WorldWideScience

Sample records for varying carbon content

  1. Black carbon content in a ponderosa pine forest of eastern Oregon with varying seasons and intervals of prescribed burns

    Science.gov (United States)

    Matosziuk, L.; Hatten, J. A.

    2016-12-01

    Soil carbon represents a significant component of the global carbon cycle. While fire-based disturbance of forest ecosystems acts as a carbon source, the increased temperatures can initiate molecular changes to forest biomass that convert fast cycling organic carbon into more stable forms such as black carbon (BC), a product of incomplete combustion that contains highly-condensed aromatic structures and very low hydrogen and oxygen content. Such forms of carbon can remain in the soil for hundred to thousands of years, effectively creating a long-term carbon sink. The goal of this project is to understand how specific characteristics of prescribed burns, specifically the season of burn and the interval between burns, affect the formation, structure, and retention of these slowly degrading forms of carbon in the soil. Both O-horizon (forest floor) and mineral soil (0-15 cm cores) samples were collected from a season and interval of burn study in Malheur National Forest. The study area is divided into six replicate units, each of which is sub-divided into four treatment areas and a control. Beginning in 1997, each treatment area was subjected to: i) spring burns at five-year intervals, ii) fall burns at five-year intervals, iii) spring burns at 15-year intervals, or iv) fall burns at 15-year intervals. The bulk density, pH, and C/N content of each soil were measured to assess the effect of the burn treatments on the soil. Additionally, the amount and molecular structure of BC in each sample was quantified using the distribution of specific molecular markers (benzene polycarboxylic acids or BPCAs) that are present in the soil following acid digestion.

  2. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content

    International Nuclear Information System (INIS)

    West, L. Jeanine A.; Li, Karen; Greenberg, Bruce M.; Mierle, Greg; Smith, Ralph E.H.

    2003-01-01

    Selenastrum capricornutum was grown in two lake waters of differing dissolved organic carbon content (1.8 vs. 9.1 mg DOC l -1 ) to determine the responses of population dynamics and photosynthesis to Cu, and to assess the modifying effects of varying ultraviolet radiation (UVR) exposure. In the absence of UVR, the mean EC 50 for Cu effect on population growth rate was 2.3-2.6 μg l -1 in the low DOC water and 17.4-26.2 μg l -1 in the high DOC water. The variable chlorophyll a fluorescence ratio, F v /F m , decreased approximately in parallel with the diminished growth rates. Exposure of the higher DOC lake water to full spectrum artificial radiation caused an increase of Cu 2+ concentration, compared to samples held in darkness or in photosynthetically active radiation (PAR) only. Full spectrum exposures also resulted in a lower (although not significantly so) EC 50 for Cu effect on growth rate, consistent with response to the moderately elevated Cu 2+ concentration. Cu 2+ concentration was unaffected by radiation exposure in the low DOC water, and EC 50 s for growth were also unaffected except in the most severe UVR treatment, which was >40% inhibited even in the absence of added Cu. Using F v /F m as an end-point, there was no evidence of interactions between UVR and Cu under the relatively low PAR exposures used here. Algal growth and photosynthesis was extremely sensitive to Cu in these soft lake waters, with EC 50 s close to current water quality standards in the low DOC water

  3. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  4. Organic carbon content of tropical zooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  5. Determination of low carbon content in uranium

    International Nuclear Information System (INIS)

    Champeix, L.; Chevilliard, H.; Ponty, J.

    1960-01-01

    The method of carbon determination previously used for low carbon steels has been applied to uranium. Carbon contents down to a few tens p.p.m. and probably to a few p.p.m., can be determined with satisfactory precision, sensibility and accuracy. Reprint of a paper published in 'Memoires Scientifiques Rev. Metallurg.', LVI, n. 7, 1959, p. 657-662 [fr

  6. Carbon, chromium and molybdenum contents

    International Nuclear Information System (INIS)

    Sinatora, A; Goldenstein, H.; Mei, P.R.; Albertin, E.; Fuoco, R.; Mariotto, C.L.

    1992-01-01

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite

  7. Carbon fiber content measurement in composite

    Science.gov (United States)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  8. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  9. Effect of test meals of varying dietary fiber content on plasma insulin and glucose response.

    Science.gov (United States)

    Potter, J G; Coffman, K P; Reid, R L; Krall, J M; Albrink, M J

    1981-03-01

    To assess the effect of dietary fiber on glucose tolerance four different meals of varying fiber content but identical protein fat and carbohydrate content were fed to eight healthy men aged 22 to 45. Each meal provided 75 g of carbohydrate as liquid glucose formula, as brown rice, pinto beans, or All Bran. The mean plasma glucose and insulin responses were highest following the formula, and least for All Bran and pinto beans. Rice produced nearly as great a rise in insulin and glucose as did the formula. The rank of each meal by content of neutral detergent fiber was nearly the inverse of the rank by magnitude of the insulin response evoked, fiber content being greatest in All Bran (18 g) and pinto beans (16.2 g), low in rice (2.8 g) and absent from the formula. It was concluded that dietary fiber dampened the insulin response to a high carbohydrate meal.

  10. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  11. Development of Novel N-isopropylacrylamide (NIPAAm Based Hydrogels with Varying Content of Chrysin Multiacrylate

    Directory of Open Access Journals (Sweden)

    Shuo Tang

    2017-10-01

    Full Text Available A series of novel temperature responsive hydrogels were synthesized by free radical polymerization with varying content of chrysin multiacrylate (ChryMA. The goal was to study the impact of this novel polyphenolic-based multiacrylate on the properties of N-isopropylacrylamide (NIPAAm hydrogels. The temperature responsive behavior of the copolymerized gels was characterized by swelling studies, and their lower critical solution temperature (LCST was characterized through differential scanning calorimetry (DSC. It was shown that the incorporation of ChryMA decreased the swelling ratios of the hydrogels and shifted their LCSTs to a lower temperature. Gels with different ChryMA content showed different levels of response to temperature change. Higher content gels had a broader phase transition and smaller temperature response, which could be attributed to the increased hydrophobicity being introduced by the ChryMA.

  12. The Effects of Varying Crustal Carbonate Composition on Assimilation and CO2 Degassing at Arc Volcanoes

    Science.gov (United States)

    Carter, L. B.; Holmes, A. K.; Dasgupta, R.; Tumiati, S.

    2015-12-01

    Magma-crustal carbonate interaction and subsequent decarbonation can provide an additional source of CO2 release to the exogenic system superimposed on mantle-derived CO2. Carbonate assimilation at present day volcanoes is often modeled by limestone consumption experiments [1-4]. Eruptive products, however, do not clearly display the characteristic ultracalcic melt compositions produced during limestone-magma interaction [4]. Yet estimated CO2outflux [5] and composition of volcanics in many volcanic systems may allow ~3-17% limestone- or dolostone-assimilated melt contribution. Crystallization may retain ultracalcic melts in pyroxenite cumulates. To extend our completed study on limestone assimilation, here we explore the effect of varying composition from calcite to dolomite on chemical and thermal decarbonation efficiency of crustal carbonates. Piston cylinder experiments at 0.5 GPa and 900-1200 °C demonstrate that residual mineralogy during interaction with magma shifts from CaTs cpx and anorthite/scapolite in the presence of calcite to Di cpx and Fo-rich olivine with dolomite. Silica-undersaturated melts double in magnesium content, while maintaining high (>30 wt.%) CaO values. At high-T, partial thermal breakdown of dolomite into periclase and CO2 is minimal (<5%) suggesting that in the presence of magma, CO2 is primarily released due to assimilation. Assimilated melts at identical P-T conditions depict similarly high volatile contents (10-20 wt.% by EMPA deficit at 0.5 GPa, 1150 °C with hydrous basalt) with calcite or dolomite. Analysis of the coexisting fluid phase indicates the majority of water is dissolved in the melt, while CO2 released from the carbonate is preferentially partitioned into the vapor. This suggests that although assimilated melts have a higher CO2 solubility, most of the CO2can easily degas from the vapor phase at arc volcanoes, possibly more so at volcanic plumbing systems traversing dolomite [8]. [1]Conte et al 2009 EuJMin (21) 763

  13. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content

    Directory of Open Access Journals (Sweden)

    Masarin Fernando

    2011-12-01

    Full Text Available Abstract Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during

  14. Organic carbon content of zooplankton from the nearshore waters of Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Gajbhiye, S.N.; Sayed, F.Y.

    Organic carbon content of zooplankton in the Versova Creek and Thana Creek (polluted areas), off Versova and off Mahim, Bombay, India (relatively unpolluted areas) varied respectively from 21.4-30, 13.2-38.4, 21.6-30 and 25.8-39.6% dry weight...

  15. Impact of weight loss and maintenance with ad libitum diets varying in protein and glycemic index content on metabolic syndrome

    DEFF Research Database (Denmark)

    Papadaki, Angeliki; Linardakis, Manolis; Plada, Maria

    2014-01-01

    We investigated the effects of weight loss and maintenance with diets that varied with regard to protein content and glycemic index (GI) on metabolic syndrome (MetSyn) status.......We investigated the effects of weight loss and maintenance with diets that varied with regard to protein content and glycemic index (GI) on metabolic syndrome (MetSyn) status....

  16. Discharge characteristics of He-Ne-Xe gas mixture with varying Xe contents and at varying sustain electrode gap lengths in the plasma display panel

    International Nuclear Information System (INIS)

    Kwon, Ohyung; Whang, Ki-Woong; Bae, Hyun Sook

    2009-01-01

    The discharge characteristics of He-Ne-Xe gas mixture in the plasma display panel were investigated using a two-dimensional numerical simulation to understand the effects of adding He and varying the Xe contents in the gas mixture, and also varying sustain electrode gap. With 5% Xe content and 60 μm sustain electrode gap, decreased ionization led to the improvement of the vacuum ultraviolet (vuv) efficacy at increasing He mixing ratios. However, at 20% Xe content and 60 μm sustain electrode gap, increased electron heating improved the vuv efficacy until the He mixing ratio reached 0.7, but the efficacy decreased beyond the ratio of 0.7 due to the increased ionization of Xe atoms. At 5% Xe content and 200 μm sustain electrode gap, the vuv efficacy increased as a result of increased electron heating at the gap space at increasing He mixing ratios.

  17. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    Science.gov (United States)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  18. Caloric compensation for lunches varying in fat and carbohydrate content by humans in a residential laboratory.

    Science.gov (United States)

    Foltin, R W; Fischman, M W; Moran, T H; Rolls, B J; Kelly, T H

    1990-12-01

    Two groups of three subjects participated in a residential study that assessed the effects of varying the macronutrient and caloric content of a required lunch meal on subsequent food choice and intake. Lunches contained 431 or 844 kcal, with the caloric differential created by manipulating the calories derived from either fat or carbohydrate (CHO). Each lunch condition (high-fat, high-CHO, low-fat, and low-CHO) was examined for 3 consecutive days. Subjects controlled their own patterns of food intake and could consume any item or number of items at any time during the day or night. There were no significant differences in total daily caloric intake across conditions, indicating that subjects compensated for the caloric content of the lunch regardless of the macronutrient content. Total daily caloric intake under the high-fat and high-CHO conditions was 2824 +/- 151 (mean +/- SEM) and 2988 +/- 187 kcal, respectively, whereas intake under the low-fat and low-CHO conditions was 2700 +/- 131 and 2890 +/- 247 kcal, respectively.

  19. Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content.

    Science.gov (United States)

    Molla, Atiar Rahaman; Basu, Bikramjit

    2009-04-01

    The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions as well as to understand processing-microstructure-property (mechanical/biological) relationship. In the present work, it is demonstrated how various crystal morphology can develop when F(-) content in base glass (K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F) is varied in the range of 1.08-3.85% and when all are heat treated at varying temperatures of 1000-1120 degrees C. For some selected heat treatment temperature, the heat treatment time is also varied over 4-24 h. It was established that with increase in fluoride content in the glass composition, the crystal volume fraction of the glass-ceramic decreases. Using 1.08% fluoride, more than 80% crystal volume fraction could be achieved in the K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F system. It was observed that with lower fluoride content glass-ceramic, if heated at 1040 degrees C for 12 h, an oriented microstructure with 'envelop like' crystals can develop. For glass ceramics with higher fluorine content (2.83% or 3.85%), hexagonal-shaped crystals are formed. Importantly, high hardness of around 8 GPa has been measured in glass ceramics with maximum amount of crystals. The three-point flexural strength and elastic modulus of the glass-ceramic (heat treated at 1040 degrees C for 24 h) was 80 MPa and 69 GPa of the sample containing 3.85% fluorine, whereas, similar properties obtained for the sample containing 1.08% F(-) was 94 MPa and 57 GPa, respectively. Further, in vitro dissolution study of the all three glass-ceramic composition in artificial saliva (AS) revealed that leached fluoride ion concentration was 0.44 ppm, when the samples were immersed in AS for 8 weeks. This was much lower than the WHO recommended safety limits of 1.5 ppm. Among all the investigated glass-ceramic samples, the glass ceramic with 3.85% F

  20. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    Science.gov (United States)

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  1. Eating quality of UK-style sausages varying in price, meat content, fat level and salt content.

    Science.gov (United States)

    Sheard, P R; Hope, E; Hughes, S I; Baker, A; Nute, G R

    2010-05-01

    Thirty-six brands of pork sausage were purchased from a total of 10 retailers over a 4 months period and assessed for eating quality. The brands included 5 of the 10 most popular sausages in the UK, 4 basic, 14 standard, 10 premium and 8 healthy eating brands. The average price, meat content, fat content and salt content was 3.31 pounds/kg, 62%, 17% and 1.6%, respectively, but there were wide differences in price (1.08 pound/kg-5.23 pounds/kg), meat content (32-97%), fat content (2.1-29.1%) and salt content (0.5-2.5%). Sausages were assessed by a trained sensory panel using 100mm unstructured line scales and 14 descriptors (skin toughness, firmness, juiciness, pork flavour, fattiness, meatiness, particle size, cohesiveness, saltiness, sweet, acidic, bitter and metallic) including overall liking. The declared meat content was positively correlated with price, skin toughness, firmness, pork flavour, meatiness, particle size and perceived saltiness (r=0.5 or better). The declared fat content was positively correlated with fattiness and sweetness (r=0.42 or better) but not juiciness. There was no significant correlation between declared salt content and perceived saltiness. A principal component analysis showed that the first two principal components accounted for 51% of the variability in the data. Products could be separated into four quadrants according to their price, meat content, fat content and their associated eating quality attributes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  3. Content of nitrogen in waste petroleum carbon for steel industries

    International Nuclear Information System (INIS)

    Rios, R.O; Jimenez, A.F; Szieber, C.W; Banchik, A.D

    2004-01-01

    Steel industries use refined carbon as an alloy for steel production. This alloy is produced from waste carbon from the distillation of the petroleum. The refined carbon, called recarburizer, is obtained by calcination at high temperature. Under these thermal conditions the organic molecules decompose and a fraction of the N 2 , S and H 2 , volatile material and moisture are released; while the carbon tends to develop a crystalline structure similar to graphite's. The right combination of calcinations temperature and time in the furnace can optimize the quality of the resulting product. The content of S and N 2 has to be minimized for the use of calcined carbon in the steel industry. Nitrogen content should be reduced by two orders of magnitude, from 1% - 2% down to hundreds of ppm by weight. This work describes the activities undertaken to obtain calcined coke from petroleum from crude oil carbon that satisfies the requirements of the Mercosur standard 02:00-169 (Pending) for use as a carborizer in steels industries. To satisfy the requirements of the Mercosur standards NM 236:00 IRAM-IAS-NM so that graphite is used as a carburizer a content of 300 ppm maximum weight of nitrogen has to be obtained. So the first stage in this development is to define a production process for supplying calcined coke in the range of nitrogen concentrations required by the Mercosur standards (CW)

  4. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety

    Science.gov (United States)

    Resistant starch (RS) has properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking me...

  5. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  6. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  7. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  8. System and method for constructing filters for detecting signals whose frequency content varies with time

    Science.gov (United States)

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  9. A reassessment of carbon content in wood: variation within and between 41 North American species

    International Nuclear Information System (INIS)

    Lamlom, S.H.; Savidge, R.A.

    2003-01-01

    At present, 50% (w/w) carbon is widely promulgated as a generic value for wood; however, the literature yields few data and indicates that very little research has actually been done. C contents in heartwood of forty-one softwood and hardwood species were determined. C in kiln-dried hardwood species ranged from 46.2% to 49.97% (w/w), in conifers from 47.21% to 55.2%. The higher C in conifers agrees with their higher lignin content (∼30%, versus ∼20% for hardwoods). Wood-meal samples drilled from discrete early wood and late wood zones of seven of the forty-one species were also investigated. C contents of early woods were invariably higher than those in corresponding late woods, again in agreement with early wood having higher lignin content. Further investigation was made into freshly harvested wood of some species to determine how much volatile C is present, comparing oven-dried wood meal with wood meal dried at ambient temperature over a desiccant. C contents of oven-dried woods were significantly lower, indicating that all past data on C content in oven-dried or kiln-dried woods may be inaccurate in relation to the true C content of forests. We conclude that C content varies substantially among species as well as within individual trees. Clearly, a 50% generic value is an oversimplification of limited application in relation to global warming and the concept of 'carbon credits'. (author)

  10. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-01-01

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO 3 @C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO 3 @C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g −1 after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO 3 (CoSnO 3 @C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO 3 @C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g −1 after 100 cycles

  11. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  12. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  13. Denuded zone in Czochralski silicon wafer with high carbon content

    International Nuclear Information System (INIS)

    Chen Jiahe; Yang Deren; Ma Xiangyang; Que Duanlin

    2006-01-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 deg. C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 deg. C. Also, the DZs above 15 μm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits

  14. Denuded zone in Czochralski silicon wafer with high carbon content

    Science.gov (United States)

    Chen, Jiahe; Yang, Deren; Ma, Xiangyang; Que, Duanlin

    2006-12-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 °C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 °C. Also, the DZs above 15 µm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits.

  15. Blue carbon content of mangrove vegetation in Subang district

    Science.gov (United States)

    Nurruhwati, I.; Purwita, S. D.; Sunarto; Zahidah

    2018-04-01

    The purpose of this research was to know the carbon content of mangrove parts such as leave, stems and roots and to know its ability to absorb carbondioxide (CO2). The research was conducted in 27th April until 16th May 2017 in Blanakan Village, Langensari Village and Jayamukti Village. The samples are dried at Pilotplane Laboratory Faculty of Industrial Engineering Padjadjaran University. The method in this research is explorative survey method. The results showed that there were two dominant mangroves species in three research stations, they are Avicennia marina and Rhizophora mucronata. Index of Important value of each mangrove type on the three stations in the medium criterion with a range of values is 106,86 %- 193,13 %. The highest carbon content was found in Rhizophora mucronata at station 1 (93,43 %) which was equivalent with 342,87 % absorption of CO2 which was The lowest carbon content was in Avicennia marina at station 1 (67,49 %) which was equivalent with 247,70 % absorption of CO2.

  16. Argon laser induced changes to the carbonate content of enamel

    International Nuclear Information System (INIS)

    Ziglo, M.J.; Nelson, A.E.; Heo, G.; Major, P.W.

    2009-01-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2 ) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  17. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  18. Argon laser induced changes to the carbonate content of enamel

    Science.gov (United States)

    Ziglo, M. J.; Nelson, A. E.; Heo, G.; Major, P. W.

    2009-05-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation ( p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  19. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content

    NARCIS (Netherlands)

    Thorsdottir, I.; Tomasson, H.; Gunnarsdottir, I.; Gisladottir, E.; Kiely, M.; Parra, M.D.; Bandarra, N.M.; Schaafsma, G.; Martinez, J.A.

    2007-01-01

    Objective: To investigate the effect of including seafood and fish oils, as part of an energy-restricted diet, on weight loss in young overweight adults. Design: Randomized controlled trial of energy-restricted diet varying in fish and fish oil content was followed for 8 weeks. Subjects were

  20. Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms

    DEFF Research Database (Denmark)

    Mari, Xavier

    1999-01-01

    The carbon content of transparent exopolymeric particles (TEP) was measured in the laboratory in particles produced by bubbling exudates of the diatom Thalassiosira weissflogii, grown under nitrogen non-limited conditions (N:P = 7). The carbon content of these particles (TEP-C) appears to vary...... a coastal area (Kattegat, Denmark), TEP carbon concentration in the surface mixed layer was on the order of 230 ± 150 µg C l-1. This is high relative to other sources of particulate organic carbon (e.g. phytoplankton) and depending on TEP turnover rates, suggests that TEP is an important pathway...... for dissolved organic carbon in coastal seas. The carbon to nitrogen ratio of TEP was measured from particles formed by bubbling exudates of the diatoms T. weissflogii, Skeletonema costatum, Chaetoceros neogracile and C. affinis. Each of these diatom species was grown under various N:P ratios, from N...

  1. Activated carbon oxygen content influence on water and surfactant adsorption.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  2. Experience and acceptability of diets of varying protein content and glycemic index in an obese cohort

    DEFF Research Database (Denmark)

    McConnon, A; Horgan, G W; Lawton, C

    2013-01-01

    Background/Objectives:To investigate acceptability and tolerability of diets of different protein and glycemic index (GI) content aimed at weight maintenance following a phase of rapid weight loss, as part of a large pan-European dietary intervention trial.Subjects/Methods:The Diogenes study (www...

  3. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    Science.gov (United States)

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  4. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Science.gov (United States)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  5. Health sector solidarity: a core European value but with broadly varying content.

    Science.gov (United States)

    Saltman, Richard B

    2015-01-01

    Although the concept of solidarity sits at the center of many European health sector debates, the specific groups eligible for coverage, the financing arrangements, and the range of services and benefits that, together, compose the operational content of solidarity have all changed considerably over time. In prior economic periods, solidarity covered considerably fewer services or groups of the population than it does today. As economic and political circumstances changed, the content of solidarity changed with them. Recent examples of these shifts are illustrated through a discussion of health reforms in Netherlands, Germany and also Israel (although not in Europe, the Israeli health system is similar in structure to European social health insurance systems). This article suggests that changed economic circumstances in Europe since the onset of the 2008 financial crisis may lead to re-configuring the scope and content of services covered by solidarity in many European health systems. A key issue for policymakers will be protecting vulnerable populations as this re-design occurs.

  6. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  7. In-situ burning of emulsions: The effects of varying water content and degree of evaporation

    International Nuclear Information System (INIS)

    Bech, C.; Sveum, P.; Buist, I.

    1992-01-01

    In-situ burning of oil is considered to be one of the most promising techniques for rapid removal of large quantities of oil at sea, particularly in ice-infested waters. A series of field experiments was conducted in Spitsbergen, circular basins cut in sea ice, to study the effect of water content, evaporation, thickness of the emulsion layer, and environmental factors on the burn efficiency of Statfjord crude oil and emulsions. Results from the experiments are presented along with preliminary results concerning the dynamics of burning emulsions and the efficiency of conventional and novel igniters. Water-in-oil emulsions with 40% water content could be burned. However, for oils evaporated more than 18% and with a water content of over 20%, conventional gelled gasoline was not a very effective igniter. Ignition success was improved when gelled crude oil was used as the igniter. The results imply that for practical in-situ burning, the igniter technology needs to be improved. 5 refs., 11 figs., 3 tabs

  8. Validity of estimating the organic carbon content of basin sediment using color measurements

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Sugai, Toshihiko; Ogami, Takashi; Yanagida, Makoto; Yasue, Ken-ichi

    2010-01-01

    Psychometric lightness (L* value) measured by a colorimeter offers a rapid means of obtaining the organic carbon content of sediment. We measured peat and lacustrine sediments covering the past 300 ka - 106 samples for L* value and 197 samples for organic carbon content. L* values are highly correlated with organic carbon contents. Therefore, L* values are a convenient alternative to measuring organic carbon contents. (author)

  9. Characterization and observation of water-based nanofluids quench medium with carbon particle content variation

    Science.gov (United States)

    Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.

    2018-05-01

    Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was

  10. Biomass, organic carbon and calorific content of zooplankton from the Arabian Sea off Central West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R.

    Organic carbon content and calorific values of zooplankton varied from 18.35 to 32.49% (av. 27.8%) and from 2.56 to 4.71 k cal. g-1 dry wt (av. 3.99) respectively. Areawise off Gujarat sustained higher standing stock of zooplankton (77.18 mg m-3...

  11. Modelling and mapping the topsoil organic carbon content for Tanzania

    Science.gov (United States)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  12. Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres.

    Science.gov (United States)

    Choi, Sumin; Leong, Victor; Davydov, Valery A; Agafonov, Viatcheslav N; Cheong, Marcus W O; Kalashnikov, Dmitry A; Krivitsky, Leonid A

    2018-02-28

    Nanodidamonds containing colour centres open up many applications in quantum information processing, metrology, and quantum sensing. However, controlling the synthesis of nanodiamonds containing silicon vacancy (SiV) centres is still not well understood. Here we study nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centres. Our results show that nanodiamond growth can be controlled and optimised for different applications.

  13. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  14. [Study on the content and carbon isotopic composition of water dissolved inorganic carbon from rivers around Xi'an City].

    Science.gov (United States)

    Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo

    2013-04-01

    In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.

  15. Effect of varying the amount of binder on the electrochemical characteristics of palm shell activated carbon

    Science.gov (United States)

    Imam Maarof, Hawaiah; Daud, Wan Mohd Ashri Wan; Kheireddine Aroua, Mohamed

    2017-06-01

    Polytetrafluoroethylene (PTFE) is among the most common binders used in the fabrication of an electrode, which is used for various electrochemical applications such as desalination, water purification, and wastewater treatment. In this study, the amount of the binder was varied at 10, 20, 30, and 40 wt% of the total mass of palm shell activated carbon (PSAC). The PSAC was used as the active material and carbon black was used as the conductive agent. The effect of different amounts of binder was observed by evaluating the electrochemical characteristics of the electrode through cyclic voltammetry (CV) and potentio electrochemical spectroscopy (PEIS). The CV analysis was employed to determine the geometric area normalised electrode double layer capacitance, CE , and the electrode reaction of the prepared electrode. Meanwhile, the common redox probe, ferro/ferricyanide in 0.5 M NaCl, was employed to estimate the electron transfer resistance through PEIS. The electrochemical characterisation proved that the optimum amount of PTFE was 20 wt% for the 4:1 ratio of active material to conductive agent. On increasing the amount of the binder to 30 wt% and 40 wt%, the estimated value of CE decreased and remained almost equivalent. Adding more than 30 wt% of binder resulted in pore blockage and reduced the available active site on the PSAC electrode. In addition, the electron transfer resistance of the prepared electrode was found to be in the range of 4-5 Ω·cm2.

  16. Carbon Budgets for Caribbean Mangrove Forests of Varying Structure and with Phosphorus Enrichment

    Directory of Open Access Journals (Sweden)

    Catherine E. Lovelock

    2015-10-01

    Full Text Available There are few detailed carbon (C budgets of mangrove forests, yet these are important for understanding C sequestration in mangrove forests, how they support the productivity of the coast and their vulnerability to environmental change. Here, we develop C budgets for mangroves on the islands of Twin Cays, Belize. We consider seaward fringing forests and interior scrub forests that have been fertilized with phosphorus (P, which severely limits growth of trees in the scrub forests. We found that respiration of the aboveground biomass accounted for 60%–80% of the fixed C and that respiration of the canopy and aboveground roots were important components of respiration. Soil respiration accounted for only 7%–11% of total gross primary production (GPP while burial of C in soils was ~4% of GPP. Respiration by roots can account for the majority of soil respiration in fringing forests, while microbial processes may account 80% of respiration in scrub forests. Fertilization of scrub forests with P enhanced GPP but the proportion of C buried declined to ~2% of GPP. Net ecosystem production was 17%–27% of GPP similar to that reported for other mangrove forests. Carbon isotope signatures of adjacent seagrass suggest that dissolved C from mangroves is exported into the adjacent ecosystems. Our data indicate that C budgets can vary among mangrove forest types and with nutrient enrichment and that low productivity mangroves provide a disproportionate share of exported C.

  17. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2012-01-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  18. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2013-04-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  19. The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors

    International Nuclear Information System (INIS)

    Kalen, Anders; Wahlstroem, Ola; Linder, Cecilia Halling; Magnusson, Per

    2008-01-01

    Platelet derivates and platelet rich plasma have been used to stimulate bone formation and wound healing because of the rich content of potent growth factors. However, not all reports have been conclusive since some have not been able to demonstrate a positive effect. We investigated the interindividual variation of bone morphogenetic proteins (BMPs) in platelets from healthy donors, and the pH-dependent effect on the release of BMPs in preparations of lysed platelets in buffer (LPB). Platelet concentrates from 31 healthy donors were prepared in pH 4.3 and pH 7.4 buffers and investigated with respect to BMP-2, -4, -6, and -7. BMP-2 and BMP-4 were significantly more common in acidic LPBs in comparison with neutral preparations. We also observed a considerable variation among platelet donors with respect to the release of BMPs at pH 4.3 and 7.4. In conclusion, a considerable variation was found among platelet donors, which may be of importance considering the ambiguous results previously reported on osteoblast proliferation and differentiation

  20. Effects of varying soil moisture contents and vegetation canopies on microwave emissions

    Science.gov (United States)

    Burke, H.-H. K.; Schmugge, T. J.

    1982-01-01

    Results of NASA airborne passive microwave scans of bare and vegetated fields for comparison with ground truth tests are discussed and a model for atmospheric scattering of radiation by vegetation is detailed. On-board radiometers obtained data at 21, 2.8, and 1.67 cm during three passes over each of 46 fields, 28 of which were bare and the others having wheat or alfalfa. Ground-based sampling included moisture in five layers down to 15 cm in addition to soil temperature. The relationships among the brightness temperature and soil moisture, as well as the surface roughness and the vegetation canopy were examined. A model was developed for the dielectric coefficient and volume scattering for a vegetation medium. L- to C-band data were found useful for retrieving soil information directly. A surface moisture content of 5-35% yielded an emissivity of 0.9-0.7. The data agreed well with a combined multilayer radiative transfer model with simple roughness correction.

  1. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  2. Robust metabolic responses to varied carbon sources in natural and laboratory strains of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Wayne A Van Voorhies

    Full Text Available Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O₂ consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O₂ consumption or CO₂ production, in the strains used in this study.

  3. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO{sub 3}@C composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Fuqiang [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Xu, Yanhui; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2014-08-30

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO{sub 3}@C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO{sub 3}@C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO{sub 3} (CoSnO{sub 3}@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO{sub 3}@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles.

  4. Fast analysis of carbon content by inelastic scattering of neutrons

    International Nuclear Information System (INIS)

    Heinrich, B.; Irmer, K.; Poetschke, R.

    1986-01-01

    The direct measurement of carbon concentration of conveyor belts is a difficult problem. The great penetration depth by the fast neutrons and the 4.43 MeV γ-radiation gives an especially suitable method. The measurement were performed by the following methods: excitation of γ-radiation by a Pu-Be neutron source, excitation of γ-radiation by DT-neutron generator in stationary regime, in pulse regime, or coupled with time correlated associated particle method. Furthermore, a special Monte Carlo code in which the geometry of the measuring equipment could be specified, was written to calculate the 4.43 MeV γ counting rate for backscatter geometries and for penetration geometries. The influence of conveyor belt, of content of H, O, Fe and of mass by surface for 4.43 MeV γ-radiation was calculated for application brown coal in industry. (author)

  5. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  6. Investigate of analysis for hydrogen contents in carbon films

    International Nuclear Information System (INIS)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko; Awazu, Kaoru; Naramoto, Hiroshi

    2001-01-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV γ-rays from the resonant nuclear reactions 1 H( 15 N, α γ) 12 C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B 4 C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  7. Investigate of analysis for hydrogen contents in carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ., Kanazawa, Ishikawa (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa, Kanazawa, Ishikawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha} {gamma}){sup 12}C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  8. Disentangling the counteracting effects of water content and carbon mass on zooplankton growth

    DEFF Research Database (Denmark)

    Mcconville, Kristian; Atkinson, Angus; Fileman, Elaine S.

    2017-01-01

    Zooplankton vary widely in carbon percentage (carbon mass as a percentage of wet mass), but are often described as either gelatinous or non-gelatinous. Here we update datasets of carbon percentage and growth rate to investigate whether carbon percentage is a continuous trait, and whether its incl...

  9. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  10. Effect of Photochemical Transformation on Dissolved Organic Carbon Concentration and Bioavailability from Watersheds with Varying Landcover

    Science.gov (United States)

    Vermilyea, A.; Sanders, A.; Vazquez, E.

    2017-12-01

    The transformation of freshwater dissolved organic carbon (DOC) can have important implications for water quality, aquatic ecosystem health, and our climate. DOC is an important nutrient for heterotrophic microorganisms near the base of the aquatic food chain and the extent of conversion of DOC to CO2 is a critical piece of the global carbon cycle. Photochemical pathways have the potential to transform recalcitrant DOC into more labile forms that can then be converted to smaller DOC molecules and eventually be completely mineralized to CO2. This may lead to a DOC pool with different bioavailability depending on the structural composition of the original DOC pool and the mechanistic pathways undergone during transformation. This study aimed to measure the changes in DOC concentration and bioavailability due solely to photochemical processes in three watersheds of northern Vermont, USA that have varied land cover, land use (LCLU) attributes. Our hypothesis was that photochemical transformations will lead to (1) an overall loss of DOC due to mineralization to CO2 and (2) a relative increase in the bioavailable fraction of DOC. Additionally, the influence of LCLU and base flow versus storm flow on both mineralization rates and changes in DOC bioavailability was investigated. Irradiation of filtered samples in quartz vessels under sunlight led to small changes in DOC concentration over time, but significant changes in DOC bioavailability. In general, fluorescence excitation-emission matrices (EEMs) showed a shift from an initially more humic-like DOC pool, to a more protein-like (bioavailable) DOC pool. Specific UV index (SUVA) along with bioavailable DOC (BDOC) incubations were also used to characterize DOC and its bioavailability. There were only small differences in the DOC transformation that took place among sites, possibly due to only small differences in the initial bioavailability and fluorescent properties between water samples. Photochemical transformation

  11. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  12. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  13. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  14. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Science.gov (United States)

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  15. Nematode consumption by mite communities varies in different forest microhabitats as indicated by molecular gut content analysis.

    Science.gov (United States)

    Heidemann, Kerstin; Ruess, Liliane; Scheu, Stefan; Maraun, Mark

    2014-01-01

    Soil animals live in complex and heterogeneous habitats including litter of various types but also microhabitats such as mosses, fungal mats and grass patches. Soil food webs have been separated into a slow fungal and a fast bacterial energy channel. Bacterial-feeding nematodes are an important component of the bacterial energy channel by consuming bacteria and forming prey for higher trophic levels such as soil microarthropods. Investigating the role of nematodes as prey for higher trophic level consumers has been hampered by methodological problems related to their small body size and lack in skeletal structures which can be traced in the gut of consumers. Recent studies using molecular gut content analyses suggest that nematodes form major prey of soil microarthropods including those previously assumed to live as detritivores. Using molecular markers we traced nematode prey in fourteen abundant soil microarthropod taxa of Mesostigmata and Oribatida (both Acari) from three different microhabitats (litter, grass and moss). Consumption of nematodes varied between mite species indicating that trophic niche variation contributes to the high diversity of microarthropods in deciduous forests. Further, consumption of nematodes by Mesostigmata (but not Oribatida) differed between microhabitats indicating that trophic niches vary with habitat characteristics. Overall, the results suggest that free-living bacterial-feeding nematodes form important prey for soil microarthropods including those previously assumed to live as detritivores.

  16. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment

    Science.gov (United States)

    J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...

  17. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content

    International Nuclear Information System (INIS)

    Wang, Xiaoxiao; Zhang, Wei; Zhao, Liangfu; Xiang, Hongwei; Guo, Shaoqing

    2013-01-01

    SAPO-11 zeolites were successfully synthesized by using three different templates (diethylamine (DEA), di-n-propylamine (DPA) and di-isopropylamine (DIPA)) and varying DPA contents (nDPA/Al 2 O 3 = 0.8, 1.2, 1.6 and 2.0) under hydrothermal conditions. The samples were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), N 2 adsorption-desorption, temperature programmed desorption of ammonia (NH 3 -TPD) and 29 Si magic angle spinning (MAS) nuclear magnetic resonance (NMR). The samples were also evaluated towards the methylation of naphthalene with methanol to produce 2,6-dimethylnaphthalene (2,6-DMN). XRD results indicated that the directing effect of the different templates for AEL (Aluminophosphate-ELeven) structure decreased in the order DPA > DEA > DIPA and the most suitable DPA content was nDPA/Al 2 O 3 = 1.2. N 2 adsorption-desorption results showed that SAPO-11(DPA,1.2) exhibited the broadest pore size distribution, the highest BET specific surface area and the largest pore volume among all the SAPO-11 samples. SAPO-11(DPA,1.2) exhibited high catalytic performances in the methylation of naphthalene due to its high crystallinity, high external surface and broad pore size distribution. The pore structure of SAPO-11 zeolite, rather than its acidity, played an important role in achieving high catalytic performances in the methylation of naphthalene with methanol. (author)

  18. Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils

    Directory of Open Access Journals (Sweden)

    Tantely Razafimbelo

    2013-06-01

    Full Text Available Soil organic carbon (SOC is usually said to be well correlated with soil texture and soil aggregation. These relations generally suggest a physical and physicochemical protection of SOC within soil aggregates and on soil fine particles, respectively. Because there are few experimental evidences of these relations on tropical soils, we tested the relations of soil variables (SOC and soil aggregate contents, and soil texture with the amount of SOC physically protected in aggregates on a set of 15 Malagasy soils. The soil texture, the SOC and water stable macroaggregate (MA contents and the amount of SOC physically protected inside aggregates, calculated as the difference of C mineralized by crushed and intact aggregates, were characterized. The relation between these variables was established. SOC content was significantly correlated with soil texture (clay+fine silt fraction and with soil MA amount while protected SOC content was not correlated with soil MA amount. This lack of correlation might be attributed to the highest importance of physicochemical protection of SOC which is demonstrated by the positive relation between SOC and clay+fine silt fraction.

  19. Relating black carbon content to reduction of snow albedo

    Science.gov (United States)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  20. Interfaces between Model Co-W-C Alloys with Various Carbon Contents and Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Igor Konyashin

    2018-03-01

    Full Text Available Interfaces between alloys simulating binders in WC-Co cemented carbides and tungsten carbide were examined on the micro-, nano-, and atomic-scale. The precipitation of fine WC grains and η-phase occurs at the interface of the alloy with the low carbon content. The precipitation of such grains almost does not occur in the alloy with the medium-low carbon content and does not take place in the alloy with the high carbon content. The formation of Co nanoparticles in the binder alloy with the medium-low carbon content was established. Interfaces in the alloy with the medium-low carbon content characterized by complete wetting with respect to WC and with the high carbon content characterized by incomplete wetting were examined at an atomic scale. The absence of any additional phases or carbon segregations at both of the interfaces was established. Thus, the phenomenon of incomplete wetting of WC by liquid binders with high carbon contents is presumably related to special features of the Co-based binder alloys oversaturated with carbon at sintering temperatures.

  1. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  2. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  3. Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh

    Directory of Open Access Journals (Sweden)

    J. J. Kelleway

    2017-08-01

    Full Text Available Coastal salt marshes are dynamic, intertidal ecosystems that are increasingly being recognised for their contributions to ecosystem services, including carbon (C accumulation and storage. The survival of salt marshes and their capacity to store C under rising sea levels, however, is partially reliant upon sedimentation rates and influenced by a combination of physical and biological factors. In this study, we use several complementary methods to assess short-term (days deposition and medium-term (months accretion dynamics within a single marsh that contains three salt marsh vegetation types common throughout southeastern (SE Australia.We found that surface accretion varies among vegetation assemblages, with medium-term (19 months bulk accretion rates in the upper marsh rush (Juncus assemblage (1.74 ± 0.13 mm yr−1 consistently in excess of estimated local sea-level rise (1.15 mm yr−1. Accretion rates were lower and less consistent in both the succulent (Sarcocornia, 0.78 ± 0.18 mm yr−1 and grass (Sporobolus, 0.88 ± 0.22 mm yr−1 assemblages located lower in the tidal frame. Short-term (6 days experiments showed deposition within Juncus plots to be dominated by autochthonous organic inputs with C deposition rates ranging from 1.14 ± 0.41 mg C cm−2 d−1 (neap tidal period to 2.37 ± 0.44 mg C cm−2 d−1 (spring tidal period, while minerogenic inputs and lower C deposition dominated Sarcocornia (0.10 ± 0.02 to 0.62 ± 0.08 mg C cm−2 d−1 and Sporobolus (0.17 ± 0.04 to 0.40 ± 0.07 mg C cm−2 d−1 assemblages.Elemental (C : N, isotopic (δ13C, mid-infrared (MIR and 13C nuclear magnetic resonance (NMR analyses revealed little difference in either the source or character of materials being deposited among neap versus spring tidal periods. Instead, these analyses point to substantial redistribution of materials within the Sarcocornia and

  4. Post-exercise rehydration: Effect of consumption of beer with varying alcohol content on fluid balance after mild dehydration

    Directory of Open Access Journals (Sweden)

    Annemarthe Wijnen

    2016-10-01

    Full Text Available Purpose: The effects of moderate beer consumption after physical activity on rehydration and fluid balance are not completely clear. Therefore, in this study we investigated the effect of beer consumption, with varying alcohol content, on fluid balance after exercise-induced dehydration.Methods: Eleven healthy males were included in this cross over study (age 24.5 ± 4.7 yrs, body weight 75.4 ± 3.3 kg, VO2max 58.3 ± 6.4 mL · kg · min-1. Subjects exercised on a cycle ergometer for 45 min at 60 % of their maximal power output (Wmax until mild dehydration (1 % body mass loss. Thereafter, in random order, one of five experimental beverages was consumed, in an amount equal to 100% of their sweat loss: non-alcoholic beer (0.0 %, low-alcohol beer (2.0 %, full-strength beer (5.0 %, an isotonic sports drink and water. Fluid balance was assessed up till 5 hours after rehydration.Results: After 1 hour, urine production was significantly higher for 5 % beer compared to the isotonic sports drink (299 ± 143 mL vs 105 ± 67 mL; p < 0.01. At the end of the 5 h observation period net fluid balance (NFB was negative for all conditions (p = 0.681, with the poorest fluid retention percentage for 5 % beer (21 % fluid retention and the best percentage for the isotonic sports drink (42 %. Non-alcoholic beer, low-alcoholic beer and water resulted in fluid retention of 36 %, 36 % and 34 % respectively (p = 0.460. Conclusions: There was no difference in NFB between the different beverages. Only a short-lived difference between full-strength beer and the isotonic sports drink in urine output and NFB was observed after mild exercise-induced dehydration. Fluid replacement – either in the form of non-alcoholic beer, low-alcoholic beer, full-strength beer, water or an isotonic sports drink of 100 % of body mass loss was not sufficient to achieve full rehydration. The combination of a moderate amount of beer, with varying alcohol content, enough water or electrolyte

  5. Observation of WC grain shapes determined by carbon content during liquid phase sintering of WC-Co alloys

    International Nuclear Information System (INIS)

    Sona Kim; Hyoun-Ee Kim; Seok-Hee Han; Jong-Ku Park

    2001-01-01

    In the composite materials of WC-Co alloys, the faceted WC grains as a hard phase are dispersed in the ductile matrix of cobalt. Properties of WC-Co alloys are affected by microstructural factors such as volume fraction of WC phase, size of WC grains, and carbon content (kinds of constituent phases). Although the properties of WC-Co alloys are inevitably affected by the shape of WC grains, the shape of WC grains has not been thrown light on the properties of WC-Co alloys yet, because it has been regarded to have a uniform shape regardless of alloy compositions. It is proved that the WC grains have various shapes varying reversibly with carbon content in the sintered WC-Co compacts. This dependency of grain shape on the carbon content is attributed to asymmetric atomic structure of WC crystal. The {10 1 - 0} prismatic planes are distinguished into two groups with different surface energy according to their atomic structures. The prismatic planes of high surface energy tend to disappear in the compacts with high carbon content. In addition, these high energy prismatic planes tend to split into low energy surfaces in the large WC grains. (author)

  6. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxiao [University of Chinese Academy of Sciences, Beijing (China); Zhang, Wei; Zhao, Liangfu; Xiang, Hongwei, E-mail: zw7234@sxicc.ac.cn, E-mail: lfzhao@sxicc.ac.cn [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Guo, Shaoqing [Taiyuan University of Science and Technology, Taiyuan (China)

    2013-07-15

    SAPO-11 zeolites were successfully synthesized by using three different templates (diethylamine (DEA), di-n-propylamine (DPA) and di-isopropylamine (DIPA)) and varying DPA contents (nDPA/Al{sub 2}O{sub 3} = 0.8, 1.2, 1.6 and 2.0) under hydrothermal conditions. The samples were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption-desorption, temperature programmed desorption of ammonia (NH{sub 3} -TPD) and {sup 29}Si magic angle spinning (MAS) nuclear magnetic resonance (NMR). The samples were also evaluated towards the methylation of naphthalene with methanol to produce 2,6-dimethylnaphthalene (2,6-DMN). XRD results indicated that the directing effect of the different templates for AEL (Aluminophosphate-ELeven) structure decreased in the order DPA > DEA > DIPA and the most suitable DPA content was nDPA/Al{sub 2}O{sub 3} = 1.2. N{sub 2} adsorption-desorption results showed that SAPO-11(DPA,1.2) exhibited the broadest pore size distribution, the highest BET specific surface area and the largest pore volume among all the SAPO-11 samples. SAPO-11(DPA,1.2) exhibited high catalytic performances in the methylation of naphthalene due to its high crystallinity, high external surface and broad pore size distribution. The pore structure of SAPO-11 zeolite, rather than its acidity, played an important role in achieving high catalytic performances in the methylation of naphthalene with methanol. (author)

  7. Protein-Enriched Liquid Preloads Varying in Macronutrient Content Modulate Appetite and Appetite-Regulating Hormones in Healthy Adults.

    Science.gov (United States)

    Dougkas, Anestis; Östman, Elin

    2016-03-01

    Dietary protein is considered the most satiating macronutrient, yet there is little evidence on whether the effects observed are attributable to the protein or to the concomitant manipulation of carbohydrates and fat. The aim was to examine the effect of consumption of preloads varying in macronutrient content on appetite, energy intake, and biomarkers of satiety. Using a randomized, within-subjects, 2-level factorial design, 36 adults [mean ± SD age: 27 ± 5 y; body mass index (in kg/m(2)): 24.3 ± 1.6) received a breakfast consisting of 1 of 7 isovolumetric (670 mL) and isoenergetic (2100 kJ) liquid preloads matched for energy density and sensory properties but with different macronutrient composition (levels: 9%, 24%, or 40% of energy from protein combined with a carbohydrate-to-fat ratio of 0.4, 2, or 3.6, respectively). Appetite ratings and blood samples were collected and assessed at baseline and every 30 and 60 min, respectively, until a lunch test meal, which participants consumed ad libitum, was served 3.5 h after breakfast. Prospective consumption was 12% lower after intake of the high-protein (40%)/3.6 carbohydrate:fat preload than after intake of the low-protein (9%)/0.4 carbohydrate:fat preload (P = 0.02) solely because of the increased protein, irrespective of the manipulation of the other macronutrients. Most appetite ratings tended to be suppressed (13%) with increasing protein content of the preloads (P appetite than did carbohydrates and fat. Modulating the nutritional profile of a meal by replacing fat with protein can influence appetite in healthy adults. This trial was registered at www.clinicaltrials.gov as NCT01849302. © 2016 American Society for Nutrition.

  8. Short-term carbon partitioning fertilizer responses vary among two full-sib loblolly pine clones

    Science.gov (United States)

    Jeremy P. Stovall; John R. Seiler; Thomas R. Fox

    2012-01-01

    We investigated the effects of fertilizer application on the partitioning of gross primary productivity (GPP) between contrasting full-sib clones of Pinus taeda (L.). Our objective was to determine if fertilizer growth responses resulted from similar short-term changes to partitioning. A modeling approach incorporating respiratory carbon (C) fluxes,...

  9. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    Directory of Open Access Journals (Sweden)

    Annika C. Mosier

    2016-03-01

    Full Text Available The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.

  10. Carbon and nitrogen pools in oak-hickory forests of varying productivity

    Science.gov (United States)

    Donald J. Kaczmarek; Karyn S. Rodkey; Robert T. Reber; Phillip E. Pope; Felix, Jr. Ponder

    1995-01-01

    Carbon (C) and nitrogen (N) storage capacities are critical issues facing forest ecosystem management in the face of potential global climate change. The amount of C sequestered by forest ecosystems can be a significant sink for increasing atmospheric CO2 levels. N availability can interact with other environmental factors such as water...

  11. Soil carbon varies between different organic and conventional management schemes in arable agriculture

    DEFF Research Database (Denmark)

    Hu, Teng; Sørensen, Peter; Olesen, Jørgen Eivind

    2018-01-01

    The effects of organic versus conventional farming systems on changes in soil organic carbon (SOC) has long been debated. The effects of such comparisons may depend considerably on the design of the respective systems and climate and soil conditions under which they are performed. Here, we compar...

  12. Determination of Hydrogen and Carbon contents in crude oil and Petroleum fractions by NMR Spectroscopy

    International Nuclear Information System (INIS)

    Khadim, Mohammad A.; Wolny, R.A.; Al-Dhuwaihi, Abdullah S.; Al-Hajri, E.A.; Al-Ghamdi, M.A.

    2003-01-01

    Proton and carbon-13 NMR spectroscopic methods were developed for determining hydrogen and carbon contents in petroleum products. These methods are applicable to a wide of petroleum streams. A new reference standard, bis (trimethylsilyl) methane, BTMSM, is introduced fro both proton and carbon-13 NMR for the first time, which offers several advantages over those customarily employed. These methods are important for the calculation of the mass balance and hydrogen consumption in pilot plant studies. Unlike the ASTM D-5291 combustion method, the NMR methods also allow for the measurement of hydrogen and carbon content in low boiling fractions and those containing hydrogen as low as 1%. The NMR methods can also determine aromatic and aliphatic hydrogens carbons in a given sample without additional experimentation. The precision and accuracy of the newly developed NMR methods are compared with those of currently employed ASTM D-5291 combustion method. Using the proton NMR method, hydrogen content was determined in fifteen model compounds and sixty-eight petroleum fractions. The NMR and ASTM methods show an agreement within +5%for 48 out of a total number of 68 oil fractions. Using carbon-13 NMR, the carbon content was determined for four representative compounds and three fractions of crude oil. Both carbon-13 NMR and ASTM methods give comparable carbon content in model compounds and crude oil fractions. (author)

  13. Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C

    Science.gov (United States)

    Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.

    2013-01-01

    Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.

  14. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  15. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, David [Department of Physics, Ben-Gurion University, Be’er-Sheba 84105 (Israel)

    2017-06-10

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  16. Determination of oxygen content and carbonate impurity in YBa2Cu3O7-x by diffuse reflectance infrared spectroscopy

    International Nuclear Information System (INIS)

    Merzbacher, C.I.; Bonner, B.P.

    1991-01-01

    Samples of YBa 2 Cu 3 O 7-x with x ranging from ∼0 to 0.65 have been analyzed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in the midinfrared region (400--6000 cm -1 ). Spectral line shapes vary gradually as a function of oxygen stoichiometry, and the reflectance at 400 and 1000 cm -1 decreases linearly with decreasing oxygen content. Spectra of samples that were incompletely synthesized or exposed to a 4% CO 2 atmosphere at 650 degree C clearly indicated the presence of carbonate. DRIFTS is therefore a quick, nondestructive method for determining oxygen content in YBa 2 Cu 3 O 7-x powders, and for detecting carbonate species due to synthesis error or reaction with CO 2 -bearing atmosphere

  17. Mechanisms of oxidation of alloy 617 in helium-carbon monoxide-carbon dioxide environment with varying carbon and oxygen potentials

    Science.gov (United States)

    Kumar, Deepak

    The objective of this research was to determine the mechanism of decarburization and carburization of the alloy 617 by determining the gas-metal reactions. Binary gas mixtures containing only CO and CO2 as impurities were chosen to circumvent the complications caused by impurities H2, H2O, and CH4, normally, present in helium in addition to CO and CO2; and oxidation tests were conducted between 850°C-1000°C in six environments with CO/CO2 ratio varying between 9 and 1272. A critical temperature corresponding to the equilibrium of the reaction 2Cr+3CO↔Cr2O3+3Csolut ion was identified. Below the critical temperature the alloy reacted with CO resulting in formation of a stable chromia film and carburization, whereas, above the critical temperature the decarburization of the alloy occurred via reaction between the chromia film and carbon in the alloy producing CO and Cr. In environment with CO/CO2 of 9 the critical temperature was between 900°C and 950°C, whereas, in environment with CO/CO 2 ratio higher than 150, it was greater than 1000°C. The decarburization of the alloy occurred via two reactions occurring simultaneously on the surface: 2Cr+3/2O2→Cr2 O3, Cr2O3+3Csolution→ 2Cr+3CO. At 1000°C, the rate liming step was the formation of chromia which prevented the growth of chromia film until the carbon in the sample was depleted. The time taken for this to occur was 300h. The carburization of the alloy resulted in the formation of mixed Cr 2O3 and Cr7C3 surface scale. The Cr 7C3 was a metastable phase which nucleated due to preferential adsorption of carbon on the chromia surface. The Cr7C3 precipitates coarsened at the gas/scale interface via outward diffusion of Cr cations through the chromia scale until the activity of Cr at the reaction site fell below a critical value. Decrease in activity of Cr at the carbide/chromia interface triggered a reaction between chromia and carbide: Cr2O3+Cr7C3 →9Cr+3CO. The CO so produced was transported through the

  18. Carbon allocation to major metabolites in illuminated leaves is not just proportional to photosynthesis when gaseous conditions (CO2 and O2 ) vary.

    Science.gov (United States)

    Abadie, Cyril; Bathellier, Camille; Tcherkez, Guillaume

    2018-04-01

    In gas-exchange experiments, manipulating CO 2 and O 2 is commonly used to change the balance between carboxylation and oxygenation. Downstream metabolism (utilization of photosynthetic and photorespiratory products) may also be affected by gaseous conditions but this is not well documented. Here, we took advantage of sunflower as a model species, which accumulates chlorogenate in addition to sugars and amino acids (glutamate, alanine, glycine and serine). We performed isotopic labelling with 13 CO 2 under different CO 2 /O 2 conditions, and determined 13 C contents to compute 13 C-allocation patterns and build-up rates. The 13 C content in major metabolites was not found to be a constant proportion of net fixed carbon but, rather, changed dramatically with CO 2 and O 2 . Alanine typically accumulated at low O 2 (hypoxic response) while photorespiratory intermediates accumulated under ambient conditions and at high photorespiration, glycerate accumulation exceeding serine and glycine build-up. Chlorogenate synthesis was relatively more important under normal conditions and at high CO 2 and its synthesis was driven by phosphoenolpyruvate de novo synthesis. These findings demonstrate that carbon allocation to metabolites other than photosynthetic end products is affected by gaseous conditions and therefore the photosynthetic yield of net nitrogen assimilation varies, being minimal at high CO 2 and maximal at high O 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Thallium and its contents in Remata carbonate rocks

    Directory of Open Access Journals (Sweden)

    Kondelová Marcela

    1996-09-01

    Full Text Available The article presents at first the list of thallium own minerals and its isomorphic content in other minerals, especially in Slovakian ore deposits. This trace element was found in numerous dolomite-rock samples from Remata massif near Handlová. An interesting level of Tl content was analyzed in nonsilicified rocks; the highest content of Tl (and Ag are along the E – W line of disturbance. The presence of thallium in some limonitic aggregates in close Kremnica-gold deposit indicate any continuous relation. Some similarities to type gold deposits Carlin ( USA are discussed, even if no gold and discrete thallium phases were in Remata determined yet.

  20. Varying carbon structures templated from KIT-6 for optimum electrochemical capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Li Fujun; Laak, Nicole van der; Ting, S.-W. [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Chan, K.-Y., E-mail: hrsccky@hku.h [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2010-03-01

    Bicontinuous ordered mesoporous carbons (OMCs), fabricated from a KIT-6 template using aluminosilicate as catalyst and furfuryl alcohol as carbon source, were successfully prepared and studied as electrodes in supercapacitors. Their structures were characterized by transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXD) and N{sub 2} cryosorption methods. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the capacitive performance of the OMCs was found to be strongly dependent on the mesostructure. Specific capacitance value greater than 130 F g{sup -1} at 20 mV s{sup -1} were obtained from an OMC that featured high surface area with the existence of additional large pores to enhance the specific capacitance at high discharge rate. For the OMC with the best performance, we found that a power density as high as 4.5 kW kg{sup -1} at an energy density of 6.1 Wh kg{sup -1} can be delivered when the discharge current density is 20 A g{sup -1} and can also be continuously charged and discharged with little variation in capacitance after 2500 cycles. These results indicate that this OMC with optimized structure has potential to be used as a power component in electric vehicles.

  1. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Littmann, Sten

    2016-01-01

    determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density......-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow...... small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates...

  2. The effect of varying alveolar carbon dioxide levels on free recall.

    Science.gov (United States)

    Marangoni, A H; Hurford, D P

    1990-05-01

    A recent study suggested that students who have increased minute ventilation receive poorer grades. The present study was interested in determining the role alveolar carbon dioxide (CO2) levels play with cognitive abilities. A free recall task was used to examine list learning under two conditions of alveolar CO2 level: normal and decreased. The results suggested that decreased alveolar CO2 level affect the participant's ability to rehearse and recall information. It was concluded that conditions that reduce alveolar CO2 levels, such as hyperventilation resulting from stress, nervousness, or inappropriate breathing habits, can lead to poorer learning. If these conditions produce a habitual breathing pattern, the academic performance of the individual may suffer.

  3. Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings.

    Science.gov (United States)

    Sinha, R; Rothman, N; Salmon, C P; Knize, M G; Brown, E D; Swanson, C A; Rhodes, D; Rossi, S; Felton, J S; Levander, O A

    1998-04-01

    Meats cooked at high temperatures sometimes contain heterocyclic amines (HCAs) that are known mutagens and animal carcinogens, but their carcinogenic potential in humans has not been established. To investigate the association between HCAs and cancer, sources of exposure to these compounds need to be determined. Beef is the most frequently consumed meat in the United States and for this study we determined HCA values in beef samples cooked in ways to represent US cooking practices, the results of which can be used in epidemiological studies to estimate HCA exposure from dietary questionnaires. We measured five HCAs [2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)] in different types of cooked beef using solid-phase extraction and HPLC. Steak and hamburger patties were pan-fried, oven-broiled, and grilled/barbecued to four levels of doneness (rare, medium, well done or very well done), while beef roasts were oven cooked to three levels of doneness (rare, medium or well done). The measured values of the specific HCAs varied with the cut of beef, cooking method, and doneness level. In general, MeIQx content increased with doneness under each cooking condition for steak and hamburger patties, up to 8.2 ng/g. PhIP was the predominant HCA produced in steak (1.9 to 30 ng/g), but was formed only in very well done fried or grilled hamburger. DiMeIQx was found in trace levels in pan-fried steaks only, while IQ and MeIQ were not detectable in any of the samples. Roast beef did not contain any of the HCAs, but the gravy made from the drippings from well done roasts had 2 ng/g of PhIP and 7 ng/g of MeIQx. Epidemiological studies need to consider the type of meat, cooking method and degree of doneness/surface browning in survey questions to adequately assess

  4. Relationship of subseafloor microbial diversity to sediment age and organic carbon content

    Science.gov (United States)

    Walsh, E. A.; Kirkpatrick, J. B.; Sogin, M. L.; D'Hondt, S. L.

    2013-12-01

    Our tag pyrosequencing investigation of four globally distant sites reveals sediment age and total organic carbon content to be significant components in understanding subseafloor diversity. Our sampling locations include two sites from high-productivity regions (Indian Ocean and Bering Sea) and two from moderate-productivity (eastern and central equatorial Pacific Ocean). Sediment from the high-productivity sites has much higher TOC than sediment from the moderate-productivity equatorial sites. We applied a high-resolution 16S V4-V6 tag pyrosequencing approach to 24 bacterial and 17 archaeal samples, totaling 602,502 reads. We identified1,291 archaeal and 15,910 bacterial OTUs (97%) from these reads. We analyzed bacterial samples from all four sites in addition to archaeal samples from our high productivity sites. These high productivity, high TOC sites have a pronounced methane-rich sulfate-free zone at depth from which archaea have been previously considered to dominate (Biddle et al., 2006). At all four locations, microbial diversity is highest near the seafloor and drops rapidly to low but stable values with increasing sediment depth. The depth at which diversity stabilizes varies greatly from site to site, but the age at which it stabilizes is relatively constant. At all four sites, diversity reaches low stable values a few hundred thousand years after sediment deposition. The sites with high total organic carbon (high productivity sites) generally exhibit higher diversity at each sediment age than the sites with lower total organic carbon (moderate-productivity sites). Archaeal diversity is lower than bacterial diversity at every sampled depth. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R. et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. PNAS 103: 3846-3851.

  5. Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas

    DEFF Research Database (Denmark)

    Pedersen, K M; Laurberg, P; Nøhr, S

    1999-01-01

    The iodine intake level of the population is of major importance for the occurrence of thyroid disorders in an area. The aim of the present study was to evaluate the importance of drinking water iodine content for the known regional differences in iodine intake in Denmark and for the iodine content...

  6. Varying response of the concentration and content of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment

    Science.gov (United States)

    A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...

  7. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  8. Microstructural investigations of 0.2% carbon content steel

    Science.gov (United States)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  9. Simulated long-term effects of varying tree retention on wood production, dead wood and carbon stock changes.

    Science.gov (United States)

    Santaniello, Francesca; Djupström, Line B; Ranius, Thomas; Weslien, Jan; Rudolphi, Jörgen; Sonesson, Johan

    2017-10-01

    Boreal forests are an important source of timber and pulp wood, but provide also other products and services. Utilizing a simulation program and field data from a tree retention experiment in a Scots pine forest in central Sweden, we simulated the consequences during the following 100 years of various levels of retention on production of merchantable wood, dead wood input (as a proxy for biodiversity), and carbon stock changes. At the stand level, wood production decreased with increased retention levels, while dead wood input and carbon stock increased. We also compared 12 scenarios representing a land sharing/land sparing gradient. In each scenario, a constant volume of wood was harvested with a specific level of retention in a 100-ha landscape. The area not needed to reach the defined volume was set-aside during a 100-year rotation period, leading to decreasing area of set-asides with increasing level of retention across the 12 scenarios. Dead wood input was positively affected by the level of tree retention whereas the average carbon stock decreased slightly with increasing level of tree retention. The scenarios will probably vary in how they favor species preferring different substrates. Therefore, we conclude that a larger variation of landscape-level conservation strategies, also including active creation of dead wood, may be an attractive complement to the existing management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  11. High resolution carbon isotope of Crassostrea cuttakensis: A proxy for seasonally varying carbon dynamics in a tropical delta-estuary system

    Science.gov (United States)

    Sreemany, Arpita

    2017-04-01

    The exponential increase in the atmospheric CO2 concentration and global temperature is becoming a major threat to the existence of the mankind. It has been proposed that the ˜2 ˚ C rise in the average global temperature may lead to a point of no-return where the balance between the climate and the ecosystem collapses. Therefore, detailed understanding of the major carbon reservoirs and their mutual interactions is needed for better future climate prediction. Among all the reservoirs, ocean holds ˜90 % of the exogenic carbon and promotes long term storage in sediments. However, the majority of the sedimentary carbon is of terrestrial origin and transported through rivers, which play an important role in carbon exchange between the atmosphere, terrestrial biosphere, and oceans. The transportation of organic carbon through river does not follow a simple conveyer belt model. Various organic and inorganic reactions (i.e., organic carbon degradation, inorganic carbon precipitation, primary production, community respiration) modify the state of the carbon to form a major sub-reservoir in the river, i.e., Dissolved Inorganic Carbon (DIC). So, identifying the source/s of the DIC is crucial to understand the carbon dynamics in the river. Stable carbon isotopic composition of the DIC (δ13CDIC) has long been extensively used to reveal the dominant source/s of the DIC. The majority of the large rivers, being situated in the tropical belts, show seasonal fluctuation in the DIC sources. However, seasonal sampling in the remotest reaches of these rivers hindered our thorough understanding of the seasonally varying source/s of DIC in these rivers. Many calcifying organisms precipitate their shell carbonate in equilibrium with water and hence likely to record the δ13CDICof ambient water in their shell. In this study, a living oyster (Crassostrea cuttakensis) was collected from Matla River, which is part of the Ganges Brahmaputra river delta system, and analyzed for its stable

  12. Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction

    International Nuclear Information System (INIS)

    Lo, An-Ya; Hung, Chin-Te; Yu, Ningya; Kuo, Cheng-Tzu; Liu, Shang-Bin

    2012-01-01

    Highlights: ► CPMs with varied pore sizes (1–400 nm) were replicated from various porous silicas by CVI method. ► MOR activities of Pt/CPM electrocatalysts increase with increasing pore size of CPM support. ► Microporous CPMs are favorable supports for Pt in terms of catalytic performance and CO-tolerance. -- Abstract: Carbon porous materials (CPMs) with extended ranges of pore size and morphology were replicated using various porous silicas, such as zeolites, mesoporous silicas, and photonic crystals, as templates by means of chemical vapor infiltration (CVI) method. The micro-, meso-, and macro-porous carbons so fabricated were adopted as supports for the metal (Pt) catalyst for direct methanol fuel cells (DMFCs), and the supported Pt/CPM electrocatalysts were characterized by a variety of different spectroscopic/analytical techniques, viz. transmission electron microscopy (TEM), Raman, X-ray photoelectron spectroscopy (XPS), gas physisorption/chemisorption analyses, and cyclic voltammetry (CV). That these Pt/CPMs were found to exhibit superior electrocatalytic activities compared to the commercial Pt/XC-72 with a comparable Pt loading during methanol oxidation reaction (MOR) is attributed to the presence of Pt nanoparticles (NPs; typically 1–3 nm in size) that are highly dispersed in the CPMs, facilitating an improved tolerance for CO poisoning. While the MOR activity observed for various Pt/CPMs tend to increase with increasing pore size of the carbon supports, Pt catalyst supported on carbon substrates possessing microporosities was found to have superior stability in terms of tolerance for CO poisoning than those with greater pore size or having meso- and macroporosities.

  13. Properties of welded joints of 2,25Cr-1Mo steel with various carbon content

    International Nuclear Information System (INIS)

    Vornovitskij, I.N.; Brodetskaya, E.Z.; Pozdnyakova, A.S.

    1980-01-01

    Properties of welded joints of 2,25 Cr - 1 Mo steel pipelines with different carbon content are considered. It is shown that application of electrodes developed in some countries for welding permits in many cases to exclude heat treatment of welded joints owing to high ductility of weld deposited metal. To improve the ductility, it is necessary to limit both carbon content down to 0,03-0,06% and detrimental elements (sulfur, phosphorus). Heat affected zone hardness may be increased at the expense of carbon. Weld deposited metal possesses the highest long-term strength at the given test temperature; in this case long-term strength of welded joints and base metal is practically the same. The long-term strength of high-carbon steel is higher at the test temperature of 565 deg C as compared to mean-carbon and low-carbon steels, whose long-term strength is practically equal at this temperature. The long-term strength of high-carbon and mean-carbon steels is practically the same and higher as compared with low-carbon one at the test temperature of 510 deg C

  14. Effect of alkali metal content of carbon on retention of iodine at high temperatures

    International Nuclear Information System (INIS)

    Evans, A.G.

    1975-01-01

    Activated carbon for filters in reactor confinement systems is intentionally impregnated with iodine salts to enhance the removal of radioiodine from air streams containing organic iodides. When a variety of commercial impregnated carbons were evaluated for iodine retention at elevated temperatures (4 hours at 180 0 C), wide variations in iodine penetration were observed. The alkali metal and iodine content of carbon samples was determined by neutron activation analysis, and a strong correlation was shown between the atom ratio of iodine to alkali metals in the carbons and the high-temperature retention performance. Carbons containing excess alkali (especially potassium) have iodine penetration values 10 to 100 times lower than carbons containing excess iodine. Both low I/K ratios and high pH values were shown essential to high efficiency iodine retention; therefore, conversion of elemental iodine to ionic iodine is the basic reaction mechanism. The natural high K + content and high pH coconut carbons make coconut the preferred natural base material for nuclear air cleaning applications. Studies show, however, that treatment of low potassium carbons with a mixture of KOH and I 2 may produce a product equal to or better than I 2 -impregnated coconut carbons at a lower cost. (U.S.)

  15. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  16. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments

    International Nuclear Information System (INIS)

    Oen, Amy M.P.; Cornelissen, Gerard; Breedveld, Gijs D.

    2006-01-01

    Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r 2 = 0.85) than versus OC (r 2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6 ± 3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone. - PAH contents correlated better with black carbon than organic carbon for four Norwegian harbor sediments

  17. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  18. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  19. Total carbon content and humic substances quality in selected subtypes of Cambisols

    Directory of Open Access Journals (Sweden)

    Veronika Petrášová

    2009-01-01

    Full Text Available Cambisols cover an estimated 45% of agricultural soils in the Czech Republic. We aimed our work at stabile forms of organic carbon and humic substances quality in Cambisols under different types of soil management (grassland and arable soil. Object of our study were the following subtypes of Cambisols: Eutric Cambisol (locality Vatín – arable soil, Eutric Cambisol (locality Vatín – grassland, Haplic Cambisol (locality Náměšť n/Oslavou – arable soil, Leptic Cambisol (locality Ocmanice – grassland, Haplic Cambisol (locality Nové Město na Moravě – arable soil, Haplic Cambisol (locality Přemyslov – Tři Kameny – grassland, Arenic Cambisol (locality Pocoucov – arable soil, Dystric Cambisol (locality Sněžné – arable soil, Dystric Cambisol (locality Velká Skrovnice – arable soil, Dystric Cambisol (locality Vojnův Městec – arable soil. Non-destructive spectroscopic methods such as UV-VIS spectroscopy, synchronous fluorescence spectroscopy (SFS and 13C NMR spectroscopy for humic substances (HS quality assessment were used. Total organic carbon (TOC content was determined by oxidimetric titration. Fractionation of HS was made by short fractionation method. Isolation of pure humic ­acids (HA preparation was made according to the standard IHSS method.Results showed that TOC and humus content varied from 2.70 % (grassland to 1.3 % (arable soil. Ave­ra­ge HS sum was 8.4 mg / kg in grassland and 6.4 mg / kg in arable soil. Average HA sum was 3.6 mg / kg in grassland and 3 mg / kg in arable soil. Fulvic acids (FA content was 4.7 mg / kg in grassland and 3.7 mg / kg in arable soil. HS quality was low and very similar for all studied samples. HA/FA ratio low (< 1. HS absorbance in UV-VIS spectral range was low and similar in all studied samples. Higher absorption in this spectral range was closely connected with higher HS content. Also in 2D-synchronous fluorescence scan spectra

  20. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    Science.gov (United States)

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  1. Cement content influence in rebar corrosion in carbonated mortars

    Directory of Open Access Journals (Sweden)

    Américo, P. O.

    2003-12-01

    Full Text Available The cement hydration products protect the concrete rebars of the reinforced concrete due to the production of Ca(OH2, NaOH, and KOH that, upon dissolving in the concrete s aqueous phase, generate a pH above 12.5. However, reinforced concrete structures are exposed to pollutant gases, such as, CO2 which upon penetrating the concrete, reacts with the alkaline components, consequently reducing the pH of the aqueous phase causing the loss of passivity by the rebar and as a consequence its corrosion when there is the presence of humidity and oxygen. The objective of the current paper is the analysis of the alkaline reserve influence, measured by the cement content, in the corrosion of rebars employing the polarization resistance technique for determining the corrosion intensity. Results for corrosion intensity of rebars embedded in prismatic mortar test specimens are produced with three cement content levels, with equal water/cement ratio. Cylindrical test specimens were also used for verification of the capillary absorption and the porosity by means of mercury porosymetry The results show that the initiation period is shorter and the corrosion intensity of the rebars is higher when the cement content is lower However, there is also an alteration in the microstructure upon altering the cement content, and far this reason one cannot conclude that the alkaline reserve alone is responsible for these results.

    Los productos de hidratación del cemento protegen las armaduras embebidas en el hormigón debido a la gran cantidad de Ca(OH2, NaOH y KOH disueltos en la fase acuosa del hormigón que proporcionan un pH mayor que 12,5. Sin embargo, las estructuras de hormigón armado están expuestas a los gases contaminantes como el CO2, que al penetrar en el hormigón reacciona con los compuestos alcalinos, se reduce el pH de la fase acuosa y provocan la despasivación de la armadura. Posteriormente, si hay

  2. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, Oscar; Lavery, P. S.; Duarte, Carlos M.; Kendrick, Gary A.; Calafat, Antoni; York, P.; Steven, Andy; Macreadie, Peter I.

    2016-01-01

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (C-org) content in terrestrial soils and marine sediments has

  3. Determination of the carbon content of domestic farm produces to estimate offsite C-14 ingestion dose

    International Nuclear Information System (INIS)

    Jung, Y. G.; Kim, M. J.; Lee, G. B.

    2003-01-01

    The carbon content of grains, leafy and root vegetables, and fruits which the Koreans usually eat were calculated to use in the estimation of offsite C-14 ingestion dose. With the data of food intake per day in the Report on 1998 national health and nutrition survey- dietary intake survey, 5 age-group integrate d intake of the 4 farm produce groups were extracted for food items and the amount. Intake percentage in each food group were taken as food weighing factor for the foods. Carbon content was calculated using protein, fat, and carbohydrate content of the foods, and multiplied by the corresponding food weighing factor to derive the content of the food groups. The calculated carbon content of grains, leafy and root vegetables, and fruits were 39.%, 4.2%, 8.0%, and 5.9% respectively. Grains and fruits were not much different from ODCM for carbon content, but vegetables were higher by 0.7%∼4.5%

  4. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  5. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  6. Corrosivities in a pilot-scale combustor of a British and two Illinois coals with varying chlorine contents

    Science.gov (United States)

    Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.

    2000-01-01

    Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.

  7. TOTAL AND FRACTIONAL CONTENTS OF PROTEINS IN BEAN SEEDS UNDER THE CONDITIONS OF VARIED FERTILISATION WITH MICROELEMENTS

    Directory of Open Access Journals (Sweden)

    Wojciech KOZERA

    2013-03-01

    Full Text Available Over 2003-2005 at the Experiment Station at Wierzchucinek at the University of Technology and Life Sciences in Bydgoszcz, there was performed a strict one-factor micro-plot experiment in split-splot design. The factor tested was a type of microelements [n=5: Cu, Zn, Mn, Mo, B]. The microelements were foliar sprayed in a chelated form, as the series of Symfonia fertilizers. The study aimed at comparing the effect of five agricultural-engineering basic microelements on the contents and protein composition of the seeds of Aura cultivar. The fertilization applied, boron and manganese in particular, showed an effect on the increase in the contents of total protein in bean seeds. It also modified the fractional composition of the bean seed protein. There was observed a clear increase in the fraction of albumins and globulins in seeds as a result of the microelements applied, except for boron. The fertilization with molybdenum, boron, copper and zinc reduced the content of glutelins, and the sum of glulelins and prolamines in the bean seeds.

  8. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China

    Science.gov (United States)

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  9. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  10. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content.

    Science.gov (United States)

    Yu, Long; Zhang, Xiaogang

    2004-10-01

    The electrochemical performance of V2O5 has been studied in propylene carbonate (PC)-containing magnesium perchlorate [Mg(ClO4)2] electrolytes in view of their application as positive electrode in the rechargeable magnesium batteries. V2O5 exhibited good properties in hosting magnesium ions and its electrochemical performance depended on the amount of H2O in the electrolytes. The highest first discharge specific capacities of V2O5 electrode was up to 158.6 mAh/g in 1 mol dm(-3) Mg(ClO4)2 + 1.79 mol dm(-3) H2O/PC electrolytes. Electrochemical impedance spectroscopy (EIS) and charging-discharging tests showed that a reasonable amount of H2O in the electrolyte solution facilitated the electrochemical performance of V2O5 electrodes.

  11. Carbon and nitrogen in Danish forest soils - Contents and distribution determined by soil order

    DEFF Research Database (Denmark)

    Vejre, Henrik; Callesen, Ingeborg; Vesterdal, Lars

    2003-01-01

    ). The average total organic C and N contents were 12.5 and 0.61 kg m(-2) respectively. There were large differences in total C and N among soil orders. Spodosols had the greatest C content (14.6 kg m(-2)), and Alfisols the least (8.8 kg m(-2)), while the N content was highest in Alfisols (0.75 kg m(-2......)) and least in Spodosols (0.51 kg m(-2)). The main contributor to the high C content in Spodosols is the spodic horizons containing illuvial humus, and thick organic horizons. Carbon and N concentrations decreased with soil depth. Soil clay content was negatively correlated to C content and positively...

  12. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  13. Variations and determinants of carbon content in plants: a global synthesis

    Science.gov (United States)

    Ma, Suhui; He, Feng; Tian, Di; Zou, Dongting; Yan, Zhengbing; Yang, Yulong; Zhou, Tiancheng; Huang, Kaiyue; Shen, Haihua; Fang, Jingyun

    2018-02-01

    Plant carbon (C) content is one of the most important plant traits and is critical to the assessment of global C cycle and ecological stoichiometry; however, the global variations in plant C content remain poorly understood. In this study, we conducted a global analysis of the plant C content by synthesizing data from 4318 species to document specific values and their variation of the C content across plant organs and life forms. Plant organ C contents ranged from 45.0 % in reproductive organs to 47.9 % in stems at global scales, which were significantly lower than the widely employed canonical value of 50 %. Plant C content in leaves (global mean of 46.9 %) was higher than that in roots (45.6 %). Across life forms, woody plants exhibited higher C content than herbaceous plants. Conifers, relative to broad-leaved woody species, had higher C content in roots, leaves, and stems. Plant C content tended to show a decrease with increasing latitude. The life form explained more variation of the C content than climate. Our findings suggest that specific C content values of different organs and life forms developed in our study should be incorporated into the estimations of regional and global vegetation biomass C stocks.

  14. Variations and determinants of carbon content in plants: a global synthesis

    Directory of Open Access Journals (Sweden)

    S. Ma

    2018-02-01

    Full Text Available Plant carbon (C content is one of the most important plant traits and is critical to the assessment of global C cycle and ecological stoichiometry; however, the global variations in plant C content remain poorly understood. In this study, we conducted a global analysis of the plant C content by synthesizing data from 4318 species to document specific values and their variation of the C content across plant organs and life forms. Plant organ C contents ranged from 45.0 % in reproductive organs to 47.9 % in stems at global scales, which were significantly lower than the widely employed canonical value of 50 %. Plant C content in leaves (global mean of 46.9 % was higher than that in roots (45.6 %. Across life forms, woody plants exhibited higher C content than herbaceous plants. Conifers, relative to broad-leaved woody species, had higher C content in roots, leaves, and stems. Plant C content tended to show a decrease with increasing latitude. The life form explained more variation of the C content than climate. Our findings suggest that specific C content values of different organs and life forms developed in our study should be incorporated into the estimations of regional and global vegetation biomass C stocks.

  15. Structural and electrical characterization of AuPtAlTi ohmic contacts to AlGaN/GaN with varying annealing temperature and Al content

    OpenAIRE

    Fay, Mike W.; Han, Y.; Brown, Paul D.; Harrison, Ian; Hilton, K.P.; Munday, A.; Wallis, D.; Balmer, R.S.; Uren, M.J.; Martin, T.

    2008-01-01

    The effect of varying annealing temperature and Al layer thickness on the structural and electrical characteristics of AuPtAlTi/AlGaN/GaN ohmic contact structures has been systematically investigated. The relationship between annealing temperature, Al content, interfacial microstructure, surface planarity and contact resistance is\\ud examined. In particular, the presence of a detrimental low temperature Pt-Al reaction is identified. This is implicated in both the requirement for a higher Al:T...

  16. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  17. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED

    2012-11-01

    Full Text Available International Journal of Renewable Energy Development www.ijred.com Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  18. Properties of carbon composite paper derived from coconut coir as a function of polytetrafluoroethylene content

    Science.gov (United States)

    Destyorini, Fredina; Indriyati; Indayaningsih, Nanik; Prihandoko, Bambang; Zulfia Syahrial, Anne

    2018-03-01

    The carbon composite papers were produced by utilizing carbon materials from coconut coir. In the present work, carbon composite papers (CCP) were prepared by mixing carbon materials in the form of powder and fibre with polymer (ethylene vinyl acetate and polyethylene glycol) in xylene at 100°C. Then, polytetrafluoroethylene (PTFE) with different content was used to treat the surface of CCP. The properties of PTFE-coated CCP were analysed by means of contact angle measurement, tensile testing, porosity, density, and electrical conductivity measurements. As expected, all CCP’s surfaces treated with PTFE were found to be hydrophobic with contact angle >120° and relatively constant during 60 minutes measurement. Furthermore, water contact angle, density, and mechanical properties of CCP generally increase with increasing PTFE content. However, the porosity and electrical conductivity of CCP decrease slightly as the PTFE content increased from 0 wt% to 30 wt%. Based on the observation and analysis, the optimum PTFE content on CCP was 20 %, in which the mechanical properties and hydrophobicity behaviour were improved significantly, but it was only caused a very small drop in porosity and electrical conductivity

  19. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost

    Science.gov (United States)

    Euskirchen, Eugenie S; Edgar, C.W.; Turetsky, M.R.; Waldrop, Mark P.; Harden, Jennifer W.

    2016-01-01

    Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2), water, and energy fluxes, associated environmental variables, and methane (CH4) fluxes at the collapse scar bog. The ecosystems all acted as net sinks of CO2 in 2011 and 2012, when air temperature and precipitation remained near long-term means. In 2013, under a late snowmelt and late leaf out followed by a hot, dry summer, the permafrost forest and collapse scar bog were sources of CO2. In this same year, CO2 uptake in the fen increased, largely because summer inundation from groundwater inputs suppressed ecosystem respiration. CO2 exchange in the permafrost forest and collapse scar bog was sensitive to warm air temperatures, with 0.5 g C m−2 lost each day when maximum air temperature was very warm (≥29°C). The bog lost 4981 ± 300 mg CH4 m−2 between April and September 2013, indicating that this ecosystem acted as a significant source of both CO2 and CH4 to the atmosphere in 2013. These results suggest that boreal peatland responses to warming and drying, both of which are expected to occur in a changing climate, will depend on permafrost regime.

  20. Feed consumption, nutrient utilization and serum metabolite profile of captive blackbucks (Antelope cervicapra) fed diets varying in crude protein content.

    Science.gov (United States)

    Das, A; Katole, S; Kumar, A; Gupta, S P; Saini, M; Swarup, D

    2012-06-01

    A feeding trial was conducted to determine the optimum level of crude protein (CP) in the diet of captive blackbuck (Antelope cervicapra) in which feed consumption and nutrient utilization are maximal. Fifteen blackbucks (BW 25-34 kg) were distributed into three groups of five each in an experiment of 75-days duration including a digestion trial of 5-day collection period. All the animals were offered 200 g of concentrates and fresh maize fodder ad libitum. The overall CP content of the three respective diets was 6.9%, 10.4% and 12.7%. Blood samples were collected on the last day of the experiment. Intake and digestibility of CP increased (p consumption and nutrient intake were not significantly different among the groups. However, digestibilities of most of the nutrients were higher in the 10.4% CP diet than in the 6.9% CP diet. The endogenous loss of nitrogen was similar among the groups. Based on the endogenous losses, minimum N requirement was calculated to be 776 mg/kg BW(0.75) /day, and to meet this requirement, diet must contain at least 8.27% CP. Serum urea nitrogen concentration increased (p consumption and serum metabolite profile of blackbucks. © 2011 Blackwell Verlag GmbH.

  1. Magnetism as indirect tool for carbon content assessment in nickel nanoparticles

    Science.gov (United States)

    Oumellal, Y.; Magnin, Y.; Martínez de Yuso, A.; Aguiar Hualde, J. M.; Amara, H.; Paul-Boncour, V.; Matei Ghimbeu, C.; Malouche, A.; Bichara, C.; Pellenq, R.; Zlotea, C.

    2017-12-01

    We report a combined experimental and theoretical study to ascertain carbon solubility in nickel nanoparticles embedded into a carbon matrix via the one-pot method. This original approach is based on the experimental characterization of the magnetic properties of Ni at room temperature and Monte Carlo simulations used to calculate the magnetization as a function of C content in Ni nanoparticles. Other commonly used experimental methods fail to accurately determine the chemical analysis of these types of nanoparticles. Thus, we could assess the C content within Ni nanoparticles and it decreases from 8 to around 4 at. % with increasing temperature during the synthesis. This behavior could be related to the catalytic transformation of dissolved C in the Ni particles into graphite layers surrounding the particles at high temperature. The proposed approach is original and easy to implement experimentally since only magnetization measurements at room temperature are needed. Moreover, it can be extended to other types of magnetic nanoparticles dissolving carbon.

  2. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  3. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Alan F. Talhelm; Kurt S. Pregitzer; Mark E. Kubiske; Donald R. Zak; Courtney E. Campany; Andrew J. Burton; Richard E. Dickson; George R. Hendrey; J. G. Isebrands; Keith F. Lewin; John Nagy; David F. Karnosky

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment...

  4. Late quaternary fluctuations in carbonate and carbonate ion content in the northern Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.

    -normalized carbonate ion (CO3=*) range from 90 to 125µmol kg-1 in the tropical region of the world oceans with a weight los of 0.3 ± 0.05µg mol -1kg-1 (Broecker and Clark, 201d). Botm water CO3=* concentration bathing the core tops are in the range of 88 to 13 μmolkg-1...

  5. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    Science.gov (United States)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  6. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  7. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    Science.gov (United States)

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  8. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    International Nuclear Information System (INIS)

    Zhang Na; Yang Yu; Tao Shu; Liu Yan; Shi Kelu

    2011-01-01

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: → Soil organic carbon content determines the OCP sequestration fraction in soil. → Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. → The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. → DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  9. Considering Organic Carbon for Improved Predictions of Clay Content from Water Vapor Sorption

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2014-01-01

    Accurate determination of the soil clay fraction (CF) is of crucial importance for characterization of numerous environmental, agricultural, and engineering processes. Because traditional methods for measurement of the CF are laborious and susceptible to errors, regression models relating the CF...... to water vapor sorption isotherms that can be rapidly measured with a fully automated vapor sorption analyzer are a viable alternative. In this presentation we evaluate the performance of recently developed regression models based on comparison with standard CF measurements for soils with high organic...... carbon (OC) content and propose a modification to improve prediction accuracy. Evaluation of the CF prediction accuracy for 29 soils with clay contents ranging from 6 to 25% and with OC contents from 2.0 to 8.4% showed that the models worked reasonably well for all soils when the OC content was below 2...

  10. Effect of single varied doses of UV-C radiation on photosynthesis, traspiration and chlorophyll content in the leaves of two varieties of faba bean and pea

    International Nuclear Information System (INIS)

    Olszewski, J.; Pszczolkowska, A.

    2004-01-01

    The effect of single, varied (75, 120 and 165 min) UV-C radiation on photosynthesis and transpiration in leaves of two morphotypes of faba bean and pea was determined in a pot experiment. The SPAD leaf greenness index, which characterises the a and b chlorophyll contents (as well as changes in its content caused by radiation) were analysed. The experimental results indicated that the intensity of photosynthesis and transpiration in faba bean leaves was higher in the plants treated with the UV-C radiation. In addition, the intensity of photosynthesis and the chlorophyll content were higher in the Neptun variety than in the self-terminating faba bean variety. The Rola pea variety plants showed a significant decrease in photsynthesis intensity under radiation in the 3rd leaf phase and a slight decrease in later developmental phases. Moreover, transpiration was found to decrease at the beginning of the vegetation. In the case of the Ramrod variety, rather ambiguous results were obtained. The chlorophyll content in both pea varieties was high in the 3rd proper leaf phase and in the Rola plants it increased with increasing radiation doses in the stem extension phase

  11. A Raman Study of Carbonates and Organic Contents in Five CM Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Farley, C.; Cheung, J. C. H.

    2016-01-01

    Carbonates comprise the second most abundant class of carbon-bearing phases in carbonaceous chondrites after organic matter (approximately 2 wt.%), followed by other C-bearing phases such as diamond, silicon carbide, and graphite. Therefore, understanding the abundances of carbonates and the associated organic matter provide critical insight into the genesis of major carbonaceous components in chondritic materials. Carbonates in CM chondrites mostly occur as calcite (of varying composition) and dolomite. Properly performed, Raman spectroscopy provides a non-destructive technique for characterizing meteorite mineralogy and organic chemistry. It is sensitive to many carbonaceous phases, allows the differentiation of organic from inorganic materials, and the interpretation of their spatial distribution. Here, with the use of Raman spectroscopy, we determine the structure of the insoluble organic matter (IOM) in the matrix and carbonate phases in five CM chondrites: Jbilet Winselwan, Murchison, Nogoya, Santa Cruz, and Wisconsin Range (WIS) 91600, and interpret the relative timing of carbonate precipitation and the extent of the associated alteration events.

  12. Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices

    International Nuclear Information System (INIS)

    Menezes, Lilian M. de; Houllier, Melanie A.; Tamvakis, Michael

    2016-01-01

    Long-run dynamics of electricity prices are expected to reflect fuel price developments, since fuels generally account for a large share in the cost of generation. As an integrated European market for electricity develops, wholesale electricity prices should be converging as a result of market coupling and increased interconnectivity. Electricity mixes are also changing, spurred by a drive to significantly increase the share of renewables. Consequently, the electricity wholesale price dynamics are evolving, and the fuel–electricity price nexus that has been described in the literature is likely to reflect this evolution. This study investigates associations between spot prices from the British, French and Nordpool markets with those in connected electricity markets and fuel input prices, from December 2005 to October 2013. In order to assess the time-varying dynamics of electricity spot price series, localized autocorrelation functions are used. Electricity spot prices in the three markets are found to have stationary and non-stationary periods. When a trend in spot prices is observed, it is likely to reflect the trend in fuel prices. Cointegration analysis is then used to assess co-movement between electricity spot prices and fuel inputs to generation. The results show that British electricity spot prices are associated with fuel prices and not with price developments in connected markets, while the opposite is observed in the French and Nordpool day-ahead markets. - Highlights: • Electricity market integration policies may have altered EU spot electricity prices. • LACF is used to assess the changing nature of electricity spot prices. • EU electricity spot prices show both stationary and non-stationary periods. • Carbon and fuel prices have greater impact on British spot prices. • In continental Europe, electricity prices have decoupled from fuel prices.

  13. An optical method for characterizing carbon content in ceramic pot filters.

    Science.gov (United States)

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  14. Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure

    DEFF Research Database (Denmark)

    Jensen, Johannes Lund; Christensen, Bent Tolstrup; Schjønning, Per

    2018-01-01

    Assessments of changes in soil organic carbon (SOC) stocks depend heavily on reliable values of SOC content obtained by automated high‐temperature C analysers. However, historical as well as current research often relies on indirect SOC estimates such as loss‐on‐ignition (LOI). In this study, we...... revisit the conversion of LOI to SOC using soil from two long‐term agricultural field experiments and one arable field with different contents of SOC, clay and particles fractions were isolated from the arable soil. Samples were analysed for texture, LOI (500...

  15. Variation of the uranium monocarbide parameter with changes in the carbon content; Variations du parametre du monocarbure d'uranium en fonction de sa teneur en carbone

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, P; Accary, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors show that the chemical species uranium monocarbide is only a particular composition of the uranium-carbon alloy phase containing between 48 and 50 atoms per cent of carbon, and that the crystalline parameter of this phase varies simultaneously from 4.956 to 4.961 Angstroms. (authors) [French] Les auteurs montrent que l'espece chimique monocarbure d'uranium n'est qu'une composition particuliere de la phase des alliages uranium carbone contenant entre 48 et 50 atomes pour cent de carbone et que le parametre cristallin de cette phase varie simultanement de 4.956 a 4.961 Angstroms.

  16. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J.A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6% and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  17. Comparative Environmental Life Cycle Assessment of Alternative Uses of Wastewater Carbon Content

    DEFF Research Database (Denmark)

    Kroghsbo, Nena; Nicolaisen, Janna; Wenzel, Henrik

    Alternative scenarios for the wastewater and sludge treatment configurations in urban wastewater treatment were studied with the aim of comparing their environmental aspects. As the reference, a conventional activated sludge treatment was chosen including a primary settling and biogas made from...... the mixed primary and secondary sludge. This reference was then compared to an alternative use of the mixed sludge for the fermentative generation of polyhydroxyalkanoates, PHA and subsequent use of the PHA to substitute polypropylene on the polymer markets. This comparison allows for assessing...... the environmental priorities between biogas and PHA formation from the carbon content of the sludge. Further, the elimination of the primary settling with the aim of using the carbon content of the wastewater for enhanced nitrogen removal in the activated sludge process was studied. This comparison allows...

  18. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J. A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  19. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Zheng, H.; Ye, X.N.; Li, J.D.; Jiang, L.Z.; Liu, Z.Y.; Wang, G.D.; Wang, B.S.

    2010-01-01

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  20. Distribution of cesium-137 in Japanese forest soils. Correlation with the contents of organic carbon

    International Nuclear Information System (INIS)

    Takenaka, Chisato; Onda, Yuichi; Hamajima, Yasunori

    1998-01-01

    The spatial and vertical distributions of 137 Cs in surface soils were surveyed and analyzed then correlated with the contents of organic carbon in the hinoki (Chamaecyparis obtusa Sieb. et Zucc.) plantation forest and secondary forest dominated by red pine (Pinus densiflora Sieb. et Zucc.) in Japan. The spatial variation of 137 Cs activity was observed in the surface soil around the red pine. The average activity of 16 samples around the tree is 42.4 Bq/kg and the standard deviation is 25.9 Bq/kg. This finding indicates the importance in the selection of a sampling site and the number of samples from the surface soils especially around a tree. For the vertical distribution of 137 Cs activity, it was found that the concentration in the surface soil is highest, 149 Bq/kg in the hinoki stand and 101 Bq/kg in the red pine stand, and decreases with depth. The relationship between 137 Cs activity and carbon content in the forest soil was investigated in two undisturbed forest stands. The relations were more precisely expressed using an exponential equation than by a linear equation. From the same forest, similar regression equations were obtained. This indicates that the distribution of 137 Cs could be characterized by the organic carbon content in an undisturbed forest. It is also suggested that the coefficient values in the regression equation help to define the movement of 137 Cs accompanying the decomposition of organic matter

  1. Main Feedbacks Between Oxidizable Carbon Content and Selected Soil Characteristic of Chernozem

    Directory of Open Access Journals (Sweden)

    Vítězslav Vlček

    2015-01-01

    Full Text Available Anthropogenic pressure on our agricultural land is culminating last hundred years, especially after 1948, not only because of only massive application of mineral fertilizers but also because of land consolidation and subsequent accelerated water and wind erosion and use of mechanization. This article focuses on main demonstration of feedbacks especially with oxidizable carbon which can negatively affect soil as a homeostatic system. Oxidizable carbon, as the basis of soil humus, is crucial for maintaining soil fertility and for its resistance to further degradation factors affecting the soil. 35 chernozem sites were selected in South Moravia region. These soils had been probably used for their fertility and availability before the turn of the AD. Unfortunately, their long-term agricultural use has resulted in adverse impact on their quality.This way, shallower forms of erosion were often formed. These erosion forms are omitted for the purposes of our study there. For this work, locations with preserved chernic (i.e. diagnostic horizon, as the horizon with less anthropogenic influence, were selected. Relations between a grain size (clay, silt and sand particles, exchange reaction in soil, sorption capacity, oxidizable carbon content, total nitrogen content and content of selected potentially acceptable elements (Ca, Mg were monitored.

  2. Digital mapping of soil organic carbon contents and stocks in Denmark.

    Science.gov (United States)

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.

  3. Morphology, Microstructure, and Hydrogen Content of Carbon Nanostructures Obtained by PECVD at Various Temperatures

    Directory of Open Access Journals (Sweden)

    M. Acosta Gentoiu

    2017-01-01

    Full Text Available Carbon nanostructures were obtained by acetylene injection into an argon plasma jet in the presence of hydrogen. The samples were synthesized in similar conditions, except that the substrate deposition temperatures TD were varied, ranging from 473 to 973 K. A strong dependence of morphology, structure, and graphitization upon TD was found. We obtained vertical aligned carbon nanotubes (VA-CNTs at low temperatures as 473 K, amorphous carbon nanoparticles (CNPs at temperatures from about 573 to 673 K, and carbon nanowalls (CNWs at high temperatures from 773 to 973 K. Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elastic recoil detection analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to substantiate the differences in these material types. It is known that hydrogen concentration modifies strongly the properties of the materials. Different concentrations of hydrogen-bonded carbon could be identified in amorphous CNP, VA-CNT, and CNW. Also, the H : C ratios along depth were determined for the obtained materials.

  4. Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content

    Energy Technology Data Exchange (ETDEWEB)

    Zolper, Thomas J.; He, Yifeng; Delferro, Massimiliano; Shiller, Paul; Doll, Gary; LotfizadehDehkordi, Babak; Ren, Ning; Lockwood, Frances; Marks, Tobin J.; Chung, Yip-Wah; Greco, Aaron; Erdemir, Ali; Wang, Qian

    2016-08-11

    This study investigates the rheological properties, elastohydrodynamic (EHD) film-forming capability, and friction coefficients of low molecular mass poly-alpha-olefin (PAO) base stocks with varying contents of high molecular mass olefin copolymers (OCPs) to assess their shear stability and their potential for energy-efficient lubrication. Several PAO-OCP mixtures were blended in order to examine the relationship between their additive content and tribological performance. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the molecular masses and structures, respectively. Density, viscosity, EHD film thickness, and friction were measured at 303 K, 348 K, and 398 K. Film thickness and friction were studied at entrainment speeds relevant to the boundary, mixed, and full-film lubrication regimes. The PAO-OCP mixtures underwent temporary shear-thinning resulting in decreases in film thickness and hydrodynamic friction. These results demonstrate that the shear characteristics of PAO-OCP mixtures can be tuned with the OCP content and provide insight into the effects of additives on EHD characteristics.

  5. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-01-01

    Full Text Available Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6×10-6 to 100×10-6 mol L−1 with determination coefficient and method detection limit (LoD = 3 s/slope of 0.99925 and 8.37×10-7 mol L−1, respectively, supplemented by recovery results of 93.79–102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w% of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  6. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10 -6 to 100 × 10 -6  mol L -1 with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10 -7  mol L -1 , respectively, supplemented by recovery results of 93.79-102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users' highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  7. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    secondary levels. In subject matter didactics, the question of content is more developed, but it is still mostly confined to teaching on lower levels. As for higher education didactics, discussions on selection of content are almost non-existent on the programmatic level. Nevertheless, teachers are forced...... curriculum, in higher education, and to generate analytical categories and criteria for selection of content, which can be used for systematic didactical reflection. The larger project also concerns reflection on and clarification of the concept of content, including the relation between content at the level......Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007...

  8. Multi-Sensor Constrained Time Varying Emissions Estimation of Black Carbon: Attributing Urban and Fire Sources Globally

    Science.gov (United States)

    Cohen, J. B.

    2015-12-01

    The short lifetime and heterogeneous distribution of Black Carbon (BC) in the atmosphere leads to complex impacts on radiative forcing, climate, and health, and complicates analysis of its atmospheric processing and emissions. Two recent papers have estimated the global and regional emissions of BC using advanced statistical and computational methods. One used a Kalman Filter, including data from AERONET, NOAA, and other ground-based sources, to estimate global emissions of 17.8+/-5.6 Tg BC/year (with the increase attributable to East Asia, South Asia, Southeast Asia, and Eastern Europe - all regions which have had rapid urban, industrial, and economic expansion). The second additionally used remotely sensed measurements from MISR and a variance maximizing technique, uniquely quantifying fire and urban sources in Southeast Asia, as well as their large year-to-year variability over the past 12 years, leading to increases from 10% to 150%. These new emissions products, when run through our state-of-the art modelling system of chemistry, physics, transport, removal, radiation, and climate, match 140 ground stations and satellites better in both an absolute and a temporal sense. New work now further includes trace species measurements from OMI, which are used with the variance maximizing technique to constrain the types of emissions sources. Furthermore, land-use change and fire estimation products from MODIS are also included, which provide other constraints on the temporal and spatial nature of the variations of intermittent sources like fires or new permanent sources like expanded urbanization. This talk will introduce a new, top-down constrained, weekly varying BC emissions dataset, show that it produces a better fit with observations, and draw conclusions about the sources and impacts from urbanization one hand, and fires on another hand. Results specific to the Southeast and East Asia will demonstrate inter- and intra-annual variations, such as the function of

  9. Ecosystem carbon storage does not vary with increasing mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner

    2014-01-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...

  10. Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application.

    Science.gov (United States)

    Chen, Zehong; Peng, Xinwen; Zhang, Xiaoting; Jing, Shuangshuang; Zhong, Linxin; Sun, Runcang

    2017-08-15

    Producing hierarchical porous N-doped carbon from renewable biomass is an essential and sustainable way for future electrochemical energy storage. Herein we cost-efficiently synthesized N-doped porous carbon from renewable cellulose by using urea as a low-cost N source, without any activation process. The as-prepared N-doped porous carbon (N-doped PC) had a hierarchical porous structure with abundant macropores, mesopores and micropores. The doping N resulted in more disordered structure, and the doping N content in N-doped PC could be easily tunable (0.68-7.64%). The doping N functionalities could significantly improve the supercapacitance of porous carbon, and even a little amount of doping N (e.g. 0.68%) could remarkably improve the supercapacitance. The as-prepared N-doped PC with a specific surface area of 471.7m 2 g -1 exhibited a high specific capacitance of 193Fg -1 and a better rate capability, as well as an outstanding cycling stability with a capacitance retention of 107% after 5000 cycles. Moreover, the N-doped porous carbon had a high energy density of 17.1Whkg -1 at a power density of 400Wkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents

    International Nuclear Information System (INIS)

    Li Xiaona; Zhao Huimin; Quan Xie; Chen Shuo; Zhang Yaobin; Yu Hongtao

    2011-01-01

    Multi-walled carbon nanotubes (MWNTs), which are considered to be promising candidates for the adsorption of toxic organics, are released into aqueous environment with their increasing production and application. In this study, the adsorption behaviors of five structurally related ionizable organic contaminants namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-n-nonylphenol (4-NP) onto MWNTs with different oxygen contents (3.84-22.85%) were investigated. The adsorption kinetics was investigated and simulated with pseudo-second-order model. The adsorption isotherms were found to be fitted with Freundlich model and influenced by both the properties of organic chemicals and the oxygen contents of MWNTs. As adsorption capacity decreases dramatically with the increasing of oxygen contents, the MWNTs with the lowest oxygen contents possess the highest adsorption capacity among four MWNTs. For the MWNTs with the oxygen contents of 3.84%, the adsorption affinity related with hydrophobic interaction and π-electron polarizability decreased in the order of 4-NP > PFOSA > PFOS > 2,4-D > PFOA. Furthermore, the adsorption characters of five contaminants were affected by solution pH and solute pK a considering electrostatic repulse force and hydrogen bonding, which showed the adsorption of MWNTs with lower oxygen content is much sensitive to solution chemistry.

  12. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    Science.gov (United States)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  13. Synthesis and characterization of nanostructured iron compounds prepared from the decomposition of iron pentacarbonyl dispersed into carbon materials with varying porosities

    International Nuclear Information System (INIS)

    Schettino, Miguel A. Jr.; Cunha, Alfredo G.; Nunes, Evaristo; Passamani, Edson C.; Freitas, Jair C. C.; Emmerich, Francisco G.; Morigaki, Milton K.

    2016-01-01

    This work describes the production and characterization of carbon-iron nanocomposites obtained from the decomposition of iron pentacarbonyl (Fe(CO) 5 ) mixed with different carbon materials: a high surface area activated carbon (AC), powdered graphite (G), milled graphite (MG), and carbon black (CB). The nanocomposites were prepared either under argon or in ambient atmosphere, with a fixed ratio of Fe(CO) 5 (4.0 mL) to carbon precursor (2.0 g). The images of scanning electron microscopy and the analysis of textural properties indicated the presence of nanostructured Fe compounds homogeneously dispersed into the different classes of pores of the carbon matrices. The elemental Fe content was always larger for samples prepared in ambient atmosphere, reaching values in the range of 20–32 wt%. On the other hand, samples prepared under argon showed reduced Fe content, with values in the range 5–10 wt% for samples prepared from precursors with low surface area (G, MG, and CB) and a much higher value (~19 wt%) for samples prepared from the precursor of high surface area (AC). Mössbauer spectroscopy and X-ray diffractometry showed that the nanoparticles were mostly composed of iron oxides in the case of the samples prepared in oxygen-rich ambient atmosphere and also for the AC-derived nanocomposite prepared under argon, which is consistent with the large oxygen content of this precursor. For the other precursors, with reduced or no oxygen content, metallic iron and iron carbides were found to be the dominant phases in samples prepared under oxygen-free atmosphere. The samples prepared in ambient atmosphere and the AC-derived sample prepared under argon exhibited superparamagnetic behavior at room temperature, as revealed by temperature-dependent magnetization curves and Mössbauer spectroscopy.

  14. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    Science.gov (United States)

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.

  15. Effect of varying temperature on growth, morphology and soluble protein content of div I and div II mutant strains of bacillus sub tills

    International Nuclear Information System (INIS)

    Ahmed, A.; Sabri, A.N.

    2004-01-01

    In B.subtilis, cell division is controlled by div-genes which have been mapped on its circular chromosome. In the present work, div-mutant strains 1A316(div II), 1A317 and 1A318 (div I) were studied. These strains exhibited temperature sensitive cell division mutations. Colony morphology, cell morphology, staining behavior, growth rate and protein content of PY79 (wild type) and div-mutant strains (1A316, 1A317, 1A318) was studied at different temperatures ( 25 deg. Centi grade and 42 deg. with varying incubation periods(4, 16, 24, 48, 72,96 hrs). div-mutants differ from wild type (PY79) in colony morphology. Colony margin in PY79 was entire while in the div strains it is undulate. Staining behavior of cells as well as cell morphology i.e., cell size, cell types, formation of filaments/minicells were affected by high temperature. At higher temperature (42 deg. Centi grade), div-mutants undergo more severe lysis and degeneration as compare to wild type (PY79). Defective spores were produced by div-mutants at 25 deg. Centi grade and 42 deg. Centi grade. Tetrazolium overlay test was performed at 37 deg. Centi grade and 42 deg. Centi grade to check the spore germination ability of wild type and div-mutants. In 1A318, defective spores were produced at 37 deg. Centi grade, div-mutant was checked after 24 and 96 hrs at different temperatures (25, 37 and 42 deg. Centi grade). At all temperatures protein content were more in PY79 as compare to div-mutants. Also at 25 and 42 deg. Centi grade, protein content was more as compare to 37 deg. Centi grade. Protein contents was reduced at sporulation stages. Thus cell division mutations affect cell morphology, sporulation and germination processes in B.subtilis and thus are multifaceted mutations. (author)

  16. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  17. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    Science.gov (United States)

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.

  18. Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Haijiang Hu

    2016-07-01

    Full Text Available In this work, three low-carbon bainitic steels, with different Mo contents, were designed to investigate the effects of Mo addition on microstructure and mechanical properties. Two-step cooling, i.e., initial accelerated cooling and subsequent slow cooling, was used to obtain the desired bainite microstructure. The results show that the product of strength and elongation first increases and then shows no significant change with increasing Mo. Compared with Mo-free steel, bainite in the Mo-containing steel tends to have a lath-like morphology due to a decrease in the bainitic transformation temperature. More martensite transformation occurs with the increasing Mo, resulting in greater hardness of the steel. Both the strength and elongation of the steel can be enhanced by Mo addition; however, the elongation may decrease with a further increase in Mo. From a practical viewpoint, the content of Mo could be ~0.14 wt. % for the composition design of low-carbon bainitic steels in the present work. To be noted, an optimal scheme may need to consider other situations such as the role of sheet thickness, toughness behavior and so on, which could require changes in the chemistry. Nevertheless, these results provide a reference for the composition design and processing method of low-carbon bainitic steels.

  19. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    Science.gov (United States)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average

  20. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng; Zhao, Lan; Yao, Kexin; Yang, Yang; Zhang, Qiang; Han, Yu

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  1. Influence of the Mg-content on ESR-signals in synthetic calcium carbonate

    International Nuclear Information System (INIS)

    Barabas, M.; Bach, A.; Mudelsee, M.; Mangini, A.

    1989-01-01

    Carbonate crystals doped with various concentrations of Mg 2+ -ions have been grown by a gel-diffusion method. An increase of the Mg/Ca-ratio to more than about 1 caused a phase change in the crystal lattice from calcite to aragonite. The properties of the ESR-signals of the synthetic carbonates were studied and compared with natural marine carbonates. The following results were derived: (a) In the presence of Mg 2+ -ions the synthetic carbonates display the same ESR-signals as natural calcites of marine origin with similar properties (thermal stability, radiation sensitivity). (b) The saturation value of the signal at g=2.0006 in synthetic calcites was found to be strongly related with the Mg-content in the crystals. (c) The signal at g=2.0036 (axial symmetry) which is present in calcite was not influenced by the Mg-concentration. Its saturation value decreases when the crystal phase changed from calcite to aragonite and in complement the signal at g=2.0031 appeared. (d) The signals at g=2.0057 and g=2.0031 are most probably not of organic origin. (author)

  2. Mapping soil organic carbon content and composition across Australia to assess vulnerability to climate change

    Science.gov (United States)

    Viscarra Rossel, R. A.

    2015-12-01

    We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C content and composition in the soil of Australia. The composition of soil organic C may be characterized by chemical separation or physical fractionation based on either particle size or particle density (Skjemstad et al., 2004; Gregorich et al., 2006; Kelleher&Simpson, 2006; Zimmermann et al., 2007). In Australia, for example, Skjemstad et al. (2004) used physical separation of soil samples into 50-2000 and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, giving the three OC pools, particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC; charcoal or char-carbon). We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C, POC, HOC and ROC at the continental scale. In this presentation I will describe how we made the maps and how we use them to assess the vulnerability of soil organic C to for instance climate change.

  3. Radiative recombination mechanism of carriers in InGaN/AlInGaN multiple quantum wells with varying aluminum content

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Jiao, Shujie, E-mail: shujiejiao@gmail.com [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150001 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Wang, Dongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gao, Shiyong, E-mail: gaoshiyong@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Tianpeng [EpiTop Optoelectronic Co., Ltd., Pingxiang 337000 (China); Liang, Hongwei [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, Liancheng [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-02-05

    Highlights: • Structural and optical properties of In GaN/Al{sub x}In{sub y}Ga{sub 1−x−y}N MQWs were investigated. • The existence of In-rich clusters has been verified by Raman spectra. • The degree of localization effect increase with increasing Al content in barriers. • The origin of the deep localized states could be assigned to the larger QCSE. • Recombination mechanism of carriers with increasing temperature has been proposed. - Abstract: The structural and optical properties of In{sub 0.20}Ga{sub 0.80}N/Al{sub x}In{sub y}Ga{sub 1−x−y}N multiple quantum wells samples with varying Al content in barrier layers grown on sapphire substrates by metalorganic chemical vapor deposition have been investigated by means of high-resolution X-ray diffraction, Raman scattering measurements and temperature-dependent photoluminescence. Raman measurements verified the existence of In-rich clusters in ternary and quaternary layers. At 10 K and 300 K, the PL spectrum of each sample is dominated by a sharp emission peak arising from In{sub 0.20}Ga{sub 0.80}N well layers. The anomalous temperature-dependent S-shaped behaviors of emission energies have been observed, indicating the presence of localized states induced by the potential fluctuations in the quantum wells due to the inhomogeneous distribution of In-rich clusters. The degree of the localization effect and the transition temperatures between different temperature regions can be enhanced by increasing Al content in barrier layers. The improvement of the localized states emission has been observed at the lower energy side of band gap emission of quantum wells with increasing Al content. The origin of the deep localized states could be attributed to the larger quantum-confined Stark effect in the quantum wells with higher Al content. The recombination mechanism of carriers between band edge and localized states was proposed for interpreting of the emission characteristics.

  4. The hydrogen and oxygen content of self-supporting carbon foils prepared by dc glow discharge in ethylene

    International Nuclear Information System (INIS)

    Tait, N.R.S.; Tolfree, D.W.L.; John, P.; Odeh, I.M.; Thomas, M.J.K.; Tricker, M.J.; Wilson, J.J.B.; England, J.B.A.; Newton, D.

    1980-01-01

    The hydrogen and oxygen content of self-supporting carbon films produced by dc glow discharge have been determined using a precise method involving the elastic scattering of 25 MeV α-particles. The number of carbon-hydrogen bonds has been determined for similar samples using infrared spectroscopy. The results are compared with those for samples made by the carbon arc process. Assuming that the glow discharge carbon contains graphitic regions surrounded by amorphous tetrahedrally bonded material to which hydrogen can attach, a simple estimate is made of the relative numbers of carbon atoms in the two forms. (orig.)

  5. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency.

    Science.gov (United States)

    García-Macías, Paulina; Ordidge, Matthew; Vysini, Eleni; Waroonphan, Saran; Battey, Nicholas H; Gordon, Michael H; Hadley, Paul; John, Philip; Lovegrove, Julie A; Wagstaffe, Alexandra

    2007-12-12

    Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

  6. Content of carbon monoxide in the tissues of rats intoxicated with carbon monoxide in various conditions of acute exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, J.A.; Majka, J.; Palus, J.

    1984-12-01

    Tissue carbon monoxide (CO) content was investigated in rats severely intoxicated with CO under various exposure conditions: 1% CO for 4 min, 0.4% CO for 40 min and 0.12% CO for 12 h. Extravascular CO was determined in the heart and skeletal muscles immediately after termination of exposure, and carboxymyoglobin (MbCO) percent saturation was calculated. Total brain CO was estimated immediately after termination of exposure and after the time periods of restitution. After the same exposure conditions, MbCO percent saturation was higher in the heart than in skeletal muscle. In both types of muscle, saturation on myoglobin (Mb) with CO depended on blood carboxyhemoglobin (HbCO) level and not on the duration of exposure. The time course of CO elimination was the same for blood and brain, irrespective of CO exposure conditions. The results obtained showed that acute CO intoxication induced by long duration exposures did not involve CO accumulation in the tissues.

  7. Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

    Science.gov (United States)

    Culebras, Mario; Madroñero, Antonio; Cantarero, Andres; Amo, José Maria; Domingo, Concepción; López, Antonio

    2012-10-01

    Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditions: surface tension, mass density, and Raman measurements. A discussion on the validity of the results obtained through the correlation between them is the purpose of the present work.

  8. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment

    Directory of Open Access Journals (Sweden)

    R. G. J. Bellerby

    2008-11-01

    Full Text Available Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm. Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1. With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling.

  9. Effect of Carbon Content on the Microstructure and Mechanical Properties of NbC-Ni Based Cermets

    Directory of Open Access Journals (Sweden)

    Shuigen Huang

    2018-03-01

    Full Text Available The aim of this work was to correlate the overall carbon content in NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo starting powders with the resulting microstructure, hardness, and fracture toughness of Ni-bonded NbC cermets. A series of NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo cermets with different carbon content were prepared by conventional liquid phase sintering for 1 h at 1420 °C in vacuum. Microstructural analysis of the fully densified cermets was performed by electron probe microanalysis (EPMA to assess the effect of carbon and VC or Mo additions on the NbC grain growth and morphology. A decreased carbon content in the starting powder mixtures resulted in increased dissolution of Nb, V, and Mo in the Ni binder and a decreased C/Nb ratio in the NbC based carbide phase. The Vickers hardness (HV30 and Palmqvist indentation toughness were found to decrease significantly with an increasing carbon content in the Mo-free cermets, whereas an antagonistic correlation between hardness and toughness was obtained as a function of the Mo-content in Mo-modified NbC cermets. To obtain optimized mechanical properties, methods to control the total carbon content of NbC-Ni mixtures were proposed and the prepared cermets were investigated in detail.

  10. Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis

    International Nuclear Information System (INIS)

    Garcia-Junceda, A.; Caballero, F.G.; Capdevila, C.; Garcia de Andres, C.

    2007-01-01

    Parallel electron energy loss spectroscopy has allowed to analyse and quantify local variations in the carbon concentration of austenite islands transformed during the intercritical annealing treatment of commercial dual-phase steels. These changes in the carbon content of different austenite regions are responsible for the different volume fractions of tempered martensite, martensite and retained austenite obtained after intercritical annealing and overaging treatment. This technique reveals how carbon distribution in austenite evolves as the transformation process advances

  11. Filterability of corrosion products formed between carbon steel and water. Influence of temperature and oxygen content

    International Nuclear Information System (INIS)

    Kelen, T.; Falk, I.

    1975-09-01

    A laboratory investigation has been made for the purpose of studying the influence of temperature and oxygen content on the filterability of corrosion products formed between carbon-steel and water. The experiments were performed in a high temperature loop where the water is initially heated in a pre-heater, then cooled and finally filtered. The corrosion products were transferred to thewater from a carbon-steel surface that had previously been neutron activated and the amount of iron present was determined from measurements of the γ-radiation emitted by Fe-59. Filterability was then computed as the ratio between the total amount of iron in the water phase and the amount of iron retained on the filter. The investigation covers a series of experiments at filtering temperatures of 20, 90 and 160 dec G, pre-heater temperatures up to 300 deg C and oxygen contents of 10 and 300 ppb O 2 . In addition the extent of iron deposition in the pre-heater and heat regulator has been determined after each series of experiments. Filterability exhibited a pronounced dependence upon both the filter and pre-heater temperatures and also upon the oxygen content. Among the conclusions to which the results lead is the observation that a strict comparison of filterability values for the fraction of corrosion products in cooled water samples is impossible when these are taken from 1) different sections of a high temperature system 2) a single sampling point while the system is being run up 3) two separate systems (e.g. steam boilers) operated at different temperatures 4) two separate systems operated at different oxygen contents. It accordingly appears advizable to restrict the use of cold-filtered samples from conventional steam-raising plants to the comparison of values relating to a single sampling point under constant operating conditions. (author)

  12. The efficiency of different types of wood charcoal on increasing carbon content on surfaces of low carbon steel in the pack carburizing process

    Directory of Open Access Journals (Sweden)

    Narongsak Thammachot

    2014-09-01

    Full Text Available The purpose of this research is to compare the efficiency of five types of wood charcoal, eucalyptus, coconut shell, tamarind, bamboo and cassava root in increasing carbon content on surfaces of low carbon steel by the pack carburizing process. The experiment for pack carburized low carbon steel (grade AISI 1020 was conducted by using the different wood charcoals as carburizers, mixed with 10% limestone (by weight as the energizer. The carburizing temperature of 950°C, and carburizing times of 2, 4 and 6 hours were used in the experiment. After grinding, the specimens in each case were checked for carbon content by optical emission spectroscopy. Micro-Vickers hardness testing and microstructure inspections were carried out. The results of the experiment showed that the efficiency of eucalyptus charcoal as the carburizer (for increasing carbon content on surfaces of low carbon steel was higher than that of tamarind, cassava root, coconut shell and bamboo charcoals. The averages for carbon content were: 1.16, 1.06, 0.97, 0.83 and 0.77% respectively.

  13. Beyond clay - using selective extractions to improve predictions of soil carbon content

    Science.gov (United States)

    Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.

    2016-12-01

    A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.

  14. Effect of carbonate content on the mechanical behaviour of clay fault-gouges

    Science.gov (United States)

    Bakker, Elisenda; Niemeijer, André; Hangx, Suzanne; Spiers, Chris

    2015-04-01

    Carbon dioxide capture and storage (CCS) in depleted oil and gas reservoirs is considered to be the most promising technology to achieve large-scale reduction in anthropogenic emissions. In order to retain the stored CO2 from the atmosphere for the very long-term, i.e. on timescales of the order of 103-104 years, it is essential to maintain the integrity of the caprock, and more specifically of any faults penetrating the seal. When selecting suitable CO2-storage reservoirs, pre-exisiting faults within the caprock require close attention, as changes in the stress state resulting from CO2-injection may induce fault slip motion which might cause leakage. Little is known about the effect of fluid-rock interactions on the mineral composition, mechanical properties and the integrity and sealing capacity of the caprock. Previous studies on the effect of mineral composition on the frictional properties of fault gouges have shown that friction is controlled by the dominant phase unless there is a frictionally weak, through-going fabric. However, the effect on stability is less clear. Since long-term CO2-exposure might cause chemical reactions, potentially resulting in the dissolution or precipitation of carbonate minerals, a change in mineralogy could affect the mechanical stability of a caprock significantly. Calcite, for example, is known to be prone to micro-seismicity and shows a transition from velocity-strengthening to velocity-weakening behaviour around 100-150°C. Therefore, we investigated the effect of varying clay:carbonate ratios on fault friction behaviour, fault reactivation potential and slip stability, i.e. seismic vs. aseismic behaviour. Three types of simulated fault gouges were used: i) carbonate-free, natural clay-rich caprock samples, consisting of predominantly phyllosilicates (~80%) and quartz ~20%), ii) pure calcite, and iii) mixtures of carbonate-free clay-rich caprock and pure calcite, with predetermined clay:carbonate ratios. For the natural clay

  15. Element fractionation by sequential extraction in a soil with high carbonate content

    International Nuclear Information System (INIS)

    Sulkowski, Margareta; Hirner, Alfred V.

    2006-01-01

    The influence of carbonate and other buffering substances in soils on the results of a 3-step sequential extraction procedure (BCR) used for metal fractionation was investigated. Deviating from the original extraction scheme, where the extracts are analysed only for a limited number of metals, almost all elements in the soils were quantified by X-ray fluorescence spectroscopy, in the initial samples as well as in the residues of all extraction steps. Additionally, the mineral contents were determined by X-ray diffractometry. Using this methodology, it was possible to correlate changes in soil composition caused by the extraction procedure with the release of elements. Furthermore, the pH values of all extracts were monitored, and certain extraction steps were repeated until no significant pH-rise occurred. A soil with high dolomite content (27%) and a carbonate free soil were extracted. Applying the original BCR-sequence to the calcareous soil, carbonate was found in the residues of the first two steps and extract pH-values rose by around two units in the first and second step, caused mainly by carbonate dissolution. This led to wrong assignment of the carbonate elements Ca, Mg, Sr, Ba, and also to decreased desorption and increased re-adsorption of ions in those steps. After repetition of the acetic acid step until extract pH remained low, the carbonate was completely destroyed and the distributions of the elements Ca, Mg, Sr, Ba as well as those of Co, Ni, Cu, Zn and Pb were found to be quite different to those determined in the original extraction. Furthermore, it could be shown that the effectiveness of the reduction process in step two was reduced by increasing pH: Fe oxides were not significantly attacked by the repeated acetic acid treatments, but a 10-fold amount of Fe was mobilized by hydroxylamine hydrochloride after complete carbonate destruction. On the other hand, only small amounts of Fe were released anyway. Even repeated reduction steps did not

  16. The Effect of Paved Roads on Organic Carbon Content of Soil in Taham Dam Basin

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-09-01

    Full Text Available Background: Contamination of water and soil through non-point sources such as road runoff causes environmental concern. The aim of this study is to determine the effect of Zanjan – Chavarzagh road on the total organic carbon (TOC content of sediments in tributaries and the river that lead to Taham Lake. Methods: In tributaries and the river 69 soil and sediment samples were taken and the Total organic carbon (TOC was measured according to Walkely-Black method. Also, Taham Dam Basin area and its hydrologic properties were calculated by Global Information System (GIS software. Results: Results showed that, TOC concentration has a significant negative relationship with the distance from the lake. TOC in soil samples taken from hillside of the road had significantly lower mean and median concentration ( median= 3262 , mean = 4083 ± 3461 mg/kg than the valley side ( median = 5324 , mean = 6178 ± 3980 mg/kg. The check dams across the tributaries and the river have not been effective in the reduction of TOC in sediments. Conclusion: Roads in the Taham Dam Basin, increases TOC content of soil and sediments in Taham dam basin. TOC moves toward Taham dam lake.

  17. Ameliorated Austenite Carbon Content Control in Austempered Ductile Irons by Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Chan-Yun Yang

    2013-01-01

    Full Text Available Austempered ductile iron has emerged as a notable material in several engineering fields, including marine applications. The initial austenite carbon content after austenization transform but before austempering process for generating bainite matrix proved critical in controlling the resulted microstructure and thus mechanical properties. In this paper, support vector regression is employed in order to establish a relationship between the initial carbon concentration in the austenite with austenization temperature and alloy contents, thereby exercising improved control in the mechanical properties of the austempered ductile irons. Particularly, the paper emphasizes a methodology tailored to deal with a limited amount of available data with intrinsically contracted and skewed distribution. The collected information from a variety of data sources presents another challenge of highly uncertain variance. The authors present a hybrid model consisting of a procedure of a histogram equalizer and a procedure of a support-vector-machine (SVM- based regression to gain a more robust relationship to respond to the challenges. The results show greatly improved accuracy of the proposed model in comparison to two former established methodologies. The sum squared error of the present model is less than one fifth of that of the two previous models.

  18. Biomass Carbon Content in Schima- Castanopsis Forest of Midhills of Nepal: A Case Study from Jaisikuna Community Forest, Kaski

    Directory of Open Access Journals (Sweden)

    Sushma Tripathi

    2018-01-01

    Full Text Available Community forests of Nepal’s midhills have high potentiality to sequester carbon. This paper tries to analyze the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block which were laid randomly. Diameter at Breast Height (DBH and height of trees (DBH≥5cm were measured using the DBH tape and clinometer. Leaf litter, herbs, grasses and seedlings were collected from 1*1m2 plot and fresh weight was taken. For calculating carbon biomass is multiplied by default value 0.47. The AGTB carbon content of Chilaune, Katus and other species were found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of Chilaune dominated, Katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ha respectively. Carbon content at leaf litter, herbs, grasses and seedlings was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha. Total biomass and carbon of the forest was found 108.09 t/ha and 50.80 t/ha respectively. Difference in biomass and carbon content at Chilaune dominated block and Katus dominated block was found insignificant. This study record very low biomass carbon content than average of Nepal's forest but this variation in carbon stock is not necessarily due to dominant species present in the forest. Carbon estimation at forest of different elevation, aspect and location are recommended for further research. International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 72-84

  19. Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity

    Directory of Open Access Journals (Sweden)

    JULIE EKASARI

    2010-09-01

    Full Text Available Application of bio-flocs technology (BFT in aquaculture offers a solution to avoid environmental impact of high nutrient discharges and to reduce the use of artificial feed. In BFT, excess of nutrients in aquaculture systems are converted into microbial biomass, which can be consumed by the cultured animals as a food source. In this experiment, upconcentrated pond water obtained from the drum filter of a freshwater tilapia farm was used for bio-flocs reactors. Two carbon sources, sugar and glycerol, were used as the first variable, and two different levels of salinity, 0 and 30 ppt, were used as the second variable. Bio-flocs with glycerol as a carbon source had higher total n-6 PUFAs (19.1 ± 2.1 and 22.3 ± 8.6 mg/g DW at 0 and 30 ppt, respectively than that of glucose (4.0 ± 0.1 and 12.6 ± 2.5 mg/g DW at 0 and 30 ppt. However, there was no effect of carbon source or salinity on crude protein, lipid, and total n-3 PUFAs contents of the bio-flocs.

  20. Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon

    Science.gov (United States)

    Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor

    2018-04-01

    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.

  1. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  2. Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C, N)-based cermets

    International Nuclear Information System (INIS)

    Liu Ning; Liu Xuesong; Zhang Xiaobo; Zhu Longwei

    2008-01-01

    As a new kind of tool materials which appeared in the seventies last century, the Ti (C, N)-based cermets have been widely used in recent years due to many of its good properties. The microstructure of Ti(C, N)-based cermets with various carbon content were studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). Vickers hardness and transverse rupture strength (TRS) were also measured. An increased carbon content resulted in the finer grain size, decreased solution strength of tungsten and molybdenum in the binder phase, and a higher volume fraction of heavy (Ti, Mo, W)(C,N) cores. If the addition of carbon content is too little or too much, the phase composition of material will deviate from the normal dual phase section and lead to the formation of the third phase: η-phase if the carbon content is too low or dissociative carbon if the carbon content is too high. And the formation of the third phase will remarkably deteriorate the mechanical properties of cermets

  3. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes

    International Nuclear Information System (INIS)

    Jiang, Junhua; Zhang, Lei; Wang, Xinying; Holm, Nancy; Rajagopalan, Kishore; Chen, Fanglin; Ma, Shuguo

    2013-01-01

    Woody biochar monolith with ultra-high carbon content and highly ordered macropores has been prepared via one-pot pyrolysis and carbonization of red cedar wood at 750 °C without the need of post-treatment. Energy-dispersive spectroscope (EDX) and scanning electron microscope (SEM) studies show that the original biochar has a carbon content of 98 wt% with oxygen as the only detectable impurity and highly ordered macroporous texture characterized by alternating regular macroporous regions and narrow porous regions. Moreover, the hierarchically porous biochar monolith has a high BET specific surface area of approximately 400 m 2 g −1 . We have studied the monolith material as supercapacitor electrodes under acidic environment using electrochemical and surface characterization techniques. Electrochemical measurements show that the original biochar electrodes have a potential window of about 1.3 V and exhibit typical rectangular-shape voltammetric responses and fast charging–discharging behavior with a gravimetric capacitance of about 14 F g −1 . Simple activation of biochar in diluted nitric acid at room temperature leads to 7 times increase in the capacitance (115 F g −1 ). Because the HNO 3 -activation slightly decreases rather than increases the BET surface area of the biochar, an increase in the coverage of surface oxygen groups is the most likely origin of the substantial capacitance improvement. This is supported by EDX, X-ray photoelectron spectroscopy (XPS), and Raman measurements. Preliminary life-time studies show that biochar supercapacitors using the original and HNO 3 -activated electrodes are stable over 5000 cycles without performance decays. These facts indicate that the use of woody biochar is promising for its low cost and it can be a good performance electrode with low environmental impacts for supercapacitor applications

  4. Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Emma C. Lovell

    2015-03-01

    Full Text Available Silica particles were prepared by flame spray pyrolysis (FSP as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM was probed. Increasing the precursor feed rate: (i progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii altered the silanol groups on the silica surface; and (iii introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt % nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.

  5. Respiratory Effects of Inhaled Single-Walled Carbon Nanotubes: The Role of Particle Morphology and Iron Content

    Science.gov (United States)

    Madl, Amy Kathleen

    Nanotechnology provides promise for significant advancements in a number of different fields including imaging, electronics, and therapeutics. With worldwide production of carbon nanotubes (CNTs) exceeding over 500 metric tons annually and industry growth expecting to double over the next 5 yr, there are concerns our understanding of the hazards of these nanomaterials may not be keeping pace with market demand. The physicochemical properties of CNTs may delineate the key features that determine either toxicity or biocompatibility and assist in evaluating the potential health risks posed in industrial and consumer product settings. We hypothesized that the iron content and morphology of inhaled single-walled carbon nanotubes (SWCNTs) influences the extent of cellular injury and alters homeostasis in the lung. To address this hypothesis, (1) an aerosol system was developed to deliver carbon-based nanomaterials in a manner of exposure that is physiologically and environmentally relevant (e.g., inhalation), (2) acute (1 d) and subacute (10 d) nose-only inhalation studies to a well-characterized aerosol of iron-containing (FeSWCNT) versus cleaned (iron removed, cSWCNTs) SWCNTs were conducted to evaluate the time-course patterns of possible injury through measurement of markers of cytotoxicity, inflammation, and cellular remodeling/homeostasis, and (3) the effects of SWCNTs were compared to other well-studied materials (e.g. non-fibrous, low-iron content ultrafine carbon black and fibrous, high-iron content, highly persistent, durable and potent carcinogen crocidolite) to offer insights into the relative toxicity of these nanomaterials as well as the possible mechanisms by which the effects occur. Rats (SD) were exposed to either aerosolized SWCNTs (raw FeSWCNT or purified cSWCNT), carbon black (CB), crocidolite, or fresh air via nose-only inhalation. Markers of inflammation and cytotoxicity in lung lavage, mucin in different airway generations, and collagen in the

  6. If Frisch is true - impacts of varying beam width, resolution, frequency combinations and beam overlap when retrieving liquid water content profiles

    Science.gov (United States)

    Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.

    2017-12-01

    Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.

  7. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  8. Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil

    Directory of Open Access Journals (Sweden)

    Tanise Luisa Sausen

    2014-06-01

    Full Text Available Soil carbon accumulation is largely dependent on net primary productivity. To our knowledge, there have been no studies investigating the dynamics of carbon accumulation in weathered subtropical soils, especially in managed eucalyptus plantations. We quantified the seasonal input of leaf litter, the leaf decomposition rate and soil carbon stocks in an commercial plantation of Eucalyptus saligna Labill. in southern Brazil. Our goal was to evaluate, through multiple linear regression, the influence that certain chemical characteristics of litter, as well as chemical and physical characteristics of soil, have on carbon accumulation in soil organic matter fractions. Variables related to the chemical composition of litter were not associated with the soil carbon stock in the particulate and mineral fractions. However, certain soil characteristics were significantly associated with the carbon stock in both fractions. The concentrations of nutrients associated with plant growth and productivity, such as phosphorus, sulfur, copper and zinc, were associated with variations in the labile carbon pool (particulate fraction. Clay content was strongly associated with the carbon stock in the mineral fraction. The carbon accumulation and stabilization in weathered subtropical Ultisol seems to be mainly associated with the intrinsic characteristics of the soil, particularly clay content, rather than with the quantity, chemical composition or decomposition rate of the litter.

  9. Using LUCAS topsoil database to estimate soil organic carbon content in local spectral libraries

    Science.gov (United States)

    Castaldi, Fabio; van Wesemael, Bas; Chabrillat, Sabine; Chartin, Caroline

    2017-04-01

    The quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site specific management at local or regional scale exploiting the strong relationship between SOC and crop growth. The estimation of the SOC is not only important for agricultural purposes: in recent years, the increasing attention towards global warming highlighted the crucial role of the soil in the global carbon cycle. In this context, soil spectroscopy is a well consolidated and widespread method to estimate soil variables exploiting the interaction between chromophores and electromagnetic radiation. The importance of spectroscopy in soil science is reflected by the increasing number of large soil spectral libraries collected in the world. These large libraries contain soil samples derived from a consistent number of pedological regions and thus from different parent material and soil types; this heterogeneity entails, in turn, a large variability in terms of mineralogical and organic composition. In the light of the huge variability of the spectral responses to SOC content and composition, a rigorous classification process is necessary to subset large spectral libraries and to avoid the calibration of global models failing to predict local variation in SOC content. In this regard, this study proposes a method to subset the European LUCAS topsoil database into soil classes using a clustering analysis based on a large number of soil properties. The LUCAS database was chosen to apply a standardized multivariate calibration approach valid for large areas without the need for extensive field and laboratory work for calibration of local models. Seven soil classes were detected by the clustering analyses and the samples belonging to each class were used to calibrate specific partial least square regression (PLSR) models to estimate SOC content of three local libraries collected in Belgium (Loam belt

  10. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  11. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of inclusions, leaker or segregation in root of weld. Surface treatment after welding and keep the intervals between single welds to not overheat the pipes. To recognize those suspicions, mechanical testing around weld joint, determination of carbon content and inductively coupled plasma atomic emission spectroscopy will be done.

  12. Multi-component EPR spectra of coals with different carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Pilawa, B.; Wieckowski, A.B.; Pietrzak, R.; Wachowska, H. [Polish Academy of Science, Gliwice (Poland). Inst. for Coal Chemistry

    2005-08-01

    EPR spectra of lignite 'Mequinenza' (Spain) (62.3 wt% C) and Polish orthocoking coal (87.8 wt% C) were compared. The spectra were superpositions of broad Gaussian, broad Lorentzian 1, and narrow Lorentzian 3 lines. Concentration of paramagnetic centers - mainly delocalized pi electrons responsible for narrow Lorentzian 3 lines increases with increase in carbon content in coal. Coal units with slow and fast spin-lattice relaxation processes exist in the two studied samples. Slow spin-lattice interactions occur in simple aromatic coal units with broad Gaussian and Lorentzian 1 lines. Fast spin-lattice relaxation processes are characteristic of large aromatic units with narrow Lorentzian 3 lines.

  13. Tritium- and carbon-14-contents of wines of different vintage from the northern and southern hemisphere

    International Nuclear Information System (INIS)

    Fischer, E.; Mueller, H.

    1980-01-01

    The carbon-14 and tritium radioactivity contents of up to 19 vintages of German and Southafrican wines were compared. A similar large dependence of the 14 C- and of the 3 H-activity in the German wine on the nuclear weapon tests of the years 1962/63 was found out. The radioactivity level is also 1977/78 still essentially higher than before 1950. The Southafrican wines have been influenced considerably less by nuclear explosions. The highest 3 H-values were found in the vintage 1963 of the German wine with 5910 pCi/litre and in the vintage 1964 of the Southafrican wine with 510 pCi/litre. (orig.) [de

  14. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones.

    Science.gov (United States)

    Merriman, L S; Moore, T L C; Wang, J W; Osmond, D L; Al-Rubaei, A M; Smolek, A P; Blecken, G T; Viklander, M; Hunt, W F

    2017-04-01

    The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm -2 yr -1 ), in vegetated temporary inundation zones in Sweden (75.8gCm -2 yr -1 ), and in all ponds in Singapore (135gCm -2 yr -1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modelling the influence of carbon content on material behavior during forging

    Science.gov (United States)

    Korpała, G.; Ullmann, M.; Graf, M.; Wester, H.; Bouguecha, A.; Awiszus, B.; Behrens, B.-A.; Kawalla, R.

    2017-10-01

    Nowadays the design of single process steps and even of whole process chains is realized by the use of numerical simulation, in particular finite element (FE) based methods. A detailed numerical simulation of hot forging processes requires realistic models, which consider the relevant material-specific parameters to characterize the material behavior, the surface phenomena, the dies as well as models for the machine kinematic. This data exists partial for several materials, but general information on steel groups depending on alloying elements are not available. In order to generate the scientific input data regarding to material modelling, it is necessary to take into account the mathematical functions for deformation behavior as well as recrystallization kinetic, which depends alloying elements, initial microstructure and reheating mode. Besides the material flow characterization, a detailed description of surface changes caused by oxide scale is gaining in importance, as these phenomena affect the material flow and the component quality. Experiments to investigate the influence of only one chemical element on the oxide scale kinetic and the inner structure at high temperatures are still not available. Most data concerning these characteristics is provided for the steel grade C45, so this steel will be used as basis for the tests. In order to identify the effect of the carbon content on the material and oxidation behavior, the steel grades C15 and C60 will be investigated. This paper gives first approaches with regard to the influence of the carbon content on the oxide scale kinetic and the flow stresses combined with the initial microstructure.

  16. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    Science.gov (United States)

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  17. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  18. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  19. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae, or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae were extracted using supercritical carbon dioxide (SC-CO2 and conventional solvents (ethanol, water. The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae, with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant.

  20. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, Oscar

    2016-09-07

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (C-org) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes <63 mu m), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between C-org and mud contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil C-org content. We also combined these data with the delta C-13 signatures of the soil C-org to understand the sources of Corg stores. The results showed that mud is positively correlated with soil C-org content only when the contribution of seagrass-derived C-org to the sedimentary C-org pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil C-org content, related to a higher contribution of seagrass-derived C-org to the sedimentary C-org pool in these meadows. The relatively high soil C-org contents with relatively low mud contents (e.g., mud-C-org saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil C-org and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil C-org content for

  1. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dingsheng; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Pan, Hongge; Liu, Yongfeng; Wang, Junhua; Li, Shouquan; Ge, Hongwei

    2014-08-01

    Highlights: • Micro-sized Si/C composites were fabricated via. spray drying and carbonization. • Multi-morphology carbon was formed in the Si/C composites. • Si/C composite with 5.6 wt.% C provides significant improved cycling stability. • Multi-morphology carbon plays effective role in improving the electrochemical property. • The method provides potential for mass production of superior Si-based anode materials. - Abstract: Micro-sized Si/C composites with in situ introduced carbon of multi-morphology were fabricated via spray drying a suspension of commercial micro-sized Si and citric acid followed by a carbonization. Different ratios of Si to citric acid were used to optimize the composition and structure of the composites and thus the electrochemical performance. Carbon flakes including crooked and flat ones were well dispersed in between the Si particles, forming Si/C composites. Floc-like carbon layers and carbon fragments were also found to cover partially the Si particles. The Si/C composite with a low carbon content of 5.6 wt.% provides an initial reversible capacity of 2700 mA h/g and a capacity of 1860 mA h/g after 60 cycles at a current density of 100 mA/g as anode material for lithium-ion batteries (LIBs), which are much higher than those of pristine Si and the Si/C composites with higher carbon content. The mechanism of the enhancement of electrochemical performance of the micro-sized Si/C composite is discussed. The fabrication method and the structure design of the composites offer valuable potential in developing adaptable Si-based anode materials for industrial applications.

  2. The carbon isotope ratios and contents of mineral elements in leaves of Chinese medicinal plants

    International Nuclear Information System (INIS)

    Lin Zhifang; Sun Guchou; Wang Wei

    1989-01-01

    Leaf carbon isotope ratios and 13 kinds of mineral elements were measured on 36 species of common Chinese medicinal plants in a subtropical monsoon forest of Ding Hu Shan in Guangdong Province. The .delta.13C value were from -26.4 to -32.6%, indicating that all of the species belonged the photosynthetic C3 types. The relative lower value of δ13C was observed in the life form of shrubs. The contents of 7 elements (N, P, K, Ca, Na Mg, Si) were dependent upon the species, life form, medicinal function and medicinal part. Herb type medicine and the used medicinal part of leaves or whole plant showed higher levels of above elements than the others. Among the nine groups with different medicinal functions, it was found that more nitrogen was in the leaves of medicinal plants for hemophthisis, hypertension and stomachic troubles, more phosphorus and potassium were in the leaves for cancer and snake bite medicines, but more calcium and magnesium were in the leaves for curing rheumatics. Ferric, aluminium and manganese were the main composition of microelements in leaves. There were higher content of ferric in leaves for hemophthisis medicine, higher zinc in leaves for cold and hypertension medicine, and higher Cup in leaves of stomachic medicine. It was suggested that the pattern of mineral elements in leaves of Chinese medicinal plants reflected the different properties of absorption and accumulation. Some additional effect due to the high content of certain element might be associated with the main function of that medicine

  3. Modelling global change impacts on soil carbon contents of agro-silvo-pastoral Mediterranean systems

    Science.gov (United States)

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2016-04-01

    total of 38 sampling points were selected under two management practices and six different land uses: (1) MEOW-dehesa (D); (2) MEOW-dehesa + some pine trees (D+P); (3) MEOW-dehesa + some cork oaks (D+C); (4) MEOW-dehesa + some gall oaks (D + G); (5) MEOW-dehesa after a clarified process and transformed to olive grove but maintaining isolated oaks (OG) and (6) MEOW-dehesa after a clarified process and transformed to cereal pasture with isolated oaks (C). Preliminary results showed a high heterogeneity of SOC contents along the soil profile for different climate and land use scenarios. The methods used here can be easily implemented in other Mediterranean areas with available information on climate, site, soil and land use. Keywords: CarboSOIL model, land use change, climate change, soil depth, dehesa References: Abd-Elmabod, S.K., Muñoz-Rojas, M., Jordán, A., Anaya-Romero, M., De la Rosa, D., 2014. Modelling soil organic carbon stocks along topographic transects under climate change scenarios using CarboSOIL. Geophys. Res. Abstr. vol. 16 EGU2014-295-1, EGU General Assembly.) Álvaro-Fuentes, J., Easter, M., Paustian, K., 2012. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87-94. Corral-Fernández, R., Parras-Alcántara, L., Lozano-García, B. 2013. Stratification ratio of soil organic C, N and C:N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agric. Ecosyst. Environ. 164, 252-259. Francaviglia, R., Coleman, K., Whitmore, A.P., Doro, L., Urracci, G., Rubino, M., Ledda, L., 2012. Changes in soil organic carbon and climate change - application of the RothC model in agrosilvo-pastoral Mediterranean systems. Agric. Syst. 112, 48- 54. IPCC, 2007. Technical summary. In: Climate Change 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change http://www.ipcc.ch/. Lozano-García, B., Parras-Alcántara, L

  4. Calculation method for determination of carbon in the peatand moss litter of forest swamps by ash content of plant substrates

    Directory of Open Access Journals (Sweden)

    T. T. Efremova

    2016-12-01

    Full Text Available Studies were carried out in the lowmountain part of the Kuznetsk Alatau. The spruce stands were studied in the peaty valley of river Tunguzhul and swamp near Agaskyr Lake (valley of river Pechische, basin of river Black Iyus. The objects belong to the group of high ash content flood plain peat lands of cryogenicseries. We have done the evaluation of organic carbon response to physical-chemical properties – decomposition degree, ash content, and bulk density, connected together (r – 0.5–0.7, that in contrast to carbon, is easy determined analytically. Received results according to stepwise regression analysis characterize the strong conditionality predictors of carbon: multiple determination index R2 – 0.86. The highest partial correlation coefficient with the response belongs to the ash content in range (5–68 %. Partial correlation coefficient values of bulk density and decomposition degree is not significant. The determination index (R2 – 0.93, constant and negative coefficient of pair regression analysis are highly significant and evidence of the strong bond of carbon and organic substrate ash content. The relative error of approximation is in the range of 2–8 % and characterizes the high accuracy of prognosis. Including only one indicator (ash content in the calculation formula makes it convenient and simple in practical application for the carbon content prediction on the forest litter, modern peat soils, buried peat and peat-mineral formations with ash content of 5–68 %. We are the first to present the geochemical characteristics of forest swamps peat mine for the KuznetskAlatau intermountain basins.

  5. In-BWR and out-of-pile nodular corrosion behavior of Zry-2/4 type melts with varying Fe, Cr, and Ni content and varying process history

    International Nuclear Information System (INIS)

    Ruhmann, H.; Manzel, R.; Sell, H.J.

    1996-01-01

    Zircaloy-based materials with constant tin content, a constant sum of Fe and Cr content, and different Fe/Cr ratios were manufactured from small ingots (6 kg) by forging, β-quenching, hot rolling, and cold rolling with two different annealing sequences resulting in two accumulated annealing parameters. To study the effect of Ni, chromium was substituted by nickel in one alloy. As a reference material standard, ASTM Zry-2 was manufactured in a similar way. These materials were examined for precipitate size by TEM and for their out-of-pile corrosion behavior in 400 C steam up to 319 days and in 500 C steam up to 24 h in a static and in a refreshed autoclave. Furthermore, samples made from these alloys were irradiated in a commercial BWR for two years. Results of the test are given

  6. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.

    Science.gov (United States)

    Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan

    2015-09-01

    This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of carbon content and chromium segregation on creep rupture properties of low carbon and medium nitrogen type 316 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Fujita, Nobuhiro; Kimura, Hidetaka; Komatsu, Hajime; Kotoh, Hiroyuki; Kaguchi, Hitoshi.

    1997-01-01

    The creep rupture properties of type 316 stainless steels containing 0.005-0.022%C and 0.07%N have been investigated at 550degC and 600degC from the aspect of the grain boundary carbide precipitation which was changed with carbon content and chromium segregation. A small amount of carbide precipitated on grain boundaries during creep, because the solubility limit of the carbide is less than 0.005%. The creep rupture ductility of this steel increased with the reduction of carbon content from 0.010% to 0.005% while it decreased with increasing carbon content from 0.010% to 0.020%. Since the amount of grain boundary carbide decreased with reducing carbon content, the increase in ductility was due to the suppression of grain boundary embrittlement caused by the carbide. The creep rupture ductility of this steel was also improved by reducing chromium segregation. This behavior was attributed to the change in carbide morphology from concentrated type to dispersed one, which reduced the grain boundary embrittlement. (author)

  8. Initial Soil Organic Matter Content Influences the Storage and Turnover of Litter-, Root- and Soil Carbon in Grasslands

    Science.gov (United States)

    Liu, L.; Xu, S.; Li, P.; Sayer, E. J.

    2017-12-01

    Grassland degradation is a worldwide problem that often leads to substantial loss of soil organic matter (SOM). Understanding how SOM content influences the stabilization of plant carbon (C) to form soil C is important to evaluate the potential of degraded grasslands to sequester additional C. We conducted a greenhouse experiment using C3 soils with six levels of SOM content and planted the C4 grass Cleistogenes squarrosa and/or added its litter to investigate how SOM content regulates the storage of new soil C derived from litter and roots, the decomposition of extant soil C, and the formation of soil aggregates. We found that microbial biomass carbon (MBC) increased with SOM content, and increased the mineralization of litter C. Both litter addition and planted treatments increased the amount of new C inputs to soil. However, litter addition had no significant impacts on the mineralization of extant soil C, but the presence of living roots significantly accelerated it. Thus, by the end of the experiment, soil C content was significantly higher in the litter addition treatments, but was not affected by planted treatments. The soil macroaggregate fraction increased with SOM content and was positively related to MBC. Overall, our study suggests that as SOM content increases, plant growth and soil microbes become more active, which allows microbes to process more plant-derived C and increases new soil C formation. The interactions between SOM content and plant C inputs should be considered when evaluating soil C turnover in degraded grasslands.

  9. Effect of organic carbon content of the domestic bentonite on the performance of buffer material in a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The organic carbon content of the domestic bentonite have been measured, and its effects on the performance of buffer are analyzed. The total carbon content and the organic carbon content were in the range of 3160 to 3600 and 2400 to 2800 ppm, respectively. The aqueous phase equilibrium concentrations of total carbon and organic carbon in bentonite-water mixture were in the range of 25 to 50 ppm and 4 to 18 ppm, respectively. The results indicate that the effect of organic matter in the domestic bentonite on the performance of buffer material were insignificant. 33 refs., 15 figs., 10 tabs. (Author)

  10. Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms

    KAUST Repository

    Molina-Ramírez, Axayacatl

    2015-05-19

    We have supplemented available, concurrent measurements of fresh weight (W, g) and body carbon (C, g) (46 individuals, 14 species) and nitrogen (N, g) (11 individuals, 9 species) of marine gelatinous animals with data obtained during the global ocean MALASPINA 2010 Expedition (totalling 267 individuals and 33 species for the W versus C data; totalling 232 individuals and 31 species for the N versus C data). We then used those data to test the allometric properties of the W versus C and N versus C relationships. Overall, gelatinous organisms contain 1.13 ± 1.57% of C (by weight, mean ± SD) in their bodies and show a C:N of 4.56 ± 2.46, respectively, although estimations can be improved by using separate conversion coefficients for the carnivores and the filter feeders. Reduced major axis regression indicates that W increases isometrically with C in the carnivores (cnidarians and ctenophores), implying that their water content can be described by a single conversion coefficient of 173.78 gW(g C)-1, or a C content of 1.17 ± 1.90% by weight, although there is much variability due to the existence of carbon-dense species. In contrast, W increases more rapidly than C in the filter feeders (salps and doliolids), according to a power relationship W = 446.68C1.54. This exponent is not significantly different from 1.2, which is consistent with the idea that the watery bodies of gelatinous animals represent an evolutionary response towards increasing food capture surfaces, i.e. a bottom-up rather than a top-down mechanism. Thus, the available evidence negates a bottom-up mechanism in the carnivores, but supports it in the filter feeders. Last, N increases isometrically with C in both carnivores and filter feeders with C:N ratios of 3.89 ± 1.34 and 4.38 ± 1.21, respectively. These values are similar to those of compact, non-gelatinous organisms and reflect a predominantly herbivorous diet in the filter feeders, which is confirmed by a difference of one trophic level

  11. Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms

    KAUST Repository

    Molina-Ramí rez, Axayacatl; Cá ceres, Carlos; Romero-Romero, Sonia; Bueno, Juan; Gonzá lez-Gordillo, J. Ignacio; Irigoien, Xabier; Sostres, Jorge; Bode, Antonio; Mompeá n, Carmen; Ferná ndez Puelles, Mariluz; Echevarria, Fidel; Duarte, Carlos M.; Acuñ a, José Luis

    2015-01-01

    We have supplemented available, concurrent measurements of fresh weight (W, g) and body carbon (C, g) (46 individuals, 14 species) and nitrogen (N, g) (11 individuals, 9 species) of marine gelatinous animals with data obtained during the global ocean MALASPINA 2010 Expedition (totalling 267 individuals and 33 species for the W versus C data; totalling 232 individuals and 31 species for the N versus C data). We then used those data to test the allometric properties of the W versus C and N versus C relationships. Overall, gelatinous organisms contain 1.13 ± 1.57% of C (by weight, mean ± SD) in their bodies and show a C:N of 4.56 ± 2.46, respectively, although estimations can be improved by using separate conversion coefficients for the carnivores and the filter feeders. Reduced major axis regression indicates that W increases isometrically with C in the carnivores (cnidarians and ctenophores), implying that their water content can be described by a single conversion coefficient of 173.78 gW(g C)-1, or a C content of 1.17 ± 1.90% by weight, although there is much variability due to the existence of carbon-dense species. In contrast, W increases more rapidly than C in the filter feeders (salps and doliolids), according to a power relationship W = 446.68C1.54. This exponent is not significantly different from 1.2, which is consistent with the idea that the watery bodies of gelatinous animals represent an evolutionary response towards increasing food capture surfaces, i.e. a bottom-up rather than a top-down mechanism. Thus, the available evidence negates a bottom-up mechanism in the carnivores, but supports it in the filter feeders. Last, N increases isometrically with C in both carnivores and filter feeders with C:N ratios of 3.89 ± 1.34 and 4.38 ± 1.21, respectively. These values are similar to those of compact, non-gelatinous organisms and reflect a predominantly herbivorous diet in the filter feeders, which is confirmed by a difference of one trophic level

  12. Glacial to interglacial contrast in the calcium carbonate content and influence of Indus discharge in two eastern Arabian sea cores

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    -74. Muller, G. and Gastner, M., 1971. The Karbonat Bombe a simple device for the determination of carbonate content in marine sediments, soil and other materials. Neues Jahrb. Mineral. Monat sh., pp. 466-469. Nair, R.R., Ittekkot, V., Manganani, S...

  13. Rust Layer Formed on Low Carbon Weathering Steels with Different Mn, Ni Contents in Environment Containing Chloride Ions

    Directory of Open Access Journals (Sweden)

    Gui-qin FU

    2016-11-01

    Full Text Available The rusting evolution of low carbon weathering steels with different Mn, Ni contents under a simulated environment containing chloride ions has been investigated to clarify the correlation between Mn, Ni and the rust formed on steels. The results show that Mn contents have little impact on corrosion kinetics of experimental steels. Content increase of Ni both enhances the anti-corrosion performance of steel substrate and the rust. Increasing Ni content is beneficial to forming compact rust. Semi-quantitative XRD phase analysis shows that the quantity ratio of α/γ*(α-FeOOH/(γ-FeOOH+Fe3O4 decreases as Mn content increases but it increases as Ni content increases. Ni enhances rust layer stability but Mn content exceeding 1.06 wt.% is disadvantageous for rust layer stability. The content increase of Mn does not significantly alter the parameters of the polarization curve. However, as Ni contents increases, Ecorr has shifted to the positive along with decreased icorr values indicating smaller corrosion rate especially as Ni content increases from 0.42 wt.% to 1.50 wt.%.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12844

  14. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH 4 /H 2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H 2 . The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  15. Radiocarbon Content of Dissolved Organic Carbon in the South Indian Ocean

    Science.gov (United States)

    Bercovici, S. K.; McNichol, A. P.; Xu, L.; Hansell, D. A.

    2018-01-01

    We report four profiles of the radiocarbon content of dissolved organic carbon (DOC) spanning the South Indian Ocean (SIO), ranging from the Polar Front (56°S) to the subtropics (29°S). Surface waters held mean DOC Δ14C values of -426 ± 6‰ ( 4,400 14C years) at the Polar Front and DOC Δ14C values of -252 ± 22‰ ( 2,000 14C years) in the subtropics. At depth, Circumpolar Deep Waters held DOC Δ14C values of -491 ± 13‰ ( 5,400 years), while values in Indian Deep Water were more depleted, holding DOC Δ14C values of -503 ± 8‰ ( 5,600 14C years). High-salinity North Atlantic Deep Water intruding into the deep SIO had a distinctly less depleted DOC Δ14C value of -481 ± 8‰ ( 5,100 14C years). We use multiple linear regression to assess the dynamics of DOC Δ14C values in the deep Indian Ocean, finding that their distribution is characteristic of water masses in that region.

  16. Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion

    Directory of Open Access Journals (Sweden)

    Chunlin Wang

    2017-01-01

    Full Text Available Recently, Gaussian Process (GP has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA. Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.

  17. The oxygen content of the high-temperature superconducting compound Bi2+xSr3-yCayCu2O8+d with respect to varying Ca and Bi contents

    International Nuclear Information System (INIS)

    Majewski, P.; Su, H.L.; Aldinger, F.

    1994-01-01

    The oxygen content of Bi 2+x Sr 3-y Ca y Cu 2 O 8+d (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T c decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T c of the 2212 phase primarily is controlled by its cation concentration

  18. Effect of Carbon Content on the Properties of Iron-Based Powder Metallurgical Parts Produced by the Surface Rolling Process

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2018-01-01

    Full Text Available In recent years, the rolling densification process has become increasingly widely used to strengthen powder metallurgy parts. The original composition of the rolled powder metallurgy blank has a significant effect on the rolling densification technology. The present work investigated the effects of different carbon contents (0 wt. %, 0.2 wt. %, 0.45 wt. %, and 0.8 wt. % on the rolling densification. The selection of the raw materials in the surface rolling densification process was analyzed based on the pore condition, structure, hardness, and friction performance of the materials. The results show that the 0.8 wt. % carbon content of the surface rolling material can effectively improve the properties of iron-based powder metallurgy parts. The samples with 0.8 wt. % carbon have the highest surface hardness (340 HV0.1 and the lowest surface friction coefficient (0.35. Even if the dense layer depth is 1.13 mm, which is thinner than other samples with low carbon content, it also meets the requirements for powder metallurgy parts such as gears used in the auto industry.

  19. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC - effect of carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.; Canizares, P.; Rodrigo, M.A.; Ubeda, D.; Pinar, F.J.; Linares, J.J. [Department of Chemical Engineering, University of Castilla-La Mancha, Av. Camilo Jose Cela, n 12. 13071, Ciudad Real (Spain)

    2010-10-15

    This work aims at studying the role of the microporous layer (MPL) in electrodes prepared for high temperature PBI-based PEMFC. The two main components of this layer are carbon black and a polymeric binder (Teflon). This work addresses the effect of the MPL carbon amount on the performance of a high temperature PEMFC. Thus, gas diffusion layers (GDLs) containing MPL with different carbon contents (from 0.5 to 4 mg cm{sup -2}) were prepared. Firstly, they were physically characterised by Hg-porosimetry measuring pore size distribution, porosity, tortuosity and mean pore size. Permeability measurements were also performed. The higher the carbon content was the lower both porosity and permeability were. Afterwards, electrodes were prepared with these GDLs and were electrochemically characterised. Electrochemical surface area (ESA) was determined and fuel cell performance was evaluated under different fuel and comburent stoichiometries, supporting these results with impedance spectra. This made it possible to see the benefits of the MPL inclusion in the electrode structure, with a significant increase in the fuel cell performance and ESA. Once the goodness of the MPL was confirmed, result analysis led to an optimum MPL composition of 2 mg cm{sup -2} of carbon for both electrodes, anode and cathode. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    International Nuclear Information System (INIS)

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-01-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm"−"3 (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm"−"3; and LF2, 1.8–2.0 g cm"−"3) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C_H_W_E) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ"1"3C values. The hot water extraction and natural δ"1"3C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying soil depths in extensively

  1. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  2. Dependence of microhardness of coke on carbon content and final coking temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kaloc, M.; Dvorak, P.

    1995-12-31

    At present time is important the coke-quality, tested by various methods again. The new methods of evaluation of coke quality as e.g. CSR, CRI, ACRI etc. demonstrate, that the mechanical stability parameters are in connection of microstructure of coke mass. The purpose of present paper is to investigate the dependence of microhardness on the carbon content and the final carbonisation temperature in the coal-coke series. The samples prepared experimentally in more series from different coal blends from 20{degrees}C to 1100{degrees}C were investigated both mega- and microscopically. The tests of microhardness are based on the use of the Hanemann microhardness tester. Principally this method consists in impressing the diamond pyramid into the surface of the sample. The data on the pressure applied are subtracted on the scale of load. An important factor influencing the results is the choice of the points from which the sample is to be withdrawn. The choice is dependent on the aim to be achieved. For the determination of an average microhardness it is sufficient to take sample from the middle part of the coke block representing the half width of the coking chamber. The choice of the point is also of great importance. In strong and homogeneous walls, sharply bounded, impressions can be found with a distinct diagonal cross. In thin walls the impressions are distinguished by distinct boundaries, the middle part, however, not being distinct as the pyramidal point did not penetrate the wall. Impressions providing accurate values are those distinctly bounded by a distinct diagonal cross. The walls not having been chosen correctly, the errors reveal themselves as the scattering of the points in the diagrams of microhardness.

  3. The effect of type-B carbonate content on the elasticity of fluorapatite

    Science.gov (United States)

    Cámara, Fernando; Curetti, Nadia; Benna, Piera; Abdu, Yassir A.; Hawthorne, Frank C.; Ferraris, Cristiano

    2018-03-01

    The mechanical behavior of carbonate-bearing fluorapatite (CFAP) (with up to 5.5 wt% CO3) was investigated at high pressure up to 7 GPa. The incorporation of carbonate in CFAP samples was investigated by FTIR spectroscopy. The chemical formulae and cell parameters are Ca4.90Fe0.04 (PO4)2.87 (CO3)0.13 F1.23 and a = 9.3527(1), c = 6.8752(1) Å, V = 520.83(1) Å3 for the FOW CFAP (Fowey Consols area, UK), and Ca4.97Sr0.03 (PO4)2.55 (CO3)0.45 F1.42 and a = 9.3330(1), c = 6.8984(1) Å, V = 520.38(1) Å3 for the FRA CFAP (Framont region, France). Preliminary characterization at ambient conditions was done by single-crystal X-ray diffraction study. The structure refinements, in space group P63/m, confirm a type-B substitution of the phosphate (PO4)3- group by the carbonate ion (CO3)2-. The site occupancies for the C atom are 0.04 for FOW and 0.11 for FRA CFAP, in quite good agreement with the 1.6 and 5.5 wt% CO3 amount obtained by analytical methods. Single-crystal high-pressure XRD study on the two type-B CFAP samples was performed. The FOW and FRA crystals were mounted concurrently in a ETH-type DAC and cell parameters were determined at 26 different pressures up to 6.86 GPa at room T. The variation with pressure of the unit-cell parameters and volume shows no discontinuity that could be related to any possible phase transition in the P range investigated. The linear compressibility coefficients are β a = 3.63 × 10-3 GPa-1 and β c = 2.47 × 10-3 GPa-1 for FOW, and β a = 3.67 × 10-3 GPa-1 and β c = 2.65 × 10-3 GPa-1 for FRA, giving an axial anisotropy of β a :β c = 1.47:1 and 1.38:1, respectively. The P-V data were fitted by a second-order Birch-Murnaghan EoS and the resulting BM2-EoS coefficients are V 0 = 519.81(7) Å3, K T0 = 92.1(3) GPa for FOW, and V 0 = 518.95(9) Å3, K T0 = 89.1(4) GPa for FRA CFAP. The results obtained indicate that a 5.5 wt% CO3 content (type-B) reduces the isothermal bulk modulus by about 9%.

  4. The oxygen content of the high-temperature superconducting compound Bi{sub 2+x}Sr{sub 3-y}CayCu{sub 2}O{sub 8+d} with respect to varying Ca and Bi contents

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, P.; Su, H.L.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuggart (Germany)

    1994-12-31

    The oxygen content of Bi{sub 2+x}Sr{sub 3-y}Ca{sub y}Cu{sub 2}O{sub 8+d} (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T{sub c} decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T{sub c} of the 2212 phase primarily is controlled by its cation concentration.

  5. Superior performance of constant-saltier-reference DTF and DTFM to same-different tests by consumers for discriminating products varying sodium contents

    DEFF Research Database (Denmark)

    Choi, Yoon-Jung; Kim, Jin-Young; Christensen, Rune Haubo Bojesen

    2014-01-01

    Reducing sodium content in foods and beverages has become very important, and great efforts are being made to achieve this while maintaining overall taste/acceptance of food. This requires more robust sensory discrimination test methods in terms of operational power because discrimination tests u...

  6. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  7. Risks attributable to water quality changes in shallow potable aquifers from geological carbon sequestration leakage into sediments of variable carbonate content

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham; Jakobsen, Rasmus; Mathiesen, Tina Bay

    2013-01-01

    Denmark including; siliceous, carbonate and clay materials. Sediments were exposed to CO2 and hydro-geochemical effects were observed in order to improve general understanding of trace metal mobility, quantify carbonate influence, assess risks attributable to fresh water resources from a potential leak...... and aid monitoring measurement and verification (MMV) program design. Results demonstrate control of water chemistry by sediment mineralogy and most significantly carbonate content, for which a potential semi-logarithmic relationship with pH and alkalinity was observed. In addition, control of water...... changes in water chemistry with large increases in all major and trace elements coupled to minimal reductions in pH due to high buffering capacity. Silicate dominated sediments exhibited small changes in dissolved major ion concentrations and the greatest reductions in pH, therefore displaying...

  8. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature

    International Nuclear Information System (INIS)

    Phattharasupakun, Nutthaphon; Wutthiprom, Juthaporn; Suktha, Phansiri; Iamprasertkun, Pawin; Chanlek, Narong; Shepherd, Celine; Hadzifejzovic, Emina; Moloney, Mark G.; Foord, John S.; Sawangphruk, Montree

    2017-01-01

    Although functionalized carbon-based materials have been widely used as the supercapacitor electrodes, the optimum contents of the functional groups, the charge storage mechanisms, and the effects of electrolytes and operating temperature have not yet been clearly investigated. In this work, carboxylate-modified hollow carbon nanospheres (c-HCN) with different functional group contents synthesized by an oxidation process of carbon nanospheres with nitric acid were coated on flexible carbon fibre paper and used as the supercapacitor electrodes. An as-fabricated supercapacitor of the c-HCN with a finely tuned 6.2 atomic % of oxygen of the oxygen-containing groups in an ionic liquid electrolyte exhibits a specific capacitance of 390 F g"−"1, a specific energy of 115 Wh kg"−"1, and a maximum specific power of 13548 W kg"−"1 at 70 °C. The charge storage mechanism investigated is based on the chemical adsorption of the ionic liquid electrolyte on the c-HCN electrode. This process is highly reversible leading to high capacity retention. The supercapacitor in this work may be practically used in many high energy and power applications.

  9. A Simple Beta-Function Model for Soil-Water Repellency as a Function of Water and Organic Carbon Contents

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Kawamoto, Ken; Møldrup, Per

    2010-01-01

    Soil-water content (θ) and soil organic carbon (SOC) are key factors controlling the occurrence and magnitude of soil-water repellency (WR). Although expressions have recently been proposed to describe the nonlinear variation of WR with θ, the inclusion of easily measurable parameters in predictive...... conditions for 19 soils were used to test the model. The beta function successfully reproduced all the measured soil-water repellency characteristic, α(θ), curves. Significant correlations were found between model parameters and SOC content (1%-14%). The model was independently tested against data...

  10. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  11. The influence of dissolved H2O content in supercritical carbon dioxide to the inclusion complexes formation of ketoprofen/β-cyclodextrin

    Science.gov (United States)

    Goenawan, Joshua; Trisanti, P. N.; Sumarno

    2015-12-01

    This work studies the relation between dissolved H2O content in supercritical carbon dioxide (SC-CO2) with the formation of ketoprofen (KP)/β-cyclodextrin(CD) inclusion complexes. The process involves a physical mixture of these two compounds into contact with the supercritical carbon dioxide which had been previously saturated with H2O over a certain duration. The pressure used for saturation process is 130 bar and saturation temperature was ranged between 30 °C to 50 °C. The inclusion process was achieved by keeping it for 2 hours at 160 bar and 200 bar with inclusion temperature of 50 °C. The results enable us to suggest explanations for the inclusion formation. The inclusion complexes can be formed by contacting the dissolved H2O in SC-CO2 to the physical mixture of KP and CD. An increase in the temperature of saturation process resulted in an increase of dissolved H2O content in the supercritical carbon dioxide. The increasing levels of this water soluble resulted an increase in the inclusion complexes that has been formed. The formation of inclusion complexes includes the water molecules enhancing the emptying of the CD cavities and being replaced by KP, towards a more stable energy state. The drug release used for analyzing the dissolution rate of the KP/CD complexes. The results vary from 79,85% to 99,98% after 45 minutes which is above the rate that has been assigned by Farmakope Indonesia at 70% dissolution rate for KP. The use of SC-CO2 offers a new methods for increasing the rate of dissolution of drugs that are hydrophobic such as KP. CO2 used as a supercritical fluid because of its relatively low cost, easily obtainable supercritical conditions, and lack of toxicity. The material samples were characterized by DSC and Spectrophotometer UV-vis technique.

  12. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating

    Science.gov (United States)

    Han, Liang-Feng; Plummer, Niel

    2013-01-01

    The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of

  13. Effect of the hypo and hyperstoichiometry of niobium about the solidification of steel with medium carbon content

    International Nuclear Information System (INIS)

    Kestenbach, H.-J.; Rodrigues, J.A.; Makray, E.T.

    1984-01-01

    The solidification sequency and the microstructure from carbon steel with 0.4%C and several content of Nb were investigated. Additions between 1 and 5% in Nb weight to obtain compositions hypo and hyperstoichiometric in relation to the niobium carbide formation were used. The metallographic observations were interpreted based in several solidifications reactions that could be occur in the iron rich region of the ternary diagram Fe-Nb-C. (E.G.) [pt

  14. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Qiu, L.N. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Raabe, D. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 8, 40237 Düsseldorf (Germany)

    2015-06-11

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percent, wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  15. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  16. Relative transcription of Listeria monocytogenes virulence genes in liver pâtés with varying NaCl content

    DEFF Research Database (Denmark)

    Olesen, Inger; Thorsen, Line; Jespersen, Lene

    2010-01-01

    three liver pâtés with reduced NaCl content of which one also has been supplied with organic acids (Ca-acetate and Ca-lactate). The three strains (EGD-e: reference strain; O57: more NaCl sensitive; 6896: more NaCl tolerant) were selected out of twelve strains based on their growth in BHI broth adjusted......B for both O57 and 6896 were significantly higher when the strains were grown in BHI compared to the standard liver pâté. Reducing the NaCl content of the standard liver pâté did not change relative transcription levels of prfA, inlA, sigB or clpC (except for prfA in O57 and sigB in 6896). However......, the presence of Ca-acetate and Ca-lactate induced relative transcription of the stress response gene, clpC, for all three strains. This study demonstrates that relative microbial gene transcription can be measured in complex food matrices and points to the need for designing experimental set-ups in real food...

  17. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  18. Social Network and Content Analysis of the North American Carbon Program as a Scientific Community of Practice

    Science.gov (United States)

    Brown, Molly E.; Ihli, Monica; Hendrick, Oscar; Delgado-Arias, Sabrina; Escobar, Vanessa M.; Griffith, Peter

    2015-01-01

    The North American Carbon Program (NACP) was formed to further the scientific understanding of sources, sinks, and stocks of carbon in Earth's environment. Carbon cycle science integrates multidisciplinary research, providing decision-support information for managing climate and carbon-related change across multiple sectors of society. This investigation uses the conceptual framework of com-munities of practice (CoP) to explore the role that the NACP has played in connecting researchers into a carbon cycle knowledge network, and in enabling them to conduct physical science that includes ideas from social science. A CoP describes the communities formed when people consistently engage in shared communication and activities toward a common passion or learning goal. We apply the CoP model by using keyword analysis of abstracts from scientific publications to analyze the research outputs of the NACP in terms of its knowledge domain. We also construct a co-authorship network from the publications of core NACP members, describe the structure and social pathways within the community. Results of the content analysis indicate that the NACP community of practice has substantially expanded its research on human and social impacts on the carbon cycle, contributing to a better understanding of how human and physical processes interact with one another. Results of the co-authorship social network analysis demonstrate that the NACP has formed a tightly connected community with many social pathways through which knowledge may flow, and that it has also expanded its network of institutions involved in carbon cycle research over the past seven years.

  19. Dynamic carbon content as an indicator of desertification processes in soils developed from volcanic parental material in the Region of Murcia

    International Nuclear Information System (INIS)

    Martinez-Martinez, S.; Faz Cano, A.; Acosta Aviles, J. A.

    2009-01-01

    Soil Organic Carbon (SOC is an essential components of the global carbon cycle, especially in soils developed from volcanic rocks, due to these soils does not have inorganic carbon. In arid and semiarid areas mineralization of organic carbon is very intense due to climatic conditions, causing soils depletion and therefore desertification. The objective of this study is to determine the content of OC, as a first step in the assessment of desertification. The objective of this study is to determine the content of OC, as a first step in the assessment of desertification processes affecting this area of the southeast of Spain. (Author) 7 refs.

  20. Immediate analysis of the oil content of seeds by carbon-13 nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Leal, K Z; Costa, V E.U.; Seidl, P R; Campos, M P.A.; Colnago, L A [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Quimica

    1981-11-01

    The carbon 13 nuclear magnetic resonance (CMR) spectra of a series of Brazilian oilseeds was registered. The main constituents of the oils are identified and signals for each carbon atom are assigned. Chemical shifts are estimated for the free fatty acids and compared to those observed from the seeds, with good results. Besides being non-destructive, the RMC method proves to be fast and is useful in the determination of the principal components of the oil fraction of different types of seeds.

  1. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones

    Directory of Open Access Journals (Sweden)

    Ji-Kuen Yu

    2013-01-01

    Conclusion: From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO3 from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate.

  2. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Science.gov (United States)

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  3. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  4. Effect of fitness on glucose, insulin and cortisol responses to diets varying in starch and fat content in Thoroughbred horses with recurrent exertional rhabdomyolysis.

    Science.gov (United States)

    Finno, C J; McKenzie, E; Valberg, S J; Pagan, J

    2010-11-01

    Recurrent exertional rhabdomyolysis (RER) occurs in fit, nervous Thoroughbreds fed high nonstructural carbohydrate (NSC) diets. Clinical signs are diminished by feeding low NSC, high fat diets; however, the mechanism is unclear. To determine if the glucose, insulin and cortisol response to isocaloric diets varying in fat and NSC availability differ in fit vs. unfit Thoroughbreds with RER. Four fit (10 weeks treadmill training) RER Thoroughbred mares were exercised and fed 3 isocaloric (121 MJ/day) diets in a 5 day/diet block design. Two high NSC concentrates, sweet feed (SF) and a processed pelleted feed (PL) and a low starch high fat feed (FAT) were used. After 24 h of rest and a 12 h fast, horses ate half their daily concentrate. Blood sampled for [glucose], [insulin] and [cortisol] was obtained before, immediately after and at 30-60 min intervals for 420 min. After 3-6 months detraining period, the block design was repeated. Results for SF and PL were similar. Regardless of diet, cortisol was higher in fit vs. unfit horses. Fit horses on SF/PL had higher post prandial [insulin] and insulin:glucose ratio than unfit horses. FAT resulted in lower post prandial [glucose] and [insulin] vs. SF/PL. Higher [insulin] in fit vs. unfit horses was not seen on the FAT diet. Increased post prandial [glucose], [insulin] and [cortisol] induced by high NSC, but not high fat, feeds are enhanced by fitness in RER horses. This combination may trigger rhabdomyolysis through increased excitability in RER Thoroughbreds. © 2010 EVJ Ltd.

  5. Nanoemulsions produced with varied type of emulsifier and oil content: An influence of formulation and process parameters on the characteristics and physical stability

    Directory of Open Access Journals (Sweden)

    Đorđević Sanela M.

    2013-01-01

    Full Text Available The aim of the present study was to prepare oil-in-water nanoemulsions stabilized with a novel natural alkyl polyglucoside surfactant and to compare them with corresponding lecithin/polysorbate 80 - based nanoemulsions in terms of physicochemical properties and physical stability. Nanoemulsions were prepared by high pressure homogenization, using 20, 30 and 40% (w/w medium chain triglyceride as oil phase, and 4, 6 and 8% (w/w lecithin/polysorbate 80 mixture (1/1 or caprylyl/capryl glucoside as emulsifiers. The influence of emulsifier type, emulsifier concentration and oil content was investigated with respect to changes in particle size, particle size distribution, surface charge and physical stability. The influence of production parameters (number of homogenization cycles, type of homogenization process, homogenization pressure on particle size was also investigated. Analysis was performed by photon correlation spectroscopy, laser diffraction, zeta potential, pH and electrical conductivity measurements. All formulations produced revealed a small droplet size ranging from 147 to 228 nm and a very narrow size distribution (polydispersity index range 0,072-0,124. Zeta potentials were about -20 mV and -50 mV for nanoemulsions stabilized with lecithin/polysorbate 80 and caprylyl/capryl glucoside, respectively. The results obtained during the stability studies (6 months at 25°C and 1 month at 40°C indicated that nanoemulsion stability was influenced by their composition. Acquired results also suggested the most appropriate production parameters: 9 homogenization cycles, homogenization pressure of 500 bar and discontinuous process of homogenization.

  6. Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe-Mo/MgO catalyst

    International Nuclear Information System (INIS)

    Xu Xiangju; Huang Shaoming; Yang Zhi; Zou Chao; Jiang Junfan; Shang Zhijie

    2011-01-01

    Research highlights: → Increasing the Mo content in the Fe-Mo/MgO catalysts resulted in an increase in wall number, diameter and growth yield of carbon nanotubes. → The Fe interacts with MgO to form complex (MgO) x (FeO) 1-x (0 4 and relative large metal Mo particles can be generated after reduction. → The avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles. - Abstract: A series of Fe-Mo/MgO catalysts with different Mo content were prepared by combustion method and used as catalysts for carbon nanotube (CNT) growth. Transmission electron microscopy studies of the nanotubes show that the number of the CNT walls and the CNT diameters increase with the increasing of Mo content in the bimetallic catalyst. The growth yield determined by thermogravimetric analysis also follows the trend: the higher the Mo content, the higher the yield of the CNTs. However, the increase of Mo content leads to the lower degree of graphitization of CNTs. A comparative study on the morphology and catalytic functions of Fe/MgO, Mo/MgO and Fe-Mo/MgO catalysts was carried out by scanning electron microscopy and X-ray diffraction. It is found that the Fe interacts with MgO to form complexes and is then dispersed into the MgO support uniformly, resulting in very small Fe nanoparticles after reduction. The Mo interacts with MgO to form stoichiometry compound MgMoO 4 and relative large metal Mo particles can be generated after reduction. High yield CNTs with small diameter can be generated from Fe-Mo/MgO because the avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles.

  7. Equation of State of Fe3C and Implications for the Carbon Content of Earth's Core

    Science.gov (United States)

    Davis, A.; Brauser, N.; Thompson, E. C.; Chidester, B.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Carbon is a common component in protoplanetary cores, as represented by iron meteorites. Therefore, along with silicon, oxygen, and other light elements, it is likely to be an alloying component with iron in Earth's core. Previous studies of the densities of iron carbides have not reached the combined pressure and temperature conditions relevant to Earth's core. To better understand the geophysical implications of carbon addition to Earth's core, we report P-V-T measurements of Fe3C to pressures and temperatures exceeding 110 GPa and 2500 K, using synchrotron X-ray diffraction in a laser heated diamond anvil cell. Fitting these measurements to an equation of state and assuming 1.5% density change upon melting and a 4000 K core-mantle boundary temperature, we report a value of 6 wt% carbon necessary to match the PREM density in the outer core. This value should be considered an upper bound due to the likely presence of other light elements.

  8. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  9. Immediate analysis of the oil content of seeds by carbon-13 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Leal, K.Z.; Costa, V.E.U.; Seidl, P.R.; Campos, M.P.A.; Colnago, L.A.

    1981-01-01

    The carbon 13 nuclear magnetic resonance (CMR) spectra of a series of Brazilian oilseeds was registered. The main constituents of the oils are identified and signals for each carbon atom are assigned. Chemical shifts are estimated for the free fatty acids and compared to those observed from the seeds, with good results. Besides being non-destructive, the RMC method proves to be fast and is useful in the determination of the principal components of the oil fraction of different types of seeds. (Author) [pt

  10. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  11. The Effect Of Carbon Concentration On The Retained Austenite Content And The Mechanical Properties Of TRIP Steel Wire Rod Obtained From The Stelmor Controlled Cooling Line

    Directory of Open Access Journals (Sweden)

    Muskalski Z.

    2015-09-01

    Full Text Available The austenite content of the multiphase TRIP-structure steels depends, inter alia, on the carbon concentration and the properly selected parameters of the two-stage heat treatment.

  12. The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake

    Science.gov (United States)

    Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.

    2017-12-01

    Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; pmake an important step towards improving the accuracy of global carbon budgets.

  13. Linking organic carbon, water content and nitrous oxide emission in a reclaimed coal mine soil

    Science.gov (United States)

    Manure-based organic amendments can restore soil quality and allow for intensive sustained biomass production on degraded lands. However the large quantities of nitrogen and organic carbon added with such amendments could create soil conditions favorable for nitrous oxide production and emissions. T...

  14. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Skála, Roman; Řanda, Zdeněk; Mizera, Jiří

    2012-01-01

    Roč. 47, č. 6 (2012), s. 1010-1028 ISSN 1086-9379 R&D Projects: GA ČR GA205/09/0991 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : moldavites * geochemistry * ries * carbon stable isotopes * moldavites (Germany) Subject RIV: DD - Geochemistry Impact factor: 2.800, year: 2012

  15. Assessment of pre-industrial carbon dioxide content in the atmosphere using hydro-chemical data

    International Nuclear Information System (INIS)

    Heans, K.A.; Liaxin, Y.I.

    2001-01-01

    A hydrochemical method has been developed to calculate concentrations of carbon dioxide (CO 2 ) in the pre-industrial atmosphere and its relationship to climatic change. The following factors affect the Earth's climate: (1) the sun with all its processes, (2) the attraction of the moon that limits the axis of inclination of the Earth, and (3) the cycle of carbon dioxide and the greenhouse effect. An imbalance in the climate system would be a major global disaster that could be detrimental for life on Earth. Recent studies and temperature measurements have shown a trend in which air temperature has increased in the troposphere in the last 100 years, affecting the normal development of natural processes. Various phenomena result from climatic change, or the gradual heating of the Earth. These include the weakening of the glacial layer that covers the Earth's surface, cycles of prolonged slowing in freeze and thaw periods of aquatic surfaces, and increased air temperature in the troposphere which can also causes abnormal fluctuations of temperature in the atmosphere, resulting in heat waves and droughts. Gradual heating of the Earth can also result in rainy periods that produce devastating floods, hurricanes and extreme winds. Changes in water temperature can influence pH levels which affect certain marine species. An increase of 5 degrees C in the global average atmospheric temperature has created changes in 420 physical processes as well as in the behavior of plants and animals. The author stated that the most drastic factor that affects the balance of the Earth's climate is the actions of man interfering with the carbon cycle, as carbon dioxide plays a vital role in the formation of the greenhouse effect. The problem results from an imbalance of the carbon dioxide cycle when CO 2 emissions are increased through the combustion of fossil fuels. It was determined that before the beginning of the Industrial Revolution, carbon dioxide in the atmosphere was 256 ppm

  16. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    International Nuclear Information System (INIS)

    Ting, T.H.; Jau, Y.N.; Yu, R.P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  17. Fructose content and composition of commercial HFCS-sweetened carbonated beverages.

    Science.gov (United States)

    White, J S; Hobbs, L J; Fernandez, S

    2015-01-01

    The obesigenic and related health effects of caloric sweeteners are subjects of much current research. Consumers can properly adjust their diets to conform to nutritional recommendations only if the sugars composition of foods and beverages is accurately measured and reported, a matter of recent concern. We tested the hypothesis that high-fructose corn syrup (HFCS) used in commercial carbonated beverages conforms to commonly assumed fructose percentages and industry technical specifications, and fulfills beverage product label regulations and Food Chemicals Codex-stipulated standards. A high-pressure liquid chromatography method was developed and verified for analysis of sugars in carbonated beverages sweetened with HFCS-55. The method was used to measure percent fructose in three carbonated beverage categories. Method verification was demonstrated by acceptable linearity (R(2)>0.99), accuracy (94-104% recovery) and precision (RSD canned and bottled products and met the US Federal requirements for nutritional labeling and nutrient claims. Prior concerns about composition were likely owing to use of improper and unverified methodology.

  18. Austria's CO2 responsibility and the carbon content of its international trade

    International Nuclear Information System (INIS)

    Munoz, Pablo; Steininger, Karl W.

    2010-01-01

    Seeking to limit global warming to 2 C puts narrow restrictions on the remaining carbon budget. While the prevalent accounting framework for carbon emissions is production based (Production-Based Principle, PBP), we here quantify the CO 2 emissions on the basis of the Consumption-Based Principle (CBP) for Austria. At a methodological level, a Multi-Regional Input-Output model with full linkages is used to account for Austria's CO 2 responsibility on a global scale. Estimates are carried out for the years 1997 and 2004. Results show that during 1997 CO 2 responsibility based on CBP were 36% larger than those based on PBP. This relation has increased through time. The CBP indicator of 2004 was 44% larger than the PBP. In terms of carbon emission location, for each Euro spent on Austrian final demand in 2004, it is estimated that two-thirds of the CO 2 emissions occur outside Austrian borders. Regarding the origin of the emissions embodied in imports, it is estimated that about one-fourth originated in non-Annex I countries in 1997. This proportion increased to one-third by 2004. Due to this divergence between CBP and PBP indicators, there is a need to re-think current accounting bases in order to properly assign CO 2 responsibilities. (author)

  19. International Student Carbon Footprint Challenge--Social Media as a Content and Language Integrated Learning Environment

    Science.gov (United States)

    Fauville, Géraldine; Lantz-Andersson, Annika; Säljö, Roger

    2012-01-01

    Environmental education (EE) is now clearly specified in educational standards in many parts of the world, and at the same time the view of language learning is moving towards a content and language integrated learning (CLIL) strategy, to make English lessons more relevant and attractive for students (Eurydice, 2006). In this respect,…

  20. Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid/multiwalled carbon nanotube modified electrode

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-07-01

    Full Text Available A simple and sensitive poly(gallic acid/multiwalled carbon nanotube modified glassy carbon electrode (PGA/MWCNT/GCE electrochemical sensor was prepared for direct determination of the total phenolic content (TPC as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM, cyclic voltammetry (CV, chronoamperometry and chronocoulometry. It was found that gallic acid (GA exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less positive potential values. The dependence of peak current on accumulation potential, accumulation time and pH were investigated by square-wave voltammetry (SWV to optimize the experimental conditions for the determination of GA. Using the optimized conditions, the sensor responded linearly to a GA concentration throughout the range of 4.97 × 10−6 to 3.38 × 10−5 M with a detection limit of 3.22 × 10−6 M (S/N = 3. The fabricated sensor shows good selectivity, stability, repeatability and (101% recovery. The sensor was successfully utilized for the determination of total phenolic content in fresh pomegranate juice without interference of ascorbic acid, fructose, potassium nitrate and barbituric acid. The obtained data were compared with the standard Folin–Ciocalteu spectrophotometric results.

  1. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  2. Physical properties and organic carbon content of a Rhodic Kandiudox fertilized with pig slurry and poultry litter

    Directory of Open Access Journals (Sweden)

    Luiz Paulo Rauber

    2012-08-01

    Full Text Available The impact of pig slurry and poultry litter fertilization on soils depends on the conditions of use and the amounts applied. This study evaluated the effect of organic fertilizers after different application periods in different areas on the physical properties and organic carbon contents of a Rhodic Kandiudox, in Concordia, Santa Catarina, in Southern Brazil. The treatments consisted of different land uses and periods of pig and poultry litter fertilization: silage maize (M7 years, silage maize (M20 years, annual ryegrass pasture (P3 years, annual ryegrass pasture (P15 years, perennial pasture (PP20 years, yerba mate tea (Mt20 years, native forest (NF, and native pasture without manure application (P0. The 0-5, 5-10 and 10-20 cm soil layers were sampled and analyzed for total organic carbon, total nitrogen and soil physical properties such as density, porosity, aggregation, degree of flocculation, and penetration resistance. The organic carbon levels in the cultivated areas treated with organic fertilizer were even lower than in native forest soil. The organic fertilizers and studied management systems reduced the flocculation degree of the clay particles, and low macroporosity was observed in some areas. Despite these changes, a good soil physical structure was maintained, e.g., soil density and resistance to penetration were below the critical limits, whereas aggregate stability was high, which is important to reduce water erosion in these areas with rugged terrain in western Santa Catarina, used for pig and poultry farming.

  3. Ash content, carbon and C/N ratio in paricá in function of NPK fertilization

    Directory of Open Access Journals (Sweden)

    CRISTIANE R. VIEIRA

    2018-02-01

    Full Text Available ABSTRACT Fertilization in areas of forest plantations is needed to supplement plants´ nutritional needs until harvest. An experiment was performed to check the influence of fertilization on levels of ash, carbon and C/N relation in Schizolobium amazonicum. Soil liming was performed and fertilization occurred after 15 days of incubation. S. amazonicum seedlings were produced and submitted to fertilization with N, P and K: N = 0, 40, 80 and 120 kg ha-1; P2O5 = 0, 50, 100 and 200 kg ha-1; K2O = 0, 50, 100 and 200 kg ha-1. The plants were measured after 180 days. The seedlings of 20 treatments with the highest increase in height and diameter were transplanted to the field. Soil was fertilized and limestone was spread; seedlings were distributed into randomized blocks, with six replications. After 12 months, the plants were removed to determine ash, organic carbon, C/N relation contents. The ashes were submitted to digestion to determine nutrient concentrations. Fertilization influenced the levels of ash and organic carbon and C/N relation in S. amazonicum. Results indicate that the species has a potential for energy production.

  4. Ash content, carbon and C/N ratio in paricá in function of NPK fertilization.

    Science.gov (United States)

    Vieira, Cristiane R; Weber, Oscarlina L S; Scaramuzza, José Fernando

    2018-01-01

    Fertilization in areas of forest plantations is needed to supplement plants´ nutritional needs until harvest. An experiment was performed to check the influence of fertilization on levels of ash, carbon and C/N relation in Schizolobium amazonicum. Soil liming was performed and fertilization occurred after 15 days of incubation. S. amazonicum seedlings were produced and submitted to fertilization with N, P and K: N = 0, 40, 80 and 120 kg ha-1; P2O5 = 0, 50, 100 and 200 kg ha-1; K2O = 0, 50, 100 and 200 kg ha-1. The plants were measured after 180 days. The seedlings of 20 treatments with the highest increase in height and diameter were transplanted to the field. Soil was fertilized and limestone was spread; seedlings were distributed into randomized blocks, with six replications. After 12 months, the plants were removed to determine ash, organic carbon, C/N relation contents. The ashes were submitted to digestion to determine nutrient concentrations. Fertilization influenced the levels of ash and organic carbon and C/N relation in S. amazonicum. Results indicate that the species has a potential for energy production.

  5. Bonding Characteristics of Macrosynthetic Fiber in Latex-Modified Fiber-Reinforced Cement Composites as a Function of Carbon Nanotube Content

    Directory of Open Access Journals (Sweden)

    Ji-Hong Jean

    2016-01-01

    Full Text Available The effect of carbon nanotube content (0, 0.5, 1.0, 1.5, and 2.0% of the cement weight on the bonding properties of macrosynthetic fiber in latex-modified hybrid fiber cement-based composites (LMHFRCCs was evaluated. The slump value, compressive strength, and bonding strength were measured for each LMHFRCC. As the carbon nanotube content increased to 1.5%, the bonding properties of the macrosynthetic fiber improved. However, the bonding performance deteriorated at a carbon nanotube content of 2.0%. A decrease in the fluidity of the mix negatively affected the dispersion of the nanotubes in the LMHFRCCs. The addition of carbon nanotubes also affected the relative bonding strength independently of the improvement in compressive strength. Microscopic analysis of the macrosynthetic fiber surfaces was used to understand changes in the bonding behavior.

  6. The effect of soll water conditions on carbon isotope discrimination and minerals contents in spring-planted wheat

    International Nuclear Information System (INIS)

    Zhu Lin; Liang Zongsuo; Xu Xing; Li Shuhua

    2008-01-01

    Carbon isotope discrimination (triangle open 13 C) has been proposed as indirect selection criterion for transpiration efficiency and grain yield in wheat. However, because of high cost for triangle open 13 C analysis, attempts have been made to identify alternative screening criteria. Ash content (m a ) has been proposed as an alternative criterion for triangle open 13 C in wheat and barley. A pot experiment with three water treatments (45% ± 5% FC, 55% ± 5% FC and 75% ± 5%FC) was conducted and flag leaf triangle open 13 C (triangle openL a ), contents of ash, potassium (K), magnesium (Mg) and calcium (Ca) were measured to study the relationships between triangle open, mineral composition in spring planted bread wheat (Triticum aestivum L.). In the light of the results obtained in this research, the traits measured showed significant differences among the three water treatments. There were variations in triangle openL a between the genotypes derived from contrasting environments. The improved varieties or advanced lines bred in irrigated areas displayed higher triangle open 13 C values, while the improved and local varieties bred in rain-fed areas exhibited lower triangle open 13 C values Significant positive correlations were found between triangle open 13 C and m a in seedlings and second fully developed leaves at elongation stage and in flag leaves at anthesis stage in severe drought treatment (T 1 ) (r=0.790, P 13 C was negatively associated with potassium (K) content in flag leaves in T 2 (r=0.813, P 2 and T 3 (r=0.725, P 13 C and calcium (Ca) content in flag leaves in T 3 (r=0.708, P a is a possible alternative criterion of triangle open 13 C in vegetative organs especially in stressed environments. K, Mg and Ca contents in flag leaf under moderate water stress or feasible water conditions might be new predictive criteria of triangle openL a . (authors)

  7. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  8. Carbon, chromium and molybdenum contents; Teores de carbono, cromo e molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Sinatora, A; Goldenstein, H; Mei, P R; Albertin, E; Fuoco, R; Mariotto, C L

    1993-12-31

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite 9 figs., 3 tabs.

  9. Carbon, chromium and molybdenum contents; Teores de carbono, cromo e molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Sinatora, A; Goldenstein, H.; Mei, P.R.; Albertin, E.; Fuoco, R.; Mariotto, C.L

    1992-12-31

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite 9 figs., 3 tabs.

  10. Stable isotope compositions of organic carbon and contents of organic carbon and nitrogen of lacustrine sediments from sub-arid northern Tanzania

    International Nuclear Information System (INIS)

    Muzuka, A.N.N.

    2006-01-01

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid northern Tanzania during the late Pleistocene-Holocene period. Accelerate mass spectrometer (AMS) 14 C ages on total OM for sediments collected from the Ngorongoro Crater Lake indicate that the sedimentation rate is approximately 17 cm/ka. The δ 13 C values from the 20 cm long core (short core) show a downcore increase, whereas that of 500 cm long core (long core), show two peaks enriched in 13 C and three peaks depleted in 13 C. A general downcore increase in the δ 13 C values for the short core suggests changes in the relative proportion of C 3 and C 4 fraction increasing downcore. Similarly, low and high peaks in the long core suggest changes in the relative proportion of C 3 and C 4 with low values having high proportion of C 3 type of material, probably indicating changes in precipitation and lake levels in the area. Deposition of OM depleted in 13 C took place during periods of high precipitation and high lake levels. Although high content of OC and nitrogen in some core sections are associated with elevated C/N ratio values, diagenetic alteration of isotope signature is unlikely to have caused OC and isotope enrichment in sections having high contents of OC and nitrogen. The OC isotope record from Lake Ndutu shows a general downcore decrease in δ 13 C values and contents of OC and nitrogen. (author)

  11. EFFECT OF CROP ROTATION AND LONG TERM FERTILIZATION ON THE CARBON AND GLOMALIN CONTENT IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Piotr WOJEWÓDZKI

    2012-12-01

    Full Text Available The research was performed on the basis of soil samples taken from a multi-year long fertilization experiment carried out in Skierniewice. The source of samples was soil under potato and rye cultivated in monoculture and in the 5-fields rotation system. The following combinations of fertilization were concerned: Ca, NPK and CaNPK (doses since 1976: 1.6 t·ha-1 CaO every 4 years in monoculture and 2 t·ha-1 CaO every 5 years in crop rotation, 90 kg·ha-1 N, 26 kg·ha-1 P, 91 kg·ha-1 K. Laboratory analyzes involved determination of total organic carbon (TOC and glomalin operationally described as a total glomalin related soil protein (TGRSP. It was found that regardless of cultivated plants and the method of fertilization, only cultivation system such as rotation and monoculture significantly influenced the content of TGRSP. TOC was significantly influenced by interaction between species of cultivated plant and the system of cultivation. The analyzed factors within the method of cultivation (monoculture and crop rotation did not influence significantly the TGRSP content while cultivated plant species, in monoculture, significantly influenced on TOC content. There was also noted positive correlation (r = 0.72 between TGRSP and TOC.

  12. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    Science.gov (United States)

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  13. Oxidation of an activated carbon commercial and characterization of the content of superficial acid groups

    International Nuclear Information System (INIS)

    Cortes, Juan Carlos; Giraldo Liliana; Garcia, Andres A; Garcia, Cesar; Moreno, Juan C

    2008-01-01

    The changes of the surface acid groups of an activated commercial carbon after placing it under oxidation treatment with nitric acid are studied. The time used was in the range 1.5 and 9 hours, the concentrations range was from 4 to 7 molL -1 . The study included the determination of immersion enthalpy. Boehm's type titrations, FTIR, and pH at the point of zero charge, pH p zc. It was found that total acid groups are in a range from 0.207 mmolg -1 to 1.247 mmolg -1 , and that they are proportional to the immersion enthalpy in NaOH that are between 40 and 54Jg -1 . The pH p zc decreases with the oxidation treatment and have values between 8.3 and 4.3

  14. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Science.gov (United States)

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  15. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  16. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  17. The effect of repeated irrigation with varying total organic carbon content on the persistence of E. coli O157:H7 on baby spinach

    Science.gov (United States)

    In response to U.S. foodborne illnesses caused by contaminated spinach, growers have adopted regulations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population mean of 126 Most Probable Number (MPN) generic E. coli per 100 ml irrigation water. These...

  18. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.

    2002-01-01

    , trehalose and glycogen. Nitrogen starvation triggered the accumulation of trehalose and glycogen. After 8 h of starvation, the content of trehalose and glycogen was increased 4-fold and 2-fold, respectively. Carbon starvation resulted in a partial conversion of glycogen into trehalose. The trehalose content...... increased from 45 to 64 mg (g dry-weight)(-1), whereas the glycogen content in the same period was reduced from 55 to 5 mg (g dry-weight)(-1). Glycogen was consumed faster than trehalose during storage of the starved yeast for 1 month. Nitrogen starvation resulted in a decrease in the protein content...

  19. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    Science.gov (United States)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-06-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  20. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  1. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area

    International Nuclear Information System (INIS)

    Vingiani, S.; Adamo, P.; Giordano, S.

    2004-01-01

    The accumulation ability of the major elements sulphur, nitrogen and carbon by the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in Naples urban area,was investigated. Bags were exposed at the beginning of July 1999 and gathered in two subsequent moments: at the end of the dry season (after 10 weeks of exposure) and during the wet season (after 17 weeks of exposure), to include the effects of rainy conditions. Sulphur and N content of the lichen increased all over the exposure period, while the level of C did not change significantly either after 10 or 17 weeks of exposition. For the moss the S accumulation was limited to the dry period of exposure, whereas N and C content decreased with exposure. Results, in contrast with those obtained in a previous study on trace elements bioaccumulation [Adamo et al., Environmental Pollution, (2003) 122, 91-103], suggest that accumulation of gaseous pollutants is strongly influenced by biomonitor vitality and that lichen bags are a more reliable and effective tool for monitoring S, N and C atmospheric depositions in urban areas compared to moss bags, because of greater lichen resistance to dry and stressing conditions of urban environment. - The lichen Pseudevernia furfuracea is more effective than the moss Sphagnum capillifolium as S and N pollutants biomonitor

  2. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    International Nuclear Information System (INIS)

    Devulder, Wouter; De Schutter, Bob; Detavernier, Christophe; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Belmonte, Attilio

    2014-01-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu 0.6 Te 0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu 0.6 Te 0.4 -C/Al 2 O 3 /Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al 2 O 3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al 2 O 3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents

  3. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    Science.gov (United States)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  4. Can a low-carbon-energy transition be sustained in post-Fukushima Japan? Assessing the varying impacts of exogenous shocks

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Zusman, Eric; Monogan, James E.

    2014-01-01

    In the aftermath of the Fukushima nuclear crisis, Japan began contemplating energy policy reforms that drew inspiration from low-carbon research. This article focuses on a question central to advancing low-carbon research in Japan and elsewhere: namely, how does an exogenous shock affect the onset, magnitude, and permanence of changes in electricity consumption? The article employs intervention analysis with an autoregressive moving average (ARMA) model to answer this question. The data analysis reveals that post-Fukushima electricity use underwent a sudden, significant, and sustained reduction across Japan. The shock not only affected the Tokyo Electric Power Company (TEPCO) coverage area but the more distant Kansai Electric Power Company (KEPCO) coverage area. Large electricity users responded with an immediate and significant reduction in electricity consumption that rebounded to below pre-crisis levels; households responded more gradually with no rebound. Two of the more interesting results from the data analysis – the persistence in reductions in the more distant KEPCO coverage area and the rebound among large users – are then explained with a review of survey data and policy trends. Overall the quantitative and qualitative evidence suggests that an exogenous shock may give rise to a reduction in electricity consumption but cannot sustain a low-carbon transition. - Highlights: • Contributing to the literature on low carbon transitions. • Comparing post-Fukushima electricity consumption across regions and user groups. • Recommending reforms to sustain energy savings after an exogenous shock

  5. Empirical observations offer improved estimates of forest floor carbon content across in the United States

    Science.gov (United States)

    Perry, C. H.; Domke, G. M.; Walters, B. F.; Smith, J. E.; Woodall, C. W.

    2014-12-01

    The Forest Inventory and Analysis (FIA) program of the United States Forest Service reports official estimates of national forest floor carbon (FFC) stocks and stock change to national and international parties, the US Environmental Protection Agency (USEPA) and the United Nations Framework Convention on Climate Change (UNFCCC), respectively. These estimates of national FFC stocks are derived from plot-level predictions of FFC density. We suspect the models used to predict plot-level FFC density are less than ideal for several reasons: (a) they are based upon local studies that may not reflect FFC dynamics at the national scale, (b) they are relatively insensitive to climate change, and (c) they reduce the natural variability of the data leading to misplaced confidence in the estimates. However, FIA has measured forest floor attributes since 2001 on a systematic 1/16th subset of a nation-wide array of inventory plots (7 800 of 125 000 plots). Here we address the efficacy of replacing plot-level model predictions with empirical observations of FFC density while assessing the impact of imputing FFC density values to the full plot network on national stock estimates. First, using an equivalence testing framework, we found model predictions of FFC density to differ significantly from the observations in all regions and forest types; the mean difference across all plots was 21 percent (1.81 Mg·ha-1). Furthermore, the model predictions were biased towards the lower end of extant FFC density observations, underestimating it while greatly truncating the range relative to the observations. Second, the optimal imputation approach (k-Nearest Neighbor, k-NN) resulted in values that were equivalent to observations of FFC density across a range of simulated missingness and maintained the high variability seen in the observations. We used the k-NN approach to impute FFC density values to the 94 percent of FIA inventory plots without soil measurements. Third, using the imputed

  6. Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W.; Liu, T. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, L., E-mail: wangli@imr.ac.cn [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Liu, X.G.; Lou, L.H. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, J. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-15

    Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy has been investigated by the scanning electron microscope, X-ray computed tomography and electron probe microanalyzer. With the increase of the carbon content, MC carbides evolve from octahedral to well-developed dendrite, which promotes the formation of microporosity. Moreover, the volume fraction of porosity increases in the experimental alloys after solution heat treatment. As a result, the increase in the size of MC carbides and the porosity has a detrimental effect on the low temperature and high stress creep behavior of the alloys. The specimen crept at 850 °C and 586 MPa with the carbon content of 430 ppm shows the shortest rupture life due to the largest primary creep strain. However, the creep behavior of the alloy at 1120 °C and 140 MPa gets better as the carbon content increases from 88 to 430 ppm. TCP phase is observed near the fracture surfaces of the alloys, which explores as a potential cause for the creep rupture. However, the formation of TCP phase is effectively suppressed for decreasing segregation of the alloying elements, which results in the improvement of the creep life in the alloy with 430 ppm carbon at 1120 °C and 140 MPa.

  7. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention

    International Nuclear Information System (INIS)

    Jacques, P.; Catlin, T.; Geerlofs, N.; Kop, T.; Zwaag, S. van der; Delannay, F.

    1999-01-01

    Studies dealing with TRIP-assisted multiphase steels have emphasized the crucial role of the bainite transformation of silicon-rich intercritical austenite in the achievement of a good combination of strength and ductility. The present work deals with the bainite transformation in two steels differing in their silicon content. It is shown that both carbon enrichment of residual austenite and cementite precipitation influences the kinetics of the bainite transformation. A minimum silicon content is found to be necessary in order to prevent cementite precipitation from austenite during the formation of bainitic ferrite in such a way as to allow stabilisation of austenite by carbon enrichment. (orig.)

  8. Optical and Structural Properties of Multi-wall-carbon-nanotube-modified ZnO Synthesized at Varying Substrate Temperatures for Highly Efficient Light Sensing Devices

    Directory of Open Access Journals (Sweden)

    Valentine Saasa

    2015-12-01

    Full Text Available Structural, optical and light detection properties on carbon-nanotube-modified ZnO thin films grown at various temperatures from room to 1173 K are investigated. The optical band gap values calculated from reflectivity data show a hump at a critical temperature range of 873-1073 K. Similar trends in surface roughness as well as crystallite size of the films are observed. These changes have been attributed to structural change from wurzite hexagonal to cubic carbon modified ZnO as also validated by x-ray diffraction, RBS and PIXE of these layers. UV and visible light detection properties show similar trends. It is demonstrated that the present films can sense both UV and visible light to a maximum response efficiency of 66 % which is much higher than the last reported efficiency 10 %. This high response is given predominantly by cubic crystallite rather than the wurzite hexagonal composites.

  9. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    OpenAIRE

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-01-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural liveliho...

  10. Mapping within-field variations of soil organic carbon content using UAV multispectral visible near-infrared images

    Science.gov (United States)

    Gilliot, Jean-Marc; Vaudour, Emmanuelle; Michelin, Joël

    2016-04-01

    This study was carried out in the framework of the PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME), the TOSCA-PLEIADES-CO project of the French Space Agency (CNES) and the SOERE PRO network working on environmental impacts of Organic Waste Products recycling on field crops at long time scale. The organic matter is an important soil fertility parameter and previous studies have shown the potential of spectral information measured in the laboratory or directly in the field using field spectro-radiometer or satellite imagery to predict the soil organic carbon (SOC) content. This work proposes a method for a spatial prediction of bare cultivated topsoil SOC content, from Unmanned Aerial Vehicle (UAV) multispectral imagery. An agricultural plot of 13 ha, located in the western region of Paris France, was analysed in April 2013, shortly before sowing while it was still bare soil. Soils comprised haplic luvisols, rendzic cambisols and calcaric or colluvic cambisols. The UAV platform used was a fixed wing provided by Airinov® flying at an altitude of 150m and was equipped with a four channels multispectral visible near-infrared camera MultiSPEC 4C® (550nm, 660nm, 735 nm and 790 nm). Twenty three ground control points (GCP) were sampled within the plot according to soils descriptions. GCP positions were determined with a centimetric DGPS. Different observations and measurements were made synchronously with the drone flight: soil surface description, spectral measurements (with ASD FieldSpec 3® spectroradiometer), roughness measurements by a photogrammetric method. Each of these locations was sampled for both soil standard physico-chemical analysis and soil water content. A Structure From Motion (SFM) processing was done from the UAV imagery to produce a 15 cm resolution multispectral mosaic using the Agisoft Photoscan® software. The SOC content was modelled by partial least squares regression (PLSR) between the

  11. Porous carbon-coated ZnO nanoparticles derived from low carbon content formic acid-based Zn(II) metal-organic frameworks towards long cycle lithium-ion anode material

    International Nuclear Information System (INIS)

    Gao, Song; Fan, Ruiqing; Li, Bingjiang; Qiang, Liangsheng; Yang, Yulin

    2016-01-01

    Graphical abstract: The nanocomposites constructed from Zn-based MOFs exhibit low carbon content with super-high rate capability and long cycling life. - Highlights: • Novel ZnO@porous carbon matrix nanocomposites are constructed by pyrolysis of Zn-based MOFs. • The nanocomposites constructed with Zn-based MOFs show low carbon content. • The constructed nanocomposites exhibit high energy density, super-high rate capability and long cycling life. - Abstract: Single-C formic acid-based metal-organic frameworks (MOFs) are used to construct novel ZnO@porous carbon matrix nanocomposites by controlled pyrolysis. In the constructed nanocomposites, the porous carbon matrices act as a confined support to prevent agglomeration of the ZnO nanoparticles and create a rapid electron conductive network. Meanwhile, the well-defined, continuous porous structured MOFs provide a large specific surface area, which increases the contact of electrolyte-electrode and improves the penetration of electrolyte. Especially, the reasonable choice of formic acid-based MOFs construct the low carbon content composite, which contribute to the high energy density and long cycle life. The constructed nanocomposites show stable, ultrahigh rate lithium ion storage properties of 650 mAh g −1 at charge/discharge rate of 1 C even after 200 cycles.

  12. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions

    International Nuclear Information System (INIS)

    Fu, Zhi-qiang; Wang, Cheng-biao; Zhang, Wei; Wang, Wei; Yue, Wen; Yu, Xiang; Peng, Zhi-jian; Lin, Song-sheng; Dai, Ming-jiang

    2013-01-01

    Highlights: • W-doped DLC coating with various W contents was fabricated. • Friction and wear of DLC coated sample was studied. • The lubricant additive was T307. • The influence of W content on friction under lubrication was unveiled. • The influence of W content on wear under lubrication was studied. - Abstract: The influence on tungsten content on the structure, mechanical properties and tribological performance of W-doped diamond-like carbon (DLC) coatings was studied by X-ray photoelectron spectroscopy, nano-indentation, scratch test, and ball-on-disk friction test. It was found that with increasing W content, the content of WC and free W in the coatings is increased while the content of sp 3 -C in the coatings is decreased. The effect of W content on the hardness and elastic modulus of the coatings is indistinctive, but there exists the highest critical load of scratch test of above 100 N when W content is 3.08 at.%. With the increase of W content, the friction coefficients of W-doped DLC coatings under dry friction conditions are increased while the friction coefficients of W-doped DLC coatings under polyalpha olefin (PAO) lubrication are decreased. With the increase of W content, the wear rates of the DLC-coated samples under dry friction conditions show a minimum value; under pure PAO lubrication, the influence of W content on the wear rates of the DLC-coated samples is indistinctive when the W content is below 10.73 at.% while the wear rates are increased with increasing W content from 10.73 at.% to 24.09 at.%; when lubricated by PAO + thiophosphoric acid amine (T307) salt, the samples coated with the undoped DLC or the W-doped DLC with high W content exhibit low wear rates

  13. Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Aurel Pisoschi

    2011-02-01

    Full Text Available A method was developed for assessing ascorbic acid concentration in fruit juices and wine by differential pulse voltammetry. The oxidation peak for ascorbic acid occurs at about 530 mV (versus SCE on a Pt strip working electrode and at about 470 mV on a carbon paste working electrode. The influence of the operational parameters like the pulse amplitude and the pulse period on the analytical signal was investigated. The obtained calibration graph shows a linear dependence between the peak height and ascorbic acid concentration within the range 0.31-20 mM with a Pt working electrode, and within the range 0.07-20 mM with a carbon paste working electrode. The equation of the calibration graph was y = 21.839x + 35.726, r2 = 0.9940, when a Pt strip electrode was used (where y represents the value of the current intensity measured for the peak height, expressed as µA and x the analyte concentration, as mM. R.S.D. = 2.09%, n = 10, Cascorbic acid = 2.5 mM. The equation of the calibration graph was y = 3.4429x + 5.7334, r2 = 0.9971, when a carbon paste electrode was used (where y represents the value of intensity measured for the peak height, expressed as µA and x the analyte concentration, as mM. R.S.D. = 2.35%, n = 10, Cascorbic acid = 2.5 mM. The developed method was applied to ascorbic acid assessment in fruit juices and wine. The ascorbic acid content determined ranged between 6.83 mg/100 mL juice for soft drinks (Fanta Madness and 54.74 mg/100 mL for citrus (lemon juices obtained by squeezing fruit. Different ascorbic acid concentrations (from standard solutions were added to the analysed samples, the degree of recovery being comprised between 94.74 and 104.97%. The results of ascorbic acid assessment by differential pulse voltammetry were compared with those obtained by cyclic voltammetry. The results obtained by the two methods were in good agreement.

  14. Determination of water, hydrogen, and carbon content of Korean main farm produces for the calculation of H-3 and C-14 ingestion dose

    International Nuclear Information System (INIS)

    Chung, Yang Geun; Lee, Gab Bock; Kim, Mi Ja; Eum, Hee Moon

    2003-01-01

    Water, hydrogen, and carbon content of grains, leafy vegetable, root vegetable, and fruits in Korea were determined to be used in the calculation of HTO, OBT, C-14 offsite ingestion dose. The individual items and the weighting factors of the 4 groups were based on the results of nationwide dietary intake survey in Korea. Items produced in an island or imported were excluded for the reason that they would not be affected directly by the nuclear power plants in the nation. On the same assumption, cooked and instant foods also were excluded. Items within 95% of the cumulative percentage of intake in each category were selected as the main farm produces, and then each intake percentage was taken as the weighting factor. Water, Hydrogen, and carbon content were determined using the data in Food Composition TABLE of Korea. H and C content were calculated from protein, fat, and carbohydrate content in the TABLE, and multiplied by each weighting factor to make the group-representative value. Grains, lefty and root vegetable, and fruits of Korea had 11.0%, 93.6%, 87.9%, 86.2% of water, 5.6%, 0.4%. 0.7%, 0.9% of hydrogen, and 39.6%, 2.5%, 5.2%, 6.0% of carbon, respectively. This is different from those in the ODCM from AECL data. Over ODCM, water content of grains and vegetable were 0.92-0.98 times ODCM, and fruits 1.03 times ODCM, which would result in the change of HTO ingestion dose as much. Hydrogen content of grains and vegetables are 1.02-2.33 times ODCM, but fruits 0.9 times ODCM. Carbon content of grains, leafy vegetables, and fruits are 0.7-0.98 times ODCM, but root vegetables 1.49 times ODCM. This would result in the change of ingestion dose as much

  15. A sub-boiling distillation method for the preparation of low carbon content water from urine samples for tritium measurement by liquid scintillation counting

    International Nuclear Information System (INIS)

    Nogawa, Norio; Makide, Yoshihiro

    1999-01-01

    A new preparation method was developed for obtaining low carbon content water from urine samples for the measurement of tritium by a liquid scintillation counter. The method uses a simple and convenient subboiling distillation bottle. Many urine samples have been purified by this method and the change of tritium level in a tritium-handling radiation-worker was observed

  16. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips

    Science.gov (United States)

    Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.

    2015-01-01

    A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…

  17. Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips

    International Nuclear Information System (INIS)

    Robinson, A.P.; Blythe, P.T.; Bell, M.C.; Hübner, Y.; Hill, G.A.

    2013-01-01

    This paper quantifies the recharging behaviour of a sample of electric vehicle (EV) drivers and evaluates the impact of current policy in the north east of England on EV driver recharging demand profiles. An analysis of 31,765 EV trips and 7704 EV recharging events, constituting 23,805 h of recharging, were recorded from in-vehicle loggers as part of the Switch EV trials is presented. Altogether 12 private users, 21 organisation individuals and 32 organisation pool vehicles were tracked over two successive six month trial periods. It was found that recharging profiles varied between the different user types and locations. Private users peak demand was in the evening at home recharging points. Organisation individual vehicles were recharged primarily upon arrival at work. Organisation pool users recharged at work and public recharging points throughout the working day. It is recommended that pay-as-you-go recharging be implemented at all public recharging locations, and smart meters be used to delay recharging at home and work locations until after 23:00 h to reduce peak demand on local power grids and reduce carbon emissions associated with EV recharging. - Highlights: • Study of EV driver recharging habits in the north east of England. • 7704 electric vehicle recharging events, comprising 23,805 h were collected. • There was minimal recharging during off- peak hours. • Free parking and electricity at point of use encouraged daytime recharging. • Need for financial incentives and smart solutions to better manage recharging demand peaks

  18. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    Science.gov (United States)

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The effect of Cu (II) on the electro-olfactogram (EOG) of the Atlantic salmon (Salmo salar L) in artificial freshwater of varying inorganic carbon concentrations

    DEFF Research Database (Denmark)

    Winberg, S; Bjerselius, R; Baatrup, E

    1993-01-01

    The effect of inorganic copper species was studied by recording the receptor potential, electro-olfactogram (EOG), from the olfactory epithelium of Atlantic salmon (Salmo salar L). In a series of experiments, the olfactory organ was irrigated with aqueous copper solutions with concentrations...... of the free cupric ion (Cu2+) ranging from 0.2 to 9.7 microM. The diverse copper species were created by varying the amount of bicarbonate (NaHCO3) in artificial freshwater solutions of equal total copper concentrations. In general, these copper solutions induced a slow depolarization of the baseline followed...

  20. Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing

    Directory of Open Access Journals (Sweden)

    Pablo Luis Peri

    2018-02-01

    Full Text Available In Southern Patagonia, a long-term monitoring network has been established to assess bio-indicators as an early warning of environmental changes due to climate change and human activities. Soil organic carbon (SOC content in rangelands provides a range of important ecosystem services and supports the capacity of the land to sustain plant and animal productivity. The objectives in this study were to model SOC (30 cm stocks at a regional scale using climatic, topographic and vegetation variables, and to establish a baseline that can be used as an indicator of rangeland condition. For modelling, we used a stepwise multiple regression to identify variables that explain SOC variation at the landscape scale. With the SOC model, we obtained a SOC map for the entire Santa Cruz province, where the variables derived from the multiple linear regression models were integrated into a geographic information system (GIS. SOC stock to 30 cm ranged from 1.38 to 32.63 kg C m−2. The fitted model explained 76.4% of SOC variation using as independent variables isothermality, precipitation seasonality and vegetation cover expressed as a normalized difference vegetation index. The SOC map discriminated in three categories (low, medium, high determined patterns among environmental and land use variables. For example, SOC decreased with desertification due to erosion processes. The understanding and mapping of SOC in Patagonia contributes as a bridge across main issues such as climate change, desertification and biodiversity conservation.

  1. Geophysical Prediction Technology Based on Organic Carbon Content in Source Rocks of the Huizhou Sag, the South China Sea

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2017-08-01

    Full Text Available Due to the high exploration cost, limited number of wells for source rocks drilling and scarce test samples for the Total Organic Carbon Content (TOC in the Huizhou sag, the TOC prediction of source rocks in this area and the assessment of resource potentials of the basin are faced with great challenges. In the study of TOC prediction, predecessors usually adopted the logging assessment method, since the data is only confined to a “point” and the regional prediction of the source bed in the seismic profile largely depends on the recognition of seismic facies, making it difficult to quantify TOC. In this study, we combined source rock geological characteristics, logging and seismic response and built the mathematical relation between quasi TOC curve and seismic data based on the TOC logging date of a single well and its internal seismic attribute. The result suggested that it was not purely a linear relationship that was adhered to by predecessors, but was shown as a complicated non-linear relationship. Therefore, the neural network algorithm and SVMs were introduced to obtain the optimum relationship between the quasi TOC curve and the seismic attribute. Then the goal of TOC prediction can be realized with the method of seismic inversion.

  2. Optimization of solid content, carbon/nitrogen ratio and food/inoculum ratio for biogas production from food waste.

    Science.gov (United States)

    Dadaser-Celik, Filiz; Azgin, Sukru Taner; Yildiz, Yalcin Sevki

    2016-12-01

    Biogas production from food waste has been used as an efficient waste treatment option for years. The methane yields from decomposition of waste are, however, highly variable under different operating conditions. In this study, a statistical experimental design method (Taguchi OA 9 ) was implemented to investigate the effects of simultaneous variations of three parameters on methane production. The parameters investigated were solid content (SC), carbon/nitrogen ratio (C/N) and food/inoculum ratio (F/I). Two sets of experiments were conducted with nine anaerobic reactors operating under different conditions. Optimum conditions were determined using statistical analysis, such as analysis of variance (ANOVA). A confirmation experiment was carried out at optimum conditions to investigate the validity of the results. Statistical analysis showed that SC was the most important parameter for methane production with a 45% contribution, followed by F/I ratio with a 35% contribution. The optimum methane yield of 151 l kg -1 volatile solids (VS) was achieved after 24 days of digestion when SC was 4%, C/N was 28 and F/I were 0.3. The confirmation experiment provided a methane yield of 167 l kg -1 VS after 24 days. The analysis showed biogas production from food waste may be increased by optimization of operating conditions. © The Author(s) 2016.

  3. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  4. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    content while diluting nitrogen concentrations. Such a reduction in nitrogen concentration will affect plant response to stress and seed/grain yield. Glutamine synthetase (GS) is the central nitrogen-assimilatory enzyme, performing primary and secondary nitrogen assimilation, in response to environmental....... Plants grown under elevated CO2 absorbed ammonia from the atmosphere, except with a high ammonium supply. GLN1;2 had a non-redundant role in determining vegetative growth and ammonium tolerance in response to elevated CO2. Under elevated CO2, GLN1;2 was compensable by GLN2 in assimilating nitrate...

  5. Bioavailability of benzo(a)pyrene and dehydroabietic acid from a few lake waters containing varying dissolved organic carbon concentrations to Daphnia magna

    International Nuclear Information System (INIS)

    Oikari, A.; Kukkonen, J.

    1990-01-01

    Dissolved organic carbon (DOC) in natural waters consists of a great variety of organic molecules. Some of these molecules have been identified but most of them cannot be identified. This unidentified group of heterogeneous organic macromolecules is considered as humic substances. The role of humic substances in water chemistry and in aquatic toxicology is receiving increasing attention. The effects of DOC on the bioavailability of organic pollutants have been demonstrated in several studies. A decreased bioavailability has been demonstrated in most cases. Both the quantity and the quality of DOC are suggested determinants of this apparent ecotoxicological buffer of inland waters worldwide. In this study, the authors measured the bioaccumulation of benzo(a)pyrene (BaP) and dehydroabietic acid (DHAA) in Daphnia magna using a wide range of naturally occurring DOC levels. Another objective was to associate the reduced bioavailability with the chemical characteristics of water and DOC

  6. The dynamic of organic carbon in South Cameroon. Fluxes in a tropical river system and a lake system as a varying sink on a glacial-interglacial time scale

    Energy Technology Data Exchange (ETDEWEB)

    Giresse, P. [Laboratoire de Sedimentologie et Geochimie Marines, URA CNRS 715, Universite de Perpignan, 66860 Perpignan (France); Maley, J. [Paleoenvironnements et Palynologie, ISEM/CNRS, UMR 5554, ORSTOM, UR 12, Universite de Montpellier II, 34095 Montpellier (France)

    1998-05-01

    In the first attempt to estimate both (i) a bulk carbon flux in a tropical river system (mainly Sanaga River) and (ii) their palaeoenvironmental implications from the Last Glacial Maximum (LGM) to the present, this study presents a synthetic approach based on the combined use of modern evaluation of fluxes and estuarine biodegradation in the tropical river system Sanaga and nearby Douala Bay rivers, and of sedimentation rates of a well studied marine shelf and lake system (Barombi-Mbo). In the lake Barombi-Mbo, the Holocene transfer of particulate carbon (96.6x10{sup 3} t) is very close to the mass fixed presently in soil catchments (117x10{sup 3} t). A complete process of stored carbon consumption would require some 10{sup 4} years, namely the Holocene period. During the last 20,000 years, variations in the sediment organic matter can be explained by the change of the vegetation cover, particularly with the substitution of open environments by forests. The global sedimentation was slow between ca. 18,000 and 10,000 years BP and increased after 12,000 years. But the carbon sedimentation rate remains fairly constant as the carbon content is higher in the LGM deposits. Such LGM carbon concentrations are probably explained by the input of coarse debris by rough floods and by a less degraded organic matter as a result of the cooling of the climate. Today, the total transport of dissolved and particulate organic carbon of the Sanaga and Douala Bay rivers to the Guinea Gulf is estimated as 0.62 to 0.79x10{sup 6} t C yr{sup -1}. Based on 50% biodegradation at the estuarine interface, the loss of organic matter per unit of land is evaluated around 8.8 t C km{sup -2} yr{sup -1}. Marine oceanic records of the carbon sedimentation rate reflect with difficulty the major palaeoenvironmental changes according to interfering hydrodynamic factors. The greatest input of organic carbon during warm marine biozones would be balanced by higher concentrations during the LGM resulting in

  7. Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Dahane, Soraya; Derdour, Aicha; García, María Dolores Gil; Moreno, Ana Uclés; Galera, María Martínez; Viciana, María del Mar Socías

    2015-01-01

    We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L −1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L −1 and 1.6 to 45.2 ng L −1 , respectively. Recoveries from spiked ultrapure water are ∼100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases. (author)

  8. Effects of carbon source and carbon content on electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C prepared by one-step solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xuebu [College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Lin Ziji [China National Quality Supervision and Inspection Center for Alcoholic Beverage Products and Processed Food, Luzhou, Sichuan 646100 (China); Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Hua, Yongjian [China Aviation Lithium Battery Co. Ltd., Luoyang, Henan 471009 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.cn [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China)

    2011-05-30

    Highlights: > A simple route to prepare the Li{sub 4}Ti{sub 5}O{sub 12}/C by one-step solid-state reaction. > Carbon source and carbon content are two important factors on the electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C. > As-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C under optimized conditions shows excellent electrochemical performances. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/C composites were synthesized by one-step solid-state reaction method using four commonly used organic compounds or organic polymers as carbon source, i.e., polyacrylate acid (PAA), citric acid (CA), maleic acid (MA) and polyvinyl alcohol (PVA). The physical characteristics of Li{sub 4}Ti{sub 5}O{sub 12}/C composites were investigated by X-ray diffraction, electron microscopy, Raman spectroscopy, particle size distribution and thermogravimetry-derivative thermogravimetry techniques. Their electrochemical properties were characterized by cyclic voltammograms, electrochemical impedance spectra, constant current charge-discharge and rate charge-discharge. These analyses indicated that the carbon source and carbon content have a great effect on the physical and electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. An ideal carbon source and appropriate carbon content effectively improved the electrical contact between the Li{sub 4}Ti{sub 5}O{sub 12} particles, which enhanced the discharge capacity and rate capability of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. PAA was the best carbon source for the synthesis of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. When the carbon content was 3.49 wt.% (LiOH.H{sub 2}O/PAA molar ratio of 1), as-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C showed the maximum discharge capacity. At 0.2 C, initial capacity of the optimized sample was 168.6 mAh g{sup -1} with capacity loss of 2.8% after 50 cycles. At 8 and 10 C, it showed discharge capacities of 143.5 and 132.7 mAh g{sup -1}, with capacity loss of 8.7 and 9.9% after 50 cycles

  9. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Directory of Open Access Journals (Sweden)

    X. Han

    2018-04-01

    Full Text Available Loss of soil organic carbon (SOC from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR, SI significantly sequestered SOC (0–20 cm depth at the rate of 0.35 (95 % CI, 0.31–0.40 Mg C ha−1 yr−1, increased crop grain yield by 13.4 % (9.3–18.4 % and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha−1 yr−1 with mineral fertilizer of 200–400 kg N ha−1 yr−1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 % and SOC sequestrated by the rate of 0.85 (0.54–1.15 Mg C ha−1 yr−1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with

  10. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Science.gov (United States)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  11. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    Science.gov (United States)

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  12. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  13. Application of laser-produced-plasmas to determination of carbon content in steel; Aplicacion de los plasmas generados por laser a la determinacion de carbono en aceros

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M; Aragon, C; Aguilera, J A; Campos, J

    1994-07-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs.

  14. Effect of carbon content on formation of bimodal microstructure and mechanical properties of low-carbon steels subjected to heavy-reduction single-pass hot/warm deformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Won, E-mail: wonipark@iis.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Komaba 4-6-1, Meguro-ku 153-8505, Tokyo (Japan); Yanagimoto, Jun [Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku 153-8505, Tokyo (Japan)

    2014-06-01

    A compression test simulating heavy-reduction single-pass rolling was conducted to investigate the microstructural evolution based on the formation of a bimodal structure and the mechanical properties of 0.01% and 0.1% carbon steels and niobium steel. When thermomechanical processing was conducted near and above the critical transformation temperature (A{sub c3}), microstructures of all steels were significantly refined and consisted of equiaxed grains without elongated grains. Nevertheless, these microstructures showed weak or no formation of the bimodal structure or coarse grains with decreasing carbon content, while they showed bimodal structure formation when 0.2% carbon steel was used in our previous research. The average grain size of Nb steel was about 2 μm and its microstructure was uniformly refined. These may be attributed to a decrease in the number of nucleation sites with decreasing carbon content in low-carbon steels and the occurrence of nucleation at grain boundaries as well as in grain interiors in Nb steel during processing. Mechanical properties of all steels deformed above the critical transformation temperature exhibited high performance characteristics with superior strength and marked elongation. Their fractographs indicated ductile fracture, which was revealed by SEM observation after a tensile test.

  15. Differential Effects of Legume Species on the Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned Fields of the Loess Plateau, China

    Science.gov (United States)

    Li, Jin Hua; Jiao, Shu Mei; Gao, Rong Qing; Bardgett, Richard D.

    2012-12-01

    Plant-soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3-5 years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3-5 years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.

  16. Erratum: Retraction Note to: Effect of Carbon Content on the Electrical Conductivity of Carbon Black-Filled PMC with Various Matrices

    Science.gov (United States)

    Shin, Soon-Gi

    2018-03-01

    The Editor-in-Chief and Editorial Board of Electronic Materials Letters have retracted this article [1] because its contents have been previously published by Miyasaka et al. [2]. The contents of this article are therefore redundant. Author Soon-Gi Shin has not responded to correspondence from the Editor about this retraction.

  17. Limnological variables and nutritional content of submerged aquatic macrophytes in a tropical lagoon Variáveis limnológicas e conteúdo nutricional de macrófitas aquáticas submersas em uma lagoa tropical

    Directory of Open Access Journals (Sweden)

    Bruno dos Santos Esteves

    2010-06-01

    Full Text Available AIM: The aim of this study was to evaluate elemental composition (C, N and P and carbohydrate and lipids content of aquatic macrophytes Egeria densa, Ceratophyllum demersum and Najas marina found in a lagoon of Norte Fluminense and relate these data to limnological parameters measured in the same period; METHODS: The samples were obtained from 10 sites throughout the lagoon in July/2001 (dry season and January/2002 (rainy season with determinations limnological parameters and quantification of nutrient content and biochemical composition of the aquatic macrophytes; RESULTS: High values of electrical conductivity and alkalinity explain the spatial distribution of the studied macrophytes; and the pH values (OBJETIVO: O objetivo deste estudo foi avaliar a composição elementar (C, N e P e conteúdo de carboidratos e lipídeos das macrófitas aquáticas Egeria densa, Ceratophyllum demersum e Najas marina encontradas em uma lagoa do Norte Fluminense, e relacionar esses dados a parâmetros limnológicos medidos em igual período; MÉTODOS: As amostras foram obtidas em julho/2001 (período seco e janeiro/2002 (período chuvoso, em 10 pontos ao longo da lagoa do Campelo com determinações de parâmetros limnológicos e quantificação de componentes nutricionais e bioquímicos das macrófitas aquáticas; RESULTADOS: Elevados valores de condutividade elétrica e alcalinidade explicam a distribuição espacial das macrófitas estudadas, e os valores de pH (<9,0, supersaturação de O2 e subsaturação de CO2 sugerem uma elevada produção primária, tanto fitoplanctônica quanto de macrófitas submersas. Para os nutrientes avaliados nas macrófitas aquáticas, variações sazonais significativas foram observadas no conteúdo de fósforo total (p < 0,05, de nitrogênio total e carbono total, entretanto, sem qualquer padrão definido entre períodos sazonais e macrófitas. Observou-se tendência às maiores concentrações de P nos tecidos das macr

  18. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    Directory of Open Access Journals (Sweden)

    Friedrich Lucassen

    Full Text Available Seabird excrements (guano have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic

  19. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    International Nuclear Information System (INIS)

    2CEM, São Cristovão/SE (Brazil))" data-affiliation=" (Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P2CEM, São Cristovão/SE (Brazil))" >Santos, S.C.G.; Pedrosa, A.M.Garrido; Souza, M.J.B.; Cecilia, J.A.; Rodríguez-Castellón, E.

    2015-01-01

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO 2 capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO 2 capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO 2 and for the composites with amine the amount of amine was that influenced in the adsorption capacity

  20. Innovative Process to Enrich Carbon Content of EFB-Derived Biochar as an Alternative Energy Source in Ironmaking

    Directory of Open Access Journals (Sweden)

    Hadi Purwanto

    2018-01-01

    Full Text Available This paper describes the mechanism of a developed process—an integrated pyrolysis-tar decomposition process—to produce oil palm empty fruit bunch- (EFB- derived biochar with additional solid carbon within the biochar bodies, produced by decomposition of tar vapor on its pore surface, using the chemical vapor infiltration (CVI method. The product, carbon-infiltrated biochar, was characterized to investigate the possibility to be used as partial coke breeze replacement in ironmaking. Carbon-infiltrated biochar is proposed to be utilized for a sintering process that could reduce the consumption of coke and CO2 emission in iron-steel industry.

  1. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen

    Czech Academy of Sciences Publication Activity Database

    Vindušková, O.; Sebag, D.; Cailleau, G.; Brus, Jiří; Frouz, J.

    89-90, December (2015), s. 14-22 ISSN 0146-6380 Institutional support: RVO:61389013 Keywords : kerogen * geogenic carbon * soil organic matter Subject RIV: DD - Geochemistry Impact factor: 2.990, year: 2015

  2. Determination of carbon content of UO2, (U, Gd)O2 and (U, Pu)O2 powders and sintered pellets - Combustion in a high-frequency induction furnace -Infrared absorption spectrometry

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the carbon content in UO 2 , (U,Gd)O 2 and (U,Pu)O 2 powder and sintered pellets by combustion in an induction furnace and infrared absorption spectroscopy measurement. It is applicable for determining 10 μg/g to 500 μg/g of carbon in UO 2 , (U,Gd)O 2 and (U,Pu)O 2 powder and pellets. The sample is heated to a temperature above 1500 deg. C in an induction furnace, under pure oxygen atmosphere, to convert any carbon compounds to carbon dioxide gas. The resulting carbon dioxide gas is filtered and dried before measurement using infrared spectroscopy to measure the carbon dioxide signal at 2350 cm -1 . The result is converted into the carbon content of the material analysed

  3. Testing of an automated online EA-IRMS method for fast and simultaneous carbon content and stable isotope measurement of aerosol samples

    Science.gov (United States)

    Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály

    2016-04-01

    Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment

  4. Spatial prediction of Soil Organic Carbon contents in croplands, grasslands and forests using environmental covariates and Generalized Additive Models (Southern Belgium)

    Science.gov (United States)

    Chartin, Caroline; Stevens, Antoine; van Wesemael, Bas

    2015-04-01

    Providing spatially continuous Soil Organic Carbon data (SOC) is needed to support decisions regarding soil management, and inform the political debate with quantified estimates of the status and change of the soil resource. Digital Soil Mapping techniques are based on relations existing between a soil parameter (measured at different locations in space at a defined period) and relevant covariates (spatially continuous data) that are factors controlling soil formation and explaining the spatial variability of the target variable. This study aimed at apply DSM techniques to recent SOC content measurements (2005-2013) in three different landuses, i.e. cropland, grassland, and forest, in the Walloon region (Southern Belgium). For this purpose, SOC databases of two regional Soil Monitoring Networks (CARBOSOL for croplands and grasslands, and IPRFW for forests) were first harmonized, totalising about 1,220 observations. Median values of SOC content for croplands, grasslands, and forests, are respectively of 12.8, 29.0, and 43.1 g C kg-1. Then, a set of spatial layers were prepared with a resolution of 40 meters and with the same grid topology, containing environmental covariates such as, landuses, Digital Elevation Model and its derivatives, soil texture, C factor, carbon inputs by manure, and climate. Here, in addition to the three classical texture classes (clays, silt, and sand), we tested the use of clays + fine silt content (particles < 20 µm and related to stable carbon fraction) as soil covariate explaining SOC variations. For each of the three land uses (cropland, grassland and forest), a Generalized Additive Model (GAM) was calibrated on two thirds of respective dataset. The remaining samples were assigned to a test set to assess model performance. A backward stepwise procedure was followed to select the relevant environmental covariates using their approximate p-values (the level of significance was set at p < 0.05). Standard errors were estimated for each of

  5. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  6. Negative-ion production on carbon materials in hydrogen plasma : influence of the carbon hybridization state and the hydrogen content on H- yield

    NARCIS (Netherlands)

    Ahmad, A.; Pardanaud, C.; Carrère, M.; Layet, J.M.; Gicquel, A.; Kumar, P.; Eon, D.; Jaoul, C.; Engeln, R.A.H.; Cartry, G.

    2014-01-01

    Highly oriented polycrystalline graphite (HOPG), boron-doped diamond (BDD), nanocrystalline diamond, ultra-nanocrystalline diamond and diamond-like carbon surfaces are exposed to low-pressure hydrogen plasma in a 13.56 MHz plasma reactor. Relative yields of surface-produced H- ions due to

  7. Comparison of The Performance of Proton Exchange Membrane Fuel Cell (PEMFC Electrodes with Different Carbon Powder Content and Methods of Manufacture

    Directory of Open Access Journals (Sweden)

    Dedi Rohendi

    2016-11-01

    Full Text Available Carbon powder in the gas diffusion layer (GDL contained in the membrane electrode assembly (MEA has an important role in the flow of electrons and reactant gas. Meanwhile, the method of making the electrode is one of the many studies conducted to determine the most appropriate method to use. Comparative study of the performance of proton exchange membrane fuel cell (PEMFC electrodes with different carbon powder content (vulcan XC-72 in the GDL and methods of manufacture of the electrode between casting and spraying method has been carried out. The spraying method consists of one layer and three layer of catalyst layer (CL. The content of carbon powder in the GDL as much as 3 mg cm-2 has a better performance compared to 1.5 mg cm-2 with an increase of 177.78% current density at 0.6 V. Meanwhile, the manufacture of CL with three-layer spraying method has better performance compared with one-layer spraying and casting method.

  8. High content of pyridinic- and pyrrolic-nitrogen-modified carbon nanotubes derived from blood biomass for the electrocatalysis of oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Zheng, Jie; Guo, Chaozhong; Chen, Chunyan; Fan, Mingzhi; Gong, Jianping; Zhang, Yanfang; Zhao, Tianxin; Sun, Yuelin; Xu, Xiaofan; Li, Mengmeng; Wang, Ran; Luo, Zhongli; Chen, Changguo

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •An ORR electrocatalyst was fabricated from blood biomass and carbon nanotube. •The N-CNT catalyst exhibits good ORR activity, methanol resistance and stability. •The pyrolysis process produces high contents of pyridinic and pyrrolic N species. •The pyridinic-N group may play more important role in the active sites for ORR. -- Abstract: Here we present a facile synthetic route to design nitrogen-doped nanostructured carbon-based electrocatalyst for oxygen reduction reaction (ORR) by the copyrolysis of blood biomass from pig and carbon nanotubes (CNTs) at high temperatures. The nitrogen-doped CNTs obtained at 800 °C not only results in excellent ORR activity with four-electron transfer selectivity in alkaline medium, but also exhibits superior methanol-tolerant property and long-term stability. It is confirmed that high-temperature pyrolysis processes can facilitate to produce higher contents of pyridinic- and pyrrolic-N binding groups in electrocatalysts, contributing to the enhancement of ORR performance in terms of onset potential, half-wave potential, and limited current density. We also propose that the planar-N configuration may be the active site that is responsible for the improved ORR electrocatalytic performance. The straight-forward and cheap synthesis of the active and stable electrocatalyst makes it a promising candidate for electrochemical power sources such as fuel cells or metal-air batteries

  9. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials

    Science.gov (United States)

    Andruschkewitsch, R.; Geisseler, D.; Koch, H.-J.; Ludwig, B.

    2012-04-01

    Despite increasing interest in tillage techniques as a factor affecting organic carbon (Corg) dynamics and stabilization mechanisms little is known about the underlying processes. Our objectives were (i) to quantify the impact of different tillage treatments on the amount and distribution of of labile Corg pools, on the water-stable macro-aggregate (>250 µm) contents and on organic carbon (Corg) storage and (ii) to quantify the ability of soils under different tillage treatments, light fraction (LF) inputs and clay contents in macro-aggregate formation. Therefore four long-term tillage trials on loess soil in Germany with regular conventional tillage (CT, to 30 cm), mulch tillage (MT, to 10 cm), and no-tillage (NT) treatments. Samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth after 18-25 years of different tillage treatments and investigated on free and occluded LF (fLF and oLF, respectively) and on macro-aggregate contents. Furthermore an incubation experiment for the quantifcation of macro-aggregate formation was conducted. Macro-aggregates in soils from CT and NT treatments (0-5 and 5-25 cm soil depth) were destroyed and different amounts of light fraction (LF) and clay were applied. The four long-term tillage trials, differing in texture and climatic conditions, revealed consistent results in Corg storage among each other. Based on the equivalent soil mass approach (CT: 0-40, MT: 0-38, NT: 0-36 cm) the Corg stocks in the sampled profile were significantly higher for the MT treatment than for the CT and NT treatments. Significantly lower Corg, fLF, oLF, and macro-aggregate contents for the soils under CT treatment in comparison with the soils under NT and MT treatments were restricted on the top 5 cm. The correlation of the macro-aggregate content against the fLF and oLF contents suggested that the macro-aggregate content is influenced to a lesser extent directly by the physical impact of the different tillage treatments but by the contents of available

  10. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Patricia, E-mail: patricia.grinberg@nrc.ca [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Sturgeon, Ralph E. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Diehl, Liange de O.; Bizzi, Cezar A. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil); Flores, Erico M.M. [Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil)

    2015-03-01

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements.

  11. Feasibility studies of a carbon/oxygen logging tool for evaluating the CO2 content of the medium in nuclear device containment

    International Nuclear Information System (INIS)

    West, H.I. Jr.; Glasgow, J.E.

    1983-12-01

    The feasibility of using oil-well bore-hole logging techniques for assaying the carbonate content of a potential shot site has been investigated. The procedure makes use of the detection of the 4439-keV γ ray of carbon and the 6130-keV γ ray of oxygen produced by the inelastic scattering of 14-MeV neutrons in the bore-hole medium. For the needs of the containment program, a sensitivity of detection of CO 2 to less than or equal to 0.02 weight fraction must be achieved. Laboratory measurements indicate that only with considerable development effort could a tool be made that would come close to achieving this goal

  12. The Use of Ameliorant Fe3+ and Rock Phosphates in Peat Soil at Several Water Condition on the P Content of Plants Rice and Carbon Emission

    Directory of Open Access Journals (Sweden)

    Nelvia

    2009-09-01

    Full Text Available The addition of ameliorant Fe3+ and rock phosphates containing high Fe cation can reduce effect of toxic organic acids, increase peat stability through formation of complex compounds and reduce carbon emission. The research was conducted in the laboratory and green house of the Departement of Soil Science, Faculty of Agriculture, Bogor Agriculture University. Peat samples with hemic degree of decomposition were taken from Riau. Rock phosphates were taken from the rock phosphates of PT. Petrokimia Gresik, Christmas Island phosphates, and Huinan China and FeCl3.6H2O was used as the other Fe3+ source. The aims of the research were to study (a the effect of the applications of ameliorant Fe3+ and rock phosphates on the P content of plants dan (b the effect of the application ameliorant Fe3+ and the contribution of Fe cation in rock phosphates in the decrease of carbon emission. The results showed that the P content of plants rice increased 58 – 286% with the applications of ameliorant Fe3+ and rock phosphates. The estimation of carbon loss through CO2 and CH4 emissions from peats if planted continuously with rice was around 2.5, 2.2 and 2.6 Mg of C ha-1 year-1 respectively in field capacity condition, two times of field capacity condition, and 5 cm of saturated condition. The application of ameliorant Fe3+ and rock phosphates containing high Fe cation increased the stability of peats and reduced the carbon loss around 1.7 Mg of C ha-1 year-1 (64% in 5 cm of saturated condition, 1.3 Mg of C ha-1 year-1 (58% in two times of field capacity condition, and 1.0 Mg of C ha-1 year-1 (41% in field capacity condition.

  13. Spatial and temporal variations of carbonate content in the beach and nearshore environments off Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.

    -90%) in the foreshore regions of individual beaches whereas low CaCO sub(3) (less than 20%) in the dune and backshore areas of these beaches and adjoining nearshore environs up to 10 m isobath. The observed spatial distribution shows the occurrence of modern carbonate...

  14. Soil carbon and nitrogen content and stabilization in mid-rotation, intensively managed sweetgum and loblolly stands

    Science.gov (United States)

    Kurt H. Johnsen; Lisa J. Samuelson; Felipe G. Sanchez; Bob Eaton

    2013-01-01

    Intensive forestry has resulted in considerable increases in aboveground stand productivity including foliar and belowground biomass which are the primary sources of soil organic matter. Soil organic matter is important for the maintenance of soil physical, chemical and biological quality. Additionally, sequestering carbon (C) in soils may provide a means of mitigating...

  15. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    International Nuclear Information System (INIS)

    Ombaka, L.M.; Ndungu, P.G.; Omondi, B.; McGettrick, J.D.; Davies, M.L.; Nyamori, V.O.

    2016-01-01

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF_3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF_3 catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF_3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF_3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF_3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.

  16. Hydrophilicity, pore structure and mechanical performance of CNT/PVDF materials affected by carboxyl contents in multi-walled carbon nanotubes

    Science.gov (United States)

    Zhang, Yanxia; Jiang, Ce; Tian, Run; Li, Guangfen

    2018-01-01

    Poly (vinylidene fluoride) (PVDF) membranes have been prepared by loading different type of MWCNTs-COOH as the dispersed phase via phase inversion method. The chemically functionalized MWCNTs with increasing carboxyl content were chosen for achieving a better dispersion in PVDF and altering the membrane hydrophilicity. The effect of the carboxyl content in MWCNTs on crystal structure, thermal behavior, membrane morphology, hydrophilicity, and water flux of blended membranes were investigated. Due to the addition of carbon nanotubes, various performances of the hybrid membrane had obvious changes. The most prominent was that thermal stability could be enhanced and the pore morphology was more preferable, also that the hydrophilicity were improved, further that water flux could be increased to some extent.

  17. [Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China.

    Science.gov (United States)

    Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang

    2017-10-01

    Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.

  18. Effects of storage time and straw content of cattle slurry on the mineralization of nitrogen and carbon in soil

    DEFF Research Database (Denmark)

    Sørensen, P.

    1998-01-01

    Animal slurries are stored for a variable period of time before application in the field. The effect of cattle slurry storage time and temperature on the subsequent mineralization of C and N in soil was studied under laboratory conditions. Urine and faeces from a dairy cow were sampled separately...... and mixed to a slurry. After 4 weeks of storage under anaerobic conditions at 15 degrees C, the NH4+ N content exceeded the original urinary N content of the slurry; the NH4+ content increased only slightly during the following 16 weeks of storage. After 4 weeks of storage, the proportion of slurry C...... in volatile fatty acids (VFA) amounted to 10% and increased to 15% after 20 weeks. Straw addition to the slurry caused an increase of VFA-C in stored slurry, but had a negligible influence on the proportion of slurry N in the form of NH4+. Slurries subjected to different storage conditions were added...

  19. Diagnostic value of the evaluation of the glycogen content in muscle diseases by carbon 13 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Jehenson, P.; Syrota, A.; Labrune, P.; Odievre, M.; Fardeau, M.

    1995-01-01

    We have developed a method for the evaluation of the muscle glycogen content by natural abundance C13 NMR and we here evaluate its diagnostic value on a large number of muscle diseases (20 glycogenoses and 42 other myopathies) and 8 normal subjects. The results show high values of the glycogen/creatine ratio in muscle glycogenoses, with no overlap with other diseased or normal subjects. This evaluation of the muscle glycogen content, which is performed at rest and thus easily applicable, in particular for children, is thus very sensitive and specific for the diagnosis of muscle glycogenosis. (authors). 9 refs

  20. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    Science.gov (United States)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  1. Multiple-Input Data Acquisition System (MIDAS) for Measuring the Carbon Content in Soil Using Inelastic Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, William K. [XIA LLC, Hayward, CA (United States)

    2014-01-24

    This report describes work funder under STTR grants Phase I and II and carried out jointly by XIA LLC and Brookhaven National Laboratory (BNL). The project goal was to develop a mobile nuclear activation analysis instrument that could be towed behind a tractor to document soil carbon levels in agricultural lands for carbon credit certification. XIA developed large NaI(Tl) detectors with integrated digital pulse processors controlled over USB 2.0 and delivered 16 of these units to BNL for integration into the prototype instrument, together with the necessary software to calibrate them and collect data. For reasons that are unknown to XIA, the BNL participants never completed the prototype vehicle, performed system integration, or carried out the proposed qualification and field tests, leaving the project incomplete.

  2. Growth of vertically aligned multiwalled carbon nanotubes forests on metal alloy Ni-Nb-N with low content of catalyst

    Science.gov (United States)

    Dubkov, S.; Trifonov, A.; Shaman, Yu; Pavlov, A.; Shulyat'ev, A.; Skorik, S.; Kirilenko, E. P.; Rygalin, B.

    2016-08-01

    This research shows the possibility of carbon nanotubes (CNTs) formation on the surface of low nickel (∼ 10 at.%) Ni-Nb-N amorphous metal alloy film by CVD method at 550 °C of the gas mixture based on acetylene. The structure of CNT were studied by transmission and scanning-electron microscopy, energy-dispersive X-ray and the Raman spectroscopy.

  3. Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity

    International Nuclear Information System (INIS)

    Zhang Dongmao; Shi, Sheldon Q.; Pittman, Charles U.; Jiang Dongping; Che Wen; Gai Zheng; Howe, Jane Y.; More, Karren L.; Antonyraj, Arockiasamy

    2012-01-01

    Iron-based nanoparticles supported on carbon (FeNPs-C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP-C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe 3 O 4 nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP-C synthesized at a pyrolysis temperature of 500 °C (FeNP-C-500) reacts violently (pyrophoric) when exposed to air, while FeNP-C prepared at 800 °C (FeNP-C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP-C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5–15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs-C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

  4. Implications of wall recycling and carbon source locations on core plasma fueling and impurity content in DIII-D

    International Nuclear Information System (INIS)

    Groth, M.; Porter, G.D.; Fenstermacher, M.E.; Lasnier, C.J.; Meyer, W.M.; Rensink, M.E.; Wolf, N.S.; Boedo, J.A.; Moyer, R.A.; Rudakov, D.L.; Brooks, N.H.; Groebner, R.J.; Petrie, T.W.; Owen, L.W.; Wang, G.; Zeng, L.; Watkins, J.G.

    2005-01-01

    Measurement and modeling of the 2-D poloidal D α intensity distribution in DIII-D low and medium density L-mode and ELMy H-mode plasmas indicate that hydrogen neutrals predominantly fuel the core from the divertor X-point region. The 2-D distribution of neutral deuterium and low-charge-state carbon were measured in the divertor and the high-field side midplane scrape-off layer (SOL) using tangentially viewing cameras. The emission in the high-field SOL at the equatorial plane was found to be three to four orders of magnitude lower than at the strike points in the divertor, suggesting a strong divertor particle source. Modeling using the UEDGE/DEGAS codes predicted the poloidal fueling distribution to be dependent on the direction of the ion Bx∇B drift. In plasmas with the Bx∇B drift into the divertor stronger fueling from the inner divertor than from the outer is predicted, due to a lower-temperature and higher-density plasma in the inner leg. UEDGE simulations with carbon produced by both physical and chemical sputtering at the divertor plates and walls only are in agreement with a large set of diagnostic data. The simulations indicate flow reversal in the inner divertor that augments the leakage of carbon ions from the divertor into the core. (author)

  5. Effect of Nickel Contents on the Microstructure and Mechanical Properties for Low-Carbon Bainitic Weld Metals

    Science.gov (United States)

    Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong

    2017-05-01

    Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.

  6. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  7. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Complexing Agents on Carbon Content and Lithium Storage Capacity of LiFePO4/C Cathode Synthesized via Sol-Gel Approach

    Directory of Open Access Journals (Sweden)

    C. Guan

    2016-01-01

    Full Text Available Olivine-structured LiFePO4 faces its intrinsic challenges in terms of poor electrical conductivity and lithium-ion diffusion capability for application to lithium-ion batteries. Cost-effective sol-gel approach is advantageous to in situ synthesize carbon-coated LiFePO4 (LiFePO4/C which can not only improve electronic conductivity but also constrain particle size to nanometer scale. In this study, the key parameter is focused on the choice and amount of chelating agents in this synthesis route. It was found that stability of complexing compounds has significant impacts on the carbon contents and electrochemical properties of the products. At the favorable choice of precursors, composition, and synthesis conditions, nanocrystalline LiFePO4/C materials with appropriate amount of carbon coating were successfully obtained. A reversible capacity of 162 mAh/g was achieved at 0.2C rate, in addition to good discharge rate capability.

  9. The Interrelationship of pCO2, Soil Moisture Content, and Biomass Fertilization Expressed in the Carbon Isotope Signature of C3 Plant Tissue

    Science.gov (United States)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.

  10. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell,

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration. This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached solution from

  11. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Science.gov (United States)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  12. Small-angle neutron scattering study of activated carbon cloth and ammonium persulfate-modified activated carbon cloth: Effect of oxygen content

    International Nuclear Information System (INIS)

    Pendleton, Phillip; Chen Lin

    2006-01-01

    Small-angle neutron scattering (SANS) patterns of as-received, oxidized, and thermally reduced FM1/250 activated carbon cloth (ACC) samples are compared to determine the effects of surface chemistry on scattering. Porosity analyses show minimal effect on pore size distribution from oxidation, but an increase in micropore volume on heat treatment. SANS suggests an increase in localized order within the treated samples when compared with graphite cloth patterns. The ACC exhibits Porod scattering at q-ranges -1 ; the graphite cloth exhibits the same at q-ranges>1.0 nm -1 . A cylindrical model reproduces the scattering patterns in the micropore equivalent dimensions, q>0.5 nm -1

  13. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.

    Science.gov (United States)

    Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael

    2015-09-01

    Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Soil organic carbon content assessment in a heterogeneous landscape: comparison of digital soil mapping and visible and near Infrared spectroscopy approaches

    Science.gov (United States)

    Michot, Didier; Fouad, Youssef; Pascal, Pichelin; Viaud, Valérie; Soltani, Inès; Walter, Christian

    2017-04-01

    This study aims are: i) to assess SOC content distribution according to the global soil map (GSM) project recommendations in a heterogeneous landscape ; ii) to compare the prediction performance of digital soil mapping (DSM) and visible-near infrared (Vis-NIR) spectroscopy approaches. The study area of 140 ha, located at Plancoët, surrounds the unique mineral spring water of Brittany (Western France). It's a hillock characterized by a heterogeneous landscape mosaic with different types of forest, permanent pastures and wetlands along a small coastal river. We acquired two independent datasets: j) 50 points selected using a conditioned Latin hypercube sampling (cLHS); jj) 254 points corresponding to the GSM grid. Soil samples were collected in three layers (0-5, 20-25 and 40-50cm) for both sampling strategies. SOC content was only measured in cLHS soil samples, while Vis-NIR spectra were measured on all the collected samples. For the DSM approach, a machine-learning algorithm (Cubist) was applied on the cLHS calibration data to build rule-based models linking soil carbon content in the different layers with environmental covariates, derived from digital elevation model, geological variables, land use data and existing large scale soil maps. For the spectroscopy approach, we used two calibration datasets: k) the local cLHS ; kk) a subset selected from the regional spectral database of Brittany after a PCA with a hierarchical clustering analysis and spiked by local cLHS spectra. The PLS regression algorithm with "leave-one-out" cross validation was performed for both calibration datasets. SOC contents for the 3 layers of the GSM grid were predicted using the different approaches and were compared with each other. Their prediction performance was evaluated by the following parameters: R2, RMSE and RPD. Both approaches led to satisfactory predictions for SOC content with an advantage for the spectral approach, particularly as regards the pertinence of the variation

  15. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa; Engelhard, Mark H.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.

  16. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  17. The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest

    Directory of Open Access Journals (Sweden)

    FEKETE, István

    2011-01-01

    Full Text Available A major objective of our research was to survey soil biological activity and organic mattercontent reduction in a Central European oak forest during treatments of various detritus inputs within theSíkfkút DIRT (Detritus Input and Removal Treatments Project. Beside the control, three detritusremoval and two detritus duplication treatments were applied. Our examinations have proven that soilorganic matter content declined relatively fast in detritus removal treatments. The reduction wasespecially remarkable in root detritus removal treatments, where – due to the lack of transpiration – soilswere moister during the whole year than in the other treatments. The higher moisture content, despite ofthe reduction of detritus input, produced an intense soil respiration. This can be explained by the fact thatdecomposing organisms have increased the use of soil organic matter. Detritus input reduction had asignificantly greater effect on soil respiration and organic matter content than detritus input duplicationof the same extent. The latter did not cause any significant change compared to the control.

  18. Elasticidade do solo em função da umidade e do teor de carbono orgânico Soil elasticity as affected by water and organic carbon content

    Directory of Open Access Journals (Sweden)

    João Alfredo Braida

    2008-04-01

    Full Text Available O acúmulo de carbono orgânico (CO observado em solos sob sistema de semeadura direta pode resultar em aumento de sua elasticidade, levando a maior resistência à compactação. Este estudo foi realizado para avaliar o efeito da umidade e do enriquecimento de CO sobre a elasticidade de dois solos, sendo um Nitossolo Vermelho distrófico latossólico e um Argissolo Vermelho-Amarelo distrófico arênico. Amostras superficiais de solo, coletadas no Argissolo e no Nitossolo, com variação significativa do teor de CO, foram equilibradas em quatro diferentes tensões de água e, então, submetidas a carregamentos e descarregamentos em uma prensa de compressão uniaxial, determinando-se o coeficiente de descompressão (Cd, o índice de recuperação do índice de vazios (Ir e a redução da densidade (Re, após remoção das cargas aplicadas. Os resultados demonstram que o Ir variou de 11,4 a 16,4 % no Nitossolo e de 14 a 23,4 % no Argissolo, dependendo da tensão de água e do teor de CO da amostra. O teor de CO das amostras afetou significativamente o Cd e, conseqüentemente, a Re após a retirada das cargas. A Re média observada variou de 0,023 a 0,059 Mg m-3 e de 0,018 a 0,078 Mg m-3, respectivamente para o Argissolo e o Nitossolo. A elasticidade do solo é sensivelmente afetada pela variação no teor de água e de CO.The organic carbon accumulation observed in soils under no-till system can increase the soil elasticity, resulting in a higher resistance to soil compaction. This study was carried out to evaluate the effects of water content and soil organic carbon (SOC enrichment on soil elasticity. Samples of a Hapludalf and a Typic Hapludox in southern Brazil, both with a significant variation in SOC content, were equilibrated at four different water tensions, and then loaded and unloaded on a uniaxial apparatus. The decompression coefficient (Cd, the recovery index (Ir of the void ratio and the density rebound (Re after load removal were

  19. Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts

    Science.gov (United States)

    Jung, Patrick; Briegel-Williams, Laura; Simon, Anika; Thyssen, Anne; Büdel, Burkhard

    2018-02-01

    Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and influence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, non-destructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose, based on confocal laser scanning microscopy (CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM-IA) to 3-D biomaps, C coming from photosynthetic active organisms could be visualized as depth profiles with C peaks at 0.5 to 2 mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the first cubic centimetre of soil consists of between 7 and 17 % total organic carbon, identified by loss on ignition.

  20. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa [School of; Engelhard, Mark H.; Polzin, Bryant J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Wang, Chongmin; Zhang, Ji-Guang; Xu, Wu

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation of a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.

  1. The impact of enhanced atmospheric carbon dioxide on yield, proximate composition, elemental concentration, fatty acid and vitamin C contents of tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Khan, Ikhtiar; Azam, Andaleeb; Mahmood, Abid

    2013-01-01

    The global average temperature has witnessed a steady increase during the second half of the twentieth century and the trend is continuing. Carbon dioxide, a major green house gas is piling up in the atmosphere and besides causing global warming, is expected to alter the physico-chemical composition of plants. The objective of this work was to evaluate the hypothesis that increased CO(2) in the air is causing undesirable changes in the nutritional composition of tomato fruits. Two varieties of tomato (Lycopersicon esculentum) were grown in ambient (400 μmol mol(-1)) and elevated (1,000 μmol mol(-1)) concentration of CO(2) under controlled conditions. The fruits were harvested at premature and fully matured stages and analyzed for yield, proximate composition, elemental concentration, fatty acid, and vitamin C contents. The amount of carbohydrates increased significantly under the enhanced CO(2) conditions. The amount of crude protein and vitamin C, two important nutritional parameters, decreased substantially. Fatty acid content showed a mild decrease with a slight increase in crude fiber. Understandably, the effect of enhanced atmospheric CO(2) was more pronounced at the fully matured stage. Mineral contents of the fruit samples changed in an irregular fashion. Tomato fruit has been traditionally a source of vitamin C, under the experimental conditions, a negative impact of enhanced CO(2) on this source of vitamin C was observed. The nutritional quality of both varieties of tomato has altered under the CO(2) enriched atmosphere.

  2. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  3. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  4. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi.

    Science.gov (United States)

    Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh

    2018-02-01

    Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

  5. Limitations of using Raman microscopy for the analysis of high-content-carbon-filled ethylene propylene diene monomer rubber

    DEFF Research Database (Denmark)

    Ghanbari-Siahkali, A.; Almdal, K.; Kingshott, P.

    2003-01-01

    The effects of laser irradiation on changes to the surface chemistry and structure of a commercially available ethylene propylene diene monomer (EPDM) rubber sample after Raman microscopy analysis was investigated. The Raman measurements were carried out with different levels of laser power...... on the sample, ranging from 4.55 mW to 0.09 mW. The surface of the EPDM was analyzed before and after laser exposure using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The techniques have surface probe depths of approximately less...... than or equal to10 nm and 1 mum, respectively. Both sets of analysis show that ingredients of the blended EPDM rubber "bloom" to the surface as a result of local heating that takes place due to the absorption of laser by carbon black during the Raman analysis. Scanning electron microscopy (SEM...

  6. Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys

    International Nuclear Information System (INIS)

    Lin, Chi-Ming; Lai, Hsuan-Han; Kuo, Jui-Chao; Wu, Weite

    2011-01-01

    A combination of transmission electron microscopy, electron backscatter diffraction and wavelength dispersive spectrum has been used to identify crystal structure, grain boundary characteristic and chemical composition of the constituent phases in Cr-Fe-C alloys with three different carbon concentrations. Depending on the three different carbon concentrations, the solidification structures are found to consist of primary α-phase and [α + (Cr,Fe) 23 C 6 ] eutectic in Cr-18.4Fe-2.3 C alloy; primary (Cr,Fe) 23 C 6 and [α + (Cr,Fe) 23 C 6 ] eutectic in Cr-24.5Fe-3.8 C alloy and primary (Cr,Fe) 7 C 3 and [α + (Cr,Fe) 7 C 3 ] eutectic in Cr-21.1Fe-5.9 C alloy, respectively. The grain boundary analysis is useful to understand growth mechanism of the primary phase. The morphologies of primary (Cr,Fe) 23 C 6 and (Cr,Fe) 7 C 3 carbides are faceted structures with polygonal shapes, different from primary α-phase with dendritic shape. The primary (Cr,Fe) 23 C 6 and (Cr,Fe) 7 C 3 carbides with strong texture exist a single crystal structure and contain a slight low angle boundary, resulting in the polygonal growth mechanism. Nevertheless, the primary α-phase with relative random orientation exhibits a polycrystalline structure and comprises a massive high-angle boundary, caused by the dendritic growth mechanism. - Highlights: ► Microstructures of the as-clad Cr-based alloys are characterized by TEM. ► EBSD technique has been use to characterize the grain boundary of primary phases. ► We examine transitions in morphology about the primary phases. ► Morphologies of primary carbides are polygonal different from primary α-phase. ► Solidification structures rely on C concentrations in Cr-Fe-C alloy.

  7. Surface treatment of non-ferrous metal samples to be certified for their oxygen, nitrogen and carbon content

    International Nuclear Information System (INIS)

    Weber, G.Y.; Quaglia, L.; David, D.; Pauwels, J.; Vanaudenhove, J.

    1977-01-01

    Surface treatment on non-ferrous metals is proposed in order to minimize or determine quantitatively the interference of gaseous contamination. Two types of surface treatment have been applied to the specimens; mechanical treatment (sawing, turning, polishing); chemical treatment (etching). Three main conditions govern the choice of treatment: it must give a minimum surface content of the elements to be determined; it must exhibit the reproducibility of the treatment; it must be easy to perform with the normal equipment in the analytical laboratories concerned. A table corresponding to each element gives the range of surface content liable to be used for corrections of determination in the mass, a mechanical treatment, a chemical etching. The elements concerned are: Ta, Mo, W, Ti, Zr, Nb, Cu, Cu/Zn, Al, Al/Mg, Al/Si, Pb, Pb/Sb, Si, Ge, GaAs. The proposals result from a large number of determinations of superficial contamination on several materials using microanalysis by nuclear reactions. (T.G.)

  8. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  9. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  10. Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Directory of Open Access Journals (Sweden)

    A. P. Tran

    2017-09-01

    Full Text Available Quantitative characterization of soil organic carbon (OC content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid water content, temperature and electrical resistivity tomography (ERT data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and

  11. Influence of varying Germanium content on the optical function dispersion of Fe{sub 2}MnSi{sub x}Ge{sub 1-x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali H., E-mail: maalidph@yahoo.co.uk [School of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Charifi, Z., E-mail: charifizoulikha@gmail.com [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); Baaziz, H. [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria)

    2013-01-15

    The optical dielectric functions of Fe{sub 2}MnSi{sub 1-x}Ge{sub x} alloys for selected concentrations (x=0.0, 0.25, 0.5, 0.75 and 1.0) were investigated. The ferromagnetic Fe{sub 2}MnSi{sub x}Ge{sub 1-x} is semiconducting with optical band gaps 0.507, 0.531, 0.539, 0.514 and 0.547 eV for the minority spin and is metallic for the majority spin. From the calculated results the half-metallic character and stability of ferromagnetic state for Fe{sub 2}MnSi{sub x}Ge{sub 1-x} is determined. The total magnetic moment is found to be 3.0{mu}{sub B} for all alloys with the most contribution from Mn local magnetic moments. Iron atoms however exhibit much smaller spin moments, about 10% of the bulk value, and the sp atoms have induced magnetic moments due to the proximity of Fe first nearest neighbors, which couple antiferromagnetically with Fe and Mn spin moments. We have employed full-potential linearized augmented plane wave method based on spin-polarized density functional theory. The generalized gradient approximation exchange-correlation potential was used. The edge of optical absorption for {epsilon}{sub 2}({omega}) of spin-down varies between 0.507 (Fe{sub 2}MnGe) and 0.547 eV (Fe{sub 2}MnSi). Since the spin-up shows metallic nature, the Drude term was included in the spin-up optical dielectric functions. This confirms our finding that these materials are half-metallic. Furthermore, the reflectivity, refractivity and the absorption coefficient were calculated. These results show that the materials possess half-metallic character. - Highlights: Black-Right-Pointing-Pointer The optical dielectric functions of Fe{sub 2}MnSi{sub 1-x}Ge{sub x} were investigated. Black-Right-Pointing-Pointer Fe{sub 2}MnSi{sub x}Ge{sub 1-x} is semiconducting for majority spin and is metallic for minority spin. Black-Right-Pointing-Pointer The total magnetic moment is found to be 3.0{mu}{sub B} for all alloys. Black-Right-Pointing-Pointer The edge of optical absorption for {epsilon}{sub 2

  12. Influence of Magnesium Content on the Local Structure of Amorphous Calcium Carbonate (ACC): Real Time Determination by In Situ PDF Analysis

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2016-12-01

    Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise

  13. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    Science.gov (United States)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  14. The use of coal-tar pitches of very high softening point and low carcinogen content as binders for industrial carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    It has been demonstrated that the content of known carcinogenic polynuclear aromatic hydrocarbons (PAH) in coal-tar pitches may be reduced to levels which comply with existing and/or proposed environmental legislation, typically by distillation at low pressures, and preferably using a form of thin-film evaporation apparatus. However, the immediate products of such distillations usually have very high softening points, typically above 200{degree}C, and are unsuitable for direct utilization in conventional commercial carbon manufacturing processes as a result of the need for very high mixing temperatures. Advantage has been taken of the of a low-PAH coal-tar pitch, supplied in powder form, which has a softening point above 200{degree}C. Methods were examined which might allow mixing and forming of the hard pitch and a petroleum coke aggregate blend either at room temperature or at conventional processing temperature, and hot-pressuring or sintering procedures in which mixtures of the hard pitch and petroleum coke aggregate were formed at or above the softening temperature of the pitch. All the formed products were baked to give carbons which were evaluated for the major properties of density, electrical resistivity and strength. A comparison was also made between the volatiles evolved during the baking of products made with the low-PAH pitch and those made with a conventional coal-tar binder pitch.

  15. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy

    Science.gov (United States)

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-01

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2 kV and a power supply system equipped with 25/50 μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp3/sp2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp3/sp2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed.

  16. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy.

    Science.gov (United States)

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-05

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2kV and a power supply system equipped with 25/50μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp 3 /sp 2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp 3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp 3 /sp 2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp 3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of Water Content, Temperature and NaCl on CO2 Corrosion of Carbon Steel (A106B in Iraqi Crude Oil

    Directory of Open Access Journals (Sweden)

    Saad Ahmed Jafar

    2018-01-01

    Full Text Available An investigation was carried out to determine the corrosion rate of carbon steel (A 106 GradeB as flow line in crude oil production with CO2 content employing three Iraqi crude oil (Kirkuk crude oil, Halfaya crude oil, and Rumalia crude oil with identical produced water (brine [1%NaCl,2%NaCl, and 3%NaCl]. Experiments were performed in an autoclave test apparatus, crude oilproduced water mixtures, water cuts were (0, 10, 20, 30, 40, and 100%, and temperature (20, 40, 60°C. For all experiments, CO2 partial pressure was maintained at 4bar and rotational speed 500 rpm. The corrosion rates were determined by the weight loss method. The results revealed that the corrosion rate of carbon steel increased by increasing water cut and temperature, but decreased with increasing salt concentration for all types of crude oil. Rumaila crude oil exhibited the highest corrosion rate and Kirkuk crude oil exhibits the lowest corrosion rate while Halfaya crude oil exhibits a moderate corrosion rate.

  18. Investigations into the endogenic abcisinic acid and cytokinin content of soja bean cultures with varying salt sensitivity, as well as into the effect of exogenically applied abcisinic acid to the Cl--translocation

    International Nuclear Information System (INIS)

    Roeb, G.

    1981-05-01

    Two soja bean cultures with different Cl - sensitivity the 'Lee' and 'Jackson' were used for the investigation. Salting of the growth medium with 75 nM NaCl massively increased the obcisinic acid (ABA) concentration in the leaves, not however of the cytokinin content. The high ABA concentrations remained in the 'Jackson' sort even after a 7-day salt treatment. The moderately salt-resistant sort 'Lee' had a remarkable Cl - retention mechanism. The addition of 10 -5 and 10 -6 M ABA to the growth medium reduced the Cl - concentration in the sprout and simultaneously increased the accumulation in the root. This ABA effect failed at high salt concentration. The order of magnitude in which ABA is taken up from a normal or salted growth medium and its distribution were investigated using 14 C. Macroautoradiographic investigations show that after 35 h the whole sprout is radioactively labelled whereby a prefered accumulation is found in youngest part of the sprout. The highest Cl - values were found in the older leaves. The ABA is obviously transported to the stomata with the transpiration flow and inhibits the transpiration by its effect on the stomata. Subjecting the soja beans to a 75 mM NaCl concentration, can lead to a decrease of transpiration due to the strong salt concentration. The addition of ABA as well had an inhibiting effect on the water release of the plants without influencing the Cl - translocation. (MG) [de

  19. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  20. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2015-01-01

    Soil organic amendment addition is an effective practice in Mediterranean areas due to its associated high agricultural benefits and its potential to reduce the pesticide impact on water resources. However, their metabolites have received scarce attention, even when they may pose more risk than their parent compounds. Two winery vermicomposts obtained from spent grape marc (V1) and the mixture vine shoot-biosolid vinasses (V2) have been investigated as low cost organic amendments to minimize the leaching of diuron, imidacloprid and their metabolites in columns packed with a sandy loam (S1) and a silty-clay loam soil (S2) under steady state flow conditions. In the unamended soil columns, leached amounts of diuron were 75% and 53% in S1 and S2, respectively. Its metabolites (3-(3,4-dichlorophenyl)-1-methylurea, DPMU; and 3,4-dichlorophenylurea, DPU) percolated less than 35% of the total applied amount. The amount of the metabolite 3,4-dichloroaniline (DCA) was 2% and 30% for S1 and S2, respectively. Leaching of imidacloprid was 79% and 96% for S1 and S2, respectively, while its metabolite 6-chloronicotinic acid (CNA) was entirely leached. In the vermicompost-amended columns, the leaching of diuron was reduced 2 to 3-fold. DPMU and DPU were also significantly reduced (more than 6-fold). DCA did not appear in any of the leachates of the amended soil columns. Imidacloprid leaching was reduced 1 to 2-folds in the amended columns. The amendments did not affect the transport of CNA. The dissolved organic carbon (DOC) from the vermicomposts did not enhance pesticide transport throughout the soil in any case. This qualitative study presents these vermicomposts as an effective potential low-cost tool in reducing pesticide and metabolite leaching. The next step would be to test them under more realistic conditions.

  1. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  2. Comparison of calcium carbonate and aluminium hydroxide as phosphate binders on biochemical bone markers, PTH(1-84), and bone mineral content in dialysis patients

    DEFF Research Database (Denmark)

    Jespersen, B; Jensen, J D; Nielsen, H K

    1991-01-01

    Bone mineral content, estimated by single-photon absorptiometry of the forearm, serum values of intact parathyroid hormone (PTH(1-84], osteocalcin, alkaline phosphatase, 1,25-dihydroxycholecalciferol (1,25(OH)2D3), and aluminium were determined during treatment with calcium carbonate (CaCO3......) or aluminium hydroxide (Al(OH)3) in 11 dialysis patients participating in a randomised cross-over study. Each treatment period lasted 6 months. Serum phosphorus was maintained in the range 1.5-2.0 mmol/l. During Al(OH)3 treatment bone mineral content (BMC) decreased by 11% per half-year (mean), but only by 3...... 0.05), osteocalcin decreased (89% versus 117%, P less than 0.01), alkaline phosphatase decreased (92% versus 116%, P less than 0.05), and aluminium decreased (56% versus 189%, P less than 0.05). 1,25(OH)2D3 remained unchanged in both periods. No increase in soft-tissue calcification was demonstrated...

  3. Compacted sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen.

    Directory of Open Access Journals (Sweden)

    Huyuan Zhang

    Full Text Available Acid mine drainage (AMD was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW, and the pH 2.1 sulfuric acid water (SA seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ∞ under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.62±0% to 66.29±0.35%, then increased to 67.74±0.65% under the AMD seepage while TOC decreased to 63.30±0.53%, then to 61.33±0.37% under the DW seepage, decreased to 63.86±0.41%, then to 63.28±0.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment.

  4. A medium-term intervention study on the impact of high- and low-fat snacks varying in sweetness and fat content: large shifts in daily fat intake but good compensation for daily energy intake.

    Science.gov (United States)

    Lawton, C L; Delargy, H J; Smith, F C; Hamilton, V; Blundell, J E

    1998-08-01

    Thirty-six normal-weight, habitual snackers (eighteen males, eighteen females) completed a medium-term intervention study designed to examine the tendency of four different types of snacks, varying in nutrient (low- (LF) or high-fat (HF) and sensory properties (sweet (SW) or non-sweet (NSW)), to influence the control of appetite and to adjust daily energy intake. Subjects were exposed to each snack category for a 3-week period and were asked to consume a minimum number of snacks each day so that at least 25% of their daily energy intake would be derived from the test snacks. Energy and macronutrient intakes from the test snacks were calculated every day and also from other eating episodes (using 3 d food diary records) during the third week of snack exposure. Subjects consumed more energy/d from the SW snacks than from the NSW snacks, with most energy being consumed from the HF/SW snacks (3213 kJ) and least energy from the LF/NSW snacks (1628 kJ). This differential snack intake remained stable across the whole snack exposure period. Total daily energy intake did not differ significantly during exposure to any of the four snack types. Furthermore, the encouragement to eat freely from the test snacks did not lead to daily overconsumption of energy when compared with pre-study intakes. Hence, the level of snack consumption was largely compensated for by the energy consumed from the rest of the eating pattern. Although daily energy intake during exposure to the HF snacks was an average of 364 kJ higher (NS) than that during exposure to the LF snacks, the clearest and most significant effect of snack consumption was on daily macronutrient intake. Appreciable consumption of the HF snacks raised the percentage of total daily energy intake consumed as fat from 37 to 41% (P snacks reduced daily fat intake to 33.5% (LF/SW, P snacks, when compared with HF snacks, is an effective strategy to reduce fat intake so that it approaches the recommendations of dietary guidelines

  5. Studies on the relationship between the content of carbon monoxide in atmosphere and the health of mothers and babies. I. The status of carbon monoxide concentration in expired air of pregnant woman and its relationship to environmental and physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, A

    1974-03-01

    The actual condition of carbon monoxide content in expired air and its relation to life-environmental and physical factors was investigated in 277 pregnant women. Subjects residing in a midtown area of Tokyo have average CO concentrations in the expired air slightly higher than those previously reported. Seventy two women (26%) have CO concentrations over 10 ppM. The concentration of CO in expired air correlates with the CO level in the immediate life environment of the individual. Pregnant women with a history of abnormal gestation and/or abnormal delivery are more frequent in the areas with those exhibiting higher CO concentrations in expired air, compared to regions with women showing lower CO levels.

  6. The CO2 content of the electric kWh: compared benefits of the margin content and of the content per use on a historical basis

    International Nuclear Information System (INIS)

    2007-01-01

    Aiming at calculating the carbon content of electricity production which may vary significantly in France with respect to the season, the authors propose two methods and their principles. The first one assesses an average content per usage on a historical basis, and the second one is based on the CO 2 marginal content of electricity. A table enables a comparison of these methods in terms of their main characteristics, scope, trans-national compatibility, validity, and use. Then, they give an assessment of the impact of energy management policies in terms of CO 2 benefits. They conclude that these two methods can be considered as complementary and adapted to different purposes

  7. Time-varying BRDFs.

    Science.gov (United States)

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  8. Auto- and heterotrophic nanoplankton and filamentous bacteria of Guanabara Bay (RJ, Brazil: estimates of cell/filament numbers versus carbon content

    Directory of Open Access Journals (Sweden)

    Viviane Severiano Santos

    2007-06-01

    Full Text Available Variations of nanoplankton (2-20 µm and filamentous bacteria (diameter: 0.5-2.0 µm of Guanabara Bay (RJ, Brazil are presented, considering cell density and carbon content of auto- and heterotrophs. Our goal is to contribute to future modeling of local trophic dynamics. Subsurface water samples were taken weekly during the year 2000 at two sites: Urca (close to the entrance, more saline, eutrophic and Ramos (inner area, less saline, hypertrophic. Microscopic analysis was done by epifluorescence and cell density was converted to biomass through cell biovolume. Total nanoplankton was about 10(8 cells.l-1 in most samples (>57%, and total filamentous bacteria densities varied from 10(5 to 10(8 fil.l-1. Autotroph density was one order of magnitude higher at Ramos, both for nanoplankton (Md: 10(8cells.l-1 at Ramos and 10(7cells.l-1 at Urca and for filamentous bacteria (Md: 10(6 fil.l-1 at Ramos and 10(5 fil.l-1 at Urca. The same was observed for autotrophic biomass (Md: 10³µgC.l-1 at Ramos and 10¹µgC.l-1 at Urca for nanoplankton; Md: 28µgC.l-1 at Ramos and 1.4µgC.l-1 at Urca for filamentous bacteria. The relative contribution of autotrophs increased after conversion to biomass. Seasonal variation was conspicuous for filamentous bacteria at both sites and for nanoplankton only at Ramos, with maximum autotrophic abundances during the rainy period (spring-summer.Variações do nanoplâncton (2-20µm e bactérias filamentosas (diâmetro: 0.5-2.0 µm da Baía de Guanabara (RJ, Brasil são apresentadas, considerando densidade celular e biomassa de autótrofos e heterótrofos. A meta deste trabalho é contribuir para uma futura modelagem da dinâmica trófica neste sistema. Amostras subsuperficiais de água foram coletadas semanalmente durante um ano em dois pontos: Urca (próximo à entrada, mais salino, eutrófico e Ramos (no interior, menos salino, hipertrófico. Foi feita análise por microscopia de epifluorescência, com densidade celular

  9. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  10. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    Science.gov (United States)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  11. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    Science.gov (United States)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  12. Prediction of total organic carbon content in shale reservoir based on a new integrated hybrid neural network and conventional well logging curves

    Science.gov (United States)

    Zhu, Linqi; Zhang, Chong; Zhang, Chaomo; Wei, Yang; Zhou, Xueqing; Cheng, Yuan; Huang, Yuyang; Zhang, Le

    2018-06-01

    There is increasing interest in shale gas reservoirs due to their abundant reserves. As a key evaluation criterion, the total organic carbon content (TOC) of the reservoirs can reflect its hydrocarbon generation potential. The existing TOC calculation model is not very accurate and there is still the possibility for improvement. In this paper, an integrated hybrid neural network (IHNN) model is proposed for predicting the TOC. This is based on the fact that the TOC information on the low TOC reservoir, where the TOC is easy to evaluate, comes from a prediction problem, which is the inherent problem of the existing algorithm. By comparing the prediction models established in 132 rock samples in the shale gas reservoir within the Jiaoshiba area, it can be seen that the accuracy of the proposed IHNN model is much higher than that of the other prediction models. The mean square error of the samples, which were not joined to the established models, was reduced from 0.586 to 0.442. The results show that TOC prediction is easier after logging prediction has been improved. Furthermore, this paper puts forward the next research direction of the prediction model. The IHNN algorithm can help evaluate the TOC of a shale gas reservoir.

  13. A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS/multi-walled carbon nanotube (MWCNT nanocomposites: Effect of modified MWCNT content

    Directory of Open Access Journals (Sweden)

    Payel Sen

    2016-09-01

    Full Text Available The influence of carboxylic acid functionalized multi-walled carbon nanotubes (cMWCNTs content on the properties of polystyrene (PS nanocomposite (NC films was investigated. The NC films were produced by a simple sonication assisted solvent blending technique. The interaction between the matrix (PS and well dispersed filler (cMWCNT was evaluated by different techniques involving Fourier transform infrared spectroscopy, Raman spectroscopy and X-Ray diffraction. Morphological images of the NCs were collected from Transmission electron microscopy. The thermal characteristics of the PS were found to be improved by the incorporation of the cMWCNTs, which was evident from the Thermogravimetric analysis (TGA data. The thermal degradation activation energy evaluated by Coats-Redfern method and integral procedural decomposition temperature determined by Doyle's method supported the thermal stability proposed by TGA of the NCs. The reaction mechanism of thermal degradation of neat PS and respective NCs was successfully predicted using Criado method. The rheological properties and hardness were found to be upgraded by the inclusion of nanotubes to the PS matrix.

  14. Machine learning for the prediction of L. chinensis carbon, nitrogen and phosphorus contents and understanding of mechanisms underlying grassland degradation.

    Science.gov (United States)

    Li, Yuefen; Liang, Shuo; Zhao, Yiying; Li, Wenbo; Wang, Yuejiao

    2017-05-01

    The grasslands of Western Jilin Province in China have experienced severe degradation during the last 50 years. Radial basis function neural networks (RBFNN) and support vector machines (SVM) were used to predict the carbon, nitrogen, and phosphorus contents of Leymus chinensis (L. chinensis) and explore the degree of grassland degradation using the matter-element extension model. Both RBFNN and SVM demonstrated good prediction accuracy. The results indicated that there was severe degradation, as samples were mainly concentrated in the 3rd and 4th levels. The growth of L. chinensis was shown to be limited by either nitrogen, phosphorus, or both during different stages of degradation. The soil chemistry changed noticeably as degradation aggravated, which represents a destabilization of L. chinensis community homeostasis. Soil salinization aggravates soil nutrient loss and decreases the bioavailability of soil nutrients. This, along with the destabilization of C/N, C/P and N/P ratios, weakens the photosynthetic ability and productivity of L. chinensis. This conclusion was supported by observations that L. chinensis is gradually being replaced by a Chloris virgata, Puccinellia tenuiflora and Suaeda acuminate mixed community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  16. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  17. Sedimentation rates of Sao Paulo coast by carbonate calcium content: an alternative for radiometric methods; Levantamento das taxas de sedimentacao do litoral de Sao Paulo a partir do teor de carbonato de calcio: uma alternativa aos metodos radiometricos

    Energy Technology Data Exchange (ETDEWEB)

    Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil). Centro de Tecnologia e Ciencias Exatas]. E-mail: figueira@ipen.br; figueiraru@yahoo.com.br; Tessler, Moyses G.; Mahiques, Michel M. de; Fukumoto, Marina M.M. [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico. Dept. de Oceanografia Geologica]. E-mail: mgtessle@usp.br; mahiques@usp.br; marina@io.usp.br

    2005-07-01

    In this work it is presented a methodology of sedimentation rate determination by carbonate calcium content. The technique developed is an alternative for radiometric methods where are used {sup 210}Pb{sub unsupported} and {sup 137}Cs radionuclides. This methodology consisted in a determination of chronologic event along sedimentary column. In this work two events were used: the tsunami in Sao Vicente city, in 1542, and the maximum of 1{sup 37}Cs radioactive fallout from nuclear atmospheric tests, in 1963-65. It was possible to calculate the accumulation rate of total sediments and precipitation rate of calcium carbonate, which values are necessary to determine the age of slice from sedimentary column and consequently the sedimentation rate. The results obtained for Sao Paulo Continental Shelf had a good agreement with radiometric methods, the values were: 0.32({+-}0.12) cm.y{sup -1}, 0.23({+-}0.08) cm.y{sup -1} and 0.25({+-}0.9) cm.y{sup -1} for carbonate method, {sup 210}Pb{sub unsupported} (CIC model) and {sup 137}Cs (radioactive fallout), respectively. The analytical procedure using carbonate calcium content showed to be fast, efficient and with low cost. However, it must be used carefully, because the results can be strongly influenced by environmental factors which could change the precipitation rate of calcium carbonate and it could cause errors on sedimentation rate values in a determined area (author)

  18. Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and Oak stands in acid soils in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Turrión, M.B.; Pando, V.; Bravo, F.

    2016-07-01

    Aim of the study: The aim of the study was to determine the baseline carbon stock in forest floor and mineral soils in pine and oak stands in acid soils in Northern Spain. Area of study: The study area is situated in northern Spain (42° N, 4° W) on “Paramos y Valles” region of Palencia. aterial and methods: An extensive monitoring composed of 48 plots (31 in pine and 17 in oak stands) was carried out. Litter layers and mineral soil samples, at depths of 0-30 cm and 30-60 cm, were taken in each plot. An intensive monitoring was also performed by sampling 12 of these 48 plots selected taken in account species forest composition and their stand development stage. Microbial biomass C (CMB), C mineralization (CRB), and soil organic C balance at stand level were determined in surface soil samples of intensive monitoring. Main results: No differences in soil C content were detected in the two forest ecosystems up to 60 cm depth (53.0±25.8 Mg C ha-1 in Pinus spp. plantations and 60.3±43.8 Mg C ha-1 in oak stands). However, differences in total C (CT), CMB and CRB were found in the upper 10 cm of the soils depending on the stand development stage in each species forest composition (Pinus nigra, Pinus pinaster, Pinus sylvestris and Quercus pyrenaica). Plots with high development stage exhibited significant lower metabolic quotient (qCO2), so, meant more efficient utilization of C by the microbial community. The C content in the forest floor was higher in pine stands (13.7±0.9 Mg C ha-1) than in oak stands (5.4±0.7 Mg C ha-1). A greater turnover time was found in pine ecosystems vs. oak stands. In contrast, forest floor H layer was nonexistent in oak stands. Research highlights: Results about litterfall, forest floor and mineral soil dynamics in this paper can be used strategically to reach environmental goals in new afforestation programs and sustainable forest management approaches. (Author)

  19. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Science.gov (United States)

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of

  20. Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay latosol : carbon, nitrogen and 13C distribution in particle-size fractions

    NARCIS (Netherlands)

    Roscoe, R.; Buurman, P.; Velthorst, E.J.

    2000-01-01

    Ultrasonic energy has been widely used to disrupt soil aggregates before fractionating soil physically when studying soil organic matter (SOM). Nevertheless, there is no consensus about the optimum energy desirable to disrupt the soil. We therefore aimed (i) to quantify the effect of varied

  1. A Content Analysis of Google Scholar: Coverage Varies by Discipline and by Database. A review of: Neuhaus, Chris, Ellen Neuhaus, Alan Asher, and Clint Wrede. “The Depth and Breadth of Google Scholar: An Empirical Study.” portal: Libraries and the Academy 6.2 (Apr. 2006: 127‐41.

    Directory of Open Access Journals (Sweden)

    Virginia Wilson

    2007-03-01

    Full Text Available Objective – To ascertain the coverage by discipline, publication date, publication language, and upload frequency of the scholarly articles found in Google Scholar.Design – Comparative content analyses.Setting – Electronic information resources accessible via the internet (both freely accessible and for‐fee databases.Subjects – Forty‐seven online databases and Google Scholar.Methods – The study compared the content of 47 databases (21 Internet resources freely available to the general public; 26 restricted access databases covering a variety of subjects with the content of Google Scholar. Each database was assigned to one of the following discipline categories: business, education, humanities, science and medicine, social science, and multidisciplinary. From April through July 2005, researchers generated random samples of 50 article titles from each of the 47 databases and searched the titles on Google Scholar to determine inclusion. Related studies were conducted for publication date and publication language analysis, and for the Google Scholar upload frequency study. For the publication date study, random samples from one database (PsycINFO with a high degree of variability in Google Scholar coverage were searched for 1990, 2000, and 2004. For the publication language study, Google Scholar coverage of PsycINFO articles in English was compared to coverage of PsycINFO articles published in non‐English languages. For the upload frequency study, two databases chosen for their high degree of coverage (BioMedCentral and PubMed were monitored to determine how often the new content was uploaded to Google Scholar.Main Results – This study revealed that content covered by Google Scholar varies greatly from database to database and from discipline to discipline. Of the 47 databases studied, coverage ranged from 6% to 100%. Mean and median values of coverage for all databases were both 60%. The mean discipline category scores varied from

  2. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  3. Marijuana smoking: effects of varying puff volume and breathhold duration.

    Science.gov (United States)

    Azorlosa, J L; Greenwald, M K; Stitzer, M L

    1995-02-01

    Two studies were conducted to quantify biological and behavioral effects resulting from exposure to controlled doses of marijuana smoke. In one study, puff volume (30, 60 and 90 ml) and in a second study, breathhold duration (0, 10 and 20 sec) were systematically varied while holding constant other smoking topography parameters (number of puffs = 10, interpuff interval = 60 sec and inhalation volume = 25% of vital capacity). Each study also varied levels of delta 9-tetrahydro-cannabinol marijuana cigarette content (1.75% and 3.55%). Regular marijuana users served as subjects (n = 7 in each experiment). Subjects smoked 10 puffs in each of six sessions; a seventh, nonsmoking session (all measures recorded at the same times as in active smoking sessions) served as a control. Variations in puff volume produced significant dose-related changes in postsmoking plasma delta 9-tetrahydro-cannabinol levels, carbon monoxide boost and subjective effects (e.g., "high"). In contrast, breathholding for 10 or 20 sec versus 0 sec increased plasma delta 9-tetrahydro-cannabinol levels but not CO boost or subjective effects. Task performance measures were not reliably influenced by marijuana smoke exposure within the dosing ranges examined. These findings confirm the utility of the controlled smoking technology, support the notion that cumulative puff volume systematically influences biological exposure and subjective effects, but cast doubt on the common belief that prolonged breathholding of marijuana smoke enhances classical subjective effects associated with its reinforcing value in humans.

  4. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure.

    Science.gov (United States)

    Trifilò, Patrizia; Casolo, Valentino; Raimondo, Fabio; Petrussa, Elisa; Boscutti, Francesco; Lo Gullo, Maria Assunta; Nardini, Andrea

    2017-11-01

    Drought-induced tree decline is a complex event, and recent hypotheses suggest that hydraulic failure and carbon starvation are co-responsible for this process. We tested the possible role of non-structural carbohydrates (NSC) content on post-drought hydraulic recovery, to verify the hypothesis that embolism reversal represents a mechanistic link between carbon starvation and stem hydraulics. Measurements were performed in laurel plants subjected to similar water stress levels either over short or long term, to induce comparable embolism levels. Plants subjected to mild and prolonged water shortage (S) showed reduced growth, adjustment of turgor loss point driven by changes in both osmotic potential at full turgor and bulk modulus of elasticity, a lower content of soluble NSC and a higher content of starch with respect to control (C) plants. Moreover, S plants showed a lower ability to recover from xylem embolism than C plants, even after irrigation. Our data suggest that plant carbon status might indirectly influence plant performance during and after drought via effects on xylem hydraulic functioning, supporting the view of a possible mechanistic link between the two processes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Aziz, Akram M.; Al-Tamer, Marwa H.

    2016-01-01

    Highlights: • PET was converted to activated carbon and then sulfonated to prepare carbon acid catalyst. • Carbon acid catalyst was used for esterification of high acid value Silybum marianum L. seed oil. • Biodiesel was obtained with 96.98% efficiency. - Abstract: In this research work, waste of polyethylene terephthalate (PET) was converted into activated carbon and the latter was used in the preparation of a carbon acid catalyst. Waste of PET was converted into activated carbon via carbonization and steam activation, then the activated carbon was sulfonated using fuming sulfuric acid in order to produce the carbon acid catalyst. The prepared carbon acid catalyst was tested for esterification of high acid value non-edible oil, Silybum marianum L. seed oil (SMSO) via optimized protocol. Amount of the carbon acid catalyst, methanol to oil molar ratio, temperature and time were the experimental variables optimized. Esterification of SMSO with methanol using the prepared carbon acid catalyst reduced its parent acid value (20.0 mg KOH/g) to the acceptable limits for base-catalyzed transesterification (<2.0 mg KOH/g) using 6.0% w/w of the catalyst, 15:1 methanol to oil molar ratio, 68 °C reaction temperature and 180 min of reaction. The performance of the catalyst was reduced gradually during its recycling and reached to 60.0% at the 5th cycle. Kinetics of esterification of SMSO using the prepared carbon acid catalyst followed pseudo first order kinetics, and the activation energy was found to be 70.98 kJ/mol. The esterified oil was converted to biodiesel through optimized base-catalyzed transesterification with methanol. Biodiesel with (96.98% yield and purity of 96.69% w/w) yield was obtained using 0.80% KOH w/w, 6:1 methanol to oil molar ratio, 60 °C reaction temperature, 75 min of reaction and 600 rpm rate of stirring. The biodiesel properties were within the recommended biodiesel standards as prescribed by ASTM D 6751 and EN 14214. Transesterification of

  6. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  7. Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia

    OpenAIRE

    Selig, Marcus Franklin

    2003-01-01

    The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three repli...

  8. Dynamic carbon content as an indicator of desertification processes in soils developed from volcanic parental material in the Region of Murcia; Contenido en carbono organico como indicador del proceso de desertificacion en suelos desarrollados en material parental volcanico en la Region de Murcia

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Martinez, S.; Faz Cano, A.; Acosta Aviles, J. A.

    2009-07-01

    Soil Organic Carbon (SOC is an essential components of the global carbon cycle, especially in soils developed from volcanic rocks, due to these soils does not have inorganic carbon. In arid and semiarid areas mineralization of organic carbon is very intense due to climatic conditions, causing soils depletion and therefore desertification. The objective of this study is to determine the content of OC, as a first step in the assessment of desertification. The objective of this study is to determine the content of OC, as a first step in the assessment of desertification processes affecting this area of the southeast of Spain. (Author) 7 refs.

  9. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture

    OpenAIRE

    Geng, Zhen; Xiao, Qiangfeng; Lv, Hong; Li, Bing; Wu, Haobin; Lu, Yunfeng; Zhang, Cunman

    2016-01-01

    The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrog...

  10. Experimental determination of dissolved CO2 content in nominally anhydrous andesitic melts at graphite/diamond saturation - Remobilization of deeply subducted reduced carbon via partial melts of MORB-like eclogite

    Science.gov (United States)

    Eguchi, J.; Dasgupta, R.

    2015-12-01

    Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions

  11. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  12. Utilization of 15N-labelled nitrogen fertilizer in dependence on organic manuring and carbon and nitrogen contents of loess chernozem profiles with different stratification

    International Nuclear Information System (INIS)

    Greilich, J.

    1988-01-01

    In an outdoor model experiment with different total C and N contents in five profile variants of loess chernozem, the utilization of 15 N-labelled mineral fertilizer N by maize was investigated over three years. The total nitrogen uptake in the variants correlated with the yields at nearly uniform nitrogen contents in dry matter. Total C and N contents of the profile variants and one organic manure application per year had no statistically significant effects on the 15 N-labelled fertilizer N proportion in total N content of biomass. As a result of the low yields obtained from the variants with low total C and N contents of soil, mineral fertilizer utilization was found to be lower, too, in most of these variants. Organic manuring had no essential effect on mineral fertilizer N utilization. (author)

  13. Production and accumulation of UV-B [ultra violet] absorbing compounds in UV-B irradiated leaves of rice, Oryza SativaL.: effects of varying UV-B doses on leaf damage, phenolic content and HPLC [high performance liquid chromatography] peak I area

    International Nuclear Information System (INIS)

    Caasi-Lit, M.T.

    2005-01-01

    The effects of varying UV-B doses on leaf damage, phenolic content and HPLC peak 1 area were studied using 65-d-old plants of the UV-B tolerant rice cultivar, M202, and the UV-B susceptible rice cultivar, Dular. Results showed that the production and accumulation of UV-B- absorbing compounds in rice leaves were affected by leaf position and levels (dose) of UV-B and time or duration of UV-B irradiation or exposure. The youngest terminal leaves showed the least damage when exposed to medium and high UV-B doses. The production of these absorptive compounds as represented by relative phenolic and HPLC peak 1 were significantly higher in younger leaves and lower in older or senescing leaves. M202 showed significantly higher amounts of peak 1 area and relative phenolic compared to UV-B susceptible rice cultivar, Dular. The results also confirmed the strong relationship of overall damage rating and area of HPLC peak 1. The development of UV-B symptoms in the susceptible cultivar was hastened when a high UV-B treatment was applied. Peak 1 area did not accumulate in the UV-B susceptible Dular at any given UV-B dose

  14. Light-oil recovery in the low-temperature carbonization of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, A

    1944-01-01

    The various methods used for low-temperature carbonization of brown coal are reviewed as well as the effect of the method of carbonization on the properties and yields of light oil and tar. The composition of the light oil varied considerably with the coal and the method used. Light oil from the low-temperature distillation of brown coal contains relatively high contents of unsaturated hydrocarbons and variable content of phenols and S compounds, depending on the coal. Light oil is best recovered from low-temperature-carbonization gas by oil scrubbing; the use of active C would require preliminary removal of S compounds, which would be quite expensive.

  15. The Effects of Earth Science Textbook Contents on High School Students' Knowledge of, Attitude toward, and Behavior of Energy Saving and Carbon Reduction

    Science.gov (United States)

    Chao, Yu-Long; Chou, Ying-Chyi; Yen, Hsin-Yi; Chen, Shr-Jya

    2017-01-01

    As science textbooks are considered as one of the major source of climate change information of students, this study aims to examine the differences in energy saving and carbon reduction knowledge, attitude, and behavior between two groups of Taiwan's high school students using earth science textbooks of two different publishers. Some items of…

  16. Effect of granular activated carbon concentration on the content of organic matter and salt, influencing E. coli activity and survival in fluidized bed disinfection reactor

    NARCIS (Netherlands)

    Racyte, J.; Langenhoff, A.A.M.; Ribeiro, A.F.M.M.R.; Paulitsch-Fuchs, A.H.; Bruning, H.; Rijnaarts, H.

    2014-01-01

    Granular activated carbon (GAC) is used in water treatment systems, typically to remove pollutants such as natural organic matter, volatile organic compounds, chlorine, taste, and odor. GAC is also used as a key component of a new technology that combines a fluidized bed reactor with radio frequency

  17. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  18. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  19. Study of the oxide reduction and interstitial contents during sintering of different plain carbon steels by in situ mass spectrometry in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Momeni, Mohammad; Gierl, Christian; Danninger, Herbert

    2011-01-01

    Highlights: → Degassing phenomenon was studied in plain steels with different iron base powders. → The integrated area below the MS m12 graph can be used as an indicator of formed CO. → The integrated area is an indicator for in situ carbon loss in the specimen. → Carbon loss and area below the m12 graph can be correlated. - Abstract: Reduction of oxides covering powder particles is an important process during sintering and a prerequisite to form sintering contacts in PM parts. In the present research, degassing and reduction phenomena during sintering of plain carbon steels prepared from different atomised and sponge iron powders were studied by mass spectrometry (MS) in the dilatometer under protective N 2 atmosphere. Interstitial constituents were measured by carbon and oxygen analysis. According to the results, the major part of CO 2 is formed during carbothermic reduction of surface oxides in the low to moderate temperature range ( 600 deg. C, the main product of carbothermic reduction is CO and not CO 2 , but the former cannot be detected by MS in N 2 atmosphere. Signals m44 (CO 2 ) and m12 (C) were however found to be reliable indicators for CO. Similar intensity of mass 12 signals for both ASC and SC up to 1000 deg. C is consistent with equal carbon loss through carbothermic reaction. The integrated areas below the MS signal graphs, and thus the areas of the different degassing peaks obtained in the MS, were used as at least semi-quantitative estimation of the amount of gases formed, bearing in mind that MS is not really a quantitative analytical tool. Although a clearly defined relationship is not visible between oxygen loss and area below the m16 graph, the area for m12 can be used as an indicator for in situ carbon loss in the specimen. Increasing integrated areas for m12 and 16 between 800 and 1300 deg. C with only marginal enhancement of m44 indicates that the major part of oxides are removed as CO, in agreement with Boudouard equilibrium, at

  20. Effects of varied porosity on the physic-mechanical properties of sintered ceramic from Ifon clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of saw dust admixture on the physic-mechanical properties of sintered clay bonded carbonized palm kernel shell ceramic was investigated. Composite mixtures of powdered carbonized palm kernel shell and clay from Ifon deposit were produced using equal amount of clay and carbonized palm kernel shell. These were then mixed with varied amount of saw dust (0%, 5% and 10% in a ball mill for 6 hours. From this standard sample specimens were produced using uniaxial compression after mixing each mixture with 10% moisture of clay contents. The compressed samples were sintered at 9500C and soaked for one hour. The sintered samples were characterized for various physic-mechanical properties using state of the art equipment’s. The fired samples were also characterized using ultra-high-resolution field emission scanning electron microscope (UHR-FEGSEM equipped with energy dispersive spectroscopy (EDX. It was observed that the apparent porosity and water absorption of the clay bonded carbonized palm kernel shell ceramic increased with increased amount of saw dust admixture, cold crushing strength, Young’ modulus of elasticity and absorbed energy of the sample reduced with increased amount of saw dust admixture. It was concluded that the sample with 0% saw dust admixture is judged to possess optimum physic-mechanical properties.

  1. Bioactive content, hepatoprotective and antioxidant activities of ...

    African Journals Online (AJOL)

    Bioactive content, hepatoprotective and antioxidant activities of whole plant extract of Micromeria fruticosa (L) Druce ssp Serpyllifolia F Lamiaceae against Carbon tetrachloride-induced hepatotoxicity in mice.

  2. Estimation of cerium and lanthanum content in core material of high intensity carbon arc electrodes by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Nagpal, K.C.; Bhavalkar, R.H.

    1977-01-01

    The X-ray fluorescence method has been used to determine the weight percentages of cerium and lanthanum in the core material of high intensity carbon arc electrodes from the calibration curves plotted between the weight percentages of these elements and the peak-intensity ratios of CeLsub(α1), and LaLsub(α1) peaks to the neighbouring peak SnLsub(α1) due to an internal standard element. (author)

  3. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Likozar, Blaz, E-mail: blaz.likozar@fkkt.uni-lj.si [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria); Major, Zoltan, E-mail: zoltan.major@jku.at [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria)

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10{sup 28} m{sup -3}), density (maximally 1.16 g cm{sup -3}), and tear strength (11.2 kN m{sup -1}), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  4. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Science.gov (United States)

    Likozar, Blaž; Major, Zoltan

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m-3), density (maximally 1.16 g cm-3), and tear strength (11.2 kN m-1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  5. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    International Nuclear Information System (INIS)

    Likozar, Blaz; Major, Zoltan

    2010-01-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10 28 m -3 ), density (maximally 1.16 g cm -3 ), and tear strength (11.2 kN m -1 ), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  6. Lengths of Schwabe cycles in the seventh and eighth centuries indicated by precise measurement of carbon-14 content in tree rings

    Science.gov (United States)

    Miyake, Fusa; Masuda, Kimiaki; Nakamura, Toshio

    2013-12-01

    (14C) is produced in the atmosphere by galactic cosmic rays, which are modulated by solar magnetic activity. Its content in tree rings is retained and provides a record of past cosmic ray intensity and solar activity. We have measured, with 2 year resolution, the 14C content in Japanese cedar tree rings for the period A.D. 600 to 760, which includes a small grand solar minimum in the seventh to eighth centuries. Periodicity analysis of the 14C data shows that there is a component in the frequency band of the Schwabe cycle, with a period of 12-13 years continuing throughout the minimum. This is the fourth case in which an increase in the length of the Schwabe cycle has been observed in a grand solar minimum, after the Maunder Minimum, the Spörer Minimum, and the Fourth Century B.C. Minimum.

  7. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  8. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography.

    Science.gov (United States)

    Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z

    2016-01-01

    Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

  9. Performance of Separation Processes for Precipitated Calcium Carbonate Produced with an Innovative Method from Steelmaking Slag and Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Teir, Sebastian, E-mail: sebastian.teir@vtt.fi [VTT Technical Research Centre of Finland Ltd., Espoo (Finland); Auvinen, Toni [Outotec Dewatering Technology Center, Lappeenranta (Finland); Said, Arshe [Department of Energy Technology, School of Engineering, Aalto University, Espoo (Finland); Kotiranta, Tuukka; Peltola, Heljä [Outotec Research Center, Pori (Finland)

    2016-02-22

    In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO{sub 2} emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride, and ammonia, the product needs to be washed and hence filtered. In this work, different separation processes, including washing, filtering, and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO{sub 2} by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content, and conductivity, and the filtrates by their residual solids content, chloride content, and conductivity. Pressure filtration gave a high capacity (400–460 kg/m{sup 2}h) and a low cake residual moisture content (12–14 wt-%). Vacuum filtration gave slightly higher filtration rates (500–610 kg/m{sup 2}h at the lowest residual chloride contents of the cakes), but the cake residual moisture also stayed higher (25–26 wt-%). As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered

  10. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...

  11. Eestlased Karlovy Varys / J. R.

    Index Scriptorium Estoniae

    J. R.

    2007-01-01

    Ilmar Raagi mängufilm "Klass" osaleb 42. Karlovy Vary rahvusvahelise filmifestivali võistlusprogrammis "East of the West" ja Asko Kase lühimängufilm "Zen läbi prügi" on valitud festivali kõrvalprogrammi "Forum of Independents"

  12. Esmaklassiline Karlovy Vary / Jaanus Noormets

    Index Scriptorium Estoniae

    Noormets, Jaanus

    2007-01-01

    Ilmar Raagi mängufilm "Klass" võitis 42. Karlovy Vary rahvusvahelise filmifestivalil kaks auhinda - ametliku kõrvalvõistlusprogrammi "East of the West" eripreemia "Special mention" ja Euroopa väärtfilmikinode keti Europa Cinemas preemia. Ka Asko Kase lühifilmi "Zen läbi prügi linastumisest ning teistest auhinnasaajatest ning osalejatest

  13. Optimistlik Karlovy Vary / Jaan Ruus

    Index Scriptorium Estoniae

    Ruus, Jaan, 1938-2017

    2007-01-01

    42. Karlovy Vary rahvusvahelise filmifestivali auhinnatud filmidest (žürii esimees Peter Bart). Kristallgloobuse sai Islandi-Saksamaa "Katseklaasilinn" (režii Baltasar Kormakur), parimaks režissööriks tunnistati norralane Bard Breien ("Negatiivse mõtlemise kunst"). Austraallase Michael James Rowlandi "Hea õnne teekond" sai žürii eripreemia

  14. Carbon a support for sulfide catalysts

    NARCIS (Netherlands)

    Vissers, J.P.R.; Lensing, T.J.; Mercx, F.P.M.; Beer, de V.H.J.; Prins, R.

    1983-01-01

    Two types of carbon materials, carbon black composite and carbon covered alumina, were studied for-their use as support for sulfide catalysts. The following parameters were varied: type of carbon black, carbon coverage of the alumina and carbon pretreatment. Pore size distributions were determined

  15. Carbon partitioning and export from mature cotton leaves

    International Nuclear Information System (INIS)

    Hendrix, D.L.; Grange, R.I.

    1991-01-01

    The partitioning of carbon in intact, mature cotton (Gossypium hirsutum L.) leaves was examined by steady-state 14 CO 2 labeling. Plants were exposed to dark periods of varying lengths, followed by similar illuminated labeling periods. These treatments produced leaves with a range of starch and soluble sugar contents, carbon exchange, and carbon export rates. Export during the illuminated periods was neither highly correlated with photosynthesis nor was export during the illuminated periods significantly different among the treatments. In contrast, the rate of subsequent nocturnal carbon export from these leaves varied widely and was found to be highly correlated with leaf starch content at the end of the illumination period and with nocturnal leaf respiration. Leaves which had accumulated the highest levels of starch (about 275 micrograms per square centimeter) by the end of the illumination period exhibited nocturnal export rates very similar to those during the daylight hours. Leaves which accumulated starch to only 50 to 75 micrograms per square centimeter virtually ceased nocturnal carbon export. For leaves with starch accumulations of between 50 and 275 micrograms per square centimeter, nocturnal export was directly proportional to leaf starch at the end of the illumination period. After the nocturnal export rate was established, it continued at a constant rate throughout the night even though leaf starch and sucrose contents declined

  16. Carbon partitioning and export from mature cotton leaves.

    Science.gov (United States)

    Hendrix, D L; Grange, R I

    1991-01-01

    The partitioning of carbon in intact, mature cotton (Gossypium hirsutum L.) leaves was examined by steady-state (14)CO(2) labeling. Plants were exposed to dark periods of varying lengths, followed by similar illuminated labeling periods. These treatments produced leaves with a range of starch and soluble sugar contents, carbon exchange, and carbon export rates. Export during the illuminated periods was neither highly correlated with photosynthesis nor was export during the illuminated periods significantly different among the treatments. In contrast, the rate of subsequent nocturnal carbon export from these leaves varied widely and was found to be highly correlated with leaf starch content at the end of the illumination period (r = 0.934) and with nocturnal leaf respiration (r = 0.954). Leaves which had accumulated the highest levels of starch (about 275 micrograms per square centimeter) by the end of the illumination period exhibited nocturnal export rates very similar to those during the daylight hours. Leaves which accumulated starch to only 50 to 75 micrograms per square centimeter virtually ceased nocturnal carbon export. For leaves with starch accumulations of between 50 and 275 micrograms per square centimeter, nocturnal export was directly proportional to leaf starch at the end of the illumination period. After the nocturnal export rate was established, it continued at a constant rate throughout the night even though leaf starch and sucrose contents declined.

  17. Carbon steel protection in G.S. (Girlder sulfide) heavy water fabrication plants. Control of iron content at the final stage of passivation. Pt. 10

    International Nuclear Information System (INIS)

    Rojo, E.A.

    1991-01-01

    This paper is part of a series which corresponds to the carbon steel behaviour as construction material for Girlder sulfide (G.S.) heavy water plants. The present work analyses the iron concentration study during passivation in the passivating fluid. At the beginning, during the formation of the most soluble sulfide -that is the mackinawite-, the iron concentration reaches more than 10 ppm. After some days, this iron concentration begins to decrease up to its stabilization under 0.1 ppm. This process, which occurs in the 9th. and 11th days, indicates that passivation is over, and that a pyrite and pyrrhotite-pyrite layer exists on the iron. Some differences exist between the results obtained and those previsible for the iron sulfides solubilities. In spite of these difficulties, the procedure is perfectly adequate to judge the passivation final stage. (Author) [es

  18. Sediment source detection by stable isotope analysis, carbon and nitrogen content and CSSI in a small river of the Swiss Plateau

    Science.gov (United States)

    SchindlerWildhaber, Yael; Alewell, Christine; Birkholz, Axel

    2014-05-01

    Suspended sediment (SS) and organic matter in rivers can harm the fauna by affecting health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. We determined compound specific stable carbon isotopes (CSSI) in fatty acids of possible sediment source areas to the stream in addition and compared them to SS from selected high flow and low flow events. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase in sediment delivery from pasture and arable land downstream of the river. While the major sources of SS are pasture and arable land during base flow conditions, SS from forest soils increased during heavy rain events and warmer winter periods most likely due to snow melt which triggered erosion. Preliminary results of CSSI analysis of sediment source areas and comparison to SS of selected events indicate that differences in d13C values of individual fatty acids are too small to differentiate unambiguously between sediment sources.

  19. Extraction efficiency of water, ethanol and supereritical carbon dioxide for amide content from fruit of piper sarmentosum using colorimetry and high performance liquid chromatography

    International Nuclear Information System (INIS)

    Hussain, K.; Ismail, Z.; Ibrahim, P.

    2010-01-01

    Extraction is important for both natural product research and preparation of extracts to be used as raw materials for phytopharamaceuticals. Selection of a suitable solvent as well as type of extraction is prerequisite to prepare extracts enriched with particular type of compounds with peculiar activities. Therefore, the present study aimed to evaluate the extraction efficiency of water, ethanol and supercritical CO/sub 2/ for amides from fruit of Piper sarmentosum using colorimetry and high performance liquid chromatography (HPLC). The pulverized fruit material was extracted by reflux using water and ethanol, and supercritical CO/sub 2/ at 60 degree c and operating pressure of 3000,4 000, 6000, 7000 and 8000 psi. The colorimetric analysis indicated that except the water extracts, total amide content in different extracts was not significantly different (P<0.05). Similarly, HPLC analysis using pellitorine, sarmentine and sarrnentosine as markers indicated that except water extracts, total content of the markers in different extracts was not significantly different (P<0.05). These results indicate that extraction efficiency of ethanol for amides is comparable to that of supercritical CO/sub 2/. Hence, ethanol may be used to prepare amide enriched extracts without using costly equipment and operating expertise. (author)

  20. Genetic polymorphisms in varied environments.

    Science.gov (United States)

    Powell, J R

    1971-12-03

    Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.

  1. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  2. Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Gislum, René

    2014-01-01

    A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay content...

  3. Local Content

    CSIR Research Space (South Africa)

    Gibberd, Jeremy

    2016-10-01

    Full Text Available Local content refers to materials and products made in a country as opposed those that are imported. There is an increasing interest in the concept of local content as a means of supporting local economies and providing jobs (Belderbos & Sleuwaegen...

  4. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    Science.gov (United States)

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate

  5. Stress corrosion inhibitors for type 18-10 stainless steels with low carbon content in hot and concentrated solutions of MgCl2. Study of some inorganic iodides

    International Nuclear Information System (INIS)

    Pinard, J.-L.

    1974-01-01

    Stress corrosion inhibitors for type Z2CN18-10 austenitic stainless steels with low carbon content in a solution of Cl 2 Mg at 105 deg C were investigated. It was established that iodides are the most adequate corrosion inhibitors because they react simultaneously upon the three main components of the alloy (Fe, Ni, Cr). A difference of behavior between I 2 Mg and the other iodides was observed (in electrochemistry and in simple stress corrosion experiments) and the influence of the metallic cation associated to I - was studied. The formation of the superficial film and the phenomena liable to occur at the interface film-corrosive solution were examined: film growth in MgCl 2 ; influence of certain substances added to the solution. A mechanism of inhibition by I - is suggested. It is similar to the mechanism proposed by BERGEN for the stress corrosion cracking by Cl - [fr

  6. Potential and barriers for biogas production in Denmark at widely expanded organic farming with focus on the soil carbon content; Potentiale og barrierer for biogasproduktion i Danmark ved omfattende oekologisk jordbrug med fokus paa dyrkningsjordens kulstofforhold

    Energy Technology Data Exchange (ETDEWEB)

    Buch Salomonsen, K.

    2000-06-01

    The Ph.D. thesis describes the influence from continued expansion of organic farming systems to the potential for energy production from biogas in Denmark. The project analyses the consequence from three categories of barriers: 1) Practical barriers, 2) The attitude of organic farmers, and 3) Agricultural biological problems. Economic and political barriers are not examined. When the barriers can be quantified, they are included in the calculation of the maximum biogas potential. When not, the implications of barriers are expressed qualitatively. It has been a particular goal to provide new information on whether agricultural biological problems are a barrier to biogas production in organic farming systems. One important question in this connection is whether biogas production has a negative influence on the soil carbon content compared to composting. This question is investigated by an experiment. The project is based on technical and natural science disciplines, with an interdisciplinary basis ranging over energy planning, agricultural science, microbiology, and crop, and animal operation. (au)

  7. Monitoring of carbon isotope composition of snow cover for Tomsk region

    Science.gov (United States)

    Akulov, P. A.; Volkov, Y. V.; Kalashnikova, D. A.; Markelova, A. N.; Melkov, V. N.; Simonova, G. V.; Tartakovskiy, V. A.

    2016-11-01

    This article shows the potential of using δ13C values of pollutants in snow pack to study the human impact on the environment of Tomsk and its surroundings. We believe that it is possible to use a relation between the isotope compositions of a fuel and black carbon for establishing the origin of the latter. The main object of our investigation was dust accumulated by the snow pack in the winter of 2015-2016. The study of dust samples included the following steps: determination of the total carbon content in snow pack samples of Tomsk and its surroundings, extraction of black carbon from the dust, as well as the determination of δ13C values of the total and black carbon accumulated in the snow pack. A snow survey was carried out on the 26th of January and on the 18th of March. The relative carbon content in the dust samples was determined by using an EA Flash 2000 element analyzer. It varied from 3 to 24%. The maximum carbon content was in the dust samples from areas of cottage building with individual heating systems. The δ13C values of the total and black carbon were determined by using a DELTA V Advantage isotope mass spectrometer (TomTsKP SB RAS). The isotope composition of black carbon corresponded to that of the original fuel. This fact allowed identifying the origin of black carbon in some areas of Tomsk.

  8. Effectiveness of the GAEC cross-compliance standard management of stubble and crop residues in the maintenance of adequate contents of soil organic carbon

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2011-08-01

    Full Text Available Several studies carried out on the effects of stubble and crop residue incorporation have shown positive effects on chemical-physical soil characteristics. However, not all studies agree on the extent of soil organic matter increase which derives from this process, as this effect is strongly affected by other factors: the pedo-climatic features of the area in which the study is carried out, the type of crop residue incorporation and the agronomical management adopted to improve the decomposition of the incorporated fresh organic material. The burning of stubble and straw is common in the areas where cereals are traditionally grown. The adoption of this method is based on different technical and work-related factors, which become less important when taking into account the impact on the local environment and soil. A research is currently carried out at the CRA-SCA experimental farm in Foggia (Southern Italy on the effects of either residues incorporation or burning on the chemical-physical characteristics of the soil and on the wheat yield performance since 1977. This experiment allows for a comparison among the effects of burning, the simple incorporation of stubble and crop residues and incorporation carried out with some agronomical techniques (such as the distribution of increasing amounts of nitrogen on crop residue before incorporation and the simulation of rain (50 mm on the decomposition of organic material. The objective of the study was to understand the effect of the different residues management practices on soil chemical properties after 32 years of experimentation. The simple incorporation of straw and stubble showed a slight increase in organic soil matter of 0.7% with respect to burning. The best results for soil organic carbon and soil quality were obtained when residual incorporation included a treatment with additional mineral nitrogen.

  9. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  10. Measuring the ash content of coal using natural gamma radiation. Medida del contenido de cenizas de carbones mediante radioactividad gamma natural

    Energy Technology Data Exchange (ETDEWEB)

    Legazpi, P V

    1990-10-01

    The receipt of consignments of coal at a power station can present serious problems. These concern not only the vast quantities of material involved and the associated problem of analysis, but also the decision as to whether the consignment is acceptable or not. A method based on natural radioactivity can provide an approximate analysis of ash content in under five minutes. In discussing approximate values it must be remembered that about 5% of the consignment is analysed, which implies some minimal sampling errors. This is also a technique which can be readily automated and adapted for use on lorries, rail cars and conveyors to provide a complete sampling system. It does not require special certification for the use of radiation equipment or any form of special protection. The accumulated error when using this method is amply compensated for by manpower costs and other expenditure resulting from sampling errors and the ease with which other methods may be fixed. The system yields very favourable economic benefits in the short term. 7 figs.

  11. Effects of carbon nanotube content and annealing temperature on the hardness of CNT reinforced aluminum nanocomposites processed by the high pressure torsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Phuong, Doan Dinh, E-mail: phuongdd@ims.vast.ac.vn [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi (Viet Nam); Trinh, Pham Van; An, Nguyen Van; Luan, Nguyen Van; Minh, Phan Ngoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi (Viet Nam); Khisamov, Rinat Kh.; Nazarov, Konstantin S.; Zubairov, Linar R.; Mulyukov, Radik R.; Nazarov, Ayrat A. [Institute for Metals Superplasticity Problems, Russian Academy of Sciences 39, Stepan Khalturin Str., Ufa 450001 (Russian Federation)

    2014-11-15

    Highlights: • CNT/Al nanocomposites were consolidated by HIP and subsequently processed by the high pressure torsion technique. • High pressure torsion processing was unable to break apart or disperse the CNT agglomerates persisted in powder preparation. • HPT-processed CNT/Al nanocomposites exhibited secondary hardening during annealing at temperatures below 150 °C. - Abstract: In this paper, the microstructure and hardness of CNT reinforced aluminium (CNT/Al) nanocomposites prepared by the advanced powder metallurgy method and subsequently processed by the high pressure torsion (HPT) technique are studied. The effects of CNT content and annealing temperature on the hardness of the nanocomposites are investigated. The results show that annealing materials at temperatures below 150 °C leads to secondary hardening, while annealing at higher temperatures soften the nanocomposites. HPT-processed CNT/Al nanocomposites with 1.5 wt.% of CNTs are shown to have the highest hardness in comparison with other composites containing CNTs from 0 up to 2 wt.%. Microstructures, CNT distribution and the phase composition of CNT/Al nanocomposites are investigated by transmission and scanning electron microscopy and X-ray diffraction techniques.

  12. Structural Evolution of Q-Carbon and Nanodiamonds

    Science.gov (United States)

    Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish

    2018-04-01

    This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbo