modes on the bilayer coupled public traffic network balance through Matlab simulation.

  12. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlö gl, Udo; Shelykh, I. A.

    2009-01-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  13. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlögl, Udo

    2009-07-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  14. A natural cosmological constant from chameleons

    International Nuclear Information System (INIS)

    Nastase, Horatiu; Weltman, Amanda

    2015-01-01

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  15. A natural cosmological constant from chameleons

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  16. A natural cosmological constant from chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  17. Precision determination of the πN scattering lengths and the charged πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged πNN coupling constant using recent precision data from π - p and π - d atoms and with careful attention to systematic errors. From the π - d scattering length we deduce the pion-proton scattering lengths ((1)/(2))(a π - p + a π - n ) = (-20 ± 6(statistic)±10 (systematic) ·10 -4 m -1 π c and ((1)/(2))(a π - p - a π - n ) = (903 ± 14) · 10 -4 m -1 π c . From this a direct evaluation gives g 2 c (GMO)/4π = 14.20 ± 0.07 (statistic)±0.13(systematic) or f 2 c /4π = 0.0786 ± 0.0008

  18. Precision determination of the $\\pi N$ scattering lengths and the charged $\\pi NN$ coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged $\\pi N N$ coupling constant using recent precision data from $\\pi ^-$p and $\\pi^-$d atoms and with careful attention to systematic errors. From the $\\pi ^-$d scattering length we deduce the pion-proton scattering lengths ${1/2}(a_{\\pi ^-p}+a_{\\pi ^-n})=(-20\\pm 6$(statistic)$ \\pm 10$ (systematic))~$\\cdot 10^{-4}m_{\\pi_c}^{-1}$ and ${1/2}(a_{\\pi ^-p}-a_{\\pi ^-n})=(903 \\pm 14)\\cdot 10^{-4}m_{\\pi_c}^{-1}$. From this a direct evaluation gives $g^2_c(GMO) =14.20\\pm 0.07$(statistic)$\\pm 0.13$(systematic) or $f^2_c= 0.0786\\pm 0.0008$.

  19. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  20. Coupler tuning for constant gradient travelling wave accelerating structures

    International Nuclear Information System (INIS)

    Guo Xingkun; Ma Yanyun; Wang Xiulong

    2013-01-01

    The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)

  1. Dynamical bifurcation in a system of coupled oscillators with slowly varying parameters

    Directory of Open Access Journals (Sweden)

    Igor Parasyuk

    2016-08-01

    Full Text Available This paper deals with a fast-slow system representing n nonlinearly coupled oscillators with slowly varying parameters. We find conditions which guarantee that all omega-limit sets near the slow surface of the system are equilibria and invariant tori of all dimensions not exceeding n, the tori of dimensions less then n being hyperbolic. We show that a typical trajectory demonstrates the following transient process: while its slow component is far from the stationary points of the slow vector field, the fast component exhibits damping oscillations; afterwards, the former component enters and stays in a small neighborhood of some stationary point, and the oscillation amplitude of the latter begins to increase; eventually the trajectory is attracted by an n-dimesional invariant torus and a multi-frequency oscillatory regime is established.

  2. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  3. Quantum effects induced by a gap in the spectrum of atom-bath coupling constants: ''Freezing'' of atomic decay and monochromatic collective radiation

    International Nuclear Information System (INIS)

    Mogilevtsev, D.S.; Kilin, S.Ya.

    1994-08-01

    A specific kind of inhibition of atomic decay (''freezing of decay) and intense monochromatic collective radiation are predicted for a single two-level atom and for a system of atoms interacting with the field bath having the gap in the spectrum of coupling constants. (author). 10 refs, 5 figs

  4. Dynamics of nonlinear oscillators with time-varying conjugate coupling

    Indian Academy of Sciences (India)

    oscillators. We analyze the behavior of coupled systems with respect to the coupling switching frequency using ..... are of potential utility in appropriate design strategies and/or understanding of complex systems with dynamic interaction ...

  5. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  6. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  7. On the model dependence of the determination of the strong coupling constant in second order QCD from e+e--annihilation into hadrons

    International Nuclear Information System (INIS)

    Achterberg, O.; D'Agostini, G.; Apel, W.D.; Engler, J.; Fluegge, G.; Forstbauer, B.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Henkes, T.; Hopp, G.; Krueger, M.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Bonneaud, G.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Ros, E.; Veillet, J.J.; Behrend, H.J.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.

    1983-12-01

    Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations. (orig.)

  8. Class of very simple gauge theories which remain renormalizable even in the limit of infinite gauge coupling constant

    International Nuclear Information System (INIS)

    Kaptanoglu, S.

    1983-01-01

    A class of local gauge theories based on compact semisimple Lie groups is studied in the limit of infinite gauge coupling constant (g = infinity). In general, in this limit, the gauge fields become auxiliary in all gauge theories, and the system develops a richer structure of constraints. Unfortunately for most gauge theories, this limit turns out to be too singular to quantize and the theory ceases to be renormalizable. For a special class of gauge theories, however, where there are no fermions and there is only one multiplet of scalars in the adjoint representation, we prove that a consistent renormalizable quantum theory exists even in this very singular limit. We trace this exceptional behavior to a new local translationlike symmetry in the functional space that this class of gauge models possesses in the limit of infinite gauge coupling constant. By carrying out the constraint analysis, evaluating the Faddeev-Popov-Senjanovic determinant, and doing the functional integrations over the canonical momenta, the gauge fields, and most of the components of the scalar fields, we obtain an extremely simple result with no non-Abelian structure left in it. For example, for the group SU(2), the final answer reduces to the theory of a one-component self-interacting real phi 4 scalar field theory. Throughout this paper, we use functional methods and make no approximations; our results are nonperturbative and exact. We also discuss some of the possible implications of our results

  9. Structure of the (0+,1+) mesons Bs0 and Bs1, and the strong coupling constant gBs0BK and gBs1B*K

    International Nuclear Information System (INIS)

    Wang, Z. G.

    2008-01-01

    In this article, we take the point of view that the bottomed (0 + ,1 + ) mesons B s0 and B s1 are the conventional bs meson and calculate the strong coupling constants g B s0 BK and g B s1 B*K with the light-cone QCD sum rules. The numerical values of strong coupling constants g B s1 B*K and g B s0 BK are very large and support the hadronic dressing mechanism. Just like the scalar mesons f 0 (980), a 0 (980), D s0 and axial-vector meson D s1 , the (0 + ,1 + ) bottomed mesons B s0 and B s1 may have small bs kernels of the typical bs meson size. The strong couplings to the hadronic channels (or the virtual mesons loops) may result in smaller masses than the conventional bs mesons in the potential quark models and enrich the pure bs states with other components.

  10. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  11. Experimental evidence for amplitude death induced by a time-varying interaction

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Shrimali, M.D. [Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 801 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Thamilmaran, K., E-mail: maran.cnld@gmail.com [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2014-08-01

    In this paper, we study the time-varying interaction in coupled oscillatory systems. For this purpose, we have designed a novel time-varying resistive network using an analog switch and inverter circuits. We have applied this time-varying resistive network to mutually coupled identical Chua's oscillators. When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators. This has been observed numerically as well as verified through hardware experiments. - Highlights: • We have implemented the time-varying interaction in coupled oscillatory systems. • We have designed a novel time-varying resistive network using an analog switch and inverter circuits. • When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators.

  12. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  13. On the Angular Dependence of the Vicinal Fluorine-Fluorine Coupling Constant in 1,2-Difluoroethane:  Deviation from a Karplus-like Shape.

    Science.gov (United States)

    Provasi, Patricio F; Sauer, Stephan P A

    2006-07-01

    The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.

  14. On time variation of fundamental constants in superstring theories

    International Nuclear Information System (INIS)

    Maeda, K.I.

    1988-01-01

    Assuming the action from the string theory and taking into account the dynamical freedom of a dilaton and its coupling to matter fluid, the authors show that fundamental 'constants' in string theories are independent of the 'radius' of the internal space. Since the scalar related to the 'constants' is coupled to the 4-dimensional gravity and matter fluid in the same way as in the Jordan-Brans Dicke theory with ω = -1, it must be massive and can get a mass easily through some symmetry breaking mechanism (e.g. the SUSY breaking due to a gluino condensation). Consequently, time variation of fundamental constants is too small to be observed

  15. Constant-Fluence Area Scaling for Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.

    2008-01-01

    A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin registered ) propellants in air at atmospheric pressure. A TEA CO 2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (C m ) and specific impulse (I sp ) for spot areas within a range of about 0.05-0.25 cm 2 are presented. Experimental measurements of imparted impulse, C m , I sp , and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed

  16. Measurement of the strong coupling constant {alpha}{sub s} with hadronic jets in deep inelastic scattering; Mesure de la constante de couplage forte {alpha}{sub s} avec les jets hadroniques en diffusion inelastique profonde

    Energy Technology Data Exchange (ETDEWEB)

    Gouzevitch, Maxime

    2008-12-15

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant {alpha}{sub s}. The jets have been selected in the NC DIS events at large momentum transvers 1505. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on {alpha}{sub s}(m{sub Z}) has been obtained with the combination ob the three observables at Q{sup 2}>150 GeV{sup 2}: {alpha}{sub s}(m{sub Z})=0.1180{+-}0.0007(exp.){sub -0.0034}{sup +0.0050}(th.){+-}0.0017(pdf.).

  17. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  18. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    Science.gov (United States)

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator

    DEFF Research Database (Denmark)

    Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper

    1991-01-01

    An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...

  20. Constraining spatial variations of the fine-structure constant in symmetron models

    Directory of Open Access Journals (Sweden)

    A.M.M. Pinho

    2017-06-01

    Full Text Available We introduce a methodology to test models with spatial variations of the fine-structure constant α, based on the calculation of the angular power spectrum of these measurements. This methodology enables comparisons of observations and theoretical models through their predictions on the statistics of the α variation. Here we apply it to the case of symmetron models. We find no indications of deviations from the standard behavior, with current data providing an upper limit to the strength of the symmetron coupling to gravity (log⁡β2<−0.9 when this is the only free parameter, and not able to constrain the model when also the symmetry breaking scale factor aSSB is free to vary.

  1. Approximate Q.C.D. lower bound for the bag constant B

    International Nuclear Information System (INIS)

    Nielsen, H.B.

    1978-01-01

    Using an article by Savvidy from 1977 in which a state in Q.C.D. with lower energy than the perturbative vacuum was found, the author calculates an approximate lower bound for the M.I.T. bag constant B relative to the Q.C.D. coupling parameter Λ. With an M.I.T. bag constant Bsup(1/4)=145 MeV the author finds Λsub(P)<=0.89 GeV when the propagator of the gluon is used to renormalize the coupling constant. (Auth.)

  2. Synthesis, Acidity Constants and Tautomeric Structure of the Diazonium Coupling Products of 2-(Benzylsulfanyl)-7H-purin-6-one in Its Ground and Excited States

    OpenAIRE

    Darwish, Elham S.; Mosselhi, Mosselhi A.; Altalbawy, Farag M.; Saad, Hosam A.

    2011-01-01

    A series of new 8-arylhydrazono-2-(benzylsulfanyl)-7H-purin-6-ones 6 were synthesized, their electronic absorption spectra in different organic solvents of varying polarities were investigated and their acid dissociation constants in both the ground and excited states were determined spectrophotometrically. The tautomeric structures of such products were elucidated by spectral analyses and correlation of their acid dissociation constants with the Hammett equation. The results indicated that t...

  3. A varying-α brane world cosmology

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-08-01

    We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)

  4. Entanglement and Other Nonclassical Properties of Two Two-Level Atoms Interacting with a Two-Mode Binomial Field: Constant and Intensity-Dependent Coupling Regimes

    International Nuclear Information System (INIS)

    Tavassoly, M.K.; Hekmatara, H.

    2015-01-01

    In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately. Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion (which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than (but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system. (paper)

  5. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  6. Genetic polymorphisms in varied environments.

    Science.gov (United States)

    Powell, J R

    1971-12-03

    Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.

  7. Parametric Design Optimization Of A Novel Permanent Magnet Coupling Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Mijatovic, Nenad; Holbøll, Joachim

    2014-01-01

    A parametric design optimization routine has been applied to a novel magnetic coupling with improved recyclability. Coupling designs are modeled in a 3-D finite element environ- ment, and evaluated by three design objectives: pull-out torque, torque density by magnet mass, and torque density...... by total mass. Magnet and outer core thicknesses are varied discretely, whereas outer dimensions and air-gap length are kept constant. Comparative trends as a function of pole number and dimensions are depicted. A compromise exist between the design objectives, in which favoring one might reduce the other...

  8. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  9. Pseudoscalar meson decay constants and couplings, the Witten-Veneziano formula beyond large Nc, and the topological susceptibility

    International Nuclear Information System (INIS)

    Shore, G.M. . E-mail g.m.shore@swansea.ac.uk

    2006-01-01

    The QCD formulae for the radiative decays η,η ' ->γγ, and the corresponding Dashen-Gell-Mann-Oakes-Renner relations, differ from conventional PCAC results due to the gluonic U(1) A axial anomaly. This introduces a critical dependence on the gluon topological susceptibility. In this paper, we revisit our earlier theoretical analysis of radiative pseudoscalar decays and the DGMOR relations and extract explicit experimental values for the decay constants. This is our main result. The flavour singlet DGMOR relation is the generalisation of the Witten-Veneziano formula beyond large N c , so we are able to give a quantitative assessment of the realisation of the 1/N c expansion in the U(1) A sector of QCD. Applications to other aspects of η ' physics, including the relation with the first moment sum rule for the polarised photon structure function g 1 γ , are highlighted. The U(1) A Goldberger-Treiman relation is extended to accommodate SU(3) flavour breaking and the implications of a more precise measurement of the η and η ' -nucleon couplings are discussed. A comparison with the existing literature on pseudoscalar meson decay constants using large-N c chiral Lagrangians is also made

  10. Benthic Uptake Rate due to Hyporheic Exchange: The Effects of Streambed Morphology for Constant and Sinusoidally Varying Nutrient Loads

    Directory of Open Access Journals (Sweden)

    Daniele Tonina

    2015-01-01

    Full Text Available Hyporheic exchange carries reactive solutes, which may include biological oxygen demand (BOD, dissolved oxygen (DO and reactive dissolved inorganic nitrogen (Nr, into the sediment, where biochemical reactions consume DO. Here, we study the impact of streambed morphology, stream-reactive solute loads and their diel oscillations on the DO benthic uptake rate (BUR due to hyporheic processes. Our model solves the hyporheic flow field and the solute transport equations analytically, within a Lagrangian framework, considering advection, longitudinal diffusion and reactions modeled as first order kinetics. The application of the model to DO field measurements over a gravel bar-pool sequence shows a good match with measured DO concentrations with an overall agreement of 58% and a kappa index of 0.46. We apply the model to investigate the effects of daily constant and sinusoidally time varying stream BOD, DO and Nr loads and of the morphodynamic parameters on BUR. Our modeling results show that BUR varies as a function of bedform size and of nutrient loads and that the hyporheic zone may consume up to 0.06% of the stream DO at the pool-riffle bedform scale. Daily oscillations of stream BOD and DO loads have small effects on BUR, but may have an important influence on local hyporheic processes and organisms’ distribution.

  11. On the dynamics of traveling phase-oscillators with positive and negative couplings

    International Nuclear Information System (INIS)

    Choi, Jungzae; Choi, Mooyoung; Yoon, Byunggook

    2014-01-01

    We investigate numerically the dynamics of traveling clusters in systems of phase oscillators, some of which possess positive couplings and others negative couplings. The phase distribution, speed of traveling, and average separation between clusters, as well as the order parameters for positive and negative oscillators, are computed as the ratio of the two coupling constants and the fraction of positive oscillators are varied. The dependence of the traveling speed on these parameters is obtained and is observed to fit well with the numerical data of the systems. With the help of this, we describe the conditions for the traveling state to appear in the systems with and without a periodic driving field.

  12. Determination of protonation constants of hydroquinone and stability constants of Th(IV) hydroquinone complex

    International Nuclear Information System (INIS)

    Sawant, R.M.; Ramakumar, K.L.; Sharma, R.S.

    2003-01-01

    Protonation constants of hydroquinone and stability constants of thorium hydroquinone complexes were determined in 1 M NaClO 4 medium at 25 ± 0.5 degC, by varying concentration of thorium, using pH titration technique. Protonation constants of hydroquinone (β 1H = [HQ]/[H][Q] and β 2H = [H 2 Q]/[H] 2 [Q]) were found to be β 1H = 11.404 ± 0.014 and β 2H = 21.402 ± 0.012. The analysis of titration data of thorium-hydroquinone system appears to indicate the formation of species Th(H 2 Q) 3 (OH) and Th(H 2 O) 4 (OH). Equilibrium constants obtained for these species are -log β 13-I = 48.51 ± 0.67 and -log β 14-1 64.86 ± 1.25 respectively which are not reported in the literature. (author)

  13. New limits on coupled dark energy model after Planck 2015

    Science.gov (United States)

    Li, Hang; Yang, Weiqiang; Wu, Yabo; Jiang, Ying

    2018-06-01

    We used the Planck 2015 cosmic microwave background anisotropy, baryon acoustic oscillation, type-Ia supernovae, redshift-space distortions, and weak gravitational lensing to test the model parameter space of coupled dark energy. We assumed the constant and time-varying equation of state parameter for dark energy, and treated dark matter and dark energy as the fluids whose energy transfer was proportional to the combined term of the energy densities and equation of state, such as Q = 3 Hξ(1 +wx) ρx and Q = 3 Hξ [ 1 +w0 +w1(1 - a) ] ρx, the full space of equation of state could be measured when we considered the term (1 +wx) in the energy exchange. According to the joint observational constraint, the results showed that wx = - 1.006-0.027+0.047 and ξ = 0.098-0.098>+0.026 for coupled dark energy with a constant equation of state, w0 = -1.076-0.076+0.085, w1 = - 0.069-0.319+0.361, and ξ = 0.210-0.210+0.048 for a variable equation of state. We did not get any clear evidence for the coupling in the dark fluids at 1 σ region.

  14. Strong Nuclear Gravitational Constant and the Origin of Nuclear Planck Scale

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-07-01

    Full Text Available Whether it may be real or an equivalent, existence of strong nuclear gravitational con- stant G S is assumed. Its value is obtained from Fermi’s weak coupling constant as G S = 6 : 9427284 10 31 m 3 / kg sec 2 and thus “nuclear planck scale” is defined. For strong interaction existence of a new integral charged “confined fermion” of mass 105.383 MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97 MeV and assumed 105.383 MeV. 1 s = X s is defined as the strong interaction mass gen- erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak coupling constant, strong interaction upper limit and Bohr radius are fitted at funda- mental level. Considering Fermi’s weak coupling constant and nuclear planck length a new number X e = 294.8183 is defined for fitting the electron, muon and tau rest masses. Using X s , X e and 105 : 32 = 0 : 769 MeV as the Coulombic energy constant = E c , en- ergy coe cients of the semi-empirical mass formula are estimated as E v = 16 : 32 MeV ; E s = 19 : 37 MeV ; E a = 23 : 86 MeV and E p = 11 : 97 MeV where Coulombic energy term contains [ Z ] 2 : Starting from Z = 2 nuclear binding energy is fitted with two terms along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited levels are fitted.

  15. Supersymmetry breaking and determination of the unification gauge coupling constant in string theories

    International Nuclear Information System (INIS)

    Carlos, B. de; Casas, J.A.; Munoz, C.

    1993-01-01

    We study in a systematic and modular invariant way gaugino condensation in the hidden sector as a potential source of hierarchical supersymmetry breaking and a non-trivial potential for the dilaton S whose real part corresponds to the tree-level gauge coupling constant (Re S∝g gut -2 ). For the case of pure Yang-Mills condensation, we show that no realistic results (in particular no reasonable values for Re S) can emerge, even if the hidden gauge group is not simple. However, in the presence of hidden matter (i.e. the most frequent case) there arises a very interesting class of scenarios with two or more hidden condensing groups for which the dilaton dynamically acquires a reasonable value (Re S∝2) and supersymmetry is broken at the correct scale (m 3/2 ∝10 3 GeV) with no need of fine-tuning. Actually, good values for Re S and m 3/2 are correlated. We make an exhaustive classification of the working possibilities. Remarkably, the results are basically independent from the value of δ GS (the contributions from the Green-Schwarz mechanism). The radius of the compactified space also acquires an expectation value, breaking duality spontaneously. (orig.)

  16. Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods

    International Nuclear Information System (INIS)

    Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie

    2013-01-01

    This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot

  17. Running coupling constant of a gauge theory in the framework of the Schwinger-Dyson equation: Infrared behavior of three-dimensional quantum electrodynamics

    International Nuclear Information System (INIS)

    Kondo, K.

    1997-01-01

    We discuss how to define and obtain the running coupling of a gauge theory in the approach of the Schwinger-Dyson (SD) equation, in order to perform a nonperturbative study of the theory. For this purpose, we introduce the nonlocally generalized gauge fixing into the SD equation, which is used to define the running coupling constant (this method is applicable only to a gauge theory). Some advantages and the validity of this approach are exemplified in QED 3 . This confirms the slowing down of the rate of decrease of the running coupling and the existence of the nontrivial infrared fixed point (in the normal phase) of QED 3 , claimed recently by Aitchison and Mavromatos, without so many of their approximations. We also argue that the conventional approach is recovered by applying the (inverse) Landau-Khalatnikov transformation to the nonlocal gauge result. copyright 1997 The American Physical Society

  18. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-Alanine zwitterion and analysis of its conformational behavior

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Buděšínský, Miloš; Špirko, Vladimír; Kapitán, Josef; Šebestík, Jaroslav; Sychrovský, Vladimír

    2005-01-01

    Roč. 127, - (2005), 17079-17089 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA4055104; GA ČR(CZ) GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * chemical shifts * coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  19. Universal effective coupling constant ratios of 3D scalar ϕ4 field theory and pseudo-ϵ expansion

    Directory of Open Access Journals (Sweden)

    Sokolov A. I.

    2016-01-01

    Full Text Available The ratios R2k = g2k/gk − 14 of renormalized coupling constants g2k entering the small-field equation of state approach universal values R*2k at criticality. They are calculated for the three-dimensional λϕ4 field theory within the pseudo-ϵ expansion approach. Pseudo-ϵ expansions for R*6, R*8, R*10 are derived in the five-loop approximation, numerical estimates are obtained with a help of the Padé–Borel–Leroy resummation technique. Its use gives R*6 = 1.6488, the number which perfectly agrees with the most recent lattice result R*6 = 1.649. For the octic coupling the pseudo-ϵ expansion is less favorable numerically. Nevertheless the Padé–Borel–Leroy resummation leads to the estimate R*8 = 0.890 close to the values R*8 = 0.87, R*8 = 0.857 extracted from the lattice and field-theoretical calculations. The pseudo-ϵ expansion for R*10 turns out to have big and rapidly increasing coefficients. This makes correspondent estimates strongly dependent on the Borel–Leroy shift parameter b and prevents proper evaluation of R*10

  20. PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV

    CERN Document Server

    CMS Collaboration

    2013-01-01

    The recent CMS measurement of the inclusive jet cross section at 7~TeV extends the accessible phase space in jet transverse momentum up to 2 TeV and ranges up to 2.5 in absolute jet rapidity. At the same time the experimental uncertainties are smaller than in previous publications such that these data constrain the parton distribution functions of the proton, notably for the gluon at high fractions of the proton momentum, and provide valuable input to determine the strong coupling at high momentum scales. The impact on the extraction of the parton distribution functions is investigated. Using predictions from theory at next-to-leading order, complemented with electroweak corrections, the strong coupling constant is determined from the inclusive jet cross section to be $\\alpha_S(M_Z) = 0.1185 \\pm 0.0019\\,\\mathrm{(exp.)} \\pm 0.0028\\,\\mathrm{(\\mathrm{PDF})} \\pm 0.0004\\,\\mathrm{(\\mathrm{NP})} ^{+0.0055}_{-0.0022}\\,\\mathrm{(\\mathrm{scale})}$, which is in agreement with the world average.

  1. Effects of time-varying β in SNLS3 on constraining interacting dark energy models

    International Nuclear Information System (INIS)

    Wang, Shuang; Wang, Yong-Zhen; Geng, Jia-Jia; Zhang, Xin

    2014-01-01

    It has been found that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift evolution of the color-luminosity parameter β. In this paper, adopting the w-cold-dark-matter (wCDM) model and considering its interacting extensions (with three kinds of interaction between dark sectors), we explore the evolution of β and its effects on parameter estimation. In addition to the SNLS3 data, we also use the latest Planck distance priors data, the galaxy clustering data extracted from sloan digital sky survey data release 7 and baryon oscillation spectroscopic survey, as well as the direct measurement of Hubble constant H 0 from the Hubble Space Telescope observation. We find that, for all the interacting dark energy (IDE) models, adding a parameter of β can reduce χ 2 by ∝34, indicating that a constant β is ruled out at 5.8σ confidence level. Furthermore, it is found that varying β can significantly change the fitting results of various cosmological parameters: for all the dark energy models considered in this paper, varying β yields a larger fractional CDM densities Ω c0 and a larger equation of state w; on the other side, varying β yields a smaller reduced Hubble constant h for the wCDM model, but it has no impact on h for the three IDE models. This implies that there is a degeneracy between h and coupling parameter γ. Our work shows that the evolution of β is insensitive to the interaction between dark sectors, and then highlights the importance of considering β's evolution in the cosmology fits. (orig.)

  2. Neutron-proton analyzing power at 12 MeV and charged πNN coupling constant

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Gonzalez Trotter, D.E.; Howell, C.R.; Machleidt, R.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.

    1995-01-01

    Recent reanalysis of scattering data by the Nijmegen group has led to new values for the πNN coupling constants, g 2 πdegree /4π and g 2 π± /4π, about 6% smaller than the previously accepted values. The impact of this finding is far reaching. Since the neutron-proton A y (θ) is dominated at low energies by the one-pion-exchange mechanism, accurate np data should provide unique information as to the magnitude of g 2 π± /4π. Using a new experimental setup consisting of a shielded neutron source, a five-pair neutron detector array, a n- 4 He polarimeter, and an intense polarized source with fast spin-flipping capability, we have measured a 15 point angular distribution of the neutron-proton A y (θ) at and incident neutron energy of 12 MeV to a statistical accuracy of 5x10 -4 . We will discuss the data taking procedures, the analysis, and the corrections applied to the data. Preliminary results will be presented

  3. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure

    International Nuclear Information System (INIS)

    Recami, E.; Tonin-Zanchin, V.

    1991-01-01

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)

  4. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  5. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  6. An inequality relating gauge group coupling constants and the number of generations in a string inspired model

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-12-01

    Using a model with a regularized (e.g. latticized) Kaluza-Klein space-time at the fundamental scale with Yang-Mills fields in the compactified dimensions, we examine the β-function for a dimensionless expression for the coupling constants g in D-dimensions. In going from the Planck scale of D > 4 down in energy to the scale where D goes from D > 4 to D = 4, it is argued that couplings are weakened by a factor roughly equal to the number of fundamental string regions that can be accommadated in the volume of the compactification space. Subsequently this factor is claimed to be greater than the number of generations by using an argument reminiscent of that often encountered in string model T.O.E. in which various quark and lepton generations are said to correspond to various zero modes of a Weyl operator in the compactifying space. Finally, it is argued that the inequality, which can be shown to be more saturated the larger the gauge group, is already near saturation for the group factors of the SMG. This fact leads to several conclusions: 1. there is not room for many more than 3 generations; 2. G.U.T. can be accommadated only at scales very close to the fundamental scale; 3. No new blossoms are expected to be found in the desert; 4. the compactifying space should not be 'larger than necessary'; 5. at the fundamental scale, couplings are expected to be close to (but not suspiciousely close to) β crit. . (orig./HSI)

  7. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    KAUST Repository

    Huang, Bin-Juine; Chen, Chun-Wei; Ong, Chin-Dian; Du, Bo-Han; Hsu, Po-Chien

    2013-01-01

    changes from 0 to 40 °C, the LED illumination varies slightly (-1.7%) for constant-power driving, as compared to that of constant-current driving (-12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing

  8. Brane world cosmologies with varying speed of light

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-02-01

    We study cosmologies in the Randall-Sundrum models, incorporating the possibility of time-varying speed of light and Newton's constant. The cosmologies with varying speed of light (VSL) were proposed by Moffat and by Albrecht and Magueijo as an alternative to inflation for solving the cosmological problems. We consider the case in which the speed of light varies with time after the radion or the scale of the extra dimension has been stabilized. We elaborate on the conditions under which the flatness problem and the cosmological constant problem can be resolved. Particularly, the VSL cosmologies may provide a possible mechanism for bringing the quantum corrections to the fine-tuned brane tensions after the SUSY breaking under control. (author)

  9. Magnetic field dependent 13C and 1H CIDNP from biradicals. The role of the hyperfine coupling constant

    International Nuclear Information System (INIS)

    Kanter, F.J.J. de; Sagdeev, R.Z.

    1978-01-01

    Magnetic field dependent biradical CIDNP has been observed in the natural abundance 13 C and 1 H NMR spectra taken immediately after irradiation of cyclic ketones in an auxillary magnet. The 13 C field dependence curves differ from the corresponding 1 H curves: The maxima of the curves for the C 11 and C 12 biradicals appear at a higher magnetic field strength, and the 13 C curves are broader than the 1 H curves. These differences are due to the different magnitudes of the hyperfine coupling constants for 13 C and 1 H and can be accounted for by a model based on a stochastic Liouville method which incorporates the dynamics of the biradicals. (Auth.)

  10. Modal Analysis in Periodic, Time-Varying Systems with emphasis to the Coupling between Flexible Rotating Beams and Non-Rotating Flexible Structures

    DEFF Research Database (Denmark)

    Saracho, C. M.; Santos, Ilmar

    2003-01-01

    The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...... natural frequencies, the so-called centrifugal stiffening. The equations of motion of such a global system present matrices with time-depending coefficients, which vary periodically with the angular rotor speed, and introduce parametric vibrations into the system response. The principles of modal analysis...... for time-invariant linear systems are expanded to investigate time-varying systems. Concepts as eigenvalues and eigenvectors, which in this special case are also time-varying, are used to analyse the dynamical response of global system. The time-varying frequencies and modes are also illustrated....

  11. Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Djuraev Ulugbek

    2017-01-01

    Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.

  12. Behavior of varying-alpha cosmologies

    International Nuclear Information System (INIS)

    Barrow, John D.; Sandvik, Haavard Bunes; Magueijo, Joao

    2002-01-01

    We determine the behavior of a time-varying fine structure 'constant' α(t) during the early and late phases of universes dominated by the kinetic energy of changing α(t), radiation, dust, curvature, and lambda, respectively. We show that after leaving an initial vacuum-dominated phase during which α increases, α remains constant in universes such as our own during the radiation era, and then increases slowly, proportional to a logarithm of cosmic time, during the dust era. If the universe becomes dominated by a negative curvature or a positive cosmological constant then α tends rapidly to a constant value. The effect of an early period of de Sitter or power-law inflation is to drive α to a constant value. Various cosmological consequences of these results are discussed with reference to recent observational studies of the value of α from quasar absorption spectra and to the existence of life in expanding universes

  13. Kerr-effect analysis in a three-level negative index material under magneto cross-coupling

    Science.gov (United States)

    Boutabba, N.

    2018-02-01

    We discuss the feasibility of the Kerr effect in negative refractive index materials under magneto cross-coupling and reservoir interaction. The considered medium is a typical three-level atomic system where we derive both the refractive and the gain spectrum. The profiles are analyzed for a weak probe field, and for varying strengths of the strong control field. The considered scheme shows an enhancement of the Kerr nonlinearity which we attribute to the contribution of the electromagnetic components of the fields. For more realistic experimental conditions, we discuss the dependence of the Kerr effect on different thermal bath coupling constants.

  14. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    International Nuclear Information System (INIS)

    Lynden-Bell, R.M.; Michel, K.H.

    1994-01-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C 60

  15. Synthesis, Acidity Constants and Tautomeric Structure of the Diazonium Coupling Products of 2-(Benzylsulfanyl-7H-purin-6-one in Its Ground and Excited States

    Directory of Open Access Journals (Sweden)

    Hosam A. Saad

    2011-10-01

    Full Text Available A series of new 8-arylhydrazono-2-(benzylsulfanyl-7H-purin-6-ones 6 were synthesized, their electronic absorption spectra in different organic solvents of varying polarities were investigated and their acid dissociation constants in both the ground and excited states were determined spectrophotometrically. The tautomeric structures of such products were elucidated by spectral analyses and correlation of their acid dissociation constants with the Hammett equation. The results indicated that the studied compounds 6 exist predominantly in the hydrazone tautomeric form 6A in both the ground and excited states.

  16. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    Science.gov (United States)

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  17. Determination of the strong coupling constant $\\alpha_s$ in multijet production with the ATLAS detector at the LHC.

    CERN Document Server

    Llorente Merino, Javier; The ATLAS collaboration

    2018-01-01

    A measurement of transverse energy--energy correlations and its asymmetry in $pp$ collisions recorded by the ATLAS detector at the LHC at $\\sqrt{s} = 8$ TeV is presented. The results are intepreted as a precision test of Quantum Chromodynamics, used to determine the strong coupling constant $\\alpha_s(m_Z)$ and to test asymptotic freedom up to scales close to 1 TeV. A global fit to the transverse energy--energy correlation distributions yields $\\alpha_{\\mathrm{s}}(m_Z) = 0.1162 \\pm 0.0011 \\mbox{ (exp.)}^{+0.0084}_{-0.0070} \\mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\\alpha_{\\mathrm{s}}(m_Z) = 0.1196 \\pm 0.0013 \\mbox{ (exp.)}^{+0.0075}_{-0.0045} \\mbox{ (theo.)}$.

  18. Semiclassical analysis of the weak-coupling limit of SU(2) lattice gauge theory: The subspace of constant fields

    International Nuclear Information System (INIS)

    Bartels, J.; Wu, T.T.

    1988-01-01

    This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest

  19. Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8TeV and 13TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the di-jet cross section at a center-of-mass energy of 13TeV as a function of the di-jet mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (ATEEC) in multi-jet events at a center...

  20. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    Science.gov (United States)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  1. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  2. Numerical counting ratemeter with variable time constant and integrated circuits

    International Nuclear Information System (INIS)

    Kaiser, J.; Fuan, J.

    1967-01-01

    We present here the prototype of a numerical counting ratemeter which is a special version of variable time-constant frequency meter (1). The originality of this work lies in the fact that the change in the time constant is carried out automatically. Since the criterion for this change is the accuracy in the annunciated result, the integration time is varied as a function of the frequency. For the prototype described in this report, the time constant varies from 1 sec to 1 millisec. for frequencies in the range 10 Hz to 10 MHz. This prototype is built entirely of MECL-type integrated circuits from Motorola and is thus contained in two relatively small boxes. (authors) [fr

  3. Study of neutral current coupling constants from tau pair production

    Energy Technology Data Exchange (ETDEWEB)

    IJzerman, M P

    1996-06-25

    This thesis investigates the couplings of the Z boson to the electron and the tau lepton. The cross section {sigma}{sub {tau}}, the forward-backward charge asymmetry A{sub fb,{tau}} and the polarization asymmetry P of the reaction e{sup +}e{sup -}{yields}Z{yields}{tau}{sup +}{tau}{sup -} are determined. These quantities can be precisely calculated in the Standard Model which describes the interactions between elementary particles. This theory predicts the electron and tau couplings to be same. The facilities used to experimentally test this prediction are the L3 detector and the Large Electron Positron collider at CERN. (orig.).

  4. Determination of the strong coupling constant α{sub s}(m{sub Z}) in next-to-next-to-leading order QCD using H1 jet cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bertone, V. [Vrije University, Department of Physics and Astronomy, Amsterdam (Netherlands); National Institute for Subatomic Physics (NIKHEF), Amsterdam (Netherlands); Bolz, A.; Britzger, D.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Jung, H.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Zlebcik, R. [DESY, Hamburg (Germany); Cantun Avila, K.B.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Currie, J. [Durham University, Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Durham (United Kingdom); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Gehrmann, T.; Mueller, K.; Niehues, J.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C.; Huss, A. [ETH Zuerich, Institut fuer Teilchenphysik, Zurich (Switzerland); Gwenlan, C.; Radescu, V. [Oxford University, Department of Physics, Oxford (United Kingdom); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Jung, A.W. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary University of London, School of Physics and Astronomy, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (Canada); Rabbertz, K. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Teilchenphysik (ETP), Karlsruhe (Germany); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (Russian Federation); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Universite de Savoie, CNRS/IN2P3, LAPP, Annecy-le-Vieux (France); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Stella, B. [Universita di Roma Tre, Dipartimento di Fisica, Rome (Italy); INFN Roma 3 (Italy); Sutton, M.R. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Tseepeldorj, B. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (DE); Collaboration: H1 Collaboration

    2017-11-15

    The strong coupling constant α{sub s} is determined from inclusive jet and dijet cross sections in neutral-current deep-inelastic ep scattering (DIS) measured at HERA by the H1 collaboration using next-to-next-to-leading order (NNLO) QCD predictions. The dependence of the NNLO predictions and of the resulting value of α{sub s}(m{sub Z}) at the Z-boson mass m{sub Z} are studied as a function of the choice of the renormalisation and factorisation scales. Using inclusive jet and dijet data together, the strong coupling constant is determined to be α{sub s}(m{sub Z}) = 0.1157(20){sub exp}(29){sub th}. Complementary, α{sub s}(m{sub Z}) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value α{sub s}(m{sub Z}) = 0.1142(28){sub tot} obtained is consistent with the determination from jet data alone. The impact of the jet data on the PDFs is studied. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with expectations. (orig.)

  5. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  6. On Semi-classical Degravitation and the Cosmological Constant Problems

    CERN Document Server

    Patil, Subodh P

    2010-01-01

    In this report, we discuss a candidate mechanism through which one might address the various cosmological constant problems. We first observe that the renormalization of gravitational couplings (induced by integrating out various matter fields) manifests non-local modifications to Einstein's equations as quantum corrected equations of motion. That is, at the loop level, matter sources curvature through a gravitational coupling that is a non-local function of the covariant d'Alembertian. If the functional form of the resulting Newton's `constant' is such that it annihilates very long wavelength sources, but reduces to $1/M^2_{pl}$ ($M_{pl}$ being the 4d Planck mass) for all sources with cosmologically observable wavelengths, we would have a complimentary realization of the degravitation paradigm-- a realization through which its non-linear completion and the corresponding modified Bianchi identities are readily understood. We proceed to consider various theories whose coupling to gravity may a priori induce no...

  7. Inclusive Σp and pp reactions. How can one learn the nature of π, K, Λ, N exchanges and determine the coupling constants

    International Nuclear Information System (INIS)

    Vasylev, A.M.; Ginzburg, I.F.; Perlovskij, L.I.

    1977-01-01

    Inclusive experiments pp → π + +..., Σp → Λ +..., pp → K + +... are proposed in which it is possible to come very close to the π, K, N, Λ poles. In these experiments it is possible, in principle, to extract the most precise values of the coupling constants KNY, Σ π Λ,... and to state the problem which is the nature of the exchanges. A critical analysis of the pp → π + + ... data is carried out

  8. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  9. Varying couplings in the early universe: Correlated variations of α and G

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.; Menegoni, Eloisa; Galli, Silvia; Mangano, Gianpiero; Melchiorri, Alessandro

    2010-01-01

    The cosmic microwave background anisotropies provide a unique opportunity to constrain simultaneous variations of the fine-structure constant α and Newton's gravitational constant G. Those correlated variations are possible in a wide class of theoretical models. In this brief paper we show that the current data, assuming that particle masses are constant, give no clear indication for such variations, but already prefer that any relative variations in α should be of the same sign of those of G for variations of ∼1%. We also show that a cosmic complementarity is present with big bang nucleosynthesis and that a combination of current CMB and big bang nucleosynthesis data strongly constraints simultaneous variations in α and G. We finally discuss the future bounds achievable by the Planck satellite mission.

  10. Derivation of the fine-structure constant

    International Nuclear Information System (INIS)

    Samec, A.

    1980-01-01

    The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations

  11. ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.

    Science.gov (United States)

    Liang, Hua; Miao, Hongyu; Wu, Hulin

    2010-03-01

    Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and

  12. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  13. Understanding fine structure constants and three generations

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.

    1988-02-01

    We put forward a model inspired by random dynamics that relates the smallness of the gauge coupling constants to the number of generations being 'large'. The new element in the present version of our model is the appearance of a free parameter χ that is a measure of the (presumably relatively minor) importance of a term in the plaquette action proportional to the trace in the (1/6, 2, 3) representation of the Standard Model. Calling N gen the number of generations, the sets of allowed (N gen , χN gen )-pairs obtained by imposing the three measured coupling constant values of the Standard Model form three lines. In addition to finding that these lines cross at a single point (as needed for a consistent fit), the intersection occurs with surprising accuracy at the integer N gen = 3 (thereby predicting exactly three generations). It is also encouraging that the parameter χ turns out to be small and positive as expected. (orig.)

  14. Digital Generation of Noise-Signals with Arbitrary Constant or Time-Varying Spectra (A noise generation software package and its application)

    CERN Document Server

    Tückmantel, Joachim

    2008-01-01

    Artificial creation of arbitrary noise signals is used in accelerator physics to reproduce a measured perturbation spectrum for simulations but also to generate real-time shaped noise spectra for controlled emittance blow-up giving tailored properties to the final bunch shape. It is demonstrated here how one can produce numerically what is, for all practical purposes, an unlimited quantity of non-periodic noise data having any predefined spectral density. This spectral density may be constant or varying with time. The noise output never repeats and has excellent statistical properties, important for very long-term applications. It is difficult to obtain such flexibility and spectral cleanliness using analogue techniques. This algorithm was applied both in computer simulations of bunch behaviour in the presence of RF noise in the PS, SPS and LHC and also to generate real-time noise, tracking the synchrotron frequency change during the energy ramp of the SPS and producing controlled longitudinal emittance blow-...

  15. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  16. The exact effective couplings of 4D N=2 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); National Technical Univ. Athens (Greece). Physics Division

    2014-07-15

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  17. The exact effective couplings of 4D N=2 gauge theories

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Humboldt-Universitaet, Berlin; Pomoni, Elli; National Technical Univ. Athens

    2014-07-01

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  18. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Constant-pH molecular dynamics using stochastic titration

    Science.gov (United States)

    Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.

    2002-09-01

    A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.

  20. Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-06-26

    The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7$~\\mathrm{TeV}$ was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0$~\\mathrm{fb}^{-1}$. The measurement covers a phase space up to 2$~\\mathrm{TeV}$ in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass $M_{\\mathrm{Z}}$ is determined to be $\\alpha_S(M_{\\mathrm{Z}}) = 0.1185 \\pm 0.0019\\,(\\mathrm{exp})\\,^{+0.0060}_{-0.0037}\\,(\\mathrm{theo})$, which is in a...

  1. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    Science.gov (United States)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  2. Evolution of the solar constant

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales

  3. Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ

    Energy Technology Data Exchange (ETDEWEB)

    Karabacak, Özkan, E-mail: ozkan2917@gmail.com [Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul (Turkey); Department of Electronic Systems, Aalborg University, 9220 Aalborg East (Denmark); Alikoç, Baran, E-mail: alikoc@itu.edu.tr [Department of Control and Automation Engineering, Istanbul Technical University, 34469 Istanbul (Turkey); Atay, Fatihcan M., E-mail: atay@member.ams.org [Department of Mathematics, Bilkent University, 06800 Ankara (Turkey)

    2016-09-15

    Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we study the stability of synchronized periodic orbits of coupled map systems when the period of the orbit is the same as the delay in the information transmission between coupled units. We show that the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the periodic orbit for the uncoupled map, the coupling constant, the smallest and the largest Laplacian eigenvalue of the adjacency matrix. We prove that the stabilization of an unstable τ-periodic orbit via coupling with delay τ is possible only when the Floquet multiplier of the orbit is negative and the connection structure is not bipartite. For a given coupling structure, it is possible to find the values of the coupling strength that stabilizes unstable periodic orbits. The most suitable connection topology for stabilization is found to be the all-to-all coupling. On the other hand, a negative coupling constant may lead to destabilization of τ-periodic orbits that are stable for the uncoupled map. We provide examples of coupled logistic maps demonstrating the stabilization and destabilization of synchronized τ-periodic orbits as well as chaos suppression via stabilization of a synchronized τ-periodic orbit.

  4. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  5. Studies of the pH dependence of 13C shifts and carbon-carbon coupling constants of [U-13C]aspartic and -glutamic acids

    International Nuclear Information System (INIS)

    London, R.E.; Walker, T.E.; Kollman, V.H.; Matwiyoff, N.A.

    1978-01-01

    13 C NMR studies of the chemical shifts and carbon--carbon spin--spin coupling constants of 90% [U- 13 C]aspartic and -glutamic acids are reported. Effects of titration of the two carboxyl groups are separated computationally and the results compared with those for asparagine and glutamine, aspartate and glutamate containing peptides, and a series of amino-n-butyric acids. The results indicate that the carboxyl carbon shift resulting from titration of the carboxyl group is strongly dependent on its distance (number of bonds) from an amino group. Alternatively, remote methyl groups exhibit a much smaller titration induced shift than carboxyl groups in the corresponding position. Significant remote effects of pH titration on the one-bond carbon-carbon coupling are also observed, particularly for couplings involving the side-chain carboxyl carbons. These results are discussed in terms of polarization of the C--O bonds in response to titration of a remote carboxyl group. Values of 3 J/sub CC/ in asparate and glutamate indicate a strong conformational dependence. Rotamer populations predicted on the basis of the observed couplings and theoretical INDO calculations are in good agreement with values based on analysis of the 3 J/sub HH/ and 3 J/sub CH/ couplings. For a given conformation of glutamic acid, it is found that 3 J 14 is considerably smaller than 3 J 25 . This result is consistent with obsrvations on a number of other 13 C-labeled amino acids. 5 figures, 4 tables

  6. Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains

    Science.gov (United States)

    Zaal, P. M. T; Pool, D. M.

    2014-01-01

    In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.

  7. AC loss time constant measurements on Nb3Al and NbTi multifilamentary superconductors

    International Nuclear Information System (INIS)

    Painter, T.A.

    1988-03-01

    The AC loss time constant is a previously univestigated property of Nb 3 Al, a superconductor which, with recent technological developments, shows some advantages over the more commonly used superconductors, NbTi and Nb 3 Sn. Four Nb 3 Al samples with varying twist pitches and one NbTi sample are inductively measured for their AC loss time constants. The measured time constants are compared to the theoretical time constant limits imposed by the limits of the transverse resistivity found by Carr [5] and to the theoretical time constants found using the Bean Model as well as to each other. The measured time constants of the Nb 3 Al samples fall approximately halfway between the theoretical time constant limits, and the measured time constants of the NbTi sample is close to the theoretical lower time constant limit. The Bean Model adequately accounts for the variance of the permeability of the Nb 3 Al superconductor in a background magnetic field. Finally, the measured time constant values of the Nb 3 Al samples vary approximately according to the square of their twist pitch. (author)

  8. LHC MD2877: Beam-beam long range impact on coupling measurements

    CERN Document Server

    Wenninger, Jorg; Carlier, Felix Simon; Coello De Portugal - Martinez Vazquez, Jaime Maria; Fuchsberger, Kajetan; Hostettler, Michi; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; Valuch, Daniel; Garcia-Tabares Valdivieso, Ana; CERN. Geneva. ATS Department

    2018-01-01

    The LHC is now operating with a tune separation of ∼0.004 in collision. This puts tight constraints on the allowed transverse coupling since a |C−| larger than a fraction of the fractional tune split may lead to beam instabilities. In the last years a new tool based on the ADT used in a similar way as an AC-dipole to excite the beam was developed. The ADT AC-dipole gives coherent oscillations without increasing the beam emittance. These oscillations are analyzed automatically to obtain the value of the coupling. A coupling measurement campaign was done in 2017 and while the correction converged and stayed rather constant over time it was observed that depending on the target bunch and filling scheme the results could vary by Δ|C−| ∼ 0.002. In this MD report we investigated 3 different bunches, one with Long Range Beam-Beam (LRBB) in IPs 1 and 5, one with LRBB in all IPs and one with no LRBB. The results indicate that there are differences in coupling between the bunches experiencing different LR...

  9. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  10. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    Science.gov (United States)

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  11. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  12. Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling

    International Nuclear Information System (INIS)

    Shigueoka, H.; Sakanaka, P.H.

    1987-01-01

    The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt

  13. Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple

    Directory of Open Access Journals (Sweden)

    M.B. Riaz

    2016-12-01

    Full Text Available The aim of this article was to analyze the rotational flow of an Oldroyd-B fluid with fractional derivatives, induced by an infinite circular cylinder that applies a constant couple to the fluid. Such kind of problem in the settings of fractional derivatives has not been found in the literature. The solutions are based on an important remark regarding the governing equation for the non-trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions and can easily be reduced to the similar solutions corresponding to ordinary Oldroyd-B, fractional/ordinary Maxwell, fractional/ordinary second-grade, and Newtonian fluids performing the same motion. The obtained results are expressed in terms of Newtonian and non-Newtonian contributions. Finally, the influence of fractional parameters on the velocity, shear stress and a comparison between generalized and ordinary fluids is graphically underlined.

  14. Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards

    2000-07-01

    The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.

  15. On the accuracy, uniqueness and implication of dimensionless accidental relations between fundamental constants

    International Nuclear Information System (INIS)

    Bahran, M.; Univ. of Oklahoma, Norman-OK,

    2002-01-01

    Ibrahim et al(1) found an accidental formula relating the gravitational coupling constant, the electromagnetic fine structure constant and the proton to electron mass ratio. This work comments on such relation, in particular it studies the accuracy, uniqueness and unification implication of such accidental relation.(author)

  16. Modeling of coupled geochemical and transport processes: An overview

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs

  17. Exploring AdS waves via nonminimal coupling

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2006-01-01

    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS space restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal-coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal-coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a nonperturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity

  18. How strong is the strong interaction? The πNN coupling constant and the shape and normalization of np scattering cross sections

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.; Rahm, J.

    2000-01-01

    The world data base on np scattering differential cross section data from 100 to 1000 MeV incident neutron energy has been reviewed. In addition, the status of the np total cross section and the pp → dπ + total cross section is discussed, as these have frequently been used to normalize np scattering data. It appears that the shapes of the largest np data sets tend to fall into two groups, with different steepness at backward angles. Also, it seems as the two major techniques for normalizing data yield incompatible results. Both these effects have consequences when using np data to determine the pion-nucleon coupling constant, g 2 πNN , which is currently under debate. (orig.)

  19. A reciprocal Wald theorem for varying gravitational function

    International Nuclear Information System (INIS)

    Fay, Stephane

    2004-01-01

    We study when a cosmological constant is a natural issue if it is mimicked by the potential of a massive Hyperextended Scalar Tensor theory with a perfect fluid for Bianchi type I and V models. We then deduce a reciprocal Wald theorem giving the conditions such that the potential tends to a non vanishing constant when the gravitational function varies. We also get the conditions allowing the potential to vanish or diverge. (orig.)

  20. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory.

    Science.gov (United States)

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-11-14

    We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics

  1. Consensus in the network with uniform constant communication delay

    NARCIS (Netherlands)

    Wang, Xu; Saberi, Ali; Stoorvogel, Antonie Arij; Grip, H°avard Fjær; Yang, Tao

    2013-01-01

    This paper studies consensus among identical agents that are at most critically unstable and coupled through networks with uniform constant communication delay. An upper bound for delay tolerance is obtained which explicitly depends on agent dynamics and network topology. The dependence on network

  2. Renormalization group summation, spectrality constraints, and coupling constant analyticity for phenomenological applications of two-point correlators in QCD

    International Nuclear Information System (INIS)

    Pivovarov, A.A.

    2003-01-01

    The analytic structure in the strong coupling constant that emerges for some observables in QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A consistent description of peculiar features of perturbation theory series related to hypothetical infrared renormalons and corresponding power corrections is considered. It is shown that perturbation theory series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be summed in all orders using the definition of the moments that avoids integration through the infrared region in momentum space. Such a definition of the moments relies on the analytic properties of two-point correlators in the momentum variable that allows for shifting the integration contour into the complex plane of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail

  3. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    International Nuclear Information System (INIS)

    Huang, Bin-Juine; Chen, Chun-Wei; Ong, Chin-Dian; Du, Bo-Han; Hsu, Po-Chien

    2013-01-01

    The illumination of an LED may be affected by operating temperature even under constant-current condition. A constant-power driving technique is proposed in the present study for LED luminaire. A linear system dynamics model of LED luminaire is first derived and used in the design of the feedback control system. The PI controller was designed and tuned taking into account the control accuracy and robust properties with respect to plant uncertainty and variation of operating conditions. The control system was implemented on a microprocessor and used to control a 150W LED luminaire. The test result shows that the feedback system accurately controls the input power of LED luminaire to within 1.3 per cent error. As the ambient temperature changes from 0 to 40 °C, the LED illumination varies slightly (−1.7%) for constant-power driving, as compared to that of constant-current driving (−12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing the illumination of LED under large temperature variation. - Highlights: ► A constant-power driving technique is proposed for LED luminaire. ► A linear system dynamics model of LED luminaire is used in the control system design. ► The test shows that the feedback system accurately controls the input power. ► The LED illumination varies slightly (−1.7%) for constant-power driving.

  4. Resistive transition in disordered superconductors with varying intergrain coupling

    International Nuclear Information System (INIS)

    Ponta, L; Carbone, A; Gilli, M

    2011-01-01

    The effect of disorder is investigated in granular superconductive materials with strong- and weak-links. The transition is controlled by the interplay of the tunneling g and intragrain g intr conductances, which depend on the strength of the intergrain coupling. For g intr , the transition first involves the grain boundary, while for g ∼ g intr the transition occurs into the whole grain. The different intergrain couplings are considered by modeling the superconducting material as a disordered network of Josephson junctions. Numerical simulations show that on increasing the disorder, the resistive transition occurs for lower temperatures and the curve broadens. These features are enhanced in disordered superconductors with strong-links. The different behavior is further checked by estimating the average network resistance for weak- and strong-links in the framework of the effective medium approximation theory. These results may shed light on long standing puzzles such as: (i) enhancement of the superconducting transition temperature of many metals in the granular states; (ii) suppression of superconductivity in homogeneously disordered films compared to standard granular systems close to the metal-insulator transition; (iii) enhanced degradation of superconductivity by doping and impurities in strongly linked materials, such as magnesium diboride, compared to weakly linked superconductors, such as cuprates.

  5. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  6. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  7. Heterotic M-theory, warped geometry and the cosmological constant problem

    International Nuclear Information System (INIS)

    Krause, A.

    2001-01-01

    The first part of this thesis analyzes whether a locally flat background represents a stable vacuum for the proposed heterotic M-theory. A calculation of the leading order supergravity exchange diagrams leads to the conclusion that the locally flat vacuum cannot be stable. Afterwards a comparison with the corresponding weakly coupled heterotic string amplitudes is made. Next, we consider compactifications of heterotic M-theory on a Calabi-Yau threefold, including a non-vanishing G-flux. The ensuing warped-geometry is determined completely and used to show that the variation of the Calabi-Yau volume along the orbifold direction varies quadratically with distance instead linearly as suggested by an earlier first order approximation. In the second part of this thesis we propose a mechanism for obtaining a small cosmological constant. This mechanism consists of the separation of two domain-walls, which together constitute our world, up to a distance 2l ≅1/M GUT . The resulting warped-geometry leads to an exponential suppression of the cosmological constant, which thereby can obtain its observed value without introducing a large hierarchy. An embedding of this set-up into IIB string-theory entails an SU(6) grand unified theory with a natural explanation of the Higgs doublet-triplet splitting. Finally, we examine to what extent the string-theory T-duality can influence curvature. To this aim we derive the full transformation of the curvature-tensor under T-duality. (orig.)

  8. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  9. Bargaining power within couples and use of prenatal and delivery care in Indonesia.

    Science.gov (United States)

    Beegle, K; Frankenberg, E; Thomas, D

    2001-06-01

    Indonesian women's power relative to that of their husbands is examined to determine how it affects use of prenatal and delivery care. Holding household resources constant, a woman's control over economic resources affects the couple's decision-making. Compared with a woman with no assets that she perceives as being her own, a woman with some share of household assets influences reproductive health decisions. Evidence suggests that her influence on service use also varies if a woman is better educated than her husband, comes from a background of higher social status than her husband's, or if her father is better educated than her father-in-law. Therefore, both economic and social dimensions of the distribution of power between spouses influence use of services, and conceptualizing power as multidimensional is useful for understanding couples' behavior.

  10. Overcoming Spurious Regression Using time-Varying Fourier ...

    African Journals Online (AJOL)

    Non-stationary time series data have been traditionally analyzed in the frequency domain by assuming constant amplitudes regardless of the timelag. A new approach called time-varying amplitude method (TVAM) is presented here. Oscillations are analyzed for changes in the magnitude of Fourier Coefficients which are ...

  11. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    International Nuclear Information System (INIS)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.

    2015-01-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb -1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant α S is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of α S (M Z ) = 0.1171 ± 0.0013(exp) +0.0073 -0.0047 (theo). (orig.)

  12. Time-varying linear control for tiltrotor aircraft

    Directory of Open Access Journals (Sweden)

    Jing ZHANG

    2018-04-01

    Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode

  13. Electromagnetic radiation in a time-varying background medium

    NARCIS (Netherlands)

    Budko, N.V.

    2009-01-01

    Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula is obtained for the synchronous permittivity and permeability described by any positive

  14. SOFC regulation at constant temperature: Experimental test and data regression study

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Cinti, G.; Ottaviano, A.

    2016-01-01

    Highlights: • SOFC operating temperature impacts strongly on its performance and lifetime. • Experimental tests were carried out varying electric load and feeding mixture gas. • Three different anodic inlet gases were tested maintaining constant temperature. • Cathodic air flow rate was used to maintain constant its operating temperature. • Regression law was defined from experimental data to regulate the air flow rate. - Abstract: The operating temperature of solid oxide fuel cell stack (SOFC) is an important parameter to be controlled, which impacts the SOFC performance and its lifetime. Rapid temperature change implies a significant temperature differences between the surface and the mean body leading to a state of thermal shock. Thermal shock and thermal cycling introduce stress in a material due to temperature differences between the surface and the interior, or between different regions of the cell. In this context, in order to determine a control law that permit to maintain constant the fuel cell temperature varying the electrical load and the infeed fuel mixture, an experimental activity were carried out on a planar SOFC short stack to analyse stack temperature. Specifically, three different anodic inlet gas compositions were tested: pure hydrogen, reformed natural gas with steam to carbon ratio equal to 2 and 2.5. By processing the obtained results, a regression law was defined to regulate the air flow rate to be provided to the fuel cell to maintain constant its operating temperature varying its operating conditions.

  15. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co

    2009-03-13

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.

  16. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    International Nuclear Information System (INIS)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M

    2009-01-01

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model

  17. Modified quark-meson coupling model for nuclear matter

    International Nuclear Information System (INIS)

    Jin, X.; Jennings, B.K.

    1996-01-01

    The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society

  18. The cosmological constant, branes and non-geometry

    International Nuclear Information System (INIS)

    Gautason, Fridhrik Freyr

    2014-01-01

    In this thesis we derive an equation for the classical cosmological constant in general string compactifications by employing scaling symmetries present in string theory. We find that in heterotic string theory, a perturbatively small, but non-vanishing, cosmological constant is impossible unless non-perturbative and/or string loop corrections are taken into account. In type II string theory we show that the classical cosmological constant is given by a sum of two terms, the source actions evaluated on-shell, and a certain combination of non-vanishing fluxes integrated over spacetime. In many cases we can express the classical cosmological constant in terms of only the source contributions by exploiting two scaling symmetries. This result can be used in two ways. First one can simply predict the classical cosmological constant in a given setup without solving all equations of motion. A second application is to give constraints on the near brane behavior of supergravity fields when the cosmological constant is known. In particular we motivate that energy densities of some fields diverge in the well-known KKLT scenario for de Sitter solutions in type IIB string theory. More precisely, we show, using our results and minimal assumptions, that energy densities of the three-form fluxes diverge in the near-source region of internal space. This divergence is unusual, since these fields do not directly couple to the source, and has been interpreted as a hint of instability of the solution. In the last chapter of the thesis we discuss the worldvolume actions of exotic five-branes. Using a specific chain of T- and S-dualities in a spacetime with two circular isometries, we derive the DBI and WZ actions of the so-called 5 2 2 - and 5 2 3 -brane. These actions describe the dynamics of the branes as well as their couplings to the ten-dimensional gauge potentials. We propose a modified Bianchi identity for the non-geometric Q-flux due to one of the branes. Q-flux often appears

  19. Directional effects in transitional resonance spectra and group constants

    International Nuclear Information System (INIS)

    Hill, R.N.; Oh, K.O.; Rhodes, J.D.

    1989-01-01

    Analytical exploratory investigations indicate that transition effects such as streaming cause a considerable spatial variation in the neutron spectra across resonances; streaming leads to opposite effects in the forward and backward directions. The neglect of this coupled spatial/angular variations of the transitory resonance spectra is an approximation that is common to all current group constant generation methodologies. This paper presents a description of the spatial/angular coupling of the neutron flux across isolated resonances. It appears to be necessary to differentiate between forward-and backward-directed neutron flux components or even to consider components in narrower angular cones. The effects are illustrated for an isolated actinide resonance in a simplified fast reactor blanket problem. The resonance spectra of the directional flux components φ + and φ - , and even more so the 90-deg cone components, are shown to deviate significantly from the infinite medium approximation, and the differences increase with penetration. The charges in φ + lead to a decreasing scattering group constant that enhances neutron transmission; the changes in φ - lead to an increasing group constant inhibiting backward scattering. Therefore, the changes in the forward-and backward-directed spectra both lead to increased neutron transmission. Conversely, the flux (φ = φ + +φ - ) is shown to agree closely with the infinite medium approximation both in the analytical formulas and in the numerical solution. The directional effect cancel in the summation. The forward-and backward-directed flux components are used as weighting spectra to illustrate the group constant changes for a single resonance

  20. Influence of ligand-bridged substitution on the exchange coupling constant of chromium-wheels host complexes: a density functional theory study

    Science.gov (United States)

    Sadeghi Googheri, Motahare; Abolhassani, Mohammad Reza; Mirzaei, Mahmoud

    2018-05-01

    Designing and introducing novel wheel-shaped supramolecular as host complexes with new magnetic properties is the theme of the day. So in this study, new eight binuclear chromium (III) complexes, as models of real chromium-wheel host complexes, were designed based on changing of bridged-ligands and exchange coupling constants (J) of them were calculated using the broken symmetry density functional theory approach. Substitution of fluorine ligand in fluoro-bridged model [Cr2F(tBuCO2)2(H2O)2(OH)4]-1 by halogen anions (Cl-, Br- and I- ) decreased the antiferromagnetic exchange coupling between Cr(III) centres such that by going from F- to I- the J values became more positive. In the case of hydroxo-bridged model [Cr2OH(tBuCO2)2(H2O)2(OH)4]-1, replacement of hydroxyl by methoxy anion (OMe-) strengthened the antiferromagnetic property of the complex but substitution by sulfanide (SH-) and amide (NH2-) anions weakened it and changed the nature of complexes to ferromagnetic. Because of their different magnetic properties, these new investigated complexes can be suggested as interesting synthetic targets. Also, the J value changes due to ligand substitution were evaluated and it was found that the Cr-X bond strength and partial charges of involved atoms were the most effective factors on it.

  1. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  2. Small-x behavior of the structure function F2 and its slope ∂lnF2/∂ln(1/x) for ''frozen'' and analytic strong-coupling constants

    International Nuclear Information System (INIS)

    Cvetic, G.; Kniehl, B.A.; Kotikov, A.V.

    2009-06-01

    Using the leading-twist approximation of the Wilson operator product expansion with ''frozen'' and analytic versions of the strong-coupling constant, we show that the Bessel-inspired behavior of the structure function F 2 and its slope ∂lnF 2 /∂ln(1/x) at small values of x, obtained for a at initial condition in the DGLAP evolution equations, leads to good agreement with experimental data of deep-inelastic scattering at DESY HERA. (orig.)

  3. Cosmological perturbations of non-minimally coupled quintessence in the metric and Palatini formalisms

    International Nuclear Information System (INIS)

    Fan, Yize; Wu, Puxun; Yu, Hongwei

    2015-01-01

    Cosmological perturbations of the non-minimally coupled scalar field dark energy in both the metric and Palatini formalisms are studied in this paper. We find that on the large scales with the energy density of dark energy becoming more and more important in the low redshift region, the gravitational potential becomes smaller and smaller, and the effect of non-minimal coupling becomes more and more apparent. In the metric formalism the value of the gravitational potential in the non-minimally coupled case with a positive coupling constant is less than that in the minimally coupled case, while it is larger if the coupling constant is negative. This is different from that in the Palatini formalism where the value of gravitational potential is always smaller. Based upon the quasi-static approximation on the sub-horizon scales, the linear growth of matter is also analyzed. We obtain that the effective Newton's constants in the metric and Palatini formalisms have different forms. A negative coupling constant enhances the gravitational interaction, while a positive one weakens it. Although the metric and Palatini formalisms give different linear growth rates, the difference is very small and the current observation cannot distinguish them effectively

  4. A modified Friedmann equation for a system with varying gravitational mass

    Science.gov (United States)

    Gorkavyi, Nick; Vasilkov, Alexander

    2018-05-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.

  5. Electricity Futures Prices : Time Varying Sensitivity to Fundamentals

    NARCIS (Netherlands)

    S-E. Fleten (Stein-Erik); R. Huisman (Ronald); M. Kilic (Mehtap); H.P.G. Pennings (Enrico); S. Westgaard (Sjur)

    2014-01-01

    textabstractThis paper provides insight in the time-varying relation between electricity futures prices and fundamentals in the form of prices of contracts for fossil fuels. As supply curves are not constant and different producers have different marginal costs of production, we argue that the

  6. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  7. The effect of interacting dark energy on local measurements of the Hubble constant

    International Nuclear Information System (INIS)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ 8 . It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ 8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  8. The effect of interacting dark energy on local measurements of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Odderskov, Io [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, Aarhus C (Denmark); Baldi, Marco [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat 6/2, I-40127, Bologna (Italy); Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  9. Solute concentration at a well in non-Gaussian aquifers under constant and time-varying pumping schedule

    Science.gov (United States)

    Libera, Arianna; de Barros, Felipe P. J.; Riva, Monica; Guadagnini, Alberto

    2017-10-01

    Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport. We explore the joint influence of diverse (a) groundwater pumping schedules (constant and variable in time) and (b) representations of the stochastic heterogeneous transmissivity (T) field on temporal histories of solute concentrations observed at an extraction well. The stochastic nature of T is rendered by modeling its natural logarithm, Y = ln T, through a typical Gaussian representation and the recently introduced Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-dependent non-Gaussian features of the main statistics of Y and its (spatial) increments, which have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and compute the temporal evolution at the well of low order moments of the solute concentration (C), as well as statistics of the peak concentration (Cp), identified as the environmental performance metric of interest in this study. We show that the pumping schedule strongly affects the pattern of the temporal evolution of the first two statistical moments of C, regardless the nature (Gaussian or non-Gaussian) of the underlying Y field, whereas the latter quantitatively influences their magnitude. Our results show that uncertainty associated with C and Cp estimates is larger when operating under a transient extraction scheme than under the action of a uniform withdrawal schedule. The probability density function (PDF) of Cp displays a long positive tail in the presence of time-varying pumping schedule. All these aspects are magnified in the presence of non-Gaussian Y fields. Additionally, the PDF of Cp displays a bimodal shape for all types of pumping

  10. Energy dependence of jet-structures and determination of the strong coupling constant αsub(s) in e+e- annihilation with the CELLO detector

    International Nuclear Information System (INIS)

    Hopp, G.

    1985-07-01

    We considered multihadronic events and we studied the energy dependence of the jet-structure of those events. We confirmed the existence of 3-jet and 4-jet events in high energy data as predicted by QCD. In parallel we checked the energy dependence of different jet-measures which is predicted by the fragmentation models. We determined the strong coupling constant αsub(s) using different methods and we found a strong model dependence of the αsub(s) determination in second order QCD. The study of the particle density between the jet-axes resulted in a light preference for the LUND-String model as compared to models with independent jet-fragmentation. (orig.) [de

  11. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Bagaturia, Iuri; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0...

  12. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  13. Radiative corrections to the Higgs couplings in the triplet model

    International Nuclear Information System (INIS)

    KIKUCHI, M.

    2014-01-01

    The feature of extended Higgs models can appear in the pattern of deviations from the Standard Model (SM) predictions in coupling constants of the SM-like Higgs boson (h). We can thus discriminate extended Higgs models by precisely measuring the pattern of deviations in the coupling constants of h, even when extra bosons are not found directly. In order to compare the theoretical predictions to the future precision data at the ILC, we must evaluate the theoretical predictions with radiative corrections in various extended Higgs models. In this paper, we give our comprehensive study for radiative corrections to various Higgs boson couplings of h in the minimal Higgs triplet model (HTM). First, we define renormalization conditions in the model, and we calculate the Higgs coupling; gγγ, hWW, hZZ and hhh at the one loop level. We then evaluate deviations in coupling constants of the SM-like Higgs boson from the predictions in the SM. We find that one-loop contributions to these couplings are substantial as compared to their expected measurement accuracies at the ILC. Therefore the HTM has a possibility to be distinguished from the other models by comparing the pattern of deviations in the Higgs boson couplings.

  14. Turbine blade having a constant thickness airfoil skin

    Science.gov (United States)

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  15. Magnetization-induced dynamics of a Josephson junction coupled to a nanomagnet

    Science.gov (United States)

    Ghosh, Roopayan; Maiti, Moitri; Shukrinov, Yury M.; Sengupta, K.

    2017-11-01

    We study the superconducting current of a Josephson junction (JJ) coupled to an external nanomagnet driven by a time-dependent magnetic field both without and in the presence of an external ac drive. We provide an analytic, albeit perturbative, solution for the Landau-Lifshitz (LL) equations governing the coupled JJ-nanomagnet system in the presence of a magnetic field with arbitrary time dependence oriented along the easy axis of the nanomagnet's magnetization and in the limit of weak dimensionless coupling ɛ0 between the JJ and the nanomagnet. We show the existence of Shapiro-type steps in the I -V characteristics of the JJ subjected to a voltage bias for a constant or periodically varying magnetic field and explore the effect of rotation of the magnetic field and the presence of an external ac drive on these steps. We support our analytic results with exact numerical solution of the LL equations. We also extend our results to dissipative nanomagnets by providing a perturbative solution to the Landau-Lifshitz-Gilbert (LLG) equations for weak dissipation. We study the fate of magnetization-induced Shapiro steps in the presence of dissipation both from our analytical results and via numerical solution of the coupled LLG equations. We discuss experiments which can test our theory.

  16. Calculation of hyperfine structure constants of small molecules using

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  17. Epidemic spread in coupled populations with seasonally varying migration rates

    Science.gov (United States)

    Muzyczyn, Adam; Shaw, Leah B.

    2009-03-01

    The H5N1 strain of avian influenza has spread worldwide, and this spread may be due to seasonal migration of birds and mixing of birds from different regions in the wintering grounds. We studied a multipatch model for avian influenza with seasonally varying migration rates. The bird population was divided into two spatially distinct patches, or subpopulations. Within each patch, the disease followed the SIR (susceptible-infected-recovered) model for epidemic spread. Migration rates were varied periodically, with a net flux toward the breeding grounds during the spring and towards the wintering grounds during the fall. The case of two symmetric patches reduced to single-patch SIR dynamics. However, asymmetry in the birth and contact rates in the breeding grounds and wintering grounds led to bifurcations to longer period orbits and chaotic dynamics. We studied the bifurcation structure of the model and the phase relationships between outbreaks in the two patches.

  18. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  19. Hadronic couplings of open beauty states

    International Nuclear Information System (INIS)

    Ram, S.N.; Singh, C.P.

    1982-08-01

    Strong interaction coupling parameters of particles with beauty quantum number are obtained using dispersion sum rules in various forms, e.g. current algebra sum rules, superconvergence sum rules and finite energy sum rules etc. These sum rules lead to a set of algebraic relations among masses and coupling constants. We compare the hadronic couplings of beautiful particles as obtained from various techniques and discuss their implications on the hadronic production of these states. (author)

  20. Estrelas variáveis

    OpenAIRE

    Viana, Sérgio Manuel de Oliveira

    2001-01-01

    A observação do céu nocturno é uma prática que vem da Antiguidade. Desde então e durante muito tempo pensou-se que as estrelas mantinham o brilho constante. Assim foi até ao século XVI, quando David Fabricius observou uma estrela cujo brilho variava periodicamente. Dois séculos mais tarde, Jonh Goodricke descobriu uma segunda estrela e com o desenvolvimento de instrumentos de observação este conjunto foi muito alargado e hoje inclui o Sol.A variação do brilho das estrelas variáveis permite d...

  1. Measurement of the strong interaction coupling constant αs by jet study in the H1 experiment

    International Nuclear Information System (INIS)

    Squinabol, F.

    1997-01-01

    The H1 experiment allows to study hadronic jets produced in deep inelastic lepton (27.5 GeV) scattering off protons (820 GeV). The coupling constant of the strong interaction α s can be extracted from the measurement of the 2-jets rate in the final state. The use of the JADE algorithm is optimal for events with high energy transfer (100-4,000 GeV 2 ), corresponding to the 1994 and 1995 data. The error on α s (M Z 0 2 ) is dominated by the uncertainty from the hadronic energy measurement and the experimental resolution effects on jets. The theoretical error is dominated by the renormalization scale dependence. The final result is (M Z 0 2 ) 0.118 -0.008 +0.008 . This analysis is extended to smaller momentum transfers (25-100 GeV 2 ) using the factorizable K t algorithm, taking the transferred momentum as energy scale of the particle re-clustering. The result α s (M Z 0 2 ) 0.117 -0.008 +0.009 is compatible with the previous one. The precision of the measurement performed in this thesis is 7%. A precision of 4% could be achieved after progresses in the theoretical framework and/or after a significant increase of the luminosity. (author)

  2. N.M.R. study of organo-phosphorus compounds: non equivalence of methylenic protons in the {alpha} position of an asymmetric phosphorus atom. Application to study of coupling constants J{sub P,H} and J{sub H,H}; R.M.N. de composes organo-phosphores: non equivalence de protons methyleniques en {alpha} d'un phosphore asymetrique. Application a l'etude des constantes de couplage J{sub P,H} et J{sub H,H}

    Energy Technology Data Exchange (ETDEWEB)

    Albrand, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Non-equivalent methylenic protons, with respect to an asymmetric center, have been observed in the n.m.r. spectra of some three- and tetra-coordinated phosphorus compounds. The analysis of these spectra yield the following results: in the studied secondary phosphines, the inversion rate at the phosphorus atom is slow on the n.m.r. time scale; the geminal coupling constant, for a free-rotating methylene group attached to a phosphorus atom, is negative; in phosphines the non equivalence of methylenic protons reveals two {sup 2}J{sub P-C-H} coupling constants which differ by about 5 Hz. This result is in agreement with previous studies on cyclic phosphines. In phosphine oxides, the {sup 2}J{sub P-C-H} values are negative. The {sup 3}J{sub H-P-C-H} coupling constant is positive in both phosphines and phosphine oxides. In phosphines, the non-equivalent methylenic protons exhibit two nearly equal values for this coupling constant. (author) [French] La non-equivalence de protons methyleniques observee dans quelques composes phosphores tricoordines et tetracoordines a apporte les resultats suivants, concernant la stereochimie et les constantes de couplage dans ces composes: dans les phosphines secondaires, la structure pyramidale des liaisons issues du phosphore est fixe a l'echelle de temps de mesure de la R.M.N.; la constante de couplage {sup 2}J{sub H-C-H}, pour un methylene en libre rotation en {alpha} d'un atome de phosphore, est negative; dans les phosphines etudiees, la non-equivalence. observee pour les protons methyleniques s'accompagne d'une difference importante (5 Hz) entre les deux constantes de couplage {sup 2}J{sub P-C-H} determinees par l'analyse; ce resultat est en accord avec la stereospecificite deja observee pour ce couplage dans les phosphines cycliques. Les valeurs observees pour {sup 2}J{sub P-C-H} dans les oxydes de phosphines sont negatives. Les valeurs de la constante de couplage {sup 3}J{sub H-P-C-H}, dans les phosphines et oxydes de phosphine

  3. The $SU(\\infty)$ twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...

  4. Design of a master Fastbus for the data acquisition of the DELPHI external detector. Measurement of the strong interaction coupling constant in the Z neutral boson hadronic decay

    International Nuclear Information System (INIS)

    Chorowicz, V.

    1990-05-01

    The thesis was prepared at the Delphi experiment. The work, performed in the LPNHE-Paris group, consists of two steps: the data acquisition at the Delphi External Detector and the analysis of the hadronic data, in order to extract the coupling constant of the strong interactions at √s = 91 GeV. In the first part of the thesis, the constraints relating to the data acquisition and the Delphi output are discussed. The data acquisition system of the External Detector and the implementation of the AM29000 on the main Fastbus are described. The AM29000 is a RISC type processor, which can support the high frequencies expected from the beam luminosity increase at LEP. This module will replace front end freeing monitor which is presently controlled by a 68020 microprocessor. In the second part of the thesis, the data acquired at Delphi from September to December 1989 is analyzed. The investigation is focused on the hadronic events in order to obtain the Standard Model basic parameter: the Λ QCD , which determines the energy dependence of the strong interactions coupling constant. A method based on the measurement of the energy-energy correlations in the hadronic jets is used and the results are discussed. The Λ QCD value is obtained by fitting the theoretical expected value to the distribution of the energy-energy correlations asymmetry [fr

  5. Feynman diagrams coupled to three-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Barrett, John W

    2006-01-01

    A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero

  6. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  7. Pinning, de-pinning and re-pinning of a slowly varying rivulet

    KAUST Repository

    Paterson, C.; Wilson, S.K.; Duffy, B.R.

    2013-01-01

    The solutions for the unidirectional flow of a thin rivulet with prescribed volume flux down an inclined planar substrate are used to describe the locally unidirectional flow of a rivulet with constant width (i.e. pinned contact lines) but slowly varying contact angle as well as the possible pinning and subsequent de-pinning of a rivulet with constant contact angle and the possible de-pinning and subsequent re-pinning of a rivulet with constant width as they flow in the azimuthal direction from the top to the bottom of a large horizontal cylinder. Despite being the same locally, the global behaviour of a rivulet with constant width can be very different from that of a rivulet with constant contact angle. In particular, while a rivulet with constant non-zero contact angle can always run from the top to the bottom of the cylinder, the behaviour of a rivulet with constant width depends on the value of the width. Specifically, while a narrow rivulet can run all the way from the top to the bottom of the cylinder, a wide rivulet can run from the top of the cylinder only to a critical azimuthal angle. The scenario in which the hitherto pinned contact lines of the rivulet de-pin at the critical azimuthal angle and the rivulet runs from the critical azimuthal angle to the bottom of the cylinder with zero contact angle but slowly varying width is discussed. The pinning and de-pinning of a rivulet with constant contact angle, and the corresponding situation involving the de-pinning and re-pinning of a rivulet with constant width at a non-zero contact angle which generalises the de-pinning at zero contact angle discussed earlier, are described. In the latter situation, the mass of fluid on the cylinder is found to be a monotonically increasing function of the constant width. © 2013 Elsevier Masson SAS. All rights reserved.

  8. Pinning, de-pinning and re-pinning of a slowly varying rivulet

    KAUST Repository

    Paterson, C.

    2013-09-01

    The solutions for the unidirectional flow of a thin rivulet with prescribed volume flux down an inclined planar substrate are used to describe the locally unidirectional flow of a rivulet with constant width (i.e. pinned contact lines) but slowly varying contact angle as well as the possible pinning and subsequent de-pinning of a rivulet with constant contact angle and the possible de-pinning and subsequent re-pinning of a rivulet with constant width as they flow in the azimuthal direction from the top to the bottom of a large horizontal cylinder. Despite being the same locally, the global behaviour of a rivulet with constant width can be very different from that of a rivulet with constant contact angle. In particular, while a rivulet with constant non-zero contact angle can always run from the top to the bottom of the cylinder, the behaviour of a rivulet with constant width depends on the value of the width. Specifically, while a narrow rivulet can run all the way from the top to the bottom of the cylinder, a wide rivulet can run from the top of the cylinder only to a critical azimuthal angle. The scenario in which the hitherto pinned contact lines of the rivulet de-pin at the critical azimuthal angle and the rivulet runs from the critical azimuthal angle to the bottom of the cylinder with zero contact angle but slowly varying width is discussed. The pinning and de-pinning of a rivulet with constant contact angle, and the corresponding situation involving the de-pinning and re-pinning of a rivulet with constant width at a non-zero contact angle which generalises the de-pinning at zero contact angle discussed earlier, are described. In the latter situation, the mass of fluid on the cylinder is found to be a monotonically increasing function of the constant width. © 2013 Elsevier Masson SAS. All rights reserved.

  9. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  10. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  11. Correlating the P-31 NMR Chemical Shielding Tensor and the (2)J(P,C) Spin-Spin Coupling Constants with Torsion Angles zeta and alpha in the Backbone of Nucleic Acids

    Czech Academy of Sciences Publication Activity Database

    Benda, Ladislav; Sochorová Vokáčová, Zuzana; Straka, Michal; Sychrovský, Vladimír

    2012-01-01

    Roč. 116, č. 12 (2012), s. 3823-3833 ISSN 1520-6106 R&D Projects: GA ČR GAP205/10/0228; GA ČR GPP208/10/P398; GA ČR GA203/09/2037 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids * phosphorus NMR * NMR calculations * cross-correlated relaxation * spin–spin coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.607, year: 2012

  12. Scalar field localization on a brane with cosmological constant

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Yahiro, Masanobu

    2003-01-01

    We investigate the localization of a massive scalar for both dS and AdS branes, where the scalar mass is varied from the massive-particle region to the tachyon region. We find that the eigenmass m of the localized mode satisfies a simple relation m 2 = cM 2 with a positive constant c for the dS brane, and m 2 = c 1 M 2 + c 2 with positive constants c 1 and c 2 for the AdS brane. We discuss the relation of these results to the stability of the brane and also some cosmological problems

  13. Proceedings of the workshop: the solar constant and the Earth's atmosphere

    International Nuclear Information System (INIS)

    Zirin, H.; Moore, R.L.; Walter, J.

    1976-01-01

    The solar constant has long been a fundamental quantity in astrophysics, but as with many fundamental quantities, interest in its exact value or its variation has not been great over the last decade. This was particularly due to the fact that most models of stars indicated that their luminosity should be quite constant, varying only over nuclear burning times of hundreds of millions of years. Thus, after the pioneering work of Abbott, it has been more a subject of interest for atmospheric scientists who needed to know the exact inputs to the Earth's atmosphere. In recent years however, the celebrated problem of the missing solar neutrinos has brought into question the theories of stellar structure, and the solar constant is again being thought about. Standard solar models predict a lower solar constant in the past, 75% of the present, 4x10 9 years ago and a virtually constant value over short time scales (10 7 years). However, the lack of observed neutrinos predicted by this model suggests that the interior of the Sun is not really understood, which means that solar constant variations cannot be ruled out on the basis of the theory of stellar interiors. Measurement of the planets, the old Smithsonian measurements, and other data suggest that the Sun cannot have varied more than a few percent over the past hundred years, but some of the measurements even suggest small variation of the order of a percent. On the other hand, in the important near ultraviolet region, there is evidence for some variation in the 2700-3100 A region and up to 50% variation below 1600 A, dependent on solar activity. (Auth.)

  14. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  15. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, Majid [University of Tehran, Tehran (Iran, Islamic Republic of); Sanaeifar, Alireza [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-08-15

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  16. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    International Nuclear Information System (INIS)

    Yaghoubi, Majid; Sanaeifar, Alireza

    2015-01-01

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  17. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    OpenAIRE

    Membiela, Agustin; Bellini, Mauricio

    2006-01-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experiental data that the coupling of the inflaton with gravity should be...

  18. Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.

    1987-10-01

    The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs

  19. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  20. GMD Coupling to Power Systems and Disturbance Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-24

    Presentation includes slides on Geomagnetic Disturbance: Ground Fields; Geomagnetic Disturbance: Coupling to Bulk Electric System; Geomagnetic Disturbance: Transformers; GMD Assessment Workflow (TPL-007-1); FERC order 830; Goals; SuperMag (1 min data) Nov. 20-21, 2003 Storm (DST = -422); Spherical Harmonics; Spherical Harmonics Nov. 20-21, 2003 Storm (DST = -422); DST vs HN0,0; Fluctuations vs. DST; Fluctuations; Conclusions and Next Steps; GMD Assessment Workflow (TPL-007-1); EMP E3 Coupling to Texas 2000 Bus Model; E3 Coupling Comparison (total GIC) Varying Ground Zero; E3 Coupling Comparison (total MVAR) Varying Ground Zero; E3 Coupling Comparison (GIC) at Peak Ground Zero; E3 Coupling Comparison (GIC) at Peak Ground Zero; and Conclusion.

  1. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  2. Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.

    Science.gov (United States)

    Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta

    2011-11-01

    Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).

  3. The Handling of Constant Volumes of Various Concentrations of ...

    African Journals Online (AJOL)

    The Handling of Constant Volumes of Various Concentrations of Seawater by the Jackass Penguin Spheniscus Demersus. T Erasmus. Abstract. This paper reports on the effects of varying the concentration of sea water dosed at a rate of 10% of body mass on the handling of fluid and solutes by jackass penguins ...

  4. Rapid and accurate determination of Stern-Volmer quenching constants

    International Nuclear Information System (INIS)

    Goodpaster, John V.; McGuffin, Victoria L.

    1999-01-01

    In this work, a novel system has been designed, characterized, and validated for the determination of fluorescence quenching constants. Capillary flow injection methods are used to automate the preparation and mixing of the fluorophore and quencher solutions. Because of the small diameter of the capillary (75-200 μm), fluorescence measurements can be made without corrections for primary and secondary absorbance effects. The fluorescence spectrometer is equipped with a charge-coupled device (CCD) that has a detection limit of 3.0x10 -9 M (2.3 ppb) and a linear dynamic range of 10 5 for integration times of 0.01-10 s. This spectrometer has a 300 nm spectral range with 1 nm resolution, allowing the fluorescence quenching constants to be calculated at single wavelengths or over integrated wavelength ranges. This system was validated by comparison to traditional methods for the determination of Stern-Volmer constants for alternant and nonalternant polycyclic aromatic hydrocarbons with nitromethane and triethylamine. (c) 2000 Society for Applied Spectroscopy

  5. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    International Nuclear Information System (INIS)

    Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.

    2015-01-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light

  6. The SU(∞) twisted gradient flow running coupling

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); Departamento de Física Teórica, C-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-01-09

    We measure the running of the SU(∞) ’t Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter l-tilde=l√N, with l the torus period. We set the scale for the running coupling in terms of l-tilde and use the gradient flow to define a renormalized ’t Hooft coupling λ(l-tilde). In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large N limit taken at fixed value of λ(l-tilde). The coupling constant is thus expected to coincide with that of the ordinary pure gauge theory at N=∞. The idea is shown to work and permits us to follow the evolution of the coupling over a wide range of scales. At weak coupling we find a remarkable agreement with the perturbative two-loop formula for the running coupling.

  7. Conformational study of C8 diazocine turn mimics using {sup 3}J{sub CH} coupling constants with {sup 13}C in natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Bean, J.W.; Briand, J.; Burgess, J.L.; Callahan, J.F. [SmithKline Beecham Pharmaceuticals, King of Prussia, PA (United States)

    1994-12-01

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-{omega}-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-{omega}-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, {sup 3}J{sub HH} values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the H{alpha}1 and H{gamma}1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central H{beta}1 and H{beta}2 protons made it impossible to measure {sup 3}J{sub HH} values from the P.E.COSY spectrum. We therefore used a {sup 13}C-filtered TOCSY experiment to measure the {sup 3}J{sub CH} values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with {sup 13}C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation.

  8. Dressed skeleton expansion and the coupling scale ambiguity problem

    International Nuclear Information System (INIS)

    Lu, Hung Jung.

    1992-09-01

    Perturbative expansions in quantum field theories are usually expressed in powers of a coupling constant. In principle, the infinite sum of the expansion series is independent of the renormalization scale of the coupling constant. In practice, there is a remnant dependence of the truncated series on the renormalization scale. This scale ambiguity can severely restrict the predictive power of theoretical calculations. The dressed skeleton expansion is developed as a calculational method which avoids the coupling scale ambiguity problem. In this method, physical quantities are expressed as functional expansions in terms of a coupling vertex function. The arguments of the vertex function are given by the physical momenta of each process. These physical momenta effectively replace the unspecified renormalization scale and eliminate the ambiguity problem. This method is applied to various field theoretical models and its main features and limitations are explored. For quantum chromodynamics, an expression for the running coupling constant of the three-gluon vertex is obtained. The effective coupling scale of this vertex is shown to be essentially given by μ 2 ∼ Q min 2 Q med 2 /Q max 2 where Q min 2 Q med 2 /Q max 2 are respectively the smallest, the next-to-smallest and the largest scale among the three gluon virtualities. This functional form suggests that the three-gluon vertex becomes non-perturbative at asymmetric momentum configurations. Implications for four-jet physics is discussed

  9. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Tai, N.-Ha; Chen, B.-Y.

    2008-01-01

    Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 deg. and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 μN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy

  10. New perspectives in the PAW/GIPAW approach: J(P-O-Si) coupling constants, antisymmetric parts of shift tensors and NQR predictions.

    Science.gov (United States)

    Bonhomme, Christian; Gervais, Christel; Coelho, Cristina; Pourpoint, Frédérique; Azaïs, Thierry; Bonhomme-Coury, Laure; Babonneau, Florence; Jacob, Guy; Ferrari, Maude; Canet, Daniel; Yates, Jonathan R; Pickard, Chris J; Joyce, Siân A; Mauri, Francesco; Massiot, Dominique

    2010-12-01

    In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  12. Neutron fluctuations in a medium randomly varying in time

    International Nuclear Information System (INIS)

    Lenard, Pal; Imre, Pazsit

    2005-01-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  13. Neutron fluctuations in a medium randomly varying in time

    Energy Technology Data Exchange (ETDEWEB)

    Lenard, Pal [KFKI Atomic Energy Research Institute, Budapest (Hungary); Imre, Pazsit [Chalmers Univ. of Technology, Dept. of Nuclear Engineering, SE, Goteborg (Sweden)

    2005-07-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  14. Determination of the strong coupling constant from transverse energy-energy correlations in multi-jet events in pp collisions at 13 TeV using the ATLAS detector at the LHC

    CERN Document Server

    Alvarez, Manuel; Llorente, Javier

    This analysis presents measurements of transverse energy-energy correlations (TEEC) and its associated asymmetry (ATEEC) in multi-jet events in bins of the scalar sum of the two leading jets transverse momenta. The data are unfolded to the particle level and compared to Monte Carlo generators like PYTHIA8, HERWIG++ and SHERPA. A comparison with NLOJET++ predictions is also performed. The value of the strong coupling constant is extracted and the running is tested up to scales beyond 1 TeV.

  15. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  16. Deflation of the cosmological constant associated with inflation and dark energy

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-01-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  17. Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    International Nuclear Information System (INIS)

    Liu, J.; Mendenhall, M. P.; Carr, R.; Filippone, B. W.; Hickerson, K. P.; Perez Galvan, A.; Russell, R.; Holley, A. T.; Hoagland, J.; VornDick, B.; Back, H. O.; Pattie, R. W. Jr.; Young, A. R.; Bowles, T. J.; Clayton, S.; Currie, S.; Hogan, G. E.; Ito, T. M.; Makela, M.; Morris, C. L.

    2010-01-01

    A precise measurement of the neutron decay β asymmetry A 0 has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A 0 =-0.119 66±0.000 89 -0.00140 +0.00123 , from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g A /g V =-1.275 90 -0.00445 +0.00409 .

  18. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru

    2005-01-01

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  19. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  20. Measurement of periodically varying ECE spectra using a Michelson interferometer

    International Nuclear Information System (INIS)

    Laurent, L.; Rodriguez, L.; Talvard, M.

    1987-01-01

    In some tokamak experiments the ECE spectrum is periodically varying. If the modulation frequency is small enough (less than 10 Hz) the plasma can be considered as quasi-stationary during the typical scan time of most of the Michelson interferometers. It is possible to measure simply ECE spectra at different times of the oscillation. We present here a technique which allows to measure smaller fluctuations at larger frequencies. However the analysis requires a large number of periods of oscillation at constant frequency and a scanning mirror moving at constant velocity

  1. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  2. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  3. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...

  4. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    Science.gov (United States)

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  5. Uncertainties in constraining low-energy constants from {sup 3}H β decay

    Energy Technology Data Exchange (ETDEWEB)

    Klos, P.; Carbone, A.; Hebeler, K. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Menendez, J. [University of Tokyo, Department of Physics, Tokyo (Japan); Schwenk, A. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-08-15

    We discuss the uncertainties in constraining low-energy constants of chiral effective field theory from {sup 3}H β decay. The half-life is very precisely known, so that the Gamow-Teller matrix element has been used to fit the coupling c{sub D} of the axial-vector current to a short-range two-nucleon pair. Because the same coupling also describes the leading one-pion-exchange three-nucleon force, this in principle provides a very constraining fit, uncorrelated with the {sup 3}H binding energy fit used to constrain another low-energy coupling in three-nucleon forces. However, so far such {sup 3}H half-life fits have only been performed at a fixed cutoff value. We show that the cutoff dependence due to the regulators in the axial-vector two-body current can significantly affect the Gamow-Teller matrix elements and consequently also the extracted values for the c{sub D} coupling constant. The degree of the cutoff dependence is correlated with the softness of the employed NN interaction. As a result, present three-nucleon forces based on a fit to {sup 3}H β decay underestimate the uncertainty in c{sub D}. We explore a range of c{sub D} values that is compatible within cutoff variation with the experimental {sup 3}H half-life and estimate the resulting uncertainties for many-body systems by performing calculations of symmetric nuclear matter. (orig.)

  6. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    Science.gov (United States)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  7. Arrhenius Rate: constant volume burn

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.

  8. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  9. Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-12-01

    Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.

  10. Validating and analyzing EPR hyperfine coupling constants with density functional theory

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Kongsted, Jacob; Sauer, Stephan P. A.

    2013-01-01

    Electron Paramagnetic Resonance (EPR) is a central spectroscopic technique for compounds with non-zero spin. The effective parameters from the EPR spin-Hamiltonian can today be calculated from rst principles using quantum chemical methods. We focus here on the hyperne coupling tensor, A, which....... Unfortunately both organometallic and traditional coordination complexes show a completely different behavior, where the core contributions to AKiso either are comparable (“class 2”) or far exceed (“class 3”) the contributions from the frontier orbitals. Agreement with experiment can for these complexes only...

  11. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    Science.gov (United States)

    Membiela, Agustin; Bellini, Mauricio

    2006-10-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.

  12. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Agustin [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina)]. E-mail: membiela@argentina.com; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina) and Consejo Nacional de Ciencia y Tecnologia (CONICET) (Argentina)]. E-mail: mbellini@mdp.edu.ar

    2006-10-05

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.

  13. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    International Nuclear Information System (INIS)

    Membiela, Agustin; Bellini, Mauricio

    2006-01-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe

  14. Model-independent determination of hadronic neutral-current couplings

    International Nuclear Information System (INIS)

    Claudson, M.; Paschos, E.A.; Strait, J.; Sulak, L.R.

    1979-01-01

    Completion of a second generation of experiments on neutrino-induced neutral-current reactions allows a more discriminating study of neutral-current couplings to hadrons. To minimize the sensitivity to model-dependent analyses of inclusive and exclusive pion data, we base our work on measurements of deep-inelastic and elastic reactions alone. Within the regions allowed by the deep-inelastic data for scattering on isoscalar targets, the coupling constants are fit to the q 2 dependence of the neutrino-proton elastic scattering data. This procedure initially yields two solutions for the couplings. One of these, at theta/sub L/ = 55 0 and theta/sub R/ = 205 0 , is predominantly isoscalar and therefore is ruled out by only qualitative consideration of exclusive pion data. The other solution at theta/sub D/ = 140 0 and and theta/sub R/ = 330 0 , is thus a unique determination of the hadronic neutral-current couplings. It coincides with solution A obtained in earlier work, and is insensitive to variations of M/sub A/ within 2 standard deviations of the world average. When constrained to the coupling constants required by the Weinberg-Salam model, the fit agrees with the data to within 1 standard deviation

  15. Constant force extensional rheometry of polymer solutions

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.; Clasen, Christian

    2012-01-01

    We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...... is first established between two cylindrical disks. The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid...... filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment...

  16. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  17. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    KAUST Repository

    Huang, Bin-Juine

    2013-01-01

    The illumination of an LED may be affected by operating temperature even under constant-current condition. A constant-power driving technique is proposed in the present study for LED luminaire. A linear system dynamics model of LED luminaire is first derived and used in the design of the feedback control system. The PI controller was designed and tuned taking into account the control accuracy and robust properties with respect to plant uncertainty and variation of operating conditions. The control system was implemented on a microprocessor and used to control a 150W LED luminaire. The test result shows that the feedback system accurately controls the input power of LED luminaire to within 1.3 per cent error. As the ambient temperature changes from 0 to 40 °C, the LED illumination varies slightly (-1.7%) for constant-power driving, as compared to that of constant-current driving (-12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing the illumination of LED under large temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  18. Development of annular coupled structure

    International Nuclear Information System (INIS)

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1992-01-01

    A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs

  19. S-duality constraint on higher-derivative couplings

    International Nuclear Information System (INIS)

    Garousi, Mohammad R.

    2014-01-01

    The Riemann curvature correction to the type II supergravity at eight-derivative level in string frame is given as e"−"2"ϕ(t_8t_8R"4+(1/4)ϵ_8ϵ_8R"4). For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t_2_n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality

  20. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo

    2009-01-01

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.

  1. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  2. Solvent Effects on Nuclear Magnetic Resonance 2J(C,Hf and 1J(C,Hf Spin–Spin Coupling Constants in Acetaldehyde

    Directory of Open Access Journals (Sweden)

    Angel Esteban

    2003-02-01

    Full Text Available Abstract: The known solvent dependence of 1J(Cc,Hf and 2J(C1,Hf couplings in acetaldehyde is studied from a theoretical viewpoint based on the density functional theory approach where the dielectric solvent effect is taken into account with the polarizable continuum model. The four terms of scalar couplings, Fermi contact, paramagnetic spin orbital, diamagnetic spin orbital and spin dipolar, are calculated but the solvent effect analysis is restricted to the first term since for both couplings it is by far the dominant contribution. Experimental trends of Δ1J(Cc,Hf and Δ2J(C1,Hf Vs ε (the solvent dielectric constant are correctly reproduced although they are somewhat underestimated. Specific interactions between solute and solvent molecules are studied for dimethylsulfoxide, DMSO, solutions considering two different one-to-one molecular complexes between acetaldehyde and DMSO. They are determined by interactions of type C=O---H---C and S=O---H---C, and the effects of such interactions on 1J(Cc,Hf and 2J(C1,Hf couplings are analyzed. Even though only in a semiquantitative way, it is shown that the effect of such interactions on the solvent effects, of Δ1J(Cc,Hf and Δ2J(C1,Hf, tend to improve the agreement between calculated and experimental values. These results seem to indicate that a continuum dielectric model has not enough flexibility for describing quantitatively solvent effects on spin-spin couplings. Apparently, even for relatively weak hydrogen bonding, the contribution from “direct” interactions is of the same order of magnitude as the “dielectric” effect.

  3. Revisiting the coupled-mass system and analogy with a simple band gap structure

    International Nuclear Information System (INIS)

    Levesque, L

    2006-01-01

    A great deal of insight can be gained from the analysis of coupled masses connected to springs in order to understand better the origin of band gaps in physical systems. The approach is based on the application of the superposition principle for finding the general solution in simple mechanical systems involving functions, which vary periodically with time. Graphs show that sums of periodic functions oscillating at different frequencies lead to an exchange of energy from one oscillator to another in a simple mechanical system of three objects connected by identical springs. A system of a large number of masses connected to springs having the same spring constant K is then considered and compared with a system in which the spring constants alternate from K to another value G when connecting one mass to another. Using the results found from the mechanical systems, an analogy of charge oscillations excited on both uniform and corrugated surfaces is presented. The results obtained attempt to expand understanding of the origin of the band gap occurring in some systems involving periodic motions

  4. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    Science.gov (United States)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  5. NMR study of conjugation effects. 15. /sup 13/C-/sup 13/C spin-spin coupling constants in phenylalkyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A. (Siberian Branch of the Academy of Sciences of the USSR); Krivdin, L.B.; Trofimov, B.A.

    1982-07-20

    In order to elucidate the /sup 13/C-/sup 13/-C SSCC (spin-spin coupling constants) segment with the electronic excitations induced by the R group, a series of phenyl alkyl ethers, PhOAlk, where Alk = Me(I), Et(II), i-Pr(III), and t-Bu(IV), were studied. This series was chosen because in studying the /sup 13/C CS in monosubstituted benzenes it was observed that the intensity of the ..pi..-electron interaction of the unshared electron pairs of oxygen with the ..pi.. system of the benzene ring was practically the same in some compounds, but increased by 30% in others. This is related to the fact that the latter is characterized by an average noncoplanar conformation, with a dihedral angle between the benzene-ring plane and the C-O-C bond of approx. 45/sup 0/, whereas some compounds have an angle < 20/sup 0/. The reason for the difference is significant steric interaction of the alkyl hydrogens with the o-position of the ring. Thus, consideration of the /sup 13/C-/sup 13/C SSCC of a series of quite similar compounds, especially when compared to the whole set of such SSCC for other monosubstituted benzenes, shows that their relationship to the structure of the substituent R is extremely complex.

  6. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    Science.gov (United States)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  7. A Coupled model for ERT monitoring of contaminated sites

    Science.gov (United States)

    Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya

    2018-02-01

    The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.

  8. Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach

    Directory of Open Access Journals (Sweden)

    Jeyhun I. Mikayilov

    2017-11-01

    Full Text Available Recent literature has shown that electricity demand elasticities may not be constant over time and this has investigated using time-varying estimation methods. As accurate modeling of electricity demand is very important in Azerbaijan, which is a transitional country facing significant change in its economic outlook, we analyze whether the response of electricity demand to income and price is varying over time in this economy. We employed the Time-Varying Coefficient cointegration approach, a cutting-edge time-varying estimation method. We find evidence that income elasticity demonstrates sizeable variation for the period of investigation ranging from 0.48% to 0.56%. The study has some useful policy implications related to the income and price aspects of the electricity consumption in Azerbaijan.

  9. Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach.

    Science.gov (United States)

    Lee, I-Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2008-03-21

    The release of heavy metals from industrial wastewaters represents one of major threats to environment. Compared with chemical precipitation method, fixed-bed ion-exchange process can effectively remove heavy metals from wastewaters and generate no hazardous sludge. In order to design and operate fixed-bed ion-exchange processes successfully, it is very important to understand the column dynamics. In this study, the column experiments for Cu2+/H+, Zn2+/H+, and Cd2+/H+ systems using Amberlite IR-120 were performed to measure the breakthrough curves under varying operating conditions. The experimental results showed that total cation concentration in the mobile-phase played a key role on the breakthrough curves; a higher feed concentration resulted in an earlier breakthrough. Furthermore, the column dynamics was also predicted by self-sharpening and constant-pattern wave models. The self-sharpening wave model assuming local ion-exchange equilibrium could provide a simple and quick estimation for the breakthrough volume, but the predicted breakthrough curves did not match the experimental data very well. On the contrary, the constant-pattern wave model using a constant driving force model for finite ion-exchange rate provided a better fit to the experimental data. The obtained liquid-phase mass transfer coefficient was correlated to the flow velocity and other operating parameters; the breakthrough curves under varying operating conditions could thus be predicted by the constant-pattern wave model using the correlation.

  10. Sound transmission in slowly varying circular and annular ducts with flow

    NARCIS (Netherlands)

    Rienstra, S.W.

    1999-01-01

    Sound transmission through straight circular ducts with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion. A natural extension for ducts with axially slowly varying properties (diameter and mean flow, wall impedance) is a

  11. The calculation of the MEU-HEU coupled core in the KUCA

    International Nuclear Information System (INIS)

    Hayashi, M.; Shiroya, S.; Kanda, K.; Shibata, T.

    1984-01-01

    The KUCA has a plan for critical experiments of the MEU-HEU coupled core in 1984. The neutronics calculation has been performed for the MEU-HEU coupled core in the KUCA. The GGC-4 and THERMOS were used to generate the four-group constants and the 2D-FEM-KUR, based on the finite-element method, was used for the diffusion calculation. The calculations with four-group constants agreed with experiments within 1.8% for the both single-cores with the MEU and the HEU. (author)

  12. Wave packets in quantum cosmology and the cosmological constant

    International Nuclear Information System (INIS)

    Kiefer, C.

    1990-01-01

    Wave packets are constructed explicitly in minisuperspace of quantum gravity corresponding to a Friedmann universe containing a conformally coupled scalar field with and without a cosmological constant. The construction is performed in close analogy to the case of constructing coherent states in quantum mechanics. Various examples are also depicted numerically. The corresponding lorentzian path integrals are evaluated for some cases. It is emphasized that the new concept of time in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum mechanics. Connection is also made to recent investigations predicting a vanishing cosmological constant. It is shown that the fact of whether this result is generic or not depends on where the boundary conditions are imposed in the configuration space. (orig.)

  13. The pulsed neutron method applied to the determination of the nuclear constants of graphite (1961); La methode des neutrons pulses appliquee a la determination des constantes nucleaires du graphite (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Lalande, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    A method for determining the nuclear constants {sigma}{sub a} and {lambda}{sub t} of a moderator is described. The disappearance of a burst of neutrons introduced into a finite medium is studied as a function of time. This decrease in the thermal neutron density is the product of two exponentials; one representing the absorption, the other the leakage. By varying one or other of these factors, the constants of the factor left unvaried can be determined, and from this the nuclear constant values are deduced. (author) [French] On decrit une methode permettant de determiner les constantes nucleaires {sigma}{sub a} et {lambda}{sub t} d'un moderateur. On etudie la decroissance dans le temps d'une bouffee de neutrons introduite dans un milieu fini. Cette decroissance de la densite en neutrons thermiques est le produit de deux exponentielles; l'une represente l'absorption, l'autre les fuites. Par variation de l'un ou l'autre de ces facteurs, on determine les constantes du facteur laisse invariant dont on deduit les valeurs des constantes nucleaires. (auteur)

  14. Potential constants and centrifugal distortion constants of octahedral hexafluoride molecules

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, G [Government Thirumagal Mill' s Coll., Gudiyattam, Tamil Nadu (India)

    1981-04-01

    The kinetic constants method outlined by Thirugnanasambandham (1964) based on Wilson's (1955) group theory has been adapted in evaluating the potential constants for SF/sub 6/, SeF/sub 6/, WF/sub 6/, IrF/sub 6/, UF/sub 6/, NpF/sub 6/, and PuF/sub 6/ using the experimentally observed vibrational frequency data. These constants are used to calculate the centrifugal distortion constants for the first time.

  15. Equilibration and hydrodynamics at strong and weak coupling

    Science.gov (United States)

    van der Schee, Wilke

    2017-11-01

    We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.

  16. Determination of the strong coupling constant α{sub s} (m{sub Z}) from measurements of the total cross section for top-antitop-quark production

    Energy Technology Data Exchange (ETDEWEB)

    Klijnsma, Thomas; Dissertori, Guenther [ETH Zurich, Institute for Particle Physics, Zurich (Switzerland); Bethke, Siegfried [Max-Planck-Institute of Physics, Munich (Germany); Salam, Gavin P. [CERN, Theoretical Physics Department, Geneva (Switzerland); CNRS, UMR 7589, LPTHE, Paris (France)

    2017-11-15

    We present a determination of the strong coupling constant α{sub s} (m{sub Z}) using inclusive top-quark pair production cross section measurements performed at the LHC and at the Tevatron. Following a procedure first applied by the CMS Collaboration, we extract individual values of α{sub s} (m{sub Z}) from measurements by different experiments at several centre-of-mass energies, using QCD predictions complete in NNLO perturbation theory, supplemented with NNLL approximations to all orders, and suitable sets of parton distribution functions. The determinations are then combined using a likelihood-based approach, where special emphasis is put on a consistent treatment of theoretical uncertainties and of correlations between various sources of systematic uncertainties. Our final combined result is α{sub s} (m{sub Z}) = 0.1177{sup +0.0034}{sub -0.0036}. (orig.)

  17. N-body simulations for coupled scalar-field cosmology

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  18. Rb2Ti2O5 : Superionic conductor with colossal dielectric constant

    Science.gov (United States)

    Federicci, Rémi; Holé, Stéphane; Popa, Aurelian Florin; Brohan, Luc; Baptiste, Benoît.; Mercone, Silvana; Leridon, Brigitte

    2017-08-01

    Electrical conductivity and high dielectric constant are in principle self-excluding, which makes the terms insulator and dielectric usually synonymous. This is certainly true when the electrical carriers are electrons, but not necessarily in a material where ions are extremely mobile, electronic conduction is negligible, and the charge transfer at the interface is immaterial. Here we demonstrate in a perovskite-derived structure containing five-coordinated Ti atoms, a colossal dielectric constant (up to 109) together with very high ionic conduction 10-3Scm-1 at room temperature. Coupled investigations of I -V and dielectric constant behavior allow us to demonstrate that, due to ion migration and accumulation, this material behaves like a giant dipole, exhibiting colossal electrical polarization (of the order of 0.1Ccm-2 ). Therefore it may be considered as a "ferro-ionet" and is extremely promising in terms of applications.

  19. S-duality constraint on higher-derivative couplings

    Energy Technology Data Exchange (ETDEWEB)

    Garousi, Mohammad R. [Department of Physics, Ferdowsi University of Mashhad,P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

    2014-05-22

    The Riemann curvature correction to the type II supergravity at eight-derivative level in string frame is given as e{sup −2ϕ}(t{sub 8}t{sub 8}R{sup 4}+(1/4)ϵ{sub 8}ϵ{sub 8}R{sup 4}). For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t{sub 2n} from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  20. Magnetoelastic couplings in the distorted diamond-chain compound azurite

    Science.gov (United States)

    Cong, Pham Thanh; Wolf, Bernd; Manna, Rudra Sekhar; Tutsch, Ulrich; de Souza, Mariano; Brühl, Andreas; Lang, Michael

    2014-05-01

    We present results of ultrasonic measurements on a single crystal of the distorted diamond-chain compound azurite Cu3(CO3)2(OH)2. Pronounced elastic anomalies are observed in the temperature dependence of the longitudinal elastic mode c22 which can be assigned to the relevant magnetic interactions in the system and their couplings to the lattice degrees of freedom. From a semiquantitative analysis of the magnetic contribution to c22 the magnetoelastic coupling G =∂J2/∂ɛb can be estimated, where J2 is the intradimer coupling constant and ɛb the strain along the intrachain b axis. We find an exceptionally large coupling constant of |G |˜ 3650 K highlighting an extraordinarily strong sensitivity of J2 against changes of the b-axis lattice parameter. These results are complemented by measurements of the hydrostatic pressure dependence of J2 by means of thermal expansion and magnetic susceptibility measurements performed both at ambient and finite hydrostatic pressure. We propose that a structural peculiarity of this compound, in which Cu2O6 dimer units are incorporated in an unusually stretched manner, is responsible for the anomalously large magnetoelastic coupling.

  1. Soliton solutions of coupled nonlinear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Alagesan, T.; Chung, Y.; Nakkeeran, K.

    2004-01-01

    The coupled nonlinear Klein-Gordon equations are analyzed for their integrability properties in a systematic manner through Painleve test. From the Painleve test, by truncating the Laurent series at the constant level term, the Hirota bilinear form is identified, from which one-soliton solutions are derived. Then, the results are generalized to the two, three and N-coupled Klein-Gordon equations

  2. A scenario for inflationary magnetogenesis without strong coupling problem

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  3. A scenario for inflationary magnetogenesis without strong coupling problem

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk [Department of Physics, Swansea University, Swansea, SA2 8PP U.K. (United Kingdom)

    2015-03-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  4. Varying Gravitational Constant as Well as Cosmology from the Early Inflation to Late Acceleration and Future Universe

    OpenAIRE

    Srivastava, S. K.

    2008-01-01

    Here, cosmology is obtained from the variable gravitational constant $ G \\propto \\phi^{-2}$ with $ \\phi(x) $ being a scalar and its fluctuations around the ground state. The gravitational action contains Einstein-Hilbert like term with variable $ G $, kinetic energy and self-interaction potential for $ \\phi(x) $. Two phase transitions take place in this model. The first one takes place at the GUT (grand unified theory) scale $ \\sim 2.45 \\times 10^{14}{\\rm GeV} $, when the early universe exits...

  5. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  6. Evaluation of interlayer ferromagnetic coupling for stacked media by adding reference layer

    International Nuclear Information System (INIS)

    Tham, K K; Saito, S; Itagaki, N; Hinata, S; Takahashi, M; Hasegawa, D

    2011-01-01

    The trial for quantitative evaluation of interlayer ferromagnetic coupling between granular and cap layer in stacked media is reported. The evaluation is realized by analyzing M-H loop of stacked media with another reference layer added on the cap layer. The reference layer is antiferromagnetically coupled with the cap layer through non-magnetic spacer layer. In this experiment, Rh which leads to antiferromagnetic coupling constant along film normal direction of around 2 erg/cm 2 was used as non-magnetic spacer layer. According to the evaluation result done by this method, when thickness of the spacer Pd layer between granular layer and cap layer is increased to 1.1 nm, ferromagnetic coupling constant is weakened to 7.2 erg/cm 2 which results in reduction of saturation field.

  7. Regularized unfolding of jet cross sections in deep-inelastic ep scattering at HERA and determination of the strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Britzger, Daniel Andreas

    2013-10-15

    In this thesis double-differential cross sections for jet production in neutral current deep-inelastic e{sup {+-}}p scattering (DIS) are presented at the center-of-mass energy of {radical}(s)=319 GeV, and in the kinematic range of the squared four-momentum transfer 150< Q{sup 2}<15 000 GeV{sup 2} and the inelasticity 0.2coupling constant {alpha}{sub s}(M{sub Z}) at the scale of the mass of the Z{sup 0} boson in the framework of perturbative quantum chromodynamics in next-to-leading order. Values are derived separately for the absolute

  8. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    Science.gov (United States)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  9. Use of an elliptical aperture to control saturation in closely-coupled, cold iron, superconducting dipole magnets

    International Nuclear Information System (INIS)

    Morgan, G.

    1985-01-01

    The high fields permitted by superconducting windings result in saturation of closely-coupled iron in dipole and quadrupole beam transport magnets. Coupland suggested using a triangular cutout at the poles to reduce the change in the sextupole (b 2 ) term due to saturation. The use of an elliptical aperture in a close-coupled dipole for the Relativistic Heavy Ion Collider (RHIC) has been studied using the BNL computer program MDP (a version of GFUN). The ellipse aspect ratio was varied while holding the horizontal (minor) radius constant. The proper aspect ratio gives no shift in b 2 sue to saturation, and a reduction in the b 4 shift. A modification of the ellipse also reduces b 4 . The elliptical aperture introduces a large b 2 term at low field which must be compensated for by the coil design. A practical coil design which does this for the RHIC magnet is presented. 5 refs., 2 figs., 3 tabs

  10. Weak ωNN coupling in the non-linear chiral model

    International Nuclear Information System (INIS)

    Shmatikov, M.

    1988-01-01

    In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7

  11. Inflationary dynamics with a smooth slow-roll to constant-roll era transition

    Energy Technology Data Exchange (ETDEWEB)

    Odintsov, S.D. [ICREA, Passeig Luis Companys, 23, 08010 Barcelona (Spain); Oikonomou, V.K., E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com [Laboratory for Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Lenin Avenue 40, 634050 Tomsk (Russian Federation)

    2017-04-01

    In this paper we investigate the implications of having a varying second slow-roll index on the canonical scalar field inflationary dynamics. We shall be interested in cases that the second slow-roll can take small values and correspondingly large values, for limiting cases of the function that quantifies the variation of the second slow-roll index. As we demonstrate, this can naturally introduce a smooth transition between slow-roll and constant-roll eras. We discuss the theoretical implications of the mechanism we introduce and we use various illustrative examples in order to better understand the new features that the varying second slow-roll index introduces. In the examples we will present, the second slow-roll index has exponential dependence on the scalar field, and in one of these cases, the slow-roll era corresponds to a type of α-attractor inflation. Finally, we briefly discuss how the combination of slow-roll and constant-roll may lead to non-Gaussianities in the primordial perturbations.

  12. A New Dimension to Relative Age Effects: Constant Year Effects in German Youth Handball

    Science.gov (United States)

    Schorer, Jörg; Wattie, Nick; Baker, Joseph R.

    2013-01-01

    In this manuscript we argue for a broader use of the term ‘relative age effect’ due to the influence of varying development policies on the development of sport expertise. Two studies are presented on basis of data from Schorer, et al. [1]. The first showed clear ‘constant year effects’ in the German handball talent development system. A shift in year groupings for the female athletes resulted in a clear shift of birth year patterns. In the second study we investigated whether the constant year effect in the national talent development system carried over to professional handball. No patterns were observable. Together both studies show that a differentiation of varying effects that often happen simultaneously is necessary to understand the secondary mechanisms behind the development of sport expertise. PMID:23637745

  13. A new dimension to relative age effects: constant year effects in German youth handball.

    Directory of Open Access Journals (Sweden)

    Jörg Schorer

    Full Text Available In this manuscript we argue for a broader use of the term 'relative age effect' due to the influence of varying development policies on the development of sport expertise. Two studies are presented on basis of data from Schorer, et al. [1]. The first showed clear 'constant year effects' in the German handball talent development system. A shift in year groupings for the female athletes resulted in a clear shift of birth year patterns. In the second study we investigated whether the constant year effect in the national talent development system carried over to professional handball. No patterns were observable. Together both studies show that a differentiation of varying effects that often happen simultaneously is necessary to understand the secondary mechanisms behind the development of sport expertise.

  14. Switching field of partially exchange-coupled particles

    International Nuclear Information System (INIS)

    Oliva, M.I.; Bertorello, H.R.; Bercoff, P.G.

    2004-01-01

    The magnetization reversal of partially exchange-coupled particles is studied in detail. The starting point is the observation of a complicated phenomenology in the irreversible susceptibility and FORC distribution functions of Ba hexaferrite samples obtained by means of different sintering conditions. Several peaks in the first-order reversal curve (FORC) distribution functions were identified and associated with clusters with different number of particles. The switching fields of these clusters were related to an effective anisotropy constant Keff that depends on the number of particles in the cluster. Keff is linked to the exchange-coupled volume between two neighboring particles and as a weighted mean between the anisotropy constants of the coupled and uncoupled volumes. By using the modified Brown's equation αex=0.322 is obtained.In order to interpret these results, the switching field of a two-particle system with partial exchange coupling is studied. It is assumed that the spins reorientation across the contact plane between the particles is like a Bloch wall. The energy of the system is written in terms of the fraction of volume affected by exchange coupling and the switching fields for both particles are calculated. At small interaction volume fraction each particle inverts its magnetization independently from the other. As the fraction of exchange-coupled volume increases, cooperative effects appear and the two particles invert their magnetization in a cooperative way.The proposed model allows to interpret for the first time the empirical factor αex in terms of physical arguments and also explain the details observed in the FORC distribution function

  15. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  16. New constraints on time-dependent variations of fundamental constants using Planck data

    Science.gov (United States)

    Hart, Luke; Chluba, Jens

    2018-02-01

    Observations of the cosmic microwave background (CMB) today allow us to answer detailed questions about the properties of our Universe, targeting both standard and non-standard physics. In this paper, we study the effects of varying fundamental constants (i.e. the fine-structure constant, αEM, and electron rest mass, me) around last scattering using the recombination codes COSMOREC and RECFAST++. We approach the problem in a pedagogical manner, illustrating the importance of various effects on the free electron fraction, Thomson visibility function and CMB power spectra, highlighting various degeneracies. We demonstrate that the simpler RECFAST++ treatment (based on a three-level atom approach) can be used to accurately represent the full computation of COSMOREC. We also include explicit time-dependent variations using a phenomenological power-law description. We reproduce previous Planck 2013 results in our analysis. Assuming constant variations relative to the standard values, we find the improved constraints αEM/αEM, 0 = 0.9993 ± 0.0025 (CMB only) and me/me, 0 = 1.0039 ± 0.0074 (including BAO) using Planck 2015 data. For a redshift-dependent variation, αEM(z) = αEM(z0) [(1 + z)/1100]p with αEM(z0) ≡ αEM, 0 at z0 = 1100, we obtain p = 0.0008 ± 0.0025. Allowing simultaneous variations of αEM(z0) and p yields αEM(z0)/αEM, 0 = 0.9998 ± 0.0036 and p = 0.0006 ± 0.0036. We also discuss combined limits on αEM and me. Our analysis shows that existing data are not only sensitive to the value of the fundamental constants around recombination but also its first time derivative. This suggests that a wider class of varying fundamental constant models can be probed using the CMB.

  17. An assumed mode method and finite element method investigation of the coupled vibration in a flexible-disk rotor system with lacing wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shui-Ting; Huang, Hong-Wu [Hunan University, Changsha (China); Chiu, Yi-Jui; Yu, Guo-Fei [Xiamen University of Technology, Xiamen (China); Yang, Chia-Hao [Taipei Chengshih University of Science and Technology, Taipei (China); Jian, Sheng-Rui [I-Shou University, Kaohsiung (China)

    2017-02-15

    The Assumed mode method (AMM) and Finite element method (FEM) were used. Their results were compared to investigate the coupled shaft-torsion, disk-transverse, and blade-bending vibrations in a flexible-disk rotor system. The blades were grouped with a spring. The flexible-disk rotor system was divided into three modes of coupled vibrations: Shaft-disk-blade, disk-blade, and blade-blade. Two new modes of coupled vibrations were introduced, namely, lacing wires-blade and lacing wires-disk-blade. The patterns of change of the natural frequencies and mode shapes of the system were discussed. The results showed the following: first, mode shapes and natural frequencies varied, and the results of the AMM and FEM differed; second, numerical calculation results showed three influencing factors on natural frequencies, namely, the lacing wire constant, the lacing wire location, and the flexible disk; lastly, the flexible disk could affect the stability of the system as reflected in the effect of the rotational speed.

  18. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  19. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  20. Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms

    International Nuclear Information System (INIS)

    Schmid, Sandra Isabelle; Evers, Joerg

    2010-01-01

    The resonance fluorescence emitted by a system of two dipole-dipole interacting nearby four-level atoms in a J=1/2↔J=1/2 configuration is studied. This setup is the simplest realistic model system which provides a complete description of the (inter-atomic) dipole-dipole interaction for arbitrary orientation of the inter-atomic distance vector, and at the same time allows for intra-atomic spontaneously generated coherences. Our main interest is the interplay of both these different coupling mechanisms. We discuss different methods to analyze the contribution of the various vacuum-induced coupling constants to the total resonance fluorescence spectrum. These allow us to find a dressed state interpretation of the contribution of the different inter-atomic dipole-dipole couplings to the total spectrum. We further study the role of the spontaneously generated coherences, and identify two different contributions to the single-particle vacuum-induced couplings. We show that they have a noticeable impact on the total resonance fluorescence spectrum down to small inter-atomic distances, even though the dipole-dipole coupling constants then are much larger in magnitude than the the single-particle coupling constants. Interestingly, we find that the inter-atomic couplings can induce an effect of the intra-atomic spontaneously generated coherences on the observed spectra which is not present in single-atom systems.

  1. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012

  2. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    Science.gov (United States)

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  3. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  4. Resolved sidebands in a strain-coupled hybrid spin-oscillator system

    OpenAIRE

    Teissier, Jean; Barfuss, Arne; Appel, Patrick; Neu, Elke; Maletinsky, P.

    2014-01-01

    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystalline diamond cantilevers with embedded Nitrogen-Vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding ten MHz under mechanical driving...

  5. poincare surface analysis of two coupled quintic oscillators in a ...

    African Journals Online (AJOL)

    DJFLEX

    We have investigated the chaotic dynamics of two coupled quintic oscillators in a single well potential as the energy of the oscillator increases, keeping the coupling strength constant. The degree of chaoticity does not increase monotonously with the energy as regular regions reappear within chaotic seas as the energy ...

  6. Poincare surface analysis of two coupled quintic oscillators in a ...

    African Journals Online (AJOL)

    We have investigated the chaotic dynamics of two coupled quintic oscillators in a single well potential as the energy of the oscillator increases, keeping the coupling strength constant. The degree of chaoticity does not increase monotonously with the energy as regular regions reappear within chaotic seas as the energy ...

  7. The status of varying constants: a review of the physics, searches and implications

    Science.gov (United States)

    Martins, C. J. A. P.

    2017-12-01

    The observational evidence for the recent acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete—if not incorrect—and that new physics is out there, waiting to be discovered. A key task for the next generation of laboratory and astrophysical facilities is to search for, identify and ultimately characterize this new physics. Here we highlight recent developments in tests of the stability of nature’s fundamental couplings, which provide a direct handle on new physics: a detection of variations will be revolutionary, but even improved null results provide competitive constraints on a range of cosmological and particle physics paradigms. A joint analysis of all currently available data shows a preference for variations of α and μ at about the two-sigma level, but inconsistencies between different sub-sets (likely due to hidden systematics) suggest that these statistical preferences need to be taken with caution. On the other hand, these measurements strongly constrain Weak Equivalence Principle violations. Plans and forecasts for forthcoming studies with facilities such as ALMA, ESPRESSO and the ELT, which should clarify these issues, are also discussed, and synergies with other probes are briefly highlighted. The goal is to show how a new generation of precision consistency tests of the standard paradigm will soon become possible.

  8. The status of varying constants: a review of the physics, searches and implications.

    Science.gov (United States)

    Martins, C J A P

    2017-12-01

    The observational evidence for the recent acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete-if not incorrect-and that new physics is out there, waiting to be discovered. A key task for the next generation of laboratory and astrophysical facilities is to search for, identify and ultimately characterize this new physics. Here we highlight recent developments in tests of the stability of nature's fundamental couplings, which provide a direct handle on new physics: a detection of variations will be revolutionary, but even improved null results provide competitive constraints on a range of cosmological and particle physics paradigms. A joint analysis of all currently available data shows a preference for variations of α and μ at about the two-sigma level, but inconsistencies between different sub-sets (likely due to hidden systematics) suggest that these statistical preferences need to be taken with caution. On the other hand, these measurements strongly constrain Weak Equivalence Principle violations. Plans and forecasts for forthcoming studies with facilities such as ALMA, ESPRESSO and the ELT, which should clarify these issues, are also discussed, and synergies with other probes are briefly highlighted. The goal is to show how a new generation of precision consistency tests of the standard paradigm will soon become possible.

  9. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  10. Bright branes for strongly coupled plasmas

    International Nuclear Information System (INIS)

    Mateos, David; Patino, Leonardo

    2007-01-01

    We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments

  11. Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston E

    2003-06-07

    The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.

  12. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  13. AC loss performance of cable-in-conduit conductor. Influence of cable mechanical property on coupling loss reduction

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Koizumi, Norikiyo; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko

    2003-01-01

    The ITER Central Solenoid (CS) model coil, CS Insert and Nb 3 Al Insert were developed and tested from 2000 to 2002. The AC loss performances of these coils were investigated in various experiments. In addition, the AC losses of the CS and Nb 3 Al Insert conductors were measured using short CS and Nb 3 Al Insert conductors before the coil tests. The coupling time constants of these conductors were estimated to be 30 and 120 ms, respectively. On the other hand, the test results of the CS and Nb 3 Al Inserts show that the coupling currents induced in these conductors had multiple decay time constants. In fact, the existence of the coupling currents with long decay time constants, the order of which was in the thousands of seconds, was directly observed with hall sensors and voltage taps. Moreover, the AC loss test results show that electromagnetic force decreases coupling losses with exponential decay constants. This is because the weak sinter among the strands, which originated during heat treatment, was broken due to the electromagnetic force, and then the contact resistance among strands increased. It was found that this exponential decay constant was the function of a gap (i.e., a mechanical property of the cable) created between the cable and conduit due to electromagnetic force. The gap can be estimated by pressure drop, measured under the electromagnetic force. The pressure drop can easily be measured at an initial trial charge, and then it is possible to estimate the exponential decay constant before normal coil operation. Accordingly, it is possible to predict promptly how many times the trial operations are necessary to decrease the coupling losses to the designed value by measuring the coupling losses and the pressure drop during the initial coil operation trial. (author)

  14. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  15. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  16. Källén’s constant $M$

    CERN Document Server

    Stora, Raymond

    2014-01-01

    In his Handbook Article [1] G. Källén states the asymptotic condition in quantum electrodynamics where the arrow stands for the “weak” asymptotic limit a la LSZ and M is a finite computable constant expressible in terms of the Källén-Lehmann weight function Π(a) for the photon two point function. All the time, there were conflicting points of view between Källén and LSZ, the former insisting on the canonical formulation (which is sick for coupled fields) and the latter who insist on the asymptotic condition. Amusingly enough followers of LSZ in the framework of LSZ assume [2] which turns out to be inconsistent with perturbative renormalizability. Now Källén’s asymptotic condition is perfectly compatible with LSZ since the free vector field A μ in (x) is associated with a reducible representation of the Poincaré group. The best way to sort this out is to look at massive QED (add a mass term to Källén’s Lagrangian in the Handbook Article, see below). The constant M produces in the cano...

  17. Modeling of supermodes in coupled unstable resonators

    International Nuclear Information System (INIS)

    Townsend, S.S.

    1986-01-01

    A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented

  18. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be

  19. Automatic exposure control systems designed to maintain constant image noise: effects on computed tomography dose and noise relative to clinically accepted technique charts.

    Science.gov (United States)

    Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H

    2015-01-01

    To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.

  20. Dipole moment and polarizability of impurity doped quantum dots under anisotropy, spatially-varying effective mass and dielectric screening function: Interplay with noise

    Science.gov (United States)

    Ghosh, Anuja; Ghosh, Manas

    2018-01-01

    Present work explores the profiles of polarizability (αp) and electric dipole moment (μ) of impurity doped GaAs quantum dot (QD) under the aegis of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy of the system. Presence of noise has also been invoked to examine how its intervention further tunes αp and μ. Noise term maintains a Gaussian white feature and it has been incorporated to the system through two different roadways; additive and multiplicative. The various facets of influence of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy on αp and μ depend quite delicately on presence/absence of noise and also on the mode through which noise has been administered. The outcomes of the study manifest viable routes to harness the dipole moment and polarizability of doped QD system through the interplay between noise, anisotropy and variable effective mass and dielectric constant of the system.

  1. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    Science.gov (United States)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  2. Galaxy Formation Efficiency and the Multiverse Explanation of the Cosmological Constant with EAGLE Simulations

    Science.gov (United States)

    Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.

  3. Complex action support from coincidences of couplings

    International Nuclear Information System (INIS)

    Nielsen, H.B.

    2011-01-01

    Our model (Refs. 1–7) with a complex action in a functional integral formulation with path integrals extending over all times, both past and future, is reviewed. Several numerical relations between coupling constants are presented as supporting evidence. The new evidence is that several more hitherto unexplained coincidences are explained by our model: (1) The "scale problem" is solved because the Higgs field expectation value is predicted to be very small compared to say some fundamental scale, that might be the Planck scale. (2) The Higgs VEV need not be just zero, but rather is predicted to be so that the running top-quark Yukawa coupling just is about to be unity at this scale; in this way the (weak) scale easily becomes "exponentially small." Instead of the top-Yukawa we should rather say the highest flavor Yukawa coupling here. These predictions are only achieved by allowing the principle of minimization of the imaginary part of the action SI(history) to a certain extent adjust some coupling constants in addition to the initial conditions. If supersymmetric partners are not found at LHC it would strengthen the need for a "solution" to the hierarchy problem in our direction of an explanation via a fine-tuning scheme inside the Standard Model, from say minimizing "the imaginary part of the action" in our complex action model. (author)

  4. Perfect fluid Bianchi Type-I cosmological models with time varying G ...

    Indian Academy of Sciences (India)

    Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...

  5. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  6. A wide band slot-coupled beam sensing electrode for the advanced light source

    International Nuclear Information System (INIS)

    Hinkson, J.; Rex, K.

    1991-05-01

    Stripline electrodes (traveling wave electrodes, directional couplers) are commonly used in particle accelerators as beam pickups and kickers. The longitudinally symmetric stripline has a constant beam coupling impedance as a function of length and has a characteristic magnitude sin(x) amplitude response in the frequency domain. An experimentally tapered stripline provides nearly constant coupling impedance vs. frequency and yields superior frequency-domain performance. In practice it is difficult to construct either of these devices for broad-band performance because of the transition from coaxial to stripline geometry. We report on the construction of an exponentially-tapered, slot-coupled ''stripline'' which was relatively easy to construct and has the desired frequency response. 2 refs., 6 figs

  7. Synchronization of uncertain time-varying network based on sliding mode control technique

    Science.gov (United States)

    Lü, Ling; Li, Chengren; Bai, Suyuan; Li, Gang; Rong, Tingting; Gao, Yan; Yan, Zhe

    2017-09-01

    We research synchronization of uncertain time-varying network based on sliding mode control technique. The sliding mode control technique is first modified so that it can be applied to network synchronization. Further, by choosing the appropriate sliding surface, the identification law of uncertain parameter, the adaptive law of the time-varying coupling matrix element and the control input of network are designed, it is sure that the uncertain time-varying network can synchronize effectively the synchronization target. At last, we perform some numerical simulations to demonstrate the effectiveness of the proposed results.

  8. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    Science.gov (United States)

    Narimani, Ali; Afshordi, Niayesh; Scott, Douglas

    2014-08-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.

  9. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    International Nuclear Information System (INIS)

    Narimani, Ali; Scott, Douglas; Afshordi, Niayesh

    2014-01-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ 4  = 0.105 ± 0.049 (+highL CMB), or ζ 4  = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ 4 =), and also among different data sets

  10. Phototransformation rate constants of PAHs associated with soot particles

    International Nuclear Information System (INIS)

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow

  11. Localized chaoticity in two linearly coupled inverted double-well ...

    African Journals Online (AJOL)

    Two linearly coupled inverted double-well oscillators for a fixed energy and varying coupling strength were studied. The dynamics yielded a chaotic system in which the Poincare surface was characterised by two non-mixing regions, one of regular motion and the other region that became chaotic as the coupling increased.

  12. Search for a Variation of Fundamental Constants

    Science.gov (United States)

    Ubachs, W.

    2013-06-01

    Since the days of Dirac scientists have speculated about the possibility that the laws of nature, and the fundamental constants appearing in those laws, are not rock-solid and eternal but may be subject to change in time or space. Such a scenario of evolving constants might provide an answer to the deepest puzzle of contemporary science, namely why the conditions in our local Universe allow for extreme complexity: the fine-tuning problem. In the past decade it has been established that spectral lines of atoms and molecules, which can currently be measured at ever-higher accuracies, form an ideal test ground for probing drifting constants. This has brought this subject from the realm of metaphysics to that of experimental science. In particular the spectra of molecules are sensitive for probing a variation of the proton-electron mass ratio μ, either on a cosmological time scale, or on a laboratory time scale. A comparison can be made between spectra of molecular hydrogen observed in the laboratory and at a high redshift (z=2-3), using the Very Large Telescope (Paranal, Chile) and the Keck telescope (Hawaii). This puts a constraint on a varying mass ratio Δμ/μ at the 10^{-5} level. The optical work can also be extended to include CO molecules. Further a novel direction will be discussed: it was discovered that molecules exhibiting hindered internal rotation have spectral lines in the radio-spectrum that are extremely sensitive to a varying proton-electron mass ratio. Such lines in the spectrum of methanol were recently observed with the radio-telescope in Effelsberg (Germany). F. van Weerdenburg, M.T. Murphy, A.L. Malec, L. Kaper, W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011). A. Malec, R. Buning, M.T. Murphy, N. Milutinovic, S.L. Ellison, J.X. Prochaska, L. Kaper, J. Tumlinson, R.F. Carswell, W. Ubachs, Mon. Not. Roy. Astron. Soc. 403, 1541 (2010). E.J. Salumbides, M.L. Niu, J. Bagdonaite, N. de Oliveira, D. Joyeux, L. Nahon, W. Ubachs, Phys. Rev. A 86, 022510

  13. Calculation of exchange constants in manganese ferrite (MnFe2O4)

    International Nuclear Information System (INIS)

    Zuo Xu; Barbiellini, Bernardo; Vittoria, Carmine

    2004-01-01

    The exchange constants and electronic structure of manganese ferrite (MnFe 2 O 4 ) were calculated using Becke's density functional. The total exchange energy consists of Hartree-Fock (HF) and Becke's density functional terms. We introduced one parameter w as the weight of HF's contribution. We also introduced a parameter α to scale the radial part of the 3d wave functions of Fe 3+ ions. By varying w and α the calculated exchange constants were quantitatively fitted to the experimental values of a spinel ferrite for the first time. Direct (d-d) and indirect (d-p-d) hopping are controlled by the parameters w and α

  14. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    International Nuclear Information System (INIS)

    Mota, David F.; Winther, Hans A.

    2011-01-01

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.

  15. Constant displacement rate testing at elevated temperatures

    International Nuclear Information System (INIS)

    Pepe, J.J.; Gonyea, D.C.

    1989-01-01

    A short time test has been developed which is capable of determining the long time notch sensitivity tendencies of CrMoV rotor forging materials. This test is based on Constant Displacement Rate (CDR) testing of a specific notch bar specimen at 1200 0 F at 2 mils/in/hour displacement rate. These data were correlated to conventional smooth and notch bar rupture behavior for a series of CrMoV materials with varying long time ductility tendencies. The purpose of this paper is to describe the details of this new test procedure and some of the relevant mechanics of material information generated during its development

  16. Experiments utilizing two coupled TRIGA-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G [Southern California Edison Co., Rosemead, CA (United States); Jones, B G; Miley, G H [University of Illinois (United States)

    1974-07-01

    An experimental study has been performed on a coupled-core system consisting of two reactors each of which can be made critical by itself, coupled neutronically by a graphite thermal column. Both steady-state and transient measurements were performed on the system. The steady-state measurement consisted of measuring the coupling coefficient between the two reactors. Also, series of measurements were performed while one of the cores was far subcritical and the coupling between the two cores was varied between 1.6 x 10{sup -2} and 1.6 x 10{sup -5} cents by the insertion of a water gap and from 1.6 x 10{sup -2} cents to 6.0 x 10{sup -4} cents by the insertion of a cadmium sheet between the cores. The transient portion of the study was performed by pulsing one of the reactors (the Illinois Advanced TRIGA) and following the pulse into the passive core (the Low Power Reactor Assembly). The first pulse series measured the pulse as it emerged from the thermal column and propagated through the water, where no fuel was present. This provided an analysis of the neutron source to the passive core. The second pulse series was performed with the passive core far subcritical (k{sub eff} {approx_equal} 0.94) and investigated the effects on the transient coupling of the insertion of water gaps of up to 9 inches or a cadmium sheet ({sigma}T = 3.2) between the two cores. Spatial measurements of the pulse in the far subcritical assembly also were performed. The third series of pulses investigated the characteristics of the pulse in the passive core when it was subcritical, just critical, and supercritical, The effects on the FWHM of the pulse in the passive core and on the delay time between the peak of the pulse in the TRIGA and the passive core were measured for the passive core having a k{sub eff} from 0.936 to 1.0015 and the initial period of the pulse in TRIGA varying from 15.6 {+-} .7 ms to 3.58 {+-} .05 ms. The FWHM increased from 13.5 {+-} 0.5 ms to 18.8 {+-} 0.5 ms and delay

  17. The SU(3) running coupling from lattice gluons

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. [Edinburgh Univ. (United Kingdom). Dept. of Phys. and Astron.; UKQCD Collaboration

    1995-04-01

    We provide numerical results for the running coupling in SU(3) Yang-Mills theory as determined from an analysis of lattice two and three-point gluon correlation functions. The coupling is evaluated directly, from first principles, by defining suitable renormalisation constants from the lattice triple gluon vertex and gluon propagator. For momenta larger than 2GeV, the coupling is found to run according to the 2-loop asymptotic formula. The influence of lattice artifacts on the results appears negligible within the precision of our measurements, although further work on this point is in progress. ((orig.)).

  18. Preparation of γ-immunoglobulins coupled with DTPA and their labelling with trivalent metal radionuclides for radiotherapy

    International Nuclear Information System (INIS)

    Rekova, M.; Miler, V.; Budsky, F.; Malek, Z.; Prokop, J.; Prazak, Z.

    2007-06-01

    The scope of the report is as follows: immunoglobulin coupling with cDTPAA and labelling of the conjugate with 90 Y; Acid-base and complexation equilibria in the coupled immunoglobulin solution; Theory of the complex equilibrium of yttrium between coupled immunoglobulin and EDTA; and Procedures and results of recent experiments. The following was achieved: (i) The dependence of the bovine immunoglobulin on the cDTPAA/IgG coupling ratio and immunoglobulin concentration was obtained; (ii) A procedure aimed to free phosphate buffer from ubiquitous trivalent cations was tested; (iii) The procedure of lyophilization of coupled bovine IgG-DTPA in a phosphate buffer at pH 7.34 and I = 0.16 mol.l -1 .was elaborated. (iv) A procedure for lyophilization of the coupled CD20 monoclonal antibody in the same phosphate buffer was elaborated. (v) Acid-base and complexation equilibria were calculated for citrate and phosphate buffer solutions in the presence of coupled immunoglobulin. ( vi) A theory of the complexation equilibrium of yttrium between coupled immunoglobulin and EDTA was developed. (vii) Experiments were performed leading to the determination of a so far unknown constant of complexity of yttrium to DTPA coupled to immunoglobulin; its 3rd and 4th dissociation constants. (viii) The method sub (vii) can be applied to the determination of the complexity constants of other radionuclides with DTPA coupled to immunoglobulin; the 3rd and 4th dissociation constants of IgG-DTPA will not have to be sought any more. (ix) Samples of lyophilizate of the Y-CD20-DTPA complex can be sent to the biochemical laboratory for immunoreactivity determination. (x) Lyophilizates from experiments (iv-vi) are stored in a refrigerator at 4 deg C to be used for labelling with 177 Lu. (xi) The results obtained can be used to plan an experiment with CD20 in which a specific radioactivity of 400 MBq 177 Lu per mg CD20 will be achieved. (P.A.)

  19. Chaotic synchronization of three coupled oscillators with ring connection

    International Nuclear Information System (INIS)

    Kyprianidis, I.M.; Stouboulos, I.N.

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional)

  20. Chaotic synchronization of three coupled oscillators with ring connection

    CERN Document Server

    Kyprianidis, I M

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional).