WorldWideScience

Sample records for variously shaped surfaces

  1. Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, K. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Fazal-ur-Rehman [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Ali, S. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group; Khan, H.A. [PINSTECH, Islamabad (Pakistan). Environ. Radiat. Group

    1997-03-21

    In the field of radon dosimetry, it is customary to measure radon ({sup 222}Rn) concentration while potential health hazard is due to the radon short-lived progeny. When radon is in secular equilibrium, the measured activity of radon equals the activity of radon`s progeny. However, in practical cases an inequilibrium between radon and its progeny exists which is measured in terms of the equilibrium factor. To determine the equilibrium factor between radon and its progeny in a closed environment various shapes of passive dosimeters based upon solid state nuclear track detectors (SSNTDs) are employed. In order to observe the dependence of equilibrium factor upon shapes or effective volumes, experiments have been performed replacing the SSNTDs with a surface barrier detector in Karlsruhe diffusion chamber, pen-type and box-type dosimeters. Using the collected alpha spectra, the equilibrium factor has been determined for a radon-air mixture in a custom designed radon chamber simulating a closed environment of a room. The results show that the radon equilibrium factor is about 0.20 for different shapes of dosimeters studied in this research. It is concluded that the determination of equilibrium factor between radon and its progeny does not depend upon effective volume or shape of the passive dosimeters using alpha spectroscopic data acquired by surface barrier detector. (orig.).

  2. Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters

    International Nuclear Information System (INIS)

    Jamil, K.; Fazal-ur-Rehman; Ali, S.; Khan, H.A.

    1997-01-01

    In the field of radon dosimetry, it is customary to measure radon ( 222 Rn) concentration while potential health hazard is due to the radon short-lived progeny. When radon is in secular equilibrium, the measured activity of radon equals the activity of radon's progeny. However, in practical cases an inequilibrium between radon and its progeny exists which is measured in terms of the equilibrium factor. To determine the equilibrium factor between radon and its progeny in a closed environment various shapes of passive dosimeters based upon solid state nuclear track detectors (SSNTDs) are employed. In order to observe the dependence of equilibrium factor upon shapes or effective volumes, experiments have been performed replacing the SSNTDs with a surface barrier detector in Karlsruhe diffusion chamber, pen-type and box-type dosimeters. Using the collected alpha spectra, the equilibrium factor has been determined for a radon-air mixture in a custom designed radon chamber simulating a closed environment of a room. The results show that the radon equilibrium factor is about 0.20 for different shapes of dosimeters studied in this research. It is concluded that the determination of equilibrium factor between radon and its progeny does not depend upon effective volume or shape of the passive dosimeters using alpha spectroscopic data acquired by surface barrier detector. (orig.)

  3. Ion beam system for implanting industrial products of various shapes

    International Nuclear Information System (INIS)

    Denholm, A.S.; Wittkower, A.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 x 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm x 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15 0 steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop. (orig.)

  4. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  5. Nonflat equilibrium liquid shapes on flat surfaces.

    Science.gov (United States)

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  6. Laser repair welding of molds with various pulse shapes

    Directory of Open Access Journals (Sweden)

    M. Pleterski

    2010-01-01

    Full Text Available Repair welding of cold-work tool steels with conventional methods is very difficult due to cracking during remelting or cladding and is generally performed with preheating. As an alternative, repair welding with laser technology has recently been used. This paper presents the influence of different pulse shapes on welding of such tools with the pulsed Nd:YAG laser. Repair welding tests were carried out on AISI D2 tool steel, quenched and tempered to hardness of 56 HRc, followed by microstructural analysis and investigation of defects with scanning electron microscopy. Test results suggest that it is possible to obtain sound welds without preheating, with the right selection of welding parameters and appropriate pulse shape.

  7. Calculation of the geometric buckling for reactors of various shapes

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, N E

    1958-05-15

    A systematic investigation is made of the eleven coordinate systems in which the reactor equation {nabla}{sup 2}{phi} + B{sup 2}{phi} = 0 is separable. The fundamental solution and geometric buckling are given for those cases where the separated equations lead to known functions. It is especially shown that reactors of prolate and oblate spheroidal shape can be calculated in detail, and the results are given in extensive tables.

  8. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  9. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  10. Crystal shapes on striped surface domains

    International Nuclear Information System (INIS)

    Valencia, Antoni

    2004-01-01

    The equilibrium shapes of a simple cubic crystal in contact with a planar chemically patterned substrate are studied theoretically using an effective interface model. The substrate is primarily made of lyophobic material and is patterned with a lyophilic (easily wettable) stripe domain. Three regimes can be distinguished for the equilibrium shapes of the crystal. The transitions between these regimes as the volume of the crystal is changed are continuous or discontinuous depending on the strength of the couplings between the crystal and the lyophilic and lyophobic surface domains. If the crystal grows through a series of states close to equilibrium, the discontinuous transitions correspond to growth instabilities. These transitions are compared with similar results that have been obtained for a volume of liquid wetting a lyophilic stripe domain

  11. The Impact Of Surface Shape Of Chip-Breaker On Machined Surface

    Science.gov (United States)

    Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David

    2015-12-01

    Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.

  12. Wear of Shaped Surfaces of PVD Coated Dies for Clinching

    Directory of Open Access Journals (Sweden)

    Miroslav Džupon

    2017-11-01

    Full Text Available A clinching method that uses a simple toolset consisting of a punch and a die, is utilized for joining lightweight materials. This paper is aimed at investigating the wear of the die cavity of a clinching tool. A clinching tool with a specially shaped cavity was used for joining thin hot-dip galvanized steel sheets. Various types of physical vapour deposition (PVD coatings such as ZrN, CrN and TiCN were deposited on the shaped surface of the die using Lateral Rotating Arc-Cathodes technology. Hot-dip galvanized steel sheets were used for testing the clinching tool. The material properties of PVD coatings that were deposited on the shaped part of the clinching die were evaluated. Finite Element Analysis was used to localize the area of the shaped part of the die and the part of surface area of the cylindrical die cavity of ϕ 5.0 mm, in which high contact pressure values were predicted. The prediction of the start of the wear cycle was verified experimentally by the clinching of 300 samples of hot-dip galvanized steel sheets. Unlike the CrN and ZrN coatings, the TiCN coating remained intact on the entire surface of the die.

  13. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  14. Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Directory of Open Access Journals (Sweden)

    Christine E Schmidt

    2010-12-01

    Full Text Available David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm or submicroscale (approximately 300 nm holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits

  15. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  16. Photonic surfaces for designable nonlinear power shaping

    International Nuclear Information System (INIS)

    Biswas, Roshni; Povinelli, Michelle L.

    2015-01-01

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest

  17. Synthesis of freeform refractive surfaces forming various radiation patterns using interpolation

    Science.gov (United States)

    Voznesenskaya, Anna; Mazur, Iana; Krizskiy, Pavel

    2017-09-01

    Optical freeform surfaces are very popular today in such fields as lighting systems, sensors, photovoltaic concentrators, and others. The application of such surfaces allows to obtain systems with a new quality with a reduced number of optical components to ensure high consumer characteristics: small size, weight, high optical transmittance. This article presents the methods of synthesis of refractive surface for a given source and the radiation pattern of various shapes using a computer simulation cubic spline interpolation.

  18. Hippocampal neurons respond uniquely to topographies of various sizes and shapes

    International Nuclear Information System (INIS)

    Fozdar, David Y; Chen Shaochen; Lee, Jae Young; Schmidt, Christine E

    2010-01-01

    A number of studies have investigated the behavior of neurons on microfabricated topography for the purpose of developing interfaces for use in neural engineering applications. However, there have been few studies simultaneously exploring the effects of topographies having various feature sizes and shapes on axon growth and polarization in the first 24 h. Accordingly, here we investigated the effects of arrays of lines (ridge grooves) and holes of microscale (∼2 μm) and nanoscale (∼300 nm) dimensions, patterned in quartz (SiO 2 ), on the (1) adhesion, (2) axon establishment (polarization), (3) axon length, (4) axon alignment and (5) cell morphology of rat embryonic hippocampal neurons, to study the response of the neurons to feature dimension and geometry. Neurons were analyzed using optical and scanning electron microscopy. The topographies were found to have a negligible effect on cell attachment but to cause a marked increase in axon polarization, occurring more frequently on sub-microscale features than on microscale features. Neurons were observed to form longer axons on lines than on holes and smooth surfaces; axons were either aligned parallel or perpendicular to the line features. An analysis of cell morphology indicated that the surface features impacted the morphologies of the soma, axon and growth cone. The results suggest that incorporating microscale and sub-microscale topographies on biomaterial surfaces may enhance the biomaterials' ability to modulate nerve development and regeneration.

  19. Polygonal current models for polycyclic aromatic hydrocarbons and graphene sheets of various shapes.

    Science.gov (United States)

    Pelloni, Stefano; Lazzeretti, Paolo

    2018-01-05

    Assuming that graphene is an "infinite alternant" polycyclic aromatic hydrocarbon resulting from tessellation of a surface by only six-membered carbon rings, planar fragments of various size and shape (hexagon, triangle, rectangle, and rhombus) have been considered to investigate their response to a magnetic field applied perpendicularly. Allowing for simple polygonal current models, the diatropicity of a series of polycyclic textures has been reliably determined by comparing quantitative indicators, the π-electron contribution to I B , the magnetic field-induced current susceptibility of the peripheral circuit, to ξ∥ and to σ∥(CM)=-NICS∥(CM), respectively the out-of-plane components of the magnetizability tensor and of the magnetic shielding tensor at the center of mass. Extended numerical tests and the analysis based on the polygonal model demonstrate that (i) ξ∥ and σ∥(CM) yield inadequate and sometimes erroneous measures of diatropicity, as they are heavily flawed by spurious geometrical factors, (ii) I B values computed by simple polygonal models are valid quantitative indicators of aromaticity on the magnetic criterion, preferable to others presently available, whenever current susceptibility cannot be calculated ab initio as a flux integral, (iii) the hexagonal shape is the most effective to maximize the strength of π-electron currents over the molecular perimeter, (iv) the edge current strength of triangular and rhombic graphene fragments is usually much smaller than that of hexagonal ones, (v) doping by boron and nitrogen nuclei can regulate and even inhibit peripheral ring currents, (vi) only for very large rectangular fragments can substantial current strengths be expected. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  1. Dome shaped features on Europa's surface

    Science.gov (United States)

    1997-01-01

    The Solid State Imaging system aboard the spacecraft Galileo took this image of the surface of Europa on February 20, 1997 during its sixth orbit around Jupiter. The image is located near 16 North, 268 West; illumination is from the lower-right. The area covered is approximately 48 miles (80 kilometers) by 56 miles (95 kilometers) across. North is toward the top of the image.This image reveals that the icy surface of Europa has been disrupted by ridges and faults numerous times during its past. These ridges have themselves been disrupted by the localized formation of domes and other features that may be indicative of thermal upwelling of water from beneath the crust. These features provide strong evidence for the presence of subsurface liquid during Europa's recent past.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  2. Estimation of computed tomography dose in various phantom shapes and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Lae [Dept. of Radiological Science, Yonsei University, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The CTDI100center values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but CTDI{sub 100center} values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom CTDI{sub 100center} values were relatively low as the material density increased. However, in the case of Polyethylene, the CTDI{sub 100center} value was higher than that of PMMA at diameters exceeding 15 cm (CTDI{sub 100center} : 35.0 mGy). And a diameter greater than 30 cm (CTDI{sub 100center} : 17.7 mGy) showed more CTDI{sub 100center} than Water. We have used limited phantoms to evaluate CT doses. In this study, CTDI{sub 100center} values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

  3. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Preliminary Study of the Core Catcher System on Various Stud Shapes using FLUENT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    As a kind of in-vessel retention (IVR) strategies, reactor cavity flooding is used for Westinghouse's AP1000 and South Korea's OPR1000. Moreover, the European Pressurized Reactor (EPR) has adopted an ex-vessel core catcher strategy rather than the IVR strategy. Although the mitigation strategies suggested are vigorously considered, there are still various issues due to its uncertainties and complex phenomena during severe accidents. In this study, to assess the effect of studs installed on the core catcher body, a CFD analysis for coolant channels having rectangular or cylinder shaped studs is carried out. In this study, numerical simulations for the different stud shapes of the core catcher system were carried out using ANSYS FLUENT. For a comparison work, the rectangular and cylinder shaped stud were modeled with the same initial and boundary conditions. The major findings observed from this study can be summarized as follows. - The simulation results showed the 31% reduced amount of pressure drop for the case of the cylinder shaped studs as compared with the reference case, which is for the rectangular studs. - The tendency of reduced pressure drop is well in accord with the flow distribution. The fluid velocities around the studs were greatly distorted for the rectangular studs than those around the cylinder studs. - The distorted stream of fluid could affect heat transfer from core catcher body, and result in locally additional damages. This result may suggest the necessity of finding an optimized stud shape. For more improved comparison work, an additional simulation is planned including different stud shapes.

  5. Comparison of the bidirectional reflectance distribution function of various surfaces

    International Nuclear Information System (INIS)

    Fernandez, R.; Seasholtz, R.G.; Oberle, L.G.; Kadambi, J.R.

    1989-01-01

    This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. 8 refs

  6. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  7. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effect of surface roughness variation on the transmission characteristics of D-shaped fibers with ambient index change

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Kwon, Oh-Jang; Han, Young-Geun

    2010-01-01

    The influence of surface roughness on the sensitivity of D-shaped fibers to changes in the ambient index was investigated. In order to obtain D-shaped fibers with different surface roughness, we polished one side of the fibers by using different abrasive grits. The topographies of the surfaces of the polished D-shaped fibers were then observed by using atomic force microscopy (AFM). The light scattered from the rough surfaces of the D-shaped fibers was measured by using optical microscopy. The effect of an ambient index change on the transmission characteristics of D-shaped fibers was measured for various values of the surface roughness. The experimental results indicate that variations in the surface roughness have a considerable influence on the sensitivity of the transmission characteristics of D-shaped fibers to changes in the ambient index.

  9. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dawi, E.A., E-mail: elmuez.dawi@gmail.com [Ajman University of Science and Technology, Basic Science and Education, Physics Department, P.O. Box 346 (United Arab Emirates); Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); ArnoldBik, W.M. [Eindhoven University of Technology, Irradiation Technology, 5600 GM Eindhoven (Netherlands); Ackermann, R.; Habraken, F.H.P.M. [Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si{sub 3}N{sub 4}), combinations of oxide-nitride films (SiO{sub 2}-Si{sub 3}N{sub 4}) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si{sub 3}N{sub 4} films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  10. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  12. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  13. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  14. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  15. Axial Crush of the Tubular Structure with Various Cee-Shaped Cross-Sections

    International Nuclear Information System (INIS)

    Afshar, Reza; Ali, Aidy; Sahari, B B; Bayat, M

    2011-01-01

    Tubular structure with various Cee-shaped cross sections is numerically investigated in order to find the centre of gravity (COG) under axial crush by using program code of ANSYS/LS-DYNA. A subroutine is developed using this code to obtain the COG of deformed shape, during and after crush deformation. The effect of wall thickness of the structure on displacement of COG is also studied. Subsequently, the effect of opening angle of Cee become more prominent as the wall thickness of the structure decreases and as the thickness increases, displacement of the COG in crush direction almost stabilizes for all opening angle of Cee in the range of (10 0 - 90 0 ). Furthermore, Variation of I yy of structure with thicker wall for different cases of applied weight is approximately identical. The value of mass moment of inertia with respect to X and Z axes through the model COG (I zx ) in comparison with I yy can be neglected in the case of axial crush along Y direction.

  16. CHARACTERIZATIONS ON BENDING EFFECT ON CUSTOMIZED SPLITTERS USING VARIOUS RADII OF ELLIPTICAL-SHAPED BLOCKS

    Directory of Open Access Journals (Sweden)

    L. S. SUPIAN

    2016-11-01

    Full Text Available Macro-bending effect unto polymer optical fiber (POF based splitters study is done to analyse the performance and characterizations using several bending radii of geometrical blocks that hold a customized prepared polymer fiber splitter. A pair of etched fibers with similar core diameters are attached to the ellipse-shaped blocks built using matching refractive index material where the blocks were built with various bending radii. The tapered fibers were lapped closely with some forces exerted upon them in order to stimulate the splitting of modes between the two fibers. This study is done by experimental set-up where each of the splitter ports is connected with optical power meter to measure the power output while pressure is exerted. Characterization is executed in order to investigate and analyse which bending radius gives the most optimize splitting ratio with considerable low loss for the particular splitter prepared. As for normal force of 0.3 lbF, the optimum splitting ratio with low loss is specified having bending radius, Rc, of 13 mm whilst for external force of 3.0 lbF, bending radius is found to be 19 mm. Small bending radius stimulates the radiation of rays into the second fiber while larger Rc gives longer coupling length that optimize the splitting ratios. Efficiencies between simulated values and experimental values are also analysed.

  17. A Review of Various Performance Shaping Factors for Use in Advanced Control Rooms

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Ha, Jun Su; Seong, Poong Hyun; Park, Jae Hyuk; Kim, Ja Kyung

    2009-01-01

    Human reliability analysis(HRA) has been performed as part of the probabilistic risk assessment to identify and quantify human actions and the associated impacts on structures, systems and components for a complex facility. Currently, representative HRA methods such as THERP, ASEP HRA and HCR are being used in Korea. In performing HRA, such conditions that influence human performances have been represented via several context factors. These context factors are referred to by different terms according to method: PSF(Performance Shaping Factors), PIF(Performance Influencing Factors), PAF(Performance Affecting Factors, EPC(Error Producing Conditions), CPC(Common Performance Conditions), and so on. These context factors which will be called PSFs in this study are used in adjusting the basic human error probability(BHEP). However, these PSFs need to be re-assessed since the context is expected to change due to the implementation of computer technologies in NPP. In this study, various PSFs used in different HRA methods are reviewed and PSFs which are frequently mentioned as important factors are derived. Also, HF(Human Factor) issues with one of the design characteristics of advanced NPP are identified

  18. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  19. Abundance of bacterial and diatom fouling on various surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi

    Abundance of bacterial and diatom fouling on aluminium, fibreglass and stainless steel were studied from Dona Paula waters of the Zuari Estuary. Both these forms were reversibly attached in large numbers to surfaces during the initial 24 hr...

  20. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  1. Biofilm Formation of Listeria monocytogenes on Various Surfaces

    Directory of Open Access Journals (Sweden)

    M Mahdavi

    2007-10-01

    Full Text Available Introduction & Objective: Listeria monocytogenes is considered as a ubiquitous foodborne pathogen which can lead to serious infections, especially in newborns, elderly, pregnant, and immunocompromised people. The organism has been isolated from many foods and may cause meningitis, septicemia and abortion in pregnant women. Also L. monocytogenes forms biofilms on many food contact surface materials and medical devices. Development of biofilms on many surfaces is a potential source of contamination of foods that may lead to spoilage or transmission of foodborne pathogens. Materials & Methods: Biofilm formation of L. monocytogenes (RITCC 1293 serotype 4a was investigated. Hydrophobicity of L. monocytogenes was measured by MATH method. Then biofilm formation of the organism was assessed at 2, 4, 8, 16 and 20 hours on stainless steel (type 304 no 2B, polyethylene and glass by drop plate method. Results: Results indicated that L. monocytogenes with 85% of hydrophobicity formed biofilm on each of three surfaces. Biofilm formation on stainless steel surfaces was significantly more than other surfaces (p<0.05. Conclusion: The ability of biofilm formation of L. monocytogenes on medical devices and food containers is very important as far as hygiene and disease outbreaks are concerned.

  2. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  3. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  4. Statistical analysis of solar radiation on variously oriented sloping surfaces

    International Nuclear Information System (INIS)

    Garg, H.P.; Garg, S.N.

    1985-12-01

    For four years, daily global radiation on a south facing surface and on four vertical walls namely south wall, north wall, east wall and west wall, has been computed and statistically analysed for each of the 4 stations: New Delhi, Calcutta, Poona and Madras. Daily direct radiation at normal incidence at New Delhi has also been studied. It has been found that maximum global radiation is 30 MJ/m 2 /day for a south facing tilted surface, 21 MJ/m 2 /day for a south wall, 18 MJ/m 2 /day for an east west wall and 12 MJ/m 2 /day for a north wall. Maximum direct radiation at normal incidence at New Delhi is also 30 MJ/m 2 /day. For a south facing tilted surface, nearly 80% of the days have energy between 21-27 MJ/m 2 /day. Atmospheric transmittance for direct radiation is seen to vary from 20% in July to 52% in November

  5. The use of fuel of various enrichment for flux shaping; Koriscenje goriva razlicitog obogacenja za dobijanje zeljene raspodele neutronskog fluksa

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N; Pesic, M; Strugar, P [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1980-07-01

    Spatial flux shaping, particularly obtaining maximum thermal neutron flux in experimental channels of a research reactor or flux flattening in a power reactor, is often desired in nuclear reactor utilization. Some experimental results of flux shaping at the RB reactor by use of the fuel of various enrichment are resented. Considerable increases in thermal neutron flux in central experimental channels is obtained and can serve as a starting point for further investigations as well as for comparison with theoretical models. (author)

  6. The interaction of pulsed eddy current with metal surface crack for various coils

    International Nuclear Information System (INIS)

    Yang, H.-C.; Tai, C.-C.

    2002-01-01

    We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection

  7. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Science.gov (United States)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  8. Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle

    Energy Technology Data Exchange (ETDEWEB)

    Haldkar, Rakesh Kumar; Gupta, Vijay Kumar; Sheorey, Tanuja [PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, 482005 (India)

    2017-06-15

    Micropumps have been investigated as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering primarily, available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric and silicon based micro pumps are more popular as compared to other smart materials being explored. The microneedle is an integral part of these micropumps providing an interface between the drug reservoir and the patient’s body for extracting the blood for investigation. Blood collected in the pump chamber passes through the biosensor and gives the required investigation report. It is aimed to minimize the pain while the microneedle is inserted in the body without having any effect on the flow characteristics. Several factors affect the pain while inserting the needle, out of which shape and size of the microneedle are two important parameters. In this study we have investigated the effect of shape of the microneedle on the flow inside the micropump. A micropump design is based on the required flow at the biosensor point. All computations were carried out with water (Newtonian fluid) as the working fluid after carrying out a comparative analysis with human blood (non-Newtonian fluid). For the pentagonal shaped microneedle, the velocity at the top of the microneedle was minimum, which is beneficial in that fluid should remain in contact with the sensor for longer time.

  9. Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle

    International Nuclear Information System (INIS)

    Haldkar, Rakesh Kumar; Gupta, Vijay Kumar; Sheorey, Tanuja

    2017-01-01

    Micropumps have been investigated as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering primarily, available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric and silicon based micro pumps are more popular as compared to other smart materials being explored. The microneedle is an integral part of these micropumps providing an interface between the drug reservoir and the patient’s body for extracting the blood for investigation. Blood collected in the pump chamber passes through the biosensor and gives the required investigation report. It is aimed to minimize the pain while the microneedle is inserted in the body without having any effect on the flow characteristics. Several factors affect the pain while inserting the needle, out of which shape and size of the microneedle are two important parameters. In this study we have investigated the effect of shape of the microneedle on the flow inside the micropump. A micropump design is based on the required flow at the biosensor point. All computations were carried out with water (Newtonian fluid) as the working fluid after carrying out a comparative analysis with human blood (non-Newtonian fluid). For the pentagonal shaped microneedle, the velocity at the top of the microneedle was minimum, which is beneficial in that fluid should remain in contact with the sensor for longer time

  10. Surface magnetization and the role of pattern defects in various types of ripple patterned films

    International Nuclear Information System (INIS)

    Colino, Jose M; Arranz, Miguel A; Barbero, Antonio J; Bollero, A; Camarero, J

    2016-01-01

    We present a detailed study of the magnetic properties of cobalt films with wide-area nanoscale ripple patterns, either on their surface only, or on both the film surface and substrate interface. Angular dependence vectorial-resolved magnetometry measurements and magnetic force microscopy with in situ magnetic field have been used to determine the magnetization reversal processes to correlate them to the different patterned nanostructures. All the samples show well-defined uniaxial magnetic anisotropy with the anisotropy axis lying along the ripple direction. Atomic force microscopy of the different types of pattern reveals various pattern defects: height corrugation and breaks of continuity along the ripple direction, and overlapping ripples and Y-shaped defects (pattern dislocation) across the pattern. In spite of the existence of such customary defects of erosive-regime patterns, the type of low-amplitude, surface-patterned films remarkably behave as a macrospin over almost the whole in-plane angular range (340°), with negligible spread of anisotropy axis or energy. In turn, it is found that high-amplitude surface-patterned films develop an angular distribution of anisotropy axes, probably related to the large distribution of amplitudes in a pattern of short ripples, and a significant distribution of anisotropy fields ΔH k /H k up to 15%. On the other hand, films grow on pre-patterned silicon with a significantly longer mean ripple length, and develop a larger anisotropy energy with H k up to 110 mT, probably because of the double interface effect. The switching fields close to the magnetization easy axis of all types of ripple pattern are not well reproduced by the macrospin approximation, but the observed pattern defects seem to be not responsible for the domain wall pinning that occurs with the field applied along the ripple direction. (paper)

  11. Effect of shape and surface texture of aggregates during high intensity vertical shaft impact autogeneous crushing

    International Nuclear Information System (INIS)

    Samayamutthirian Palaniandy; Khairun Azizi Mohd Azizli

    2002-01-01

    The demand for quarry industry to produce high quality aggregates is increasing parallel with the demand of high strength concrete. Focus on the high quality aggregates production is very essential as 70% of the concrete consist of aggregates. High quality aggregate is characterised according to its shape, surface texture and its size distribution. The cubical and more equidimensional aggregates are characterised as high quality aggregates. Besides photomicrograph of aggregates, Flakiness and Elongation indices are important empirical measurements to determine the quality of the aggregates. The Barmac Rock On Rock Vertical Shaft Impactor proved that the shape of the aggregates can be improved by various crushing mechanisms as the EI and FI values were low and 75% of the cubical particles were observed in the crushed aggregates. (Author)

  12. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  13. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  14. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-03-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  15. Analysis of Stress and Strain Fields in and around Inclusions of Various Shapes in a Cylindrical Specimen Loaded in Tension

    Directory of Open Access Journals (Sweden)

    Neimitz A.

    2016-06-01

    Full Text Available A numerical analysis is performed of the stress field in and around inclusions of various shapes. Inclusions both stiffer and more compliant than the metal matrix are analysed. The critical stresses required for inclusion fracture are estimated after observation of cavities and inclusions by scanning electron microscopy. Real inclusions were observed after performing uniaxial loading to different amounts of overall strain. The material tested was Hardox-400 steel.

  16. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  17. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Directory of Open Access Journals (Sweden)

    Jaimie S Torrance

    Full Text Available Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions or shape information had been standardized (i.e., surface-only versions. For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  18. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    Science.gov (United States)

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  19. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    International Nuclear Information System (INIS)

    Blanc, Pauline; Hamel, Matthieu; Dehé-Pittance, Chrystèle; Rocha, Licinio; Pansu, Robert B.; Normand, Stéphane

    2014-01-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared

  20. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Dehé-Pittance, Chrystèle; Rocha, Licinio [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Pansu, Robert B. [Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Normand, Stéphane [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France)

    2014-06-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared.

  1. Experimental study of contact edge roughness on sub-100 nm various circular shapes

    Science.gov (United States)

    Lee, Tae Y.; Ihm, Dongchul; Kang, Hyo C.; Lee, Jum B.; Lee, Byoung H.; Chin, Soo B.; Cho, Do H.; Song, Chang L.

    2005-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Especially the contact roughness is being more critical as design rule shrinks. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. However the features currently available in commercial CD-SEM cannot provide a proper solution in monitoring the contact roughness. We had introduced a new parameter R, measurement algorithm and definition of contact edge roughness to quantify CER and CSR in previous paper. The parameter, R could provide an alternative solution to monitor contact or island pattern roughness. In this paper, we investigated to assess optimum number of CD measurement (1-D) and fitting method for CER or CSR. The study was based on a circular contact shape. Some new ideas to quantify CER or CSR were also suggested with preliminary experimental results.

  2. Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures

    International Nuclear Information System (INIS)

    Rehman, Saif ur; Khan, Mushtaq; Nusair Khan, A.; Ali, Liaqat; Zaman, Sabah; Waseem, Muhammad; Ali, Liaqat; Jaffery, Syed Husain Imran

    2014-01-01

    This research presents an insight into the effect of various aging temperatures on the microstructure, hardness, phase transformation behavior and shape memory properties of Ti 50 Ni 15 Pd 25 Cu 10 high temperature shape memory alloy. The aging temperature was varied from 350 °C to 750 °C, whereas the shape memory properties were evaluated at 100–500 MPa. It was observed that the mentioned properties were strongly dependent on the aging temperatures. Based on the results obtained from scanning electron microscopy, X-ray diffractometry, microhardness testing, differential scanning calorimetry and thermomechanical testing, the aging temperatures can be divided into three ranges. At low aging temperatures (350 °C and below), the properties of the alloy remained the same as were found for solution treated sample, however at intermediate aging temperatures (400–600 °C) the properties of the alloy were changed significantly. Due to the formation of precipitates, the hardness was increased, whereas the phase transformation temperatures and work output were decreased considerably. The recovery ratio was found to be improved for intermediate aging temperatures. At high aging temperatures (650 °C and above), the hardness was decreased and the phase transformation temperatures were increased. Phase transformation temperature at the aging temperature of 750 °C was found to be increased significantly as compared to solution treated sample

  3. Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking.

    Science.gov (United States)

    Kihara, Daisuke; Sael, Lee; Chikhi, Rayan; Esquivel-Rodriguez, Juan

    2011-09-01

    The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.

  4. Surface inspection system for industrial components based on shape from shading minimization approach

    Science.gov (United States)

    Kotan, Muhammed; Öz, Cemil

    2017-12-01

    An inspection system using estimated three-dimensional (3-D) surface characteristics information to detect and classify the faults to increase the quality control on the frequently used industrial components is proposed. Shape from shading (SFS) is one of the basic and classic 3-D shape recovery problems in computer vision. In our application, we developed a system using Frankot and Chellappa SFS method based on the minimization of the selected basis function. First, the specialized image acquisition system captured the images of the component. To eliminate noise, wavelet transform is applied to the taken images. Then, estimated gradients were used to obtain depth and surface profiles. Depth information was used to determine and classify the surface defects. Also, a comparison made with some linearization-based SFS algorithms was discussed. The developed system was applied to real products and the results indicated that using SFS approaches is useful and various types of defects can easily be detected in a short period of time.

  5. Design and simulation of the surface shape control system for membrane mirror

    Science.gov (United States)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  6. Fan Efficiency Improvement via Changing Guide Blade Shape Under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    G. I. Zamolodchikov

    2017-01-01

    Full Text Available The aim of this study is to examine the influence of sweep and tangential blade lean the guide vanes (GV on the pressure losses in the blade row, and development of an approach to creating the GV with a rationally-shaped blades to ensure increased efficiency in the partial operating conditions.A numerical simulation method was used for research. As an object to be studied, was used an axial fan comprising an impeller and a GV, which were profiled to have constant circulation of velocity in radius. Verification of numerical simulation was based on the experimental data of fan. It comprised a GV with a straight blade and a circular-arc blade, with an impeller remained stationary in both cases. Among the turbulence models under consideration, preference is given to k-ω, as under operating conditions close to design ones, its result falls within the confidence span of the experimental characteristics, and at much higher and lower discharge coefficients a discrepancy is 4% at most.  In addition to the characteristics, the fields of pressure losses in GV have been analyzed. Numerical modeling allowed us to have a well-reproduced structure of losses in the stationary blade row.Analysis of pressure loss fields has shown that in the original GV near the hub, on the blade back, under design conditions a flow breakdown takes off. In view of the research, was designed a new GV with a modified blade geometry. The GV blade axis near the hub was bent in the circumferential direction by 0.1 length of the blade. In the near-hub cross-sections the blade chord was increased by 10%.The results of numerical simulation have shown that, with the flow less than the designed one, a change of just the GV blade tip sections leads to reduced break-down zone near the hub by about 40% under both operating conditions without raising profile losses and to improved fan efficiency, which reduces fan drive power consumption under typical operating conditions in the propulsion

  7. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  8. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  9. Driver's various information process and multi-ruled decision-making mechanism: a fundamental of intelligent driving shaping model

    Directory of Open Access Journals (Sweden)

    Wuhong Wang

    2011-05-01

    Full Text Available The most difficult but important problem in advance driver assistance system development is how to measure and model the behavioral response of drivers with focusing on the cognition process. This paper describes driver's deceleration and acceleration behavior based on driving situation awareness in the car-following process, and then presents several driving models for analysis of driver's safety approaching behavior in traffic operation. The emphasis of our work is placed on the research of driver's various information process and multi-ruled decisionmaking mechanism by considering the complicated control process of driving; the results will be able to provide a theoretical basis for intelligent driving shaping model.

  10. Contributions of feature shapes and surface cues to the recognition of facial expressions.

    Science.gov (United States)

    Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J

    2016-10-01

    Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel.

    Science.gov (United States)

    Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming

    2015-09-01

    The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.

  12. Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.

    Science.gov (United States)

    Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung

    2010-01-01

    We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.

  13. Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity.

    Science.gov (United States)

    Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W

    2016-10-01

    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Evaluation of Surface Integrity During Machining of Inconel 718 with Various Laser Assistance Strategies

    Directory of Open Access Journals (Sweden)

    Wojciechowski Szymon

    2017-01-01

    Full Text Available The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM.

  15. Single DNA molecules as probes for interrogating silica surfaces after various chemical treatments

    International Nuclear Information System (INIS)

    Liu Xia; Wu Zhan; Nie Huagui; Liu Ziling; He Yan; Yeung, E.S.

    2007-01-01

    We examined the adsorption of single YOYO-1-labeled λ-DNA molecules at glass surfaces after treatment with various chemical cleaning methods by using total internal reflection fluorescence microscopy (TIRFM). The characteristics of these surfaces were further assessed using contact angle (CA) measurements and atomic force microscopy (AFM). By recording the real-time dynamic motion of DNA molecules at the liquid/solid interface, subtle differences in adsorption affinities were revealed. The results indicate that the driving force for adsorption of DNA molecules on glass surfaces is mainly hydrophobic interaction. We also found that surface topography plays a role in the adsorption dynamics

  16. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits.

    Science.gov (United States)

    Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D

    2012-06-01

    Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.

  17. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.; Baumgardner, William J.; Choi, Joshua J.; Hanrath, Tobias; Hennig, Richard G.

    2012-01-01

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind

  18. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  19. Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model.

    Science.gov (United States)

    Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric

    2016-07-01

    The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon

  20. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  1. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  2. DC heating induced shape transformation of Ge structures on ultraclean Si(5 5 12) surfaces.

    Science.gov (United States)

    Dash, J K; Rath, A; Juluri, R R; Raman, P Santhana; Müller, K; Rosenauer, A; Satyam, P V

    2011-04-06

    We report the growth of Ge nanostructures and microstructures on ultraclean, high vicinal angle silicon surfaces and show that self-assembled growth at optimum thickness of the overlayer leads to interesting shape transformations, namely from nanoparticle to trapezoidal structures, at higher thickness values. Thin films of Ge of varying thickness from 3 to 12 ML were grown under ultrahigh vacuum conditions on a Si(5 5 12) substrate while keeping the substrate at a temperature of 600 °C. The substrate heating was achieved by two methods: (i) by heating a filament under the substrate (radiative heating, RH) and (ii) by passing direct current through the samples in three directions (perpendicular, parallel and at 45° to the (110) direction of the substrate). We find irregular, more spherical-like island structures under RH conditions. The shape transformations have been found under DC heating conditions and for Ge deposition more than 8 ML thick. The longer sides of the trapezoid structures are found to be along (110) irrespective of the DC current direction. We also show the absence of such a shape transformation in the case of Ge deposition on Si(111) substrates. Scanning transmission electron microscopy measurements suggested the mixing of Ge and Si. This has been confirmed with a quantitative estimation of the intermixing using Rutherford backscattering spectrometry (RBS) measurements. The role of DC heating in the formation of aligned structures is discussed. Although the RBS simulations show the presence of a possible SiO(x) layer, under the experimental conditions of the present study, the oxide layer would not play a role in determining the formation of the various structures that were reported here.

  3. Shaping Ge islands on Si(001) surfaces with misorientation angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2010-01-22

    A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

  4. Development of SCINFUL-CG code to calculate response functions of scintillators in various shapes used for neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kim, Eunjoo; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    A Monte Carlo code SCINFUL has been utilized for calculating response functions of organic scintillators for high-energy neutron spectroscopy. However, the applicability of SCINFUL is limited to the calculations for cylindrical NE213 and NE110 scintillators. In the present study, SCINFUL-CG was developed by introducing a geometry specifying function and high-energy neutron cross section data into SCINFUL. The geometry package MARS-CG, the extended version of the CG (Combinatorial Geometry), was programmed into SCINFUL-CG to express various geometries of detectors. Neutron spectra in the regions specified by the CG can be evaluated by the track length estimator. The cross section data of silicon, oxygen and aluminum for neutron transport calculation were incorporated up to 100 MeV using the data of LA150 library. Validity of SCINFUL-CG was examined by comparing calculated results with those by SCINFUL and MCNP and experimental data measured using high-energy neutron fields. SCINFUL-CG can be used for the calculations of the response functions and neutron spectra in the organic scintillators in various shapes. The computer code will be applicable to the designs of high-energy neutron spectrometers and neutron monitors using the organic scintillators. The present report describes the new features of SCINFUL-CG and explains how to use the code. (author)

  5. A sphericon-shaped magnetic millirobot rolling on a surface actuated by an external wobbling magnetic field

    Directory of Open Access Journals (Sweden)

    Seungmun Jeon

    2017-05-01

    Full Text Available This paper proposes a novel sphericon-shaped magnetic millirobot (SSMM that can roll on a variety of surfaces. The SSMM comprises four identical half cones with a cylindrical magnet inserted into the geometric center. It can roll forward or backward on a surface with repeated rolling cone motions (wobbling motions. Since a rolling SSMM develops its entire surface by means of line contact, a relatively large maximum static friction force can make the SSMM move on a surface steadily and effectively. In this work, a new type of external wobbling magnetic field (EWMF was also derived to manipulate the SSMM’s rolling motions precisely. Then, the controlled rolling motions of prototype SSMMs under various surface conditions were demonstrated to examine the rolling ability of the proposed SSMM.

  6. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons.

    Science.gov (United States)

    Zhong, Wenbin; Wang, Yongxin; Yan, Yan; Sun, Yufeng; Deng, Jianping; Yang, Wantai

    2007-04-19

    A novel strategy was developed in order to prepare various micro/nanostructured polyanilines (PANI) on polymer substrates. The strategy involved two main steps, i.e., a grafting polymerization of acrylate acid (AA) onto the surface of a polypropylene (PP) film and subsequently an oxidative polymerization of aniline on the grafted surface. By tuning the conformation of the surface-grafted poly acrylate acid (PAA) brushes, as well as the ratio of AA to aniline, the shape of the PANIs fixated onto the surfaces of the polymer substrate could be controlled to go from spherical particles to nanowires and eventually to nanoribbons. In these structures, the PAA brushes not only acted as templates but also as dopants of PANI, and thereby, the nanostructured PANIs could be strongly bonded with the substrate. In addition, the surface of the PP films grafted with polyaniline nanowires and nanoribbons displayed superhydrophobicity with contact angles for water of approxiamtely 145 and 151 degrees , respectively.

  7. Surface vibrational modes in disk-shaped resonators.

    Science.gov (United States)

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Assessing breathing motion by shape matching of lung and diaphragm surfaces

    Science.gov (United States)

    Urschler, Martin; Bischof, Horst

    2005-04-01

    Studying complex thorax breating motion is an important research topic for accurate fusion of functional and anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue such that e.g. ridges might disappear. A novel registration method based on the shape context approach for shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was reported as a promising method for matching 2D shapes without relying on extracted shape features. We use the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax data sets. Phantom experiments make use of shapes that are manipulated with known transformations that simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5 distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses the registration performance by using manually identified corresponding landmarks.

  9. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    Science.gov (United States)

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  10. Osseointegration of Implants Surface-Treated with Various Diameters of TiO2 Nanotubes in Rabbit

    Directory of Open Access Journals (Sweden)

    Cheul-Goo Kang

    2015-01-01

    Full Text Available The aim of this study was to evaluate the osseointegration of implants which were surface-treated with various diameters of TiO2 nanotubes (30 nm, 70 nm, and 100 nm in rabbit. Resorbable blast media (RBM surfaced implants (Osstem, Busan, Korea 3.5 mm in diameter and 8.5 mm in length were designated as the control group and the implants surface-treated with various diameters of nanotubes (30 nm, 70 nm, and 100 nm with the same shapes were designated as the experimental groups. The implants were maintained unloaded for 4 and 12 weeks. After this period, the animals were sacrificed and micro-CT analysis, histomorphometric analysis (bone to implant contact (BIC, bone volume (BV, and removal torque test were performed. Micro-CT analysis, histomorphometric analysis, and removal torque test results all showed the similar pattern, showing that 70 nm experimental group had the highest value at 4 weeks while 30 nm experimental group had the highest value at 12 weeks. Therefore, on the basis of the results above, it can be concluded that 30 nm and 70 nm TiO2 nanotubes may have positive effects on osteogenesis and osseointegration depending on the healing time.

  11. Osseointegration of Implants Surface-Treated with Various Diameters of TiO2 Nano tubes in Rabbit

    International Nuclear Information System (INIS)

    Kang, Ch.G.; Park, Y.B.; Choi, H.; Lee, K.W.; Shim, J.S.; Oh, S.; Choi, S.H.

    2014-01-01

    The aim of this study was to evaluate the osseointegration of implants which were surface-treated with various diameters of TiO 2 nano tubes (30 nm, 70 nm, and 100 nm) in rabbit. Resorbable blast media (RBM) surfaced implants (Osstem, Busan, Korea) 3.5 mm in diameter and 8.5 mm in length were designated as the control group and the implants surface-treated with various diameters of nano tubes (30 nm, 70 nm, and 100 nm) with the same shapes were designated as the experimental groups. The implants were maintained unloaded for 4 and 12 weeks. After this period, the animals were sacrificed and micro-CT analysis, histomorphometric analysis (bone to implant contact (BIC), bone volume (BV)), and removal torque test were performed. Micro-CT analysis, histomorphometric analysis, and removal torque test results all showed the similar pattern, showing that 70 nm experimental group had the highest value at 4 weeks while 30 nm experimental group had the highest value at 12 weeks. Therefore, on the basis of the results above, it can be concluded that 30 nm and 70 nm TiO 2 nano tubes may have positive effects on osteogenesis and osseointegration depending on the healing time

  12. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  13. Unusual shapes for a catenary under the effects of surface tension and gravity: A variational treatment

    International Nuclear Information System (INIS)

    Behroozi, F.; Mohazzabi, P.; McCrickard, J.

    1995-01-01

    The familiar catenary is the shape assumed by a chain or string as it hangs from two points. The mathematical equation of the catenary was first published more than three hundred years ago by Leibnitz and Huygen, among others. Here we consider the shapes assumed by a hanging string in the presence of gravity and surface tension. The surface tension is introduced by suspending the string from a thin horizontal rod while the area bounded by the string and the rod is covered with a soap film. The string then assumes new and wonderful shapes depending on the relative strength of the surface tension and the weight per unit length of the string. When surface tension dominates, the string is pulled inward, assuming a convex shape similar to the Greek letter γ. On the other hand, when gravity is dominant the string is pulled outward and assumes a concave shape best described as a distorted catenary. However, when the gravitational force normal to the string matches the surface tension, the string takes a linear configuration similar to the letter V. Under suitable conditions, the string can be made to assume any of the three configurations by adjusting the separation of its end points. The equations that describe the shape of the string are derived by minimizing the total energy of the system and are presented for the three principal configurations

  14. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    Science.gov (United States)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  15. A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.

    Science.gov (United States)

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-03-11

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  16. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  17. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    Science.gov (United States)

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  18. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  19. Effects of surface characteristics on the plantar shape of feet and subjects' perceived sensations.

    Science.gov (United States)

    Witana, Channa P; Goonetilleke, Ravindra S; Xiong, Shuping; Au, Emily Y L

    2009-03-01

    Orthotics and other types of shoe inserts are primarily designed to reduce injury and improve comfort. The interaction between the plantar surface of the foot and the load-bearing surface contributes to foot and surface deformations and hence to perceived comfort, discomfort or pain. The plantar shapes of 16 participants' feet were captured when standing on three support surfaces that had different cushioning properties in the mid-foot region. Foot shape deformations were quantified using 3D laser scans. A questionnaire was used to evaluate the participant's perceptions of perceived shape and perceived feeling. The results showed that the structure in the mid-foot could change shape, independent of the rear-foot and forefoot regions. Participants were capable of identifying the shape changes with distinct preferences towards certain shapes. The cushioning properties of the mid-foot materials also have a direct influence on perceived feelings. This research has strong implications for the design and material selection of orthotics, insoles and footwear.

  20. The effect of different polishing systems on surface roughness and gloss of various resin composites.

    Science.gov (United States)

    Da Costa, Juliana; Ferracane, Jack; Paravina, Rade D; Mazur, Rui Fernando; Roeder, Leslie

    2007-01-01

    The purpose of this in vitro study was to evaluate the surface finish and gloss of five direct resin composites polished with six polishing systems. One hundred and fifty disk-shaped composite specimens (D=10.0 mm, 2-mm-thick, N=30 per material) were made. One side of each specimen was finished with a 16-fluted carbide finishing bur and then polished. Five specimens of each resin composite were randomly assigned to one of the six polishing systems. The surface roughness and gloss were measured with a surface profilometer and a glossmeter. The results were analyzed by two-way analysis of variance and Tukey's t-test (pgloss values between the composites and the polishing systems (p gloss value was recorded for Supreme + Pogo; the lowest was recorded for Z100 + Jiffy. Pogo showed the highest gloss values for all composites. The nanofill (Supreme) and minifill (Esthet-X) composites presented a surface roughness comparable to a microfill (Durafill), independent of the polishing system used, and a gloss comparable to a microfill, when polished with a one-step system (Pogo). As compared with the multiple-step systems, the smoothest surfaces and the highest gloss values were achieved using the one-step system (Pogo) for all the evaluated composites.

  1. Surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy

    Science.gov (United States)

    Yang, Yan; Feng, Zhong-Ying; Zhang, Jian-Min

    2018-05-01

    The spin-polarized first-principles are used to study the surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy, and the bulk Zr2CoSn Heusler alloy are also discussed to make comparison. The conduction band minimum (CBM) of half-metallic (HM) bulk Zr2CoSn alloy is contributed by ZrA, ZrB and Co atoms, while the valence band maximum (VBM) is contributed by ZrB and Co atoms. The SnSn termination is the most stable surface with the highest spin polarizations P = 77.1% among the CoCo, ZrCo, ZrZr, ZrSn and SnSn terminations of the Zr2CoSn (001) surface. In the SnSn termination of the Zr2CoSn (001) surface, the atomic partial density of states (APDOS) of atoms in the surface, subsurface and third layers are much influenced by the surface effect and the total magnetic moment (TMM) is mainly contributed by the atomic magnetic moments of atoms in fourth to ninth layers.

  2. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  3. The effect of various dentifrices on surface roughness and gloss of resin composites.

    Science.gov (United States)

    da Costa, Juliana; Adams-Belusko, Anne; Riley, Kelly; Ferracane, Jack L

    2010-01-01

    The purpose of this study was to evaluate the effect of different levels of abrasiveness (RDA) of dentifrices on the gloss and surface roughness of resin composites after toothbrushing. Sixty disk-shaped composite specimens (D=10.0mm, 2-mm thick, n=15 per material) were made of: microfill (Durafill), nanofill (Filtek Supreme), minifill hybrid (Filtek 250), and nanohybrid (Premise). One side of each specimen was finished with a carbide bur and polished with Enhance and Pogo. Five specimens of each composite were randomly assigned to one of the dentifrices, Colgate Total (CT; RDA 70), Colgate baking soda & peroxide whitening (CBS; RDA 145), and Colgate tartar control & whitening (CTW; RDA 200). Surface gloss was measured with a glossmeter and surface roughness with a profilometer before and after toothbrushing with a 1:2 slurry (dentifrice/deionised water) at 5760 strokes in a brushing machine (approximately 1Hz). Results were analyzed by three-way ANOVA/Tukey's (pgloss and increase in surface roughness after brushing with all dentifrices. There was no significant difference in gloss when Durafill was brushed with any dentifrice; the other composites showed less gloss reduction when brushed with CT. Durafill, Supreme and Premise did not show significantly different surface roughness results and CBS and CTW did not produce significantly different results. Dentifrices of lower abrasivity promote less reduction in gloss and surface roughness for composites of different particle sizes after brushing. Composites containing smaller average fillers showed less reduction in gloss and less increase in surface roughness than ones with larger fillers. Published by Elsevier Ltd.

  4. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H

    2005-01-01

    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  5. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  6. Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes

    Science.gov (United States)

    Leblois, T.; Tellier, C. R.

    1992-07-01

    We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.

  7. Reconstruction of pseudo three-dimensional dental image from dental panoramic radiograph and tooth surface shape

    International Nuclear Information System (INIS)

    Imura, Masataka; Kuroda, Yoshihiro; Oshiro, Osamu; Kuroda, Tomohiro; Kagiyama, Yoshiyuki; Yagi, Masakazu; Takada, Kenji; Azuma, Hiroko

    2010-01-01

    Three-dimensional volume data set is useful for diagnosis in dental treatments. However, to obtain three-dimensional images of a dental arch in general dental clinics is difficult. In this paper, we propose a method to reconstruct pseudo three-dimensional dental images from a dental panoramic radiograph and a tooth surface shape which can be obtained from three dimensional shape measurement of a dental impression. The proposed method finds an appropriate curved surface on which the dental panoramic radiograph is mapped by comparing a virtual panoramic image made from a tooth surface shape to a real panoramic radiograph. The developed pseudo three-dimensional dental images give clear impression of patient's dental condition. (author)

  8. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer.

    Science.gov (United States)

    Lee, Jung-Su; Bae, Young-Min; Lee, Sook-Young; Lee, Sun-Young

    2015-10-01

    This study investigated the effect of material types (polystyrene, polypropylene, glass, and stainless steel) and glucose addition on Staphylococcus aureus biofilm formation, and the relationship between biofilm formation measured by crystal violet (CV) staining and the number of biofilm cells determined by cell counts was studied. We also evaluated the efficacy of chlorine sanitizer on inhibiting various different types of S. aureus biofilms on the surface of stainless steel. Levels of biofilm formation of S. aureus were higher on hydrophilic surfaces (glass and stainless steel) than on hydrophobic surfaces (polypropylene and polystyrene). With the exception of biofilm formed on glass, the addition of glucose in broth significantly increased the biofilm formation of S. aureus on all surfaces and for all tested strains (P ≤ 0.05). The number of biofilm cells was not correlated with the biomass of the biofilms determined using the CV staining method. The efficacy of chlorine sanitizer against biofilm of S. aureus was not significantly different depending on types of biofilm (P > 0.05). Therefore, further studies are needed in order to determine an accurate method quantifying levels of bacterial biofilm and to evaluate the resistance of bacterial biofilm on the material surface. Biofilm formation of Staphylococcus aureus on the surface was different depending on the surface characteristics and S. aureus strains. There was low correlation between crystal violet staining method and viable counts technique for measuring levels of biofilm formation of S. aureus on the surfaces. These results could provide helpful information for finding and understanding the quantification method and resistance of bacterial biofilm on the surface. © 2015 Institute of Food Technologists®

  9. Comparative study of various pixel photodiodes for digital radiography: Junction structure, corner shape and noble window opening

    Science.gov (United States)

    Kang, Dong-Uk; Cho, Minsik; Lee, Dae Hee; Yoo, Hyunjun; Kim, Myung Soo; Bae, Jun Hyung; Kim, Hyoungtaek; Kim, Jongyul; Kim, Hyunduk; Cho, Gyuseong

    2012-05-01

    Recently, large-size 3-transistors (3-Tr) active pixel complementary metal-oxide silicon (CMOS) image sensors have been being used for medium-size digital X-ray radiography, such as dental computed tomography (CT), mammography and nondestructive testing (NDT) for consumer products. We designed and fabricated 50 µm × 50 µm 3-Tr test pixels having a pixel photodiode with various structures and shapes by using the TSMC 0.25-m standard CMOS process to compare their optical characteristics. The pixel photodiode output was continuously sampled while a test pixel was continuously illuminated by using 550-nm light at a constant intensity. The measurement was repeated 300 times for each test pixel to obtain reliable results on the mean and the variance of the pixel output at each sampling time. The sampling rate was 50 kHz, and the reset period was 200 msec. To estimate the conversion gain, we used the mean-variance method. From the measured results, the n-well/p-substrate photodiode, among 3 photodiode structures available in a standard CMOS process, showed the best performance at a low illumination equivalent to the typical X-ray signal range. The quantum efficiencies of the n+/p-well, n-well/p-substrate, and n+/p-substrate photodiodes were 18.5%, 62.1%, and 51.5%, respectively. From a comparison of pixels with rounded and rectangular corners, we found that a rounded corner structure could reduce the dark current in large-size pixels. A pixel with four rounded corners showed a reduced dark current of about 200fA compared to a pixel with four rectangular corners in our pixel sample size. Photodiodes with round p-implant openings showed about 5% higher dark current, but about 34% higher sensitivities, than the conventional photodiodes.

  10. Comparative study of various pixel photodiodes for digital radiography: junction structure, corner shape and noble window opening

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong-Uk; Cho, Min-Sik; Lee, Dae-Hee; Yoo, Hyun-Jun; Kim, Myung-Soo; Bae, Jun-Hyung; Kim, Hyoung-Taek; Kim, Jong-Yul; Kim, Hyun-Duk; Cho, Gyu-Seong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Recently, large-size 3-transistors (3-Tr) active pixel complementary metal-oxide silicon (CMOS) image sensors have been being used for medium-size digital X-ray radiography, such as dental computed tomography (CT), mammography and nondestructive testing (NDT) for consumer products. We designed and fabricated 50 μm x 50 μm 3-Tr test pixels having a pixel photodiode with various structures and shapes by using the TSMC 0.25-m standard CMOS process to compare their optical characteristics. The pixel photodiode output was continuously sampled while a test pixel was continuously illuminated by using 550-nm light at a constant intensity. The measurement was repeated 300 times for each test pixel to obtain reliable results on the mean and the variance of the pixel output at each sampling time. The sampling rate was 50 kHz, and the reset period was 200 msec. To estimate the conversion gain, we used the mean-variance method. From the measured results, the n-well/p-substrate photodiode, among 3 photodiode structures available in a standard CMOS process, showed the best performance at a low illumination equivalent to the typical X-ray signal range. The quantum efficiencies of the n+/p-well, n-well/p-substrate, and n+/p-substrate photodiodes were 18.5%, 62.1%, and 51.5%, respectively. From a comparison of pixels with rounded and rectangular corners, we found that a rounded corner structure could reduce the dark current in large-size pixels. A pixel with four rounded corners showed a reduced dark current of about 200 fA compared to a pixel with four rectangular corners in our pixel sample size. Photodiodes with round p-implant openings showed about 5% higher dark current, but about 34% higher sensitivities, than the conventional photodiodes.

  11. Surface analysis of CdTe after various pre-contact treatments

    Energy Technology Data Exchange (ETDEWEB)

    Waters, D.M. [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Niles, D.; Gessert, T.A.; Albin, D.; Rose, D.H.; Sheldon, P. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors present surface analysis of close-spaced sublimated (CSS) CdTe after various pre-contact treatments. Methods include Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and grazing-incidence x-ray diffraction (GI-XRD). XPS and GI-XRD analyses of the surface residue left by the solution-based CdCl{sub 2} treatment do not indicate the presence of a significant amount of CdCl{sub 2}. In addition, the solubility properties and relatively high thermal stability of the residue suggest the presence of the oxychloride Cd{sub 3}Cl{sub 2}O{sub 2} rather than CdCl{sub 2} as the major chlorine-containing component. Of the methods tested for their effectiveness in removing the residue, only HNO{sub 3} etches removed all detectable traces of chlorine from the surface.

  12. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    Science.gov (United States)

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  13. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  14. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  15. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  16. Mechanical stability of immediately loaded implants with various surfaces and designs: a pilot study in dogs.

    Science.gov (United States)

    Neugebauer, Jörg; Weinländer, Michael; Lekovic, Vojislav; von Berg, Karl-Heinz Linne; Zoeller, Joachim E

    2009-01-01

    Immediate loading is among the most innovative techniques in implant therapy today. This pilot study investigates the biomechanical outcome of various designs and surfaces that claim to shorten implant treatment. In each quadrant of two mongrel dogs, four different implants were used for immediate loading. The following implants were placed 3 months after tooth extraction: screw with low thread profile and anodic oxidized surface (LPAOS), solid screw with wide thread profile and titanium plasma spray coating (WPTPS), screw with low profile and hybrid design of double-etched and machined surface (LPHES), and screw with two thread profiles and a sandblasted and acid-etched surface (DTSAE). The insertion torque of each implant was above 35 Ncm. Resonance frequency analysis was performed after implant placement and again after sacrifice. Additionally, the removal torque and the amount of embedded titanium particles in the peri-implant bone were measured. All 16 prostheses were functional after a 5-month loading period. The highest mean removal torque values were recorded with WPTPS implants (24.4 Ncm/mm), followed by DTSAE implants (22.3 Ncm/mm) and LPAOS implants (18.7 Ncm/mm); the lowest score was obtained by LPHES (12.0 Ncm/mm). The ISQ values increased between the time of surgery and recall for all systems on average, but a significant positive correlation was found for DTSAE only. Significantly higher amounts of titanium were found in the surrounding bone with WPTPS (0.76%) and LPAOS (0.41%) in comparison with DTSAE (0.10%) and LPHES (0.03%). Immediate loading is possible with various designs and surfaces if high primary stability can be achieved during implant placement.

  17. Chemical processes at the surface of various clays on acid-base titration

    International Nuclear Information System (INIS)

    Park, K. K.; Park, Y. S.; Jung, E. C.

    2010-01-01

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO 3/2 OH and octahedral Al(OH) 6/2 sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  18. Chemical processes at the surface of various clays on acid-base titration

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. K.; Park, Y. S.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The chemical reaction of radionuclides at the interface between groundwater and geological mineral is an important process determining their retardation of transport through groundwater flow in a nuclear waste disposal. Clay minerals are major components of soil and argillaceous rock, and some of them are considered to be important base materials in the design of high-level nuclear waste repository due to their large swelling, low-permeability, large surface area, and strong and large sorption of radionuclides. Clay materials are phyllosilicates containing accessory minerals such as metal oxides, hydroxides, oxyhydroxides. Their structures are condensed 1:1 or 2:1 layers of tetrahedral SiO{sub 3/2}OH and octahedral Al(OH){sub 6/2} sheets. An accurate knowledge about the properties of clay surface is required as a parameter for a long-term estimation of radionuclide retardation effects. Electric surface charge is a primary property determining ion exchange and surface complexation of radionuclides on its surface. The sources of electric surface charge are a permanent structural negative charge on a basal plane and a dissociable charge at an edge surface. Investigation of proton sorption is a prerequisite to the understanding of radionuclide sorption. The reactions on a permanently charged site and on an edge site are measured by an electrokinetic measurement and by potentiometric titration, respectively. However, side reactions such as complexation, proton/cation exchange, dissolution, hydrolysis, precipitation and re adsorption, and the reaction of secondary minerals hinder an experimental measurement of accurate acid-base properties. This presentation describes the pH change on dispersing various clays in water and adding acid, base or Eu(III) ion to these solutions, and the effect of Eu(III) ion on acid-base titration of clay solutions

  19. A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.

    Science.gov (United States)

    Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk

    2010-10-01

    In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.

  20. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  1. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  2. EFFECT OF PLASMA CUTTING PARAMETERS UPON SHAPES OF BEARING CURVE OF C45 STEEL SURFACE

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2015-08-01

    Full Text Available The article presents the results of studies on the effect of plasma cutting technological parameters upon the shape of bearing curves and the parameters of the curve. The topography of surface formed by plasma cutting were analyzed. For measuring surface roughness and determining the bearing curve the appliance T8000 RC120 – 400 by Hommel-Etamic was used together with software.

  3. Shape of shock wave produced by a concentrated impact on a surface

    International Nuclear Information System (INIS)

    Nutt, G.; Klein, L.

    1981-01-01

    An approximate similarity solution, derived by Raizer, of a concentrated impact (or intense explosion) at the boundary of a semi-infinite volume of a perfect gas is used to determine the propagation velocity of the shock front as a function of its position. This velocity function is then used to obtain the shape of the propagating shock wave. It is shown that dish-shaped shock fronts are formed when the movement of the gas at the surface is into the gas region and that cup-shaped shock fronts are formed when the movement is out of the gas region. Comparison of these results with the shapes of explosions and meteorite craters are discussed

  4. In situ characterization of local elastic properties of thin shape memory films by surface acoustic waves

    Czech Academy of Sciences Publication Activity Database

    Grabec, T.; Sedlák, Petr; Stoklasová, Pavla; Thomasová, M.; Shilo, D.; Kabla, M.; Seiner, Hanuš; Landa, Michal

    2016-01-01

    Roč. 25, č. 12 (2016), č. článku 127002. ISSN 0964-1726 R&D Projects: GA ČR GA14-15264S Institutional support: RVO:61388998 Keywords : thin films * shape memory alloys * surface acoustic waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.909, year: 2016

  5. 3-D shape analysis of palatal surface in patients with unilateral complete cleft lip and palate

    Czech Academy of Sciences Publication Activity Database

    Rusková, H.; Bejdová, Š.; Peterka, Miroslav; Krajíček, V.; Velemínská, J.

    2014-01-01

    Roč. 42, č. 5 (2014), e140-e147 ISSN 1010-5182 Grant - others:GA UK(CZ) 309611 Institutional support: RVO:68378041 Keywords : unilateral cleft of lip and palate * palate shape * surface scanning Subject RIV: FF - HEENT, Dentistry Impact factor: 2.933, year: 2014

  6. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  7. Measurements of dry deposition rates of 212Pb from aerosols on various natural and artificial surfaces

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    The dry deposition rates on various grass fields and two forests have been measured by the use of 212 Pb (T 1/2 = 10.6 hours). The deposition rate on grass fields (average: 7 mm x s -1 ) roughly depends on the logarithms of the heights or densities of the grasses. The dry deposition rates on a broadleaved forest (Lithocarpus edulis) and a coniferous forest (Cryptomeria Japonica) were also measured. The highest (ave. 26 mm x s -1 ) was on the forest of C. Japonica because of the dense and adhesive surfaces of the leaves. (author)

  8. Surface layer composition of titania produced by various methods. The change of layer state under illumination

    International Nuclear Information System (INIS)

    Zakharenko, V; Daibova, E; Zmeeva, O; Kosova, N

    2016-01-01

    The comparative analysis of experimental data over titanium dioxide powders prepared by various ways under ambient air is carried out. The results over TiO 2 prepared by high-temperature heating of anatase, produced by burning of titanium micro particles and grinding of rutile crystal are used for that comparison. Water and carbon dioxide were the main products released from the surface of the titania powders. It was found that under UV irradiation absorbed by titania, in absent oxygen, water effectively reacts with lattice oxygen of titanium dioxide. (paper)

  9. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    Science.gov (United States)

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-15

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-01

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

  12. The Design of Case Products’ Shape Form Information Database Based on NURBS Surface

    Science.gov (United States)

    Liu, Xing; Liu, Guo-zhong; Xu, Nuo-qi; Zhang, Wei-she

    2017-07-01

    In order to improve the computer design of product shape design,applying the Non-uniform Rational B-splines(NURBS) of curves and surfaces surface to the representation of the product shape helps designers to design the product effectively.On the basis of the typical product image contour extraction and using Pro/Engineer(Pro/E) to extract the geometric feature of scanning mold,in order to structure the information data base system of value point,control point and node vector parameter information,this paper put forward a unified expression method of using NURBS curves and surfaces to describe products’ geometric shape and using matrix laboratory(MATLAB) to simulate when products have the same or similar function.A case study of electric vehicle’s front cover illustrates the access process of geometric shape information of case product in this paper.This method can not only greatly reduce the capacity of information debate,but also improve the effectiveness of computer aided geometric innovation modeling.

  13. Pile-up and defective pulse rejection by pulse shape discrimination in surface barrier detectors

    International Nuclear Information System (INIS)

    Sjoeland, K.A.; Kristiansson, P.

    1994-01-01

    A technique to reject pile-up pulses and defective tail pulses from surface barrier detectors by the use of pulse shape discrimination is demonstrated. The electronic implementation of the pulse shape discrimination is based upon the zero crossing technique and for data reduction multiparameter techniques are used. The characteristic τ value for pile-up rejection is shown to be less than 56 ns. Its effect on detection limits from tail reduction in Particle Elastic Scattering Analysis (PESA) and pile-up peak suppression is discussed. ((orig.))

  14. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  15. Development of a uniform eddy current multi-probe for flaw inspection on a curved surface shape portion and estimation of crack shape

    International Nuclear Information System (INIS)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo

    2009-01-01

    The establishment of non-destructive inspection technology for plant structures is necessary, since the occurrence of cracks has been reported in some nuclear power plants. In this research, a uniform eddy current multi-probe to inspect cracks on a curved structure was developed. We designed exciting coils of this probe, considering the shape of the curved structure, so that the eddy current flows uniformly. Pick-up coils were arranged on a flexible printed circuit board to fit on the curved surface shape portion. The detection characteristics for EDM (electrical discharge machining) slits provided on the curved surface shape portion of the specimen were evaluated. The clear signals for the EDM slits provided on the curved surface which had a curvature radius of 25 mm were obtained by this probe. We confirmed that the crack shape could be estimated by detecting the signals from the developed probe. (author)

  16. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  17. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    . Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.

  18. REMOVAL OF ORGANIC MATTER FROM SURFACE WATER USING COAGULANTS WITH VARIOUS BASICITY

    Directory of Open Access Journals (Sweden)

    Lidia Dąbrowska

    2016-07-01

    Full Text Available Humic substances are a natural admixture of surface water and determine the level of organic pollution of water and colour intensity. Application of coagulation process in surface water treatment allows for decrease turbidity and colour of water, as well as organic matter content. In Poland most drinking water treatment plants use aluminium sulphate as a coagulant. Research works on pre-hydrolysed coagulants, e.g. polyaluminium chlorides (general formula Aln(OHmCl3n-m are also carried out. The aim of this study was to evaluate the effectiveness of the coagulation process using polyaluminium chlorides with different basicity, in reducing the level of pollution of surface water with organic substances. Apart from the typical indicators used to evaluate the content of organic compounds, the potential for trihalomethanes formation THM-FP was also determined. The influence of the type of coagulant (low, medium, highly alkaline on the efficiency of organic compound removal, determined as total organic carbon TOC, oxidisability OXI, absorbance UV254, was stated. Under the conditions of the coagulation (pH 7.2-7.4, temperature of 19-21°C, the best results were obtained using highly alkaline polyaluminium chlorides PAX-XL19F, PAX-XL1905 and PAX-XL1910S, decrease in TOC and OXI by 43-46%, slightly worse - 40-41% using low alkaline PAX18. Using the medium alkaline coagulants PAX-XL61 and PAXX-XL69, 30-35% removal of organic matter was obtained. Despite various effects of dissolved organic carbon removal, depending on the used coagulant, THM-FP in purified water did not differ significantly and ranged from 10.0 to 10.9 mgCHCl3 m-3. It was by 37-42% lower than in surface water.

  19. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  20. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  1. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  2. Effect of Various Surface Treatment on Repair Strength of Composite Resin

    Directory of Open Access Journals (Sweden)

    Y. Alizade

    2004-12-01

    Full Text Available Statement of Problem: In some clinical situations, repair of composite restorations is treatment of choice. Improving the bond strength between one new and old composite usually requires increased surface roughness to promote mechanical interlocking sincechemical bonding might not be adequate. Similarly, the treatment of a laboratory fabricated resin composite restoration involves the same procedures, and there is a need to create the strongest possible bond of a resin cement to a previously polymerized composite.Purpose: The aim of this study was to evaluate the effect of various surface treatments on the shear bond strength of repaired to aged composite resin.Materials and Methods: Eighty four cylindrical specimens of a composite resin were fabricated and stored in distilled water for 100 days prior to surface treatment. Surface treatment of old composite was done in 6 groups as follow:1- Air abrasion with CoJet sand particles with micoretcher + silane + dentin bonding agent2- Air abrasion with 50μm Al2O3 particles+ phosphoric acid+ silane+ dentin bonding agent3- Air abrasion with 50μm Al2O3 particles + phosphoric acid + dentin bonding agent4- Diamond bur + phosphoric acid + silane + dentin bonding agent5- Diamond bur + phosphoric acid + dentin bonding agent6- Diamond bur + phosphoric acid + composite activator + dentin bonding agentThen fresh composite resin was bonded to treated surfaces. Twelve specimens were also fabricated as control group with the same diameter but with the height twice as much as other specimens. All of the specimens were thermocycled prior to testing for shear bondstrength. The bond strength data were analyzed statistically using one way ANOVA test, t test and Duncan's grouping test.Results: One-way ANOVA indicated no significant difference between 7 groups (P=0.059. One-way ANOVA indicated significant difference between the three diamond bur groups (P=0.036. Silane had a significant effect on the repair bond

  3. Effect of structural modifications on the drying kinetics of foods: changes in volume, surface area and product shape

    Directory of Open Access Journals (Sweden)

    Antonio De Michelis

    2013-10-01

    Full Text Available Macro and micro-structural changes take place during food dehydration. Macro-structural changes encompass modifications in shape, area and volume. Studies of such changes are important because dehydration kinetics (essential for calculating industrial dryers may be highly influenced by changes in food shape and dimensions. The overall changes in volume, surface area (“shrinkage” and shape (Heywood factor, with provides a close description of food shape were determined experimentally, and the results were correlated with simple expressions. Hence, although dehydration kinetics can be modeled with simplified overall shrinkage expressions, the possibility of selecting a suitable geometry and predicting the characteristics dimensions will provide higher accuracy. An additional unresolved problem is the lack of a general model that predicts macro-structural changes for various foods and diverse geometries. In this work, based on experimental data of sweet and sour cherries, and rose hip fruits, a simplified general model to predict changes in volume and surface area are proposed. To estimate how the changes in characteristic dimensions affect the kinetic studies, experimental drying curves for the three fruits by means of a diffusional model considered the following variants for the characteristic dimensions: (i The radius of the fresh food, assumed constant; (ii The radius of the partially dehydrated product; (iii The radius predicted by the correlation for structural changes, especially volume, obtained in this work and generalized for the three fruits, and (iv to demonstrate the need to study the macro-structural changes for all dehydrated foods, also be present the case of a restructured food.

  4. Effect of age and gender on the surface electromyogram during various levels of isometric contraction.

    Science.gov (United States)

    Arjunan, Sridhar; Kumar, Dinesh; Kalra, Chandan; Burne, John; Bastos, Teodiano

    2011-01-01

    This study reports the effects of age and gender on the surface electromyogram while performing isometric contraction. Experiments were conducted with two age groups--Young (Age: 20-29) and Old (Age: 60-69) where they performed sustained isometric contractions at various force levels (50%, 75%, 100% of maximum voluntary contraction). Traditional features such as root mean square (RMS) and median frequency (MDF) were computed from the recorded sEMG. The result indicates that the MDF of sEMG was not significantly affected by age, but was impacted by gender in both age groups. Also there was a significant change in the RMS of sEMG with age and gender at all levels of contraction. The results also indicate a large inter-subject variation. This study will provide an understanding of the underlying physiological effects of muscle contraction and muscle fatigue in different cohorts.

  5. Evaluation of Aquarius Version-5 Sea Surface Salinity on various spatial and temporal scales

    Science.gov (United States)

    Lee, T.

    2017-12-01

    Sea surface salinity (SSS) products from Aquarius have had three public releases with progressive improvement in data quality: Versions 2, 3, and 4, with the last one being released in October 2015. A systematic assessment of the Version-4, Level-3 Aquarius SSS product was performed on various spatial and temporal scales by comparing it with gridded Argo products (Lee 2016, Geophys. Res. Lett.). The comparison showed that the consistency of Aquarius Version-4 SSS with gridded Argo products is comparable to that between two different gridded Argo products. However, significant seasonal biases remain in high-latitude oceans. Further improvements are being made by the Aquarius team. Aquarius Version 5.0 SSS is scheduled to be released in October 2017 as the final version of the Aquarius Project. This presentation provides a similar evaluation of Version-5 SSS as reported by Lee (2016) and contrast it with the current Version-4 SSS.

  6. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  7. Effects of contact cap dimension on dry adhesion of bioinspired mushroom-shaped surfaces

    Science.gov (United States)

    Wang, Yue; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Tian, Hongmiao; Hu, Hong

    2015-03-01

    Dry adhesion observed in small creatures, such as spiders, insects, and geckos, has many great advantages such as repeatability and strong adhesiveness. In order to mimic these unique performances, fibrillar surface with a mushroom shaped end has drawn lots of attentions because of its advantage in efficiently enhancing adhesion compared with other sphere or simple flat ends. Here, in order to study the effects of contact cap dimension on adhesion strength, patterned surfaces of mushroom-shaped micropillars with differing cap diameters are fabricated based on the conventional photolithography and molding. The normal adhesion strength of these dry adhesives with varying cap diameters is measured with home-built equipment. The strength increases with the rise of cap diameter, and interestingly it becomes strongest when the mushroom caps join together.

  8. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  9. Optical properties of PLT films with various composition on quartz and modifications of their surfaces

    CERN Document Server

    Yoon, Y S; Koh, S K; Jung, H J

    1999-01-01

    (Pb sub 1 sub - sub x La sub x)TiO sub 3 (PLT) films with various compositions of La were deposited by using the sol-gel process on quartz substrates in order to study their optical properties. X-ray patterns indicated that the pseudocubic phase of the PLT film dominated with increased La concentration due to a decrease in the lattice constant of the c-axis. Three-dimensional atomic force microscopy images revealed that the grain size and root mean square (r.m.s) surface roughness were decreased by adding of La. The optical band gap of the as-deposited films became wider when Pb was replaced with La, which could be calculated from the transmittance of an UV-visible spectrometer. The addition of La increased the transparency of the PbTiO sub 3 film and shifted the threshold to shorter wavelengths for initiation of absorption. In addition, we modified the surfaces of the PLT films with La concentrations of 5 % by using an oxygen-ion beam with an oxygen-ion energy of 1 kV at different doses. The optical band gap...

  10. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  11. The effect of texture unit shape on silicon surface on the absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xiao-She; Zhang, Yi-Jie; Wang, Hao-Wei [Institute of Ecological and Environmental Materials, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-02-15

    Improving the utilization ratio of sunlight is a key factor for the development of solar cell. In this work, different structures including triangular pyramid, rectangular pyramid, hexangular pyramid and cone structure are established to investigate the influences of many factors, like geometrical shape, density and the top angle of the texture unit on silicon front surface to sunlight absorption. Ray-tracing technology is used for simulation. The simulation results indicate that the triangular pyramid texture on silicon front surface performs the best, and its total absorption rate is more than 90% for the light with wavelength between 640 and 1080 nm when the top angle of pyramid is less than 100 . (author)

  12. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  13. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  14. Shaping surface of palladium nanospheres through the control of reaction parameters

    International Nuclear Information System (INIS)

    Wang Lianmeng; Tan Enzhong; Guo Lin; Wang Lihua; Han Xiaodong

    2011-01-01

    Solid, cracked, and flower-shaped surfaces of palladium nanospheres with high yields and good uniformity were successfully prepared by a wet chemical method. On the basis of the experimental data, the same size of palladium nanosphere with different surface morphologies can be regulated only by changing the amount of ammonium hydroxide and reductant in one experimental system. The as-prepared products were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). In addition, surface-enhanced Raman scattering (SERS) spectra on the as-prepared different surface of palladium nanospheres exhibit high activity towards p-aminothiophenol (PATP) detection, and the result further reveals that the predominance of the a1 vibration mode in the SERS spectra via an electromagnetic (EM) mechanism is significant.

  15. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  16. Shape-dependent Surface Energetics of Nanocrystalline TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.J.; Wong, S.; Levchenko, A.A.; Zhou, H.; Navrotsky, A.

    2010-10-21

    We report the direct determination of surface enthalpies for nanophase TiO{sub 2} anatase with different morphologies derived from drop solution calorimetry in a molten sodium molybdate (3Na{sub 2}Ol{center_dot}4MoO{sub 3}) solvent at 702 C. The energetics of surface hydration has been measured using a Calvet microcalorimeter coupled with a gas dosing system. The surface enthalpies of hydrated surfaces for anatase TiO{sub 2} nanoparticles, nanowires and sea-urchin-like assemblies are 0.51 {+-} 0.05, 1.07 {+-} 0.28, and 1.29 {+-} 0.16 J m{sup -2}, respectively, whereas those of anhydrous surfaces are 0.74 {+-} 0.04, 1.24 {+-} 0.28, and 1.41 {+-} 0.16 J m{sup -2}, respectively. The trend in TiO{sub 2}, which shows higher surface enthalpies for more complex nanostructures, is consistent with that reported in ZnO. The shape-dependent surface enthalpy at the nanoscale level is discussed in terms of exposed surface structures. The enthalpies of hydration appear to be similar for all morphologies.

  17. Shape-dependent Surface Energetics of Nanocrystalline TiO2

    International Nuclear Information System (INIS)

    Park, T.J.; Wong, S.; Levchenko, A.A.; Zhou, H.; Navrotsky, A.

    2010-01-01

    We report the direct determination of surface enthalpies for nanophase TiO 2 anatase with different morphologies derived from drop solution calorimetry in a molten sodium molybdate (3Na 2 Ol·4MoO 3 ) solvent at 702 C. The energetics of surface hydration has been measured using a Calvet microcalorimeter coupled with a gas dosing system. The surface enthalpies of hydrated surfaces for anatase TiO 2 nanoparticles, nanowires and sea-urchin-like assemblies are 0.51 ± 0.05, 1.07 ± 0.28, and 1.29 ± 0.16 J m -2 , respectively, whereas those of anhydrous surfaces are 0.74 ± 0.04, 1.24 ± 0.28, and 1.41 ± 0.16 J m -2 , respectively. The trend in TiO 2 , which shows higher surface enthalpies for more complex nanostructures, is consistent with that reported in ZnO. The shape-dependent surface enthalpy at the nanoscale level is discussed in terms of exposed surface structures. The enthalpies of hydration appear to be similar for all morphologies.

  18. 3D surface parameterization using manifold learning for medial shape representation

    Science.gov (United States)

    Ward, Aaron D.; Hamarneh, Ghassan

    2007-03-01

    The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.

  19. Origin and evolution of cup-shaped structures on leached nuclear waste containment glass surfaces

    International Nuclear Information System (INIS)

    Dubois, C.; Villa, F.; Chambaudet, A.; Vernaz, E.

    1994-01-01

    A three-dimensional surface microanalysis system equipped with a sensitive topographical probe was used to quantify the evolution of cup-shaped structures formed by aqueous leaching of nuclear waste containment glass. A model of the dissolution phenomenon provides satisfactory correlation between calculated and measured cup radius and depth. Dissolution cups form from cracks on the initially cut glass surface. Large cracks control the phenomenon by forming the largest cups, which gradually absorb smaller ones. The evolution of the size and shape of the dissolution cups was described by a model that assumes a constant dissolution rate on the surface, diminishing with crack depth. The best fit with the experimental data was obtained with a dissolution rate one hundred times lower at the bottom of the crack than at the surface. Moreover, it is predictable that all the cups will gradually disappear as they grow larger and flatter over a leaching period of some 2 years, for the glass composition and experimental leaching procedures used in this work

  20. Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2013-04-01

    Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results

  1. Investigation of the spring-in of a pultruded L-shaped profile for various processing conditions and thicknesses

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko

    2014-01-01

    of the resin modulus is derived using the dynamic mechanical analysis (DMA) tests and the effective mechanical properties of the processing composite are calculated using a micromechanical model. The temperature and degree of cure distributions are obtained in a three dimensional (3D) thermo-chemical anlaysis......In this study, a thermo-mechanical finite element model is developed to predict the spring- in of an industrially pultruded L-shaped profile made of glass/polyester composite. The resin curing kinetics are obtained from the differential scanning calorimetry (DSC) experiments. The development...... with the one observed for the real pultruded parts in a commercial pultrusion company. In addition, the effects of the pulling speed and the part thickness on the spring-in formations are investigated using the proposed numerical simulation tool. It is found that the magnitude of the spring-in increases...

  2. Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.

    Directory of Open Access Journals (Sweden)

    Nikolaos Gkantidis

    Full Text Available To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data.Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch were tested using eight pairs of pre-existing CT data (pre- and post-treatment. These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses.There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05. The AC + F technique was the most accurate (D0.05, the detected structural changes differed significantly between different techniques (p<0.05. Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error.Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

  3. Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.

    Science.gov (United States)

    Gkantidis, Nikolaos; Schauseil, Michael; Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D0.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

  4. An investigation into the change of shape of fatigue cracks initiated at surface flaws

    International Nuclear Information System (INIS)

    Portch, D.J.

    1979-09-01

    Surface fatigue cracks found in plant can often be closely approximated in shape by a semi-ellipse. The stress intensity factor range at the deepest part of the surface crack is dependent upon a number of variables, including the crack aspect ratio. In fatigue life analysis, the aspect ratio of a propagating crack is frequently assumed to remain constant, possibly due to the complexity of estimating aspect ratio change on the basis of linear elastic fracture mechanics. This report describes the results of an experimental programme to examine the change of shape of fatigue cracks subjected to uniaxial tensile or bending stresses. The data obtained has been used to modify equations proposed by the author in a previous report to predict the change of aspect ratio of a crack propagating from a known defect. These modified equations, although not including terms to account for the effects of varying mean stress levels or material properties, generally give a good agreement with published experimental results. Crack propagation rate data obtained from the tensile fatigue tests has been used to estimate crack tip stress intensity factors. These are compared with values calculated from published solutions using both the constant geometry assumption and also the shape change equations proposed in this report. Use of these equations gives improved agreement with experiment in most cases. (author)

  5. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  6. Numerical analysis of special-shaped surface in abrasive flow machining

    Science.gov (United States)

    Li, Junye; Zhou, Zengwei; Wu, Guiling; Lu, Hui; Sun, Zhihuai

    2018-03-01

    Solid-liquid two-phase abrasive flow machining is a method to effectively polish the surface of Special-shaped surface parts. Based on the processing characteristics of the abrasive flow machining. The standard model and the pressure-coupled SIMPLEC algorithm are used. The shear force and velocity of the near-wall surface of the runner of the solid-liquid two-phase abrasive machining with different inlet pressure are analyzed. The numerical simulation results show that the inlet pressure has little effect on the velocity, and the shear force has a linear relationship with the inlet pressure. To obtain a better polishing effect, the outlet pressure can be appropriately increased.

  7. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  8. Fast protein tertiary structure retrieval based on global surface shape similarity.

    Science.gov (United States)

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  9. A smart car for the surface shape measurement of large antenna based on laser tracker

    Science.gov (United States)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  10. EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes

    Science.gov (United States)

    Übernickel, Kirstin; Ehlers, Todd Alan; von Blanckenburg, Friedhelm; Paulino, Leandro

    2017-04-01

    EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in Chile, South America. The program is in its first year and involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, hydrogeologists and climatologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines. The Chilean Coastal Cordillera between 25° and 40°S was selected to carry out this research because its north-south orientation captures a large ecological and climate gradient. This gradient ranges from hyper-arid (Atacama desert) to

  11. Feedback control of horizontal position and plasma surface shape in a non-circular tokamak

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Nakamura, Kazuo; Nakamura, Yukio; Itoh, Satoshi

    1986-01-01

    The linear model for the coupled horizontal position and plasma surface shape control in the non-circular tokamak device was described. It enables us to estimate easily the displacement and the distortion due to the changes in plasma pressure and current density distribution. The PI-controller and the optimal regulator were designed with the linear model. Transient-response analysis of the control system in the TRIAM-1M tokamak showed that the optimal regulator is superior to the PI-controller with regard to the mutual-interference between the position control system and the elongation control system. (author)

  12. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.

    Science.gov (United States)

    Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis

    2017-12-25

    In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.

  13. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zeyu; Yang, Tian, E-mail: tianyang@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-18

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  14. Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate-a conjugate analysis

    International Nuclear Information System (INIS)

    Dogan, M.; Sivrioglu, Mecit; Yılmaz, Onder

    2014-01-01

    Highlights: • Optimum fin shape is determined for natural convection and radiation heat transfer. • Fin array with the optimum shape has a much greater average heat transfer coefficient. • The most important factors affecting the heat transfer coefficient are determined. - Abstract: Steady state natural convection and radiation heat transfer from various shaped thin fin-arrays on a horizontal base plate has been numerically investigated. A conjugate analysis has been carried out in which the conservation equations of mass, momentum and energy for the fluid in the two fin enclosure are solved together with the heat conduction equation in the fin and the base plate. Heat transfer by radiation is also considered in analysis. The heat transfer coefficient has been determined for each of the fin array considered in the present study at the same base and the same total area. The results of the analysis show that there are some important geometrical factors affecting the design of fin arrays. Taking into consideration these factors, an optimum fin shape that yields the highest average heat transfer coefficient has been determined

  15. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation.

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-02-18

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.

  16. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu; Hughes, Kevin J.; Zhang, Wenyu; Smilgies, Detlef-M.; Hennig, Richard G.; Engstrom, James R.; Hanrath, Tobias

    2011-01-01

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  17. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  18. Propagation of waves from an arbitrary shaped surface-A generalization of the Fresnel diffraction integral

    Science.gov (United States)

    Feshchenko, R. M.; Vinogradov, A. V.; Artyukov, I. A.

    2018-04-01

    Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve. The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics, in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought on a curved surface.

  19. Optical quantitation of absorbers in variously shaped turbid media based on the microscopic Beer-Lambert law. A new approach to optical computerized tomography.

    Science.gov (United States)

    Tsuchiya, Y; Urakami, T

    1998-02-09

    To determine the concentrations of an absorber in variously shaped turbid media such as human tissue, we propose analytical expressions for diffuse re-emission in time and frequency domains, based on the microscopic Beer-Lambert law that holds true when we trace a zigzag photon path in the medium. Our expressions are implicit for the scattering properties, the volume shape, and the source-detector separation. We show that three observables are sufficient to determine the changes in the concentration and the absolute concentrations of an absorber in scattering media as long as the scattering property remains constant. The three observables are: the re-emission, the mean pathlength or group delay, and the extinction coefficient of the absorber. We also show that our equations can be extended to describe photon migration in nonuniform media. The validity of the predictions is confirmed by measuring a tissue-like phantom.

  20. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  1. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-01-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H 2 O 2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H 2 O 2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  2. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com [The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-06-28

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H{sub 2}O{sub 2} as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H{sub 2}O{sub 2} under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  3. Experimental verification on limit load estimation method for pipes with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki

    2010-01-01

    When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)

  4. Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops

    Science.gov (United States)

    Sakamoto, Toshihiro

    2018-04-01

    Crop phenological information is a critical variable in evaluating the influence of environmental stress on the final crop yield in spatio-temporal dimensions. Although the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics product (MCD12Q2) is widely used in place of crop phenological information, the definitions of MCD12Q2-derived phenological events (e.g. green-up date, dormancy date) were not completely consistent with those of crop development stages used in statistical surveys (e.g. emerged date, harvested date). It has been necessary to devise an alternative method focused on detecting continental-scale crop developmental stages using a different approach. Therefore, this study aimed to refine the Shape Model Fitting (SMF) method to improve its applicability to multiple major U.S. crops. The newly-refined SMF methods could estimate the timing of 36 crop-development stages of major U.S. crops, including corn, soybeans, winter wheat, spring wheat, barley, sorghum, rice, and cotton. The newly-developed calibration process did not require any long-term field observation data, and could calibrate crop-specific phenological parameters, which were used as coefficients in estimated equation, by using only freely accessible public data. The calibration of phenological parameters was conducted in two steps. In the first step, the national common phenological parameters, referred to as X0[base], were calibrated by using the statistical data of 2008. The SMF method coupled using X0[base] was named the rSMF[base] method. The second step was a further calibration to gain regionally-adjusted phenological parameters for each state, referred to as X0[local], by using additional statistical data of 2015 and 2016. The rSMF method using the X0[local] was named the rSMF[local] method. This second calibration process improved the estimation accuracy for all tested crops. When applying the rSMF[base] method to the validation data set (2009-2014), the root

  5. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    NARCIS (Netherlands)

    Schmage, P; Nergiz, [No Value; Herrmann, W; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface

  6. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    Science.gov (United States)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  7. Effects of various polishing media and techniques on the surface finish and behavior of laser glasses

    International Nuclear Information System (INIS)

    Landingham, R.L.; Casey, A.W.; Lindahl, R.O.

    1978-01-01

    The advance of high-power laser technology is dependent on the rate of advancement in laser glass forming and surface preparation. The threshold damage of glass surfaces continues to be a weak link in the overall advancement of laser technology. Methods were developed and used in the evaluation of existing glass surface preparation techniques. Modified procedures were evaluated to reduce surface contamination and subsurface defects. Polishing rates were monitored under controlled polishing conditions (purity, pH, particle size distribution, particle concentration, etc.). Future work at LLL for this ongoing investigation is described

  8. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  9. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    Science.gov (United States)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  10. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    Science.gov (United States)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of

  11. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    International Nuclear Information System (INIS)

    Tian, Hui; Reece, Charles; Kelley, Michael; Ribeill, G.

    2009-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  12. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James C., E-mail: jross@bwh.harvard.edu [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States); Kindlmann, Gordon L. [Computer Science Department and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Okajima, Yuka; Hatabu, Hiroto [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Díaz, Alejandro A. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 and Department of Pulmonary Diseases, Pontificia Universidad Católica de Chile, Santiago (Chile); Silverman, Edwin K. [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 and Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Washko, George R. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Dy, Jennifer [ECE Department, Northeastern University, Boston, Massachusetts 02115 (United States); Estépar, Raúl San José [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States)

    2013-12-15

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The

  13. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    International Nuclear Information System (INIS)

    Ross, James C.; Kindlmann, Gordon L.; Okajima, Yuka; Hatabu, Hiroto; Díaz, Alejandro A.; Silverman, Edwin K.; Washko, George R.; Dy, Jennifer; Estépar, Raúl San José

    2013-01-01

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The proposed

  14. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  15. Deposition of RuO 4 on various surfaces in a nuclear reactor containment

    Science.gov (United States)

    Holm, Joachim; Glänneskog, Henrik; Ekberg, Christian

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  16. Deposition of RuO{sub 4} on various surfaces in a nuclear reactor containment

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Joachim, E-mail: joachim.holm@chalmers.s [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden); Glaenneskog, Henrik [Ringhals AB, SE-430 22, Vaeroebacka (Sweden); Ekberg, Christian [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden)

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  17. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses

    Science.gov (United States)

    Mikolutskiy, S. I.; Khasaya, R. R.; Khomich, Yu V.; Yamshchikov, V. A.

    2018-03-01

    The paper describes the formation of micro- and nanostructures in different parts of irradiation zone on germanium surface by multiple action of nanosecond pulses of ArF-laser. It proposes a simple method using only one laser beam without any optional devices and masks for surface treatment. Hexa- and pentagonal cells with submicron dimensions along the surface were observed in peripheral zone of irradiation spot by atomic-force microscopy. Nanostructures in the form of bulbs with rounded peaks with lateral sizes of 40-120 nm were obtained in peripheral low-intensity region of the laser spot. Considering experimental data on material processing by nanosecond laser pulses, a classification of five main types of surface reliefs formed by nanosecond laser pulses with energy density near or slightly above ablation threshold was proposed.

  18. Comparison of the surface roughness of gypsum models constructed using various impression materials and gypsum products

    Directory of Open Access Journals (Sweden)

    Yi-Chih Chang

    2016-03-01

    Conclusion: The surface roughness of stone models was mainly determined by the type of alginate impression material, and was less affected by the type of silicone rubber impression material or gypsum product, or the storage time before repouring.

  19. Corrosion resistance of hsla steel after various surface treatments in chloride environment

    Czech Academy of Sciences Publication Activity Database

    Borko, K.; Pastorek, F.; Fintová, Stanislava; Hadzima, B.

    2016-01-01

    Roč. 18, č. 4 (2016), s. 99-102 ISSN 1335-4205 Institutional support: RVO:68081723 Keywords : Corrosion properties * Iron phosphating * S355J steel Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  20. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2013-01-01

    Full Text Available Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser.Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz were recorded. Following bracket bonding and debonding, adhesive remnants were removed by tungsten carbide burs in low- or high- speed handpieces (group 1 and 2, respectively, an ultrafine diamond bur (group 3 or an Er:YAG laser (250 mJ, long pulse, 4 Hz (group 4, and surface roughness parameters were measured again. Then, the buccal surfaces were polished and the third profilometry measurements were performed.Results: The specimens that were cleaned with a low speed tungsten carbide bur showed no significant difference in surface irregularity between the different treatment stages (p>0.05. Surface roughness increased significantly after clean-up with the diamond bur and the Er:YAG laser (p<0.01. In comparison between groups, adhesive removal with tungsten carbide burs at slow- or high-speed handpieces produced the lowest, while enamel clean-up with the Er:YAG laser caused the highest values of roughness measurements (P<0.05.Conclusion: Under the study conditions, application of the ultrafine diamond bur or the Er:YAG laser caused irreversible enamel damage on tooth surface, and thus these methods could not be recommended for removing adhesive remnants after debonding of orthodontic brackets.

  1. Study of the solid-solid surface adsorption of Eu2O3 on various Al2O3 supports

    International Nuclear Information System (INIS)

    Liu Rongchuan; Yu Zhi; Zhou Yuan; Yoshitake Yamazaki

    1997-12-01

    Solid-solid surface interactions of Eu 2 O 3 on various oxide substrates are investigated with X-ray and Moessbauer experiments. The results indicate that the interaction of Eu 2 O 3 on the complex support differs from that having simple support. An incorporation model is used to explain how Eu 2 O 3 disperses onto the surface of γ-alumina or η-alumina

  2. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  3. A New Instrument for Testing Wind Erosion by Soil Surface Shape Change

    International Nuclear Information System (INIS)

    Hai, C.; Yuan, X.; Jiang, H.; Zhou, R.; Wang, J.; Liu, B.; Ye, Y.; Du, P.

    2010-01-01

    Wind erosion, a primary cause of soil degeneration, is a problem in arid and semiarid areas throughout the world. Many methods are available to study soil erosion, but there is no an effective method for making quantitative measurements in the field. To solve this problem, we have developed a new instrument that can measure the change in the shape of the soil surface, allowing quick quantification of wind erosion. In this paper, the construction and principle of the new instrument are described. Field experiments are carried out using the instrument, and the data are analyzed. The erosion depth is found to vary by 11% compared to the average for measurement areas ranging from 30 x 30 cm 2 to 10 x 10 cm 2 . The results show that the instrument is convenient and reliable for quantitatively measuring wind erosion in the field.

  4. The Various Shapes of Innovation

    Directory of Open Access Journals (Sweden)

    Roubou I.

    2015-12-01

    Full Text Available Background: Innovation is one of the most difficult words to define, especially when it comes to health technology. The aim of this article is to get a better understanding of the multi-dimensional facet of innovation, how this is valued by different stakeholders and the way forward in order to create innovative interventions for the sake of the patients and the society.

  5. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  7. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  8. HFCVD growth of various carbon nanostructures on SWCNT paper controlled by surface treatment

    International Nuclear Information System (INIS)

    Varga, M.; Izak, T.; Kromka, A.; Kotlar, M.; Vretenar, V.; Ledinsky, M.; Michalka, M.; Skakalova, V.; Vesely, M.

    2012-01-01

    In this article, we investigate the nanocomposite material formation, particularly the deposition of nanocrystalline diamond and carbon nanowalls (CNWs) on single-wall carbon nanotubes buckypaper (BP). One part of the buckypaper substrate was nucleated by nanodiamond powder. The growth was carried out in a hot filament chemical vapor deposition (HFCVD) system. Contact angle measurements, scanning electron microscopy, and Raman spectroscopy were used for the surface morphology analysis and characterization of carbon phases. Due to a different surface pretreatment, different carbon nanostructures were formed: diamond film was grown on the nucleated BP area; non-treated area of the BP was covered with a dense field of CNWs. Covering a part of the BP surface prevented an access of the HF-plasma and so the growth of any carbon structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    Science.gov (United States)

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  10. Study of surface activity of piroxicam at the interface of palm oil esters and various aqueous phases.

    Science.gov (United States)

    Abdulkarim, Muthanna Fawzy; Abdullah, Ghassan Zuhair; Chitneni, Mallikarjun; Yam, Mun Fei; Mahdi, Elrashid Saleh; Salman, Ibrahim Muhammad; Ameer, Omar Ziad; Sattar, Munavvar Abdul; Basri, Mahiran; Noor, Azmin Mohd

    2012-04-01

    The surface activity of some non-steroidal anti-inflammatory agents like ibuprofen was investigated extensively. This fact has attracted the researchers to extend this behavior to other agents like piroxicam. Piroxicam molecules are expected to orient at the interface of oil and aqueous phase. The aim of this study was, firstly, to assess the surface and interfacial tension behaviour of newly synthesised palm oil esters and various pH phosphate buffers. Furthermore, the surface and interfacial tension activity of piroxicam was studied. All the measurements of surface and interfacial tension were made using the tensiometer. The study revealed that piroxicam has no effect on surface tension values of all pH phosphate buffers and palm oil esters. Similarly, various concentrations of piroxicam did not affect the interfacial tensions between the oil phase and the buffer phases. Accordingly, the interfacial tension values of all mixtures of oil and phosphate buffers were considerably high which indicates the immiscibility. It could be concluded that piroxicam has no surface activity. Additionally, there is no surface pressure activity of piroxicam at the interface of plam oil esters and phosphate buffers in the presence of Tweens and Spans.

  11. The Structure of a Hypersonic Air Flow near a Plane Surface at Various Intensities of Magnetogasdynamic Interaction

    Science.gov (United States)

    Fomichev, V. P.; Yadrenkin, M. A.

    2017-12-01

    This Letter presents a systematization of the effects observed in experiments on the magnetogasdynamic interaction near the surface of a plate in a high-speed gas flow. Ranges of the hydromagnetic-interaction parameter determining various levels of influence on the shock-wave structure of the flow are established.

  12. Occurrence of glucocorticogenic activity in various surface waters in The Netherlands

    NARCIS (Netherlands)

    Schriks, M.; van der Linden, S.C.; Stoks, P.G.M.; van der Burg, B.; Puijker, L.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research

  13. Effects of various surface treatments on the biaxial flexural properties of yttria-stabilized zirconia ceramics

    Directory of Open Access Journals (Sweden)

    Teerthesh Jain

    2018-01-01

    Conclusions: Air particle abrasion with CoJet Sand, LTD, and CTs had no negative impact on biaxial flexural strength indeed it increased the biaxial flexural strength. Hence, these surface treatments can be done in routine clinical practice to improve the performance of ceramic restorations.

  14. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    Science.gov (United States)

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  15. PHOTOMETRIC STEREO SHAPE-AND-ALBEDO-FROM-SHADING FOR PIXEL-LEVEL RESOLUTION LUNAR SURFACE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2017-07-01

    Full Text Available Shape and Albedo from Shading (SAfS techniques recover pixel-wise surface details based on the relationship between terrain slopes, illumination and imaging geometry, and the energy response (i.e., image intensity captured by the sensing system. Multiple images with different illumination geometries (i.e., photometric stereo can provide better SAfS surface reconstruction due to the increase in observations. Photometric stereo SAfS is suitable for detailed surface reconstruction of the Moon and other extra-terrestrial bodies due to the availability of photometric stereo and the less complex surface reflecting properties (i.e., albedo of the target bodies as compared to the Earth. Considering only one photometric stereo pair (i.e., two images, pixel-variant albedo is still a major obstacle to satisfactory reconstruction and it needs to be regulated by the SAfS algorithm. The illumination directional difference between the two images also becomes an important factor affecting the reconstruction quality. This paper presents a photometric stereo SAfS algorithm for pixel-level resolution lunar surface reconstruction. The algorithm includes a hierarchical optimization architecture for handling pixel-variant albedo and improving performance. With the use of Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC photometric stereo images, the reconstructed topography (i.e., the DEM is compared with the DEM produced independently by photogrammetric methods. This paper also addresses the effect of illumination directional difference in between one photometric stereo pair on the reconstruction quality of the proposed algorithm by both mathematical and experimental analysis. In this case, LROC NAC images under multiple illumination directions are utilized by the proposed algorithm for experimental comparison. The mathematical derivation suggests an illumination azimuthal difference of 90 degrees between two images is recommended to achieve

  16. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  17. Effects of various debonding and adhesive clearance methods on enamel surface: an in vitro study.

    Science.gov (United States)

    Fan, Xiao-Chuan; Chen, Li; Huang, Xiao-Feng

    2017-02-27

    The purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques. Forty eight human maxillary premolars, extracted for orthodontic reasons, were randomly divided into three groups. Brackets were bonded to teeth with RMGIC (Fuji Ortho LC, GC, Tokyo, Japan) (two groups, n = 18 each) after acid etching (30s), light cured for 40 s, exposed to thermocycling, then underwent 2 different bracket debonding methods: debonding pliers (Shinye, Hangzhou, China) or enamel chisel (Jinzhong, Shanghai, China); the third group (n = 12) comprised of untreated controls, with normal enamel surface roughness. In each debonded group, three cleanup techniques (n = 6 each) were tested, including (I) diamond bur (TC11EF, MANI, Tochigi, Japan) and One-Gloss (Midi, Shofu, Kyoto, Japan), (II) a Super-Snap disk (Shofu, Kyoto, Japan), and (III) One-Gloss polisher. The debonding methods were compared using the modified adhesive remnant index (ARI, 1-5). Cleanup efficiencies were assessed by recording operating times. Enamel surfaces were qualitatively and quantitatively evaluated with scanning electron microscopy (SEM) and surface roughness tester, respectively. Two surface roughness variables were evaluated: Ra (average roughness) and Rz (10-point height of irregularities). The ARI scores of debonded teeth were similar with debonding pliers and enamel chisel (Chi-square = 2.19, P > 0.05). There were significant differences between mean operating time in each group (F = 52.615, P One-Gloss took the shortest operating time (37.92 ± 3.82 s), followed by the Super-Snap disk (56.67 ± 7.52 s), and the One-Gloss polisher (63.50 ± 6.99 s). SEM appearance provided by the One-Gloss polisher was the closest to the intact enamel surface, and surface roughness (Ra: 0.082 ± 0.046 μm; Rz: 0.499

  18. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk

    2011-04-15

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).

  19. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  20. A novel binary shape context for 3D local surface description

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Li, Bijun; Zang, Yufu

    2017-08-01

    3D local surface description is now at the core of many computer vision technologies, such as 3D object recognition, intelligent driving, and 3D model reconstruction. However, most of the existing 3D feature descriptors still suffer from low descriptiveness, weak robustness, and inefficiency in both time and memory. To overcome these challenges, this paper presents a robust and descriptive 3D Binary Shape Context (BSC) descriptor with high efficiency in both time and memory. First, a novel BSC descriptor is generated for 3D local surface description, and the performance of the BSC descriptor under different settings of its parameters is analyzed. Next, the descriptiveness, robustness, and efficiency in both time and memory of the BSC descriptor are evaluated and compared to those of several state-of-the-art 3D feature descriptors. Finally, the performance of the BSC descriptor for 3D object recognition is also evaluated on a number of popular benchmark datasets, and an urban-scene dataset is collected by a terrestrial laser scanner system. Comprehensive experiments demonstrate that the proposed BSC descriptor obtained high descriptiveness, strong robustness, and high efficiency in both time and memory and achieved high recognition rates of 94.8%, 94.1% and 82.1% on the considered UWA, Queen, and WHU datasets, respectively.

  1. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  2. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  3. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  4. Effects of various debonding and adhesive clearance methods on enamel surface: an in vitro study

    OpenAIRE

    Fan, Xiao-Chuan; Chen, Li; Huang, Xiao-Feng

    2017-01-01

    Background The purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques. Methods Forty eight human maxillary premolars, extracted for orthodontic reasons, were randomly divided into three groups. Brackets were bonded to teeth with RMGIC (Fuji Ortho LC, GC, Tokyo, Japan) (two groups, n?=?18 each) after acid etching (30s), light cur...

  5. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  6. Efficient Measurement of Shape Dissimilarity between 3D Models Using Z-Buffer and Surface Roving Method

    Directory of Open Access Journals (Sweden)

    In Kyu Park

    2002-10-01

    Full Text Available Estimation of the shape dissimilarity between 3D models is a very important problem in both computer vision and graphics for 3D surface reconstruction, modeling, matching, and compression. In this paper, we propose a novel method called surface roving technique to estimate the shape dissimilarity between 3D models. Unlike conventional methods, our surface roving approach exploits a virtual camera and Z-buffer, which is commonly used in 3D graphics. The corresponding points on different 3D models can be easily identified, and also the distance between them is determined efficiently, regardless of the representation types of the 3D models. Moreover, by employing the viewpoint sampling technique, the overall computation can be greatly reduced so that the dissimilarity is obtained rapidly without loss of accuracy. Experimental results show that the proposed algorithm achieves fast and accurate measurement of shape dissimilarity for different types of 3D object models.

  7. Influence of Variously Modified Surface of Aluminium Alloy on the Effect of Pulsating Water Jet

    Czech Academy of Sciences Publication Activity Database

    Klich, Jiří; Klichová, Dagmar; Foldyna, Vladimír; Hlaváček, Petr; Foldyna, Josef

    2017-01-01

    Roč. 63, č. 10 (2017), s. 577-582 ISSN 0039-2480 R&D Projects: GA MPO(CZ) FV10446; GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : pulsating water jet * surface topography * material erosion Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 0.914, year: 2016 http://ojs.sv-jme.eu/index.php/sv-jme/ article /view/sv-jme.2017.4356

  8. Interpretation and significance of reverse chevron-shaped markings on fracture surfaces of API X100 pipeline steels

    International Nuclear Information System (INIS)

    Sowards, Jeffrey W.; McCowan, Chris N.; Drexler, Elizabeth S.

    2012-01-01

    Highlights: ► We investigated fractures of X100 steel linepine produced during fracture mechanics testing. ► Fractures exhibited a unique chevron pattern that points in the direction of crack propagation. ► A qualitative model is proposed to explain the fracture pattern formation. ► Findings indicate that careful interpretation of ductile material fractures is necessary. - Abstract: Fracture surfaces of X100 pipeline steels were examined with optical and electron microscopy after crack tip opening angle fracture testing. Some fracture surfaces exhibited chevron-shaped fracture patterns that are markedly different from classic chevron fracture. The chevron-shaped markings on the X100 fracture surfaces point in the direction of crack growth, rather than towards the location of fracture initiation, as observed in classic cases of chevron fracture. Existing models, predicting formation of chevron fracture patterns, do not explain the fracture behavior observed for X100 steel. A mechanism is proposed where reverse chevron-shaped patterns are developed due to the shape of the crack front itself. The chevron shape forms as a result of crack tunneling, and the overall pattern is developed on the fracture surface due to intermittent crack growth, resulting in alternating regions (bands) of fast fracture and slower, more ductile fracture. The contrast between these bands of alternating fracture defines the chevron. Care should be taken during interpretation of intermittent chevron markings on fractures of ductile materials, as they may point away from rather than towards the origin of fracture.

  9. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  10. A Particle-In-Cell approach to particle flux shaping with a surface mask

    Directory of Open Access Journals (Sweden)

    G. Kawamura

    2017-08-01

    Full Text Available The Particle-In-Cell simulation code PICS has been developed to study plasma in front of a surface with two types of masks, step-type and roof-type. Parameter scans with regard to magnetic field angle, electron density, and mask height were carried out to understand their influence on ion particle flux distribution on a surface. A roof-type mask with a small mask height yields short decay length in the flux distribution which is consistent with that estimated experimentally. A roof-type mask with a large height yields very long decay length and the flux value does not depend on a mask height or an electron density, but rather on a mask length and a biasing voltage of the surface. Mask height also changes the flux distribution apart from the mask because of the shading effect of the mask. Electron density changes the distribution near the mask edge according to the Debye length. Dependence of distribution on parameters are complicated especially for a roof-type mask, and simulation study with various parameters are useful to understand the physical reasons of dependence and also is useful as a tool for experiment studies.

  11. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  12. Radioactivity distribution measurement of various natural material surfaces with imaging plate

    International Nuclear Information System (INIS)

    Mori, C.; Suzuki, T.; Koido, S.; Uritani, A.; Yanagida, K.; Wu, Y.; Nishizawa, K.

    1996-01-01

    Distribution images of natural radioactivity in natural materials such as vegetables were obtained by using Imaging Platc. In ssuch cases, it is necessary to reduce background radiation intensity by one order or more. Graded shielding is very important. Espacially, the innermost surface of a shielding box sshould be covered with acrylic rein plate. We obtained natural radioactivity distribution images of vegetable, sea food, mea etc. Most β-rays emitted from 40 K print the radioactivity distribution image. Comparison between γ-ray intensity of KCL solution measured with HPGe detector and that of natural material specimen gave the radioactivity around 0.06- 0.04Bq/g depending on the kind and the part of specimens. (author). 6 refs., 5 figs., 1 tab

  13. DC electrical, thermal, and spectroscopic properties of various condensation polyimides containing surface cobalt oxide

    Science.gov (United States)

    Rancourt, J. D.; Boggess, R. K.; Horning, L. S.; Taylor, L. T.

    1987-01-01

    Doping polyimides with cobalt ion causes the room temperature direct current electrical resistivity to decrease relative to the polymer alone, the reduction being most pronounced for the air-side of the cobalt modified polyimides. At a constant electrical field, resistivity for the volume, air-side and glass-side modes decreases yet further with an increase in temperature as expected for semiconductors and insulators. X-ray photoelectron spectroscopy indicates the air-side of the cobalt modified polyimides is predominantly Co3O4. The bulk resistivity of the air-side and activation energy of conduction for this surface are comparable to high purity sintered Co3O4. Charging characteristics at room temperature indicate a substantial polymer matrix contribution to both the glass-side and volume mode measurements but a negligible contribution to the air-side electrical properties. Volume electrical resistivity for similar additive levels is reduced by increasing the molecular flexibility of the host polymer.

  14. Influence of Various Pulp Properties on the Adhesion Between Tissue Paper and Yankee Cylinder Surface

    Directory of Open Access Journals (Sweden)

    Jonna Boudreau

    2014-02-01

    Full Text Available The strength of the adhesion between the paper and the drying Yankee cylinder is of great importance with respect to the final properties of a tissue paper product. Therefore, the effects of a few potentially important pulp properties have been evaluated in laboratory experiments. Four highly different kraft pulps were used, and the adhesion strength was measured by means of the force required when scraping off a paper from a metal surface with a specifically designed knife mounted on a moving cart. The adhesion strength was observed to increase with increasing grammage and increasing degree of beating of the pulp. It was also found that pulps containing more fines, or with higher hemicellulose content, gave rise to higher adhesion strength.

  15. Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Romero da Silva, Murillo, E-mail: murilloromero_@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Gargarella, Piter [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Gustmann, Tobias [IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, d-01069 Dresden (Germany); Botta Filho, Walter José; Kiminami, Claudio S. [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria); Pauly, Simon [IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, d-01069 Dresden (Germany); Bolfarini, Claudemiro [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil)

    2016-04-20

    Cu-based shape memory alloys (SMAs) show better thermal and electrical conductivity, lower cost and are easier to process than traditional Ti-based SMAs, but they exhibit a lower ductility and lower fatigue life. These properties can be improved by decreasing the grain size and reducing microstructural segregations, which may be obtained using laser surface remelting treatments. The aim of the present work was to produce and characterize laser remelted Cu-11.85Al-3.2Ni-3Mn SMA plates. Twelve plates with the dimensions of 50×10×1.5 mm were produced by suction casting in a first step. The surface of the plates was remelted afterwards with a laser beam power of 300 W, hatching of 50% and using three different scanning speeds: 100, 300 and 500 mm/s. The plates were characterized by optical and scanning electron microscopy, X-ray diffraction, differential scanning calorimetry as well as by tensile and microhardness tests. The remelted region showed a T morphology, with average thickness of 52, 29 and 23 µm for the plates remelted with scanning speeds of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s, some pores were found around the center of the track, due to the keyhole instability. The same phase formed in the as-cast sample was obtained in the laser remelted coatings: the monoclinic β′{sub 1} martensitic phase with zig-zag morphology. However, the laser treated samples exhibit lower transformation temperatures than the as-cast sample, due to grain refinement at the surface. They also show an improvement in the mechanical properties, with an increase of up to 162 MPa in fracture stress, up to 2.2% in ductility and up to 20.9 HV in microhardness when compared with the as-cast sample, which makes the laser surface remelting a promising method for improving the mechanical properties of Cu-based SMAs.

  16. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  17. Effects of various etching protocols on the flexural properties and surface topography of fiber-reinforced composite dental posts.

    Science.gov (United States)

    Aksornmuang, Juthatip; Chuenarrom, Chanya; Chittithaworn, Natjira

    2017-09-26

    The purpose of this study was to evaluate the flexural properties and surface topography of fiber posts surface-treated with various etching protocols. Seventy each of three types of fiber posts: RelyX Fiber Post, Tenax Fiber Trans, and D.T. Light-Post Illusion X-Ro, were randomly divided into 7 groups: no surface treatment, surface treated with hydrofluoric acid (HF) 4.5% for 60 s, HF 4.5% for 120 s, HF 9.6% for 15 s, HF 9.6% for 60 s, HF 9.6% for 120 s, and treated with H 2 O 2 24% for 10 min. The specimens were then subjected to a three-point bending test. Surface topographies of the posts were observed using a SEM. The results indicate that fiber post surface pretreatments had no adverse effects on the flexural properties. However, the fiber posts treated with high HF concentrations or long etching times seemed to have more surface irregularities.

  18. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    Science.gov (United States)

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  19. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    Science.gov (United States)

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  20. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    Directory of Open Access Journals (Sweden)

    Li Hu

    2017-10-01

    Full Text Available Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM. Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  1. Shape-dependent guidance of active Janus particles by chemically patterned surfaces

    Science.gov (United States)

    Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Dietrich, S.

    2018-01-01

    Self-phoretic chemically active Janus particles move by inducing—via non-equilibrium chemical reactions occurring on their surfaces—changes in the chemical composition of the solution in which they are immersed. This process leads to gradients in chemical composition along the surface of the particle, as well as along any nearby boundaries, including solid walls. Chemical gradients along a wall can give rise to chemi-osmosis, i.e., the gradients drive surface flows which, in turn, drive flow in the volume of the solution. This bulk flow couples back to the particle, and thus contributes to its self-motility. Since chemi-osmosis strongly depends on the molecular interactions between the diffusing molecular species and the wall, the response flow induced and experienced by a particle encodes information about any chemical patterning of the wall. Here, we extend previous studies on self-phoresis of a sphere near a chemically patterned wall to the case of particles with rod-like, elongated shape. We focus our analysis on the new phenomenology potentially emerging from the coupling—which is inoperative for a spherical shape—of the elongated particle to the strain rate tensor of the chemi-osmotic flow. Via detailed numerical calculations, we show that the dynamics of a rod-like particle exhibits a novel ‘edge-following’ steady state: the particle translates along the edge of a chemical step at a steady distance from the step and with a steady orientation. Moreover, within a certain range of system parameters, the edge-following state co-exists with a ‘docking’ state (the particle stops at the step, oriented perpendicular to the step edge), i.e., a bistable dynamics occurs. These findings are rationalized as a consequence of the competition between the fluid vorticity and the rate of strain by using analytical theory based on the point-particle approximation which captures quasi-quantitatively the dynamics of the system.

  2. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-04-01

    ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices. Keywords: surface modification, red blood cell, antibacterial activities, vanadium, nano­materials

  3. Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells

    Directory of Open Access Journals (Sweden)

    Yangang Han

    2013-01-01

    Full Text Available Texturization is a useful method to enhance the optical absorption of monocrystalline silicon wafers by light-trapping effect in solar cell processing. In present study, a series of textured wafers with various pyramid sizes ranging from 200 nm to 10 μm were fabricated by modified wet-chemical method and characterized. The results show that there is little difference in the reflectance with the pyramid sizes from 1 to 10 μm, which is consistent with the ray-tracing simulation results. However, the light-trapping function of the 200 nm sample below the geometrical optics limit is much weaker. The solar cells fabricated from the 1 μm samples own the highest power conversion efficiency of 18.17% due to a better coverage of metal finger lines than the larger ones, and the 200 nm samples have the lowest efficiency of 10.53%.

  4. Waves on the surface of a boiling liquid at various medium stratifications

    International Nuclear Information System (INIS)

    Sinkevich, O. A.

    2015-01-01

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor–liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor–liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared

  5. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    Science.gov (United States)

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  6. Phosphorus transfer in surface runoff from intensive pasture systems at various scales: a review.

    Science.gov (United States)

    Dougherty, Warwick J; Fleming, Nigel K; Cox, Jim W; Chittleborough, David J

    2004-01-01

    Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.

  7. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  8. The shape of a hole and that of the surface-with-hole cannot be analyzed separately.

    Science.gov (United States)

    Bertamini, Marco; Helmy, Mai Salah

    2012-08-01

    Figure-ground organization has a central role in visual perception, since it creates the regions to which properties, such as shape descriptions, are then assigned. However, there is disagreement on how much shape analysis is independent of figure-ground. The reversal of figure-ground of a single closed region is the purest form of figure-ground organization, and the two resulting percepts are that of an object and that of a hole. Both object and hole are nonaccidental regions and can share an identical outline. We devised a test of how figure-ground and contour ownership dramatically affect how shape is processed. Observers judged the shape of a contour that could be either the same as or different from an irrelevant surrounding contour. We report that different (incongruent) inside and outside contours produce a stronger interference effect when they form a single object-with-hole, as compared with a hierarchical set of surfaces or a single hole separating different surfaces (a trench). We conclude that (1) which surface owns the contour constrains the interference between shapes and that (2) despite some recent claims, holes do not display objectlike properties.

  9. Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing.

    Science.gov (United States)

    Kim, Sumin

    2010-04-15

    This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.

  10. Evaluation of sea-surface photosynthetically available radiation algorithms under various sky conditions and solar elevations.

    Science.gov (United States)

    Somayajula, Srikanth Ayyala; Devred, Emmanuel; Bélanger, Simon; Antoine, David; Vellucci, V; Babin, Marcel

    2018-04-20

    In this study, we report on the performance of satellite-based photosynthetically available radiation (PAR) algorithms used in published oceanic primary production models. The performance of these algorithms was evaluated using buoy observations under clear and cloudy skies, and for the particular case of low sun angles typically encountered at high latitudes or at moderate latitudes in winter. The PAR models consisted of (i) the standard one from the NASA-Ocean Biology Processing Group (OBPG), (ii) the Gregg and Carder (GC) semi-analytical clear-sky model, and (iii) look-up-tables based on the Santa Barbara DISORT atmospheric radiative transfer (SBDART) model. Various combinations of atmospheric inputs, empirical cloud corrections, and semi-analytical irradiance models yielded a total of 13 (11 + 2 developed in this study) different PAR products, which were compared with in situ measurements collected at high frequency (15 min) at a buoy site in the Mediterranean Sea (the "BOUée pour l'acquiSition d'une Série Optique à Long termE," or, "BOUSSOLE" site). An objective ranking method applied to the algorithm results indicated that seven PAR products out of 13 were well in agreement with the in situ measurements. Specifically, the OBPG method showed the best overall performance with a root mean square difference (RMSD) (bias) of 19.7% (6.6%) and 10% (6.3%) followed by the look-up-table method with a RMSD (bias) of 25.5% (6.8%) and 9.6% (2.6%) at daily and monthly scales, respectively. Among the four methods based on clear-sky PAR empirically corrected for cloud cover, the Dobson and Smith method consistently underestimated daily PAR while the Budyko formulation overestimated daily PAR. Empirically cloud-corrected methods using cloud fraction (CF) performed better under quasi-clear skies (CF0.7), however, all methods showed larger RMSD differences (biases) ranging between 32% and 80.6% (-54.5%-8.7%). Finally, three methods tested for low sun elevations revealed

  11. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  12. A new shape reproduction method based on the Cauchy-condition surface for real-time tokamak reactor control

    International Nuclear Information System (INIS)

    Kurihara, K.

    2000-01-01

    A new shape reproduction method is investigated on the basis of an applied mathematical approach. An analytically exact solution of Maxwell's equations in a static current field yields an (boundary) integral equation. In application of this equation to tokamak plasma shape reproduction, it is made clear that a Cauchy condition (both Dirichlet and Neumann conditions) on a hypothetical surface is necessarily identified. To calculate the Cauchy condition using magnetic sensor signals, conversion to numerical formulation of this method is conducted. Then, reproduction errors by this method are evaluated through two numerical tests: The first test uses ideal signals produced from a full equilibrium code in the JT-60 geometry, and the second test uses actual sensor signals in JT-60 experiments. In addition, it is shown that positioning and shape of the Cauchy condition surface is insensitive to reproduction error. Finally, this method is clarified to have preferable features for real-time tokamak reactor control

  13. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  14. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  15. Evaluation of 3D laser device for characterizing shape and surface properties of aggregates used in pavements

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available program for the 3D laser device using fifteen different spherical and twelve cubic shaped objects. The laser device was evaluated for accuracy and repeatability to compute aggregate surface area and volume properties. The results showed that the laser...

  16. Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.

    Science.gov (United States)

    Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue

    2017-04-01

    Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Heat Strain of Various Athletic Surfaces: A Comparison Between Observed and Modeled Wet-Bulb Globe Temperatures.

    Science.gov (United States)

    Pryor, J Luke; Pryor, Riana R; Grundstein, Andrew; Casa, Douglas J

    2017-11-01

      The National Athletic Trainers' Association recommends using onsite wet-bulb globe temperature (WBGT) measurement to determine whether to modify or cancel physical activity. However, not all practitioners do so and instead they may rely on the National Weather Service (NWS) to monitor weather conditions.   To compare regional NWS WBGT estimates with local athletic-surface readings and compare WBGT measurements among various local athletic surfaces.   Observational study.   Athletic fields.   Measurements from 2 identical WBGT devices were averaged on 10 athletic surfaces within an NWS station reporting radius. Athletic surfaces consisted of red and black all-weather tracks (track), blue and black hard tennis courts (tennis), nylon-knit artificial green turf, green synthetic turfgrass, volleyball sand, softball clay, natural grass (grass), and a natural lake (water). Measurements (n = 143 data pairs) were taken over 18 days (May through September) between 1 pm and 4:30 pm in direct sunlight 1.2 m above ground. The starting location was counterbalanced across surfaces. The NWS weather data were entered into an algorithm to model NWS WBGT.   Black tennis, black track, red track, and volleyball sand WBGT recordings were greater than NWS estimates ( P ≤ .05). When all athletic-surface measurements were combined, NWS (26.85°C ± 2.93°C) underestimated athletic-surface WBGT measurements (27.52°C ± 3.13°C; P < .001). The range of difference scores (-4.42°C to 6.14°C) and the absolute mean difference (1.71°C ± 1.32°C) were large. The difference between the onsite and NWS WBGT measurements resulted in misclassification of the heat-safety activity category 45% (65/143) of the time ([Formula: see text]= 3.857, P = .05). The WBGT of water was 1.4°C to 2.7°C lower than that of all other athletic surfaces ( P = .04). We observed no other differences among athletic surfaces but noted large WBGT measurement variability among athletic playing surfaces.

  18. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding.

    Science.gov (United States)

    Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E

    2009-09-15

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  19. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    2009-09-01

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  20. Application of Taguchi method to optimization of surface roughness during precise turning of NiTi shape memory alloy

    Science.gov (United States)

    Kowalczyk, M.

    2017-08-01

    This paper describes the research results of surface quality research after the NiTi shape memory alloy (Nitinol) precise turning by the tools with edges made of polycrystalline diamonds (PCD). Nitinol, a nearly equiatomic nickel-titanium shape memory alloy, has wide applications in the arms industry, military, medicine and aerospace industry, and industrial robots. Due to their specific properties NiTi alloys are known to be difficult-to-machine materials particularly by using conventional techniques. The research trials were conducted for three independent parameters (vc, f, ap) affecting the surface roughness were analyzed. The choice of parameter configurations were performed by factorial design methods using orthogonal plan type L9, with three control factors, changing on three levels, developed by G. Taguchi. S/N ratio and ANOVA analyses were performed to identify the best of cutting parameters influencing surface roughness.

  1. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    Science.gov (United States)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  2. Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.

    Science.gov (United States)

    Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2017-11-07

    This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determination of the Dissolution Slowness Surface by Study of Etched Shapes: II. Comparison of 2D Experimental and Theoretical Etching Shapes

    Science.gov (United States)

    Leblois, T.; Tellier, C. R.; Messaoudi, T.

    1997-03-01

    The anisotropic etching behavior of quartz crystal in concentrated ammonium bifluoride solution is studied and analyzed in the framework of a tensorial model. This model allows to simulate bi- or three-dimensional etching shapes from the equation for the representative surface of the dissolution slowness. In this paper, we present experimental results such as surface profile and initially circular cross-sectional profiles of differently singly- or doubly-rotated cuts. The polar diagrams of the dissolution slowness vector in several planes are deduced from experimental data. The comparison between predicted surface and cross-sectional profiles and experimental results is detailed and shows a good agreement. In particular, several examples give evidence that the final etched shapes are correlated to the extrema of the dissolution slowness. However, in several cases, experimental shapes cannot be simply correlated to the presence of extrema. Simulation gives effectively evidence for an important role played by more progressive changes in the curvature of the slowness surface. Consequently, analysis of data merits to be treated carefully. Nous nous proposons d'étudier et d'analyser à l'aide du modèle tensoriel de la dissolution l'attaque chimique anisotrope du cristal de quartz dans une solution concentrée de bifluorure d'ammonium. Ce modèle permet de simuler des formes usinées à deux ou trois dimensions à partir de l'équation de la surface représentative de la lenteur de dissolution du cristal de quartz. Dans cet article, nous présentons des résultats expérimentaux concernant des profils de surface et des sections initialement cylindriques de coupes à simple et double rotation. Les diagrammes polaires du vecteur lenteur de dissolution dans différents plans sont déduits de données expérimentales. La comparaison entre les profils de surface et de section théoriques et les résultats expérimentaux est détaillée et montre un bon accord. En

  4. Effect of various physical parameters on surface and build-up dose for 15-MV X-rays

    International Nuclear Information System (INIS)

    Yadav, Girigesh; Yadav, R.S.; Kumar, Alok

    2010-01-01

    The purpose of this study was to find out the effect of various physical parameters on the skin and build-up doses of 15-MV photon beams. The effects of field dimensions, acrylic shadow tray, focus to-skin distance (FSD) on surface and buildup dose were determined for open, motorized 60 deg wedge (MW) and blocked fields. A 'Markus' plane parallel plate chamber was used for these measurements in an Elekta (6-15MV) linear accelerator. The surface dose for MW fields was lower than the dose for an open field, but the trend reversed for large fields and higher degree wedges. With the use of an acrylic shadow tray, the surface dose increased for all field sizes, but the increase was dominant for large fields. The surface dose for blocked fields was lower than the dose for open fields. The percentage depth dose of 10 x 10 cm 2 field at surface (PDD 0 ) for open beam were 13.89%, 11.71%, and 10.74% at 80 cm, 100 cm, and 120 cm FSD, respectively. The blocking tray increased PDD 0 of 10 x 10 cm 2 field to 26.29%, 14.01%, and 11.53%, while the motorized 60 deg wedge decreased PDD 0 to 11.32%, 9.7%, and 8.9 % at these FSDs. The maximum PDD difference seen at surface (i.e. skin) for 5x5 cm 2 , 15x15 cm 2 , and 30x30 cm 2 are 0.5%, 4.6%, and 5.6% for open field and 0.9%, 4.7%, and 7.2% for motorized 60 deg wedge field, when FSDs varied from 80 cm to 120 cm. The maximum PDD difference seen at surface for 5x5 cm 2 , 15x15 cm 2 , and 30x30 cm 2 fields are 5.6%, 22.8%, and 29.6%, respectively, for a 1.0-cm perspex-blocking tray as the FSD is changed. The maximum PDD difference was seen at the surface (i.e. skin) and this decreased with increasing depth. (author)

  5. Effect of Tip Shape of Frictional Stir Burnishing Tool on Processed Layer’s Hardness, Residual Stress and Surface Roughness

    Directory of Open Access Journals (Sweden)

    Yoshimasa Takada

    2018-01-01

    Full Text Available Friction stir burnishing (FSB is a surface-enhancement method used after machining, without the need for an additional device. The FSB process is applied on a machine that uses rotation tools (e.g., machining center or multi-tasking machine. Therefore, the FSB process can be applied immediately after the cutting process using the same machine tool. Here, we apply the FSB to the shaft materials of 0.45% C steel using a multi-tasking machine. In the FSB process, the burnishing tool rotates at a high-revolution speed. The thin surface layer is rubbed and stirred as the temperature is increased and decreased. With the FSB process, high hardness or compressive residual stress can be obtained on the surface layer. However, when we applied the FSB process using a 3 mm diameter sphere tip shape tool, the surface roughness increased substantially (Ra = 20 µm. We therefore used four types of tip shape tools to examine the effect of burnishing tool tip radius on surface roughness, hardness, residual stress in the FSB process. Results indicated that the surface roughness was lowest (Ra = 10 µm when the tip radius tool diameter was large (30 mm.

  6. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  7. Optical Feather and Foil for Shape and Dynamic Load Sensing of Critical Flight Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on...

  8. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    OpenAIRE

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH ...

  9. Heat and mass transfer by free convection in a porous medium along a surface of arbitrary shape

    International Nuclear Information System (INIS)

    Hossain, M.A.; Nakayama, A.

    1993-06-01

    Free convection flow of a viscous incompressible fluid in the presence of species concentration along a surface of arbitrary shape embedded in a saturated porous medium is investigated with non-uniform surface temperature and surface concentration distributions. The equations governing the flow, derived in the form of local similarity and nonsimilarity equations, are integrated numerically using the implicit finite difference approximation together with the Keller box method. Exact solutions of the local similarity equations are also obtained and compared with the finite difference solutions. All the solutions are shown graphically in terms of local Nusselt number, Nu χ , and local Sherwood number, Sh χ , against the physical parameter ξ (which characterizes the streamwise distance along the surface from the leading edge) taking the value of the Lewis number, Le, equals 1 0, 5, and 10 while N (which defines the ratio between the buoyancy forces arise due to thermal and mass diffusion) is unity. (author). Refs, 5 figs, 1 tab

  10. The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water–oil interfaces via molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Jiao, Yang; Dai, Lenore L., E-mail: Lenore.Dai@asu.edu [Arizona State University, School of Engineering of Matter, Transport, and Energy (United States)

    2016-04-15

    We have employed molecular dynamics simulations to systematically investigate the effects of nanoparticles’ structural and chemical properties on their diffusive behaviors at/across the water–benzene interface. Four different nanoparticles were studied: modified hydrocarbon nanoparticles with a mean diameter of 1.2 nm (1.2HCPs), modified hydrocarbon nanoparticles with a mean diameter of 0.6 nm (0.6HCPs), single-walled carbon nanotubes (SWCNTs), and buckyballs. We found that the diffusion coefficients of 0.6 and 1.2HCP were larger than the corresponding values predicted using the Stokes–Einstein (SE) equation and attributed this deviation to the small particle size and the anisotropy of the interface system. In addition, the observed directional diffusive behaviors for various particles were well-correlated with the derivative of the potential of mean force (PMF), which might indicate an effective driving force for the particles along the direction perpendicular to the interface. We also found that nanoparticles with isotropic shape and uniform surface, e.g., buckyballs, tend to have smaller diffusion coefficients than those of nanoparticles with comparable dimensions but anisotropic shapes and non-uniform surface composition, e.g., SWCNT and 0.6HCP. One possible hypothesis for this behavior is that the “perfect” isotropic shape and uniform surface of buckyballs result in a better-defined “solvation shell” (i.e., a shell of solution molecules), which leads to a larger “effective radius” of the particle, and thus, a reduced diffusion coefficient.

  11. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature.

    Science.gov (United States)

    Wu, Jing; Lee, Nae Yoon

    2014-05-07

    Here, we introduce a simple and facile method for bonding poly(dimethylsiloxane) (PDMS) to various plastics irreversibly via a one-step chemical treatment at room temperature. This was mediated by poly[dimethylsiloxane-co-(3-aminopropyl)methylsiloxane] (amine-PDMS linker), a chemical composed of a PDMS backbone incorporating an amine side group. Room temperature anchoring of the linker was achieved via a reaction between the amine functionality of the linker and the carbon backbone of the plastics, thereby producing urethane bonds. This resulted in the PDMS functionality being exposed on the plastic surface, mimicking the surface properties of bulk PDMS. Following corona treatment of the PDMS-modified plastic and a sheet of PDMS, the two surfaces were placed in contact with each other and heated at 80 °C for 1 h. This resulted in permanent bonding between PDMS and the plastic. To examine the effectiveness of the amine-PDMS linker coating procedure, the surfaces were characterized by measuring water contact angles and by employing X-ray photoelectron spectroscopy (XPS). Polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(vinylchloride) (PVC), and polyimide (PI) were bonded successfully to PDMS using this method, with bond strengths of PC, PET, and PVC with PDMS measured to be approximately 428.5 ± 17.9, 361.7 ± 31.2, and 430.0 ± 14.9 kPa, respectively. The bond strength of a PC-PC homogeneous assembly, also realized using the proposed method, was measured to be approximately 343.9 ± 7.4 kPa. Delamination tests revealed that the PC-PC assembly was able to withstand intense introduction of a liquid whose per-minute injection volume was approximately 278 times greater than the total internal volume of the microchannel fabricated in PC. This demonstrated the robustness of the seal formed using the proposed technique.

  12. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells

    International Nuclear Information System (INIS)

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Matsuyama, Keigo; Nakazato, Yasutaro; Tochigi, Saeko; Hirai, Toshiro; Kondoh, Sayuri; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-01-01

    Highlights: ► There is increasing concern regarding the potential health risks of nanomaterials. ► We evaluated the effect of surface properties of nanomaterials on cellular responses. ► We showed that the surface properties play an important in determining its safety. ► These data provide useful information for producing safer nanomaterials. -- Abstract: Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70 nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.

  13. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  14. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications

    Science.gov (United States)

    Gatebe, Charles K.; King, Michael D.

    2016-01-01

    In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/).

  15. Neoclassical transport coefficients for tokamaks with bean-shaped flux surfaces

    International Nuclear Information System (INIS)

    Chang, C.S.; Kaye, S.M.

    1990-11-01

    Simple analytic representations of the neoclassical transport coefficients for indented flux surfaces are presented. It is shown that a transport coefficient for an indented flux surface can be expressed in terms of a linear combination of the previously known transport coefficients for two nonindented flux surfaces. Numerical calculations based on actual equilibria from the PBX-M tokamak indicate that, even for modestly indented flux surfaces, the ion neoclassical thermal transport can be over a factor of two smaller than in a circular plasma with the same midplane radius or with the equivalent areas. 6 refs., 5 figs., 1 tab

  16. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses

    Science.gov (United States)

    Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.

    2018-06-01

    We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.

  17. Secular changes in Earth's shape and surface mass loading derived from combinations of reprocessed global GPS networks

    Science.gov (United States)

    Booker, David; Clarke, Peter J.; Lavallée, David A.

    2014-09-01

    The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.

  18. Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Sael, Lee; Kihara, Daisuke

    2009-01-01

    With structure databases expanding at a rapid rate, the task at hand is to provide reliable clues to their molecular function and to be able to do so on a large scale. This, however, requires suitable encodings of the molecular structure which are amenable to fast screening. To this end, moment-based representations provide a compact and nonredundant description of molecular shape and other associated properties. In this article, we present an overview of some commonly used representations with specific focus on two schemes namely spherical harmonics and their extension, the 3D Zernike descriptors. Key features and differences of the two are reviewed and selected applications are highlighted. We further discuss recent advances covering aspects of shape and property-based comparison at both global and local levels and demonstrate their applicability through some of our studies.

  19. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    徐又一

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...

  20. Numerical investigation of shape domain effect to its elasticity and surface energy using adaptive finite element method

    Science.gov (United States)

    Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat

    2018-05-01

    In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.

  1. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2016-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  2. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2017-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  3. Skin dose estimation for various beam modifiers and source-to-surface distances for 6MV photons

    Directory of Open Access Journals (Sweden)

    Yadav Girigesh

    2009-01-01

    Full Text Available The purpose of this study was to learn the skin dose estimation for various beam modifiers at various source-to-surface distances (SSDs for a 6 MV photon. Surface and buildup region doses were measured with an acrylic slab phantom and Markus 0.055 cc parallel plate (PP ionization chamber. Measurements were carried out for open fields, motorized wedge fields, acrylic block tray fields ranging from 3 x 3 cm 2 to 30 x 30 cm 2 . Twenty-five percent of the field was blocked with a cerrobend block and a Multileaf collimator (MLC. The effect of the blocks on the skin dose was measured for a 20 x 20 cm 2 field size, at 80 cm, 100 cm and 120 cm SSD. During the use of isocentric treatments, whereby the tumor is positioned at 100 cm from the source, depending on the depth of the tumor and size of the patient, the SSD can vary from 80 cm to 100 cm. To achieve a larger field size, the SSD can also be extended up to 120 cm at times. The skin dose increased as field size increased. The skin dose for the open 10 x10 cm 2 field was 15.5%, 14.8% and 15.5% at 80 cm, 100 cm and 120 cm SSDs, respectively. The skin dose due to a motorized 60 0 wedge for the 10 x 10 cm 2 field was 9.9%, 9.5%, and 9.5% at 80 cm, 100 cm and 120 cm SSDs. The skin dose due to acrylic block tray, of thickness 1.0 cm for a 10 x 10 cm 2 field was 27.0%, 17.2% and 16.1% at 80, 100 and 120 cm SSD respectively. Due to the use of an acrylic block tray, the surface dose was increased for all field sizes at the above three SSDs and the percentage skin dose was more dominant at the lower SSD and larger field size. The skin dose for a 30 x 30 cm 2 field size at 80 cm SSD was 38.3% and it was 70.4% for the open and acrylic block tray fields, respectively. The skin doses for motorized wedge fields were lower than for open fields. The effect of SSDs on the surface dose for motorized 60° wedge fields was not significant for a small field size (difference was less than 1% up to a 15 x 15 cm 2 field size

  4. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures

    Science.gov (United States)

    Shi, Binkai; Qiao, Pizhong

    2018-03-01

    Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.

  5. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    Science.gov (United States)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  6. Crystallography of surface precipitates associated with shape change in a Ti–5.26 wt.% Cr alloy

    International Nuclear Information System (INIS)

    Qiu, Dong; Zhang, Ming-Xing; Kelly, Patrick M.; Furuhara, Tadashi

    2013-01-01

    The crystallographic features of surface α precipitates accompanied by surface tilt(s) in a Ti–5.26 wt.% Cr alloy have been comprehensively studied by transmission electron microscopy of samples prepared using a focused ion beam. For comparison, the bulk precipitates formed far below the free surface in the same alloy have also been examined. It is found that both the surface and the bulk α precipitates exhibit a lath-shaped morphology and their habit plane always contains a single set of misfit dislocations with the Burgers vector [11 ¯ 1] β /2|[21 ¯ 1 ¯ 3] α /6. However, the surface precipitates differ from the bulk ones in terms of their orientation relationship with the matrix, the habit plane and the long axis direction. As a result, the interphase interface between the surface precipitates and matrix contains glissile dislocations and the interface of bulk precipitates is associated with sessile dislocations. Such a glissile interface is one of the major common features of displacive-diffusional and martensitic transformations and can be used to further understand the mechanism of bainitic transformation in steels and other alloy systems

  7. Thermal Infrared Spectra of Microcrystalline Sedimentary Phases: Effects of Natural Surface Roughness on Spectral Feature Shape

    Science.gov (United States)

    Hardgrove, C.; Rogers, A. D.

    2012-03-01

    Thermal infrared spectral features of common microcrystalline phases (chert, alabaster, micrite) are presented. Spectra are sensitive to mineralogy and micron-scale (~1-25 µm) surface roughness. Roughness is on the scale of the average crystal size.

  8. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    Science.gov (United States)

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Teager-Kaiser Energy and Higher-Order Operators in White-Light Interference Microscopy for Surface Shape Measurement

    Directory of Open Access Journals (Sweden)

    Abdel-Ouahab Boudraa

    2005-10-01

    Full Text Available In white-light interference microscopy, measurement of surface shape generally requires peak extraction of the fringe function envelope. In this paper the Teager-Kaiser energy and higher-order energy operators are proposed for efficient extraction of the fringe envelope. These energy operators are compared in terms of precision, robustness to noise, and subsampling. Flexible energy operators, depending on order and lag parameters, can be obtained. Results show that smoothing and interpolation of envelope approximation using spline model performs better than Gaussian-based approach.

  10. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.

    Science.gov (United States)

    Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang

    2016-02-01

    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our

  11. Evaluation of the shape of the specular peak for high glossy surfaces

    Science.gov (United States)

    Obein, Gaël.; Ouarets, Shiraz; Ged, Guillaume

    2014-02-01

    Gloss is the second most relevant visual attribute of a surface beside its colour. While the colour originates from the wavelength repartition of the reflected light, gloss originates from its angular distribution. When an observer is asked to evaluate the gloss of a surface, he always first orientate his eyes along the specular direction before lightly tilting the examined sample. This means that gloss is located in and around the specular direction, in a peak that is called the specular peak. On the one hand, this peak is flat and broad on matte surfaces on the other hand, it is narrow and sharp on high gloss surfaces. For the late ones, the FWHM of the specular peak is less than 2° which can be quite difficult to measure. We developed a dedicated facility capable of measuring specular peak with a FWHM up to 0,1 °. We measured the evolution of the peak according to the angle of illumination and the specular gloss of the sample in the restricted field of very glossy surface. The facility and peaks measured are presented in the paper. The next step will be to identify the correlations between the peak and the roughness of the sample.

  12. Biofouling community pattern on various metallic surfaces in the coastal waters of Kalpakkam, Southwestern Bay of Bengal

    International Nuclear Information System (INIS)

    Sahu, Gouri; Satpathy, K.K.; Mohanty, A.K.; Bindu, V.K.

    2015-01-01

    Biofouling causes great operational hazard in different marine installations across the globe. And the expenditure incurred on combating biofouling is astounding. It is reported that shut down of a 235 MW (e) power station due to fouling, costs about 170 lakhs (at Rs. 3.00 per kw/h) per day. Because of this economic implication, biofouling has been a thrust area of study for the marine researchers. To assess the biofouling pattern, metallic surfaces are the best options because of their extensive use at various installations in the marine environment. Hence, knowledge on qualitative and quantitative aspects of biofouling with respect to metal surfaces is of great value to design an efficient fouling control strategy. Keeping this in mind, nine types of metal (SS-316, SS-304, MS, Titanium, Admiralty Brass, Aluminum Brass, Copper, Monel and Cupro-nickel) panels (12 x 9 x 0.1 cm) were exposed to coastal water of Kalpakkam from MAPS jetty at a depth of 2 m below the lowest low tide. Results indicated that copper based panels were found to be foul-free except monel. Although, fouling settlement was encountered on monel, the adherence was weak. Non-copper based metals showed 100% area coverage with high population density. However, in case of MS, due to exfoliation of corrosion deposits, unevenness in fouling colonization at later stages of development took place, though the early settlement was unaffected by initial corrosion. As expected, Titanium showed high rate of fouling growth along with high fouling diversity compared to other non-copper based metals. Absence of specific foulants such as, crustaceans and algae on Titanium surface reported by others was not observed during our study. The information on Titanium would be handy for Prototype Fast Breeder Reactor (PFBR) cooling water system wherein, the same has been selected as condenser and process water heat exchanger material. For non-copper based alloys including monel the fouling load ranged from 18 to 40 g

  13. Rapid visualization of fingerprints on various surfaces using ZnO superstructures prepared via simple combustion route

    Directory of Open Access Journals (Sweden)

    N.H. Deepthi

    2018-03-01

    Full Text Available A simple solution combustion route has been used to prepare ZnO nanopowders (NPs using different barbiturates (Barbituric acid, 1, 3-dimethyl barbiturates and 2-thiobarbiturates as fuels. The obtained product was well characterized by powder X-ray diffraction (PXRD, scanning electron microscope (SEM, ultraviolet-visible Spectroscope (UV-Vis and Photoluminescence (PL. The PXRD results confirm the hexagonal phase of the material. The detailed structural analysis is performed by Rietveld refinement method. The energy band gap of NPs is found to be in the range of 3.31 - 3.49 eV. The growth mechanism for the formation of 3D micro-architectures is discussed in detail. The PL emission spectrum shows a broad emission peak at 502 nm upon an 406 nm excitation wavelength. The ZnO NPs can be used for the visualization of latent finger prints (LFPs under normal light on various porous and non-porous surfaces. In this case, the visualized LFPs are found to be excellent compared to the commercially available powders. Keywords: Zinc oxide, Barbiturates, Photoluminescence, Latent fingerprint

  14. The Influence of Cross-Sectional Shape and Orientation of Micropillar Surface on Microdroplet Formation by a Dewetting Process

    Directory of Open Access Journals (Sweden)

    Bambang Arip Dwiyantoro

    2013-07-01

    Full Text Available In this study the dewetting process on micropillars of three different cross-sectional shapes, i.e. circular, square and triangular, was numerically investigated. The influence of the orientation of the triangular and square micropillars on the dewetting behavior was also studied. The numerical simulations showed that the cross-sectional shapes of the micropillars and their orientation play an important role in determining the flow pattern of the dewetting process, especially the evolution and movement of the meniscus across the micropillar before a microdroplet is formed. The diameter of the microdroplets is mainly determined by the capillary effect, viscous drag and fluid inertia contributed by the peeling rate and the thickness of the water layer above the micropillar. The numerical results also indicate that the hydraulic diameter of the micropillars (Dp is one of the parameters governing the size of the microdroplets formed on the top surface of the micropillars after the dewetting process, while the microdroplet diameter is almost insensitive to the cross-sectional shape and orientation of the micropillars. The dimensionless diameter of the microdroplets (d can then be expressed as a function of a dimensionless group, i.e. the Ohnesorge number (Oh, the capillary number (Ca, the dimensionless liquid thickness (H, and the contact angle (q.

  15. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    for particle and surface scattering calculations and the uniaxial perfectly matched layer (UPML) absorbing boundary conditions for truncation of the FDTD grid. We show that the FDTD approach has a significant potential for studying the light scattering by cloud, dust, and biological particles. The applications...

  16. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  17. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  18. Preparation of MgO Catalytic Support in Shaped Mesoporous High Surface Area Form

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Šolcová, Olga; Zdražil, Miroslav

    2004-01-01

    Roč. 76, 1-3 (2004), s. 137-149 ISSN 1387-1811 R&D Projects: GA AV ČR IAA4072306 Institutional research plan: CEZ:AV0Z4072921 Keywords : MgO support * sigh Surface area * texture Subject RIV: CC - Organic Chemistry Impact factor: 2.093, year: 2004

  19. Optical microscope for three-dimensional surface displacement and shape measurements at the microscale.

    Science.gov (United States)

    Xia, Shuman; Pan, Zhipeng; Zhang, Jingwen

    2014-07-15

    We report a novel optical microscope for full-field, noncontact measurements of three-dimensional (3D) surface deformation and topography at the microscale. The microscope system is based on a seamless integration of the diffraction-assisted image correlation (DAIC) method with fluorescent microscopy. We experimentally demonstrate the microscope's capability for 3D measurements with submicrometer spatial resolution and subpixel measurement accuracy.

  20. Automated Method for Fractographic Analysis of Shape and Size of Dimples on Fracture Surface of High-Strength Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Ihor Konovalenko

    2018-03-01

    Full Text Available An automated method for analyzing the shape and size of dimples of ductile tearing formed during static and impact fracture of titanium alloys VT23 and VT23M is proposed. The method is based on the analysis of the image topology. The method contains the operations of smoothing the initial fractographic image; its convolution with a filter to identify the topological ridges; thresholding with subsequent skeletonization to identify boundaries between dimples; clustering to isolate the connected areas that represent the sought objects—dimples. For each dimple, the following quantitative characteristics were calculated: area, coefficient of roundness and visual depth in units of image intensity. The surface of ductile tearing was studied by analyzing the peculiarities of parameter distribution of the found dimples. The proposed method is applied to fractograms of fracture surfaces of titanium alloys VT23 and VT23M.

  1. Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

    Directory of Open Access Journals (Sweden)

    Hernando P Bacosa

    2015-12-01

    Full Text Available Following the Deepwater Horizon (DWH spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  2. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    Science.gov (United States)

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  3. On applicability of crack shape characterization rules for multiple in-plane surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su

    2009-01-01

    The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.

  4. Theoretical study of the noble metals on semiconductor surfaces and Ti-base shape memory alloys

    International Nuclear Information System (INIS)

    Ding, Yungui.

    1994-01-01

    The electronic and structural properties of the (√3 x √3) R30 degrees Ag/Si(111) and (√3 x √3) R30 degrees Au/Si(111) surfaces are investigated using first principles total energy calculations. We have tested almost all experimentally proposed structural models for both surfaces and found the energetically most favorable model for each of them. The lowest energy model structure of the (√3 x √3) R30 degrees Ag/Si(111) surface consists of a top layer of Ag atoms arranged as ''honeycomb-chained-trimers'' lying above a distorted ''missing top layer'' Si(111) substrate. The coverage of Ag is 1 monolayer (ML). We find that the honeycomb structure observed in STM images arise from the electronic charge densities of an empty surface band near the Fermi level. The electronic density of states of this model gives a ''pseudo-gap'' around the Fermi level, which is consistent with experimental results. The lowest energy model for the (√3 x √3) R30 degrees Au/Si(111) surface is a conjugate honeycomb-chained-trimer (CHCT-1) configuration which consists of a top layer of trimers formed by 1 ML Au atoms lying above a ''missing top layer'' Si(111) substrate with a honeycomb-chained-trimer structure for its first layer. The structures of Au and Ag are in fact quite similar and belong to the same class of structural models. However, small variation in the structural details gives rise to quite different observed STM images, as revealed in the theoretical calculations. The electronic charge density from bands around the Fermi level for the (√3 x √3) R30 degrees, Au/Si(111) surface also gives a good description of the images observed in STM experiments. First principles calculations are performed to study the electronic and structural properties of a series of Ti-base binary alloys TiFe, TiNi, TiPd, TiMo, and TiAu in the B2 structure

  5. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    Science.gov (United States)

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  6. Fringe projection application for surface variation analysis on helical shaped silicon breast

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  7. THE MECHANISM OF SURFACE DIFFUSION OF H AND D ATOMS ON AMORPHOUS SOLID WATER: EXISTENCE OF VARIOUS POTENTIAL SITES

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Tetsuya; Kuwahata, Kazuaki; Watanabe, Naoki; Kouchi, Akira; Chigai, Takeshi [Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819 (Japan); Kimura, Yuki [Department of Earth and Planetary Materials Science, Tohoku University, Sendai 980-8578 (Japan); Pirronello, Valerio, E-mail: hama@lowtem.hokudai.ac.jp [Dipartimento di Fisica e Astronomia, Universita' di Catania, I-95125 Catania, Sicily (Italy)

    2012-10-01

    To understand elementary processes leading to H{sub 2} formation, and the hydrogenation and deuteration reactions of adsorbed species on dust grains in dense clouds, we experimentally investigated the diffusion of atomic hydrogen and deuterium on amorphous solid water (ASW) at temperatures of 8-15 K. The present study extended our previous study for selective detections of H and D atoms, and of H{sub 2} (J = 0 and 1) and D{sub 2} (J = 0 and 1) molecules adsorbed on ASW using both photo-stimulated desorption and resonance-enhanced multiphoton ionization, to investigate potential sites on ASW for diffusion, recombination dynamics, and the diffusion mechanism of H and D atoms. Our results demonstrate that the ASW surface contains various potential sites that can be categorized into at least three groups: very shallow, middle-, and deep-potential sites, with diffusion activation energies of {<=}18, 22 (23 meV for D atoms), and {>=}30 meV, respectively. The present study pictured the outline of H{sub 2} formation on cosmic ice dust at low temperatures: H atoms landing on the dust will diffuse rapidly at the abundant shallow and middle sites on ASW, and finally become trapped at deep sites. The H atoms that arrive next recombine with such trapped H atoms to yield H{sub 2} molecules. The small isotopic difference between the diffusion of H and D atoms on ASW indicates that the diffusion mechanism can be explained by thermal hopping, at least at middle-potential sites.

  8. 3-D shape analysis of palatal surface in patients with unilateral complete cleft lip and palate.

    Science.gov (United States)

    Rusková, Hana; Bejdová, Sárka; Peterka, Miroslav; Krajíček, Václav; Velemínská, Jana

    2014-07-01

    Facial development of patients with unilateral complete cleft lip and palate (UCLP) is associated with many problems including deformity of the palate. The aim of this study was to evaluate palatal morphology and variability in patients with UCLP compared with Czech norms using methods of geometric morphometrics. The study was based on virtual dental cast analysis of 29 UCLP patients and 29 control individuals at the age of 15 years. The variability of palatal shape in UCLP patients was greater than that in nonclefted palates. Only 24% of clefted palates fell within the variability of controls. The palatal form of UCLP patients (range from 11.8 to 17.2 years) was not correlated with age. Compared with control palates, palates of UCLP patients were narrower, more anteriorly than posteriorly. Apart from the praemaxilla region, they were also shallower, and the difference increased posteriorly. The UCLP palate was characterised by the asymmetry of its vault. The maximum height of the palatal vault was anterior on the clefted side, whereas it was posterior on the nonclefted side. The slope of the UCLP palate was more inclined compared with the control group. The praemaxilla was therefore situated more inferiorly. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating

    Czech Academy of Sciences Publication Activity Database

    Huk, A.; Izak-Nau, E.; el Yamani, N.; Uggerud, H.; Vadset, M.; Zasońska, Beata Anna; Duschl, A.; Dusinska, M.

    2015-01-01

    Roč. 12, 24 July (2015), 25_1-25_20 ISSN 1743-8977 Institutional support: RVO:61389013 Keywords : silver nanomaterials * surface charge * surface coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.649, year: 2015

  10. Contribution of diffuser surfaces to efficiency of tilted T shape parallel highway noise barriers

    Directory of Open Access Journals (Sweden)

    N. Javid Rouzi

    2009-04-01

    Full Text Available Background and aimsThe paper presents the results of an investigation on the acoustic  performance of tilted profile parallel barriers with quadratic residue diffuser tops and faces.MethodsA2D boundary element method (BEM is used to predict the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface and faces of all tilted profile parallel barrier models introduced here is found to  improve the efficiency of barriers compared with rigid equivalent parallel barrier at the examined  receiver positions.Results Applying a QRD with frequency design of 400 Hz on 5 degrees tilted parallel barrier  improves the overall performance of its equivalent rigid barrier by 1.8 dB(A. Increase the treated surfaces with reactive elements shifts the effective performance toward lower frequencies. It is  found that by tilting the barriers from 0 to 10 degrees in parallel set up, the degradation effects in  parallel barriers is reduced but the absorption effect of fibrous materials and also diffusivity of thequadratic residue diffuser is reduced significantly. In this case all the designed barriers have better  performance with 10 degrees tilting in parallel set up.ConclusionThe most economic traffic noise parallel barrier, which produces significantly  high performance, is achieved by covering the top surface of the barrier closed to the receiver by  just a QRD with frequency design of 400 Hz and tilting angle of 10 degrees. The average Aweighted  insertion loss in this barrier is predicted to be 16.3 dB (A.

  11. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre.

    Science.gov (United States)

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-06-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces.

  12. Wavelet theory and belt finishing process, influence of wavelet shape on the surface roughness parameter values

    International Nuclear Information System (INIS)

    Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El

    2011-01-01

    This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.

  13. Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals

    International Nuclear Information System (INIS)

    Kruszynska, Marta; Borchert, Holger; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2011-01-01

    CuInS 2 (CIS) nanocrystals were successfully synthesized through a hot-injection technique employing a reaction of copper (I) acetate and indium (III) acetate with tert-dodecanethiol as a source of sulfur, and trioctylphosphine oxide and 1-dodecanethiol were used as ligands. The reaction medium was a mixture of two solvents: oleylamine and 1-octadecene. Varying the ratio between both solvents leads to the formation of wurtzite CuInS 2 particles with shapes ranging from triangular to rod-shaped with length up to 50 nm. Oleylamine turned out to influence the reaction condition in two opposite ways: by leading to monomer depletion before the injection of the sulfur precursor, and at the same time increasing the activity of the monomers remaining in solution. By changing the sulfur source from tert-dodecanethiol to sulfur dissolved in oleylamine, triangular particles with zinc blend structure and a smaller size (∼5 nm) were synthesized. The final materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and absorption spectroscopy (UV–Vis).

  14. Modulated solar pressure-based surface shape control of paraboloid space reflectors with an off-axis Sun-line

    Science.gov (United States)

    Liu, Jiafu; McInnes, Colin R.

    2018-03-01

    This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength

  15. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    Science.gov (United States)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  16. Fourier method for modeling slanted lamellar gratings of arbitrary end-surface shapes in conical mounting.

    Science.gov (United States)

    Li, Lifeng

    2015-10-01

    An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.

  17. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces.

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2017-03-06

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10-100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems.

  18. Vibration attenuation and shape control of surface mounted, embedded smart beam

    Directory of Open Access Journals (Sweden)

    Vivek Rathi

    Full Text Available Active Vibration Control (AVC using smart structure is used to reduce the vibration of a system by automatic modification of the system structural response. AVC is widely used, because of its wide and broad frequency response range, low additional mass, high adaptability and good efficiency. A lot of research has been done on Finite Element (FE models for AVC based on Euler Bernoulli Beam Theory (EBT. In the present work Timoshenko Beam Theory (TBT is used to model a smart cantilever beam with surface mounted sensors / actuators. A Periodic Output Feedback (POF Controller has been designed and applied to control the first three modes of vibration of a flexible smart cantilever beam. The difficulties encountered in the usage of surface mounted piezoelectric patches in practical situations can be overcome by the use of embedded shear sensors / actuators. A mathematical model of a smart cantilever beam with embedded shear sensors and actuators is developed. A POF Controller has been designed and applied to control of vibration of a flexible smart cantilever beam and effect of actuator location on the performance of the controller is investigated. The mathematical modeling and control of a Multiple Input multiple Output (MIMO systems with two sensors and two actuators have also been considered.

  19. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    Science.gov (United States)

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  20. Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Jakob, A M; Müller, M; Rauschenbach, B; Mayr, S G

    2012-01-01

    Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed. (paper)

  1. Goldmann tonometry tear film error and partial correction with a shaped applanation surface.

    Science.gov (United States)

    McCafferty, Sean J; Enikov, Eniko T; Schwiegerling, Jim; Ashley, Sean M

    2018-01-01

    The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism. The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms. The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p film adhesion error was independent of applanation mire thickness ( R 2 =0.09, p =0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p =0.002). Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error bŷ41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect.

  2. Goldmann tonometry tear film error and partial correction with a shaped applanation surface

    Directory of Open Access Journals (Sweden)

    McCafferty SJ

    2018-01-01

    Full Text Available Sean J McCafferty,1–4 Eniko T Enikov,5 Jim Schwiegerling,2,3 Sean M Ashley1,3 1Intuor Technologies, 2Department of Ophthalmology, University of Arizona College of Medicine, 3University of Arizona College of Optical Science, 4Arizona Eye Consultants, 5Department of Mechanical and Aerospace, University of Arizona College of Engineering, Tucson, AZ, USA Purpose: The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT prism and in a correcting applanation tonometry surface (CATS prism.Methods: The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms.Results: The CATS prism tear film adhesion error (2.74±0.21 mmHg was significantly less than the GAT prism (4.57±0.18 mmHg, p<0.001. Tear film adhesion error was independent of applanation mire thickness (R2=0.09, p=0.04. Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p<0.001. Cadaver eye validation indicated the CATS prism’s tear film adhesion error (1.40±0.51 mmHg was significantly less than that of the GAT prism (3.30±0.38 mmHg; p=0.002.Conclusion: Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error by ~41%. Fluorescein solution increases the tear film adhesion compared to

  3. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials.

    Science.gov (United States)

    Çulhaoğlu, Ahmet Kürşat; Özkır, Serhat Emre; Şahin, Volkan; Yılmaz, Burak; Kılıçarslan, Mehmet Ali

    2017-11-13

    To investigate the effect of different surface treatments on the surface roughness (Ra), wettability, and shear bond strength of polyetheretherketone (PEEK) to composite resin. One hundred ninety eight PEEK specimens were divided into six groups (n = 33). Specimen surfaces were treated with the following surface treatment modalities: silicoating (CoJet), acetone treatment, acid etching (H 2 SO 4 ), airborne particle abrasion (Al 2 O 3 ), laser irradiation (Yb:PL laser), and the nontreated surface serving as the control. Surface roughness was measured with an profilometer (n = 11) and a goniometer was used to measure the surface wettability through contact angle (θ)(n = 11). PEEK surfaces were veneered with a composite resin (n = 11). The specimens were then thermocycled for 10,000 cycles at 5 to 55°C. Shear bond strengths between the PEEK and composite resin were measured with an universal test machine. One-way ANOVA was used to analyze the data. Tukey's post-hoc test was used to determine significant differences between groups (α = 0.05). Surface roughness and wettability of PEEK surfaces along with shear bond strength of PEEK to composite resin were influenced by the surface treatments. (p PEEK surfaces treated by laser irradiation (2.85 ± 0.2 µm) followed by airborne particle abrasion (2.26 ± 0.33 µm), whereas other surface treatment modalities provided similar Ra values, with the acid-etched PEEK surfaces having the lowest mean Ra values (0.35 ± 0.14 µm). Silicoating provided the most wettable PEEK surfaces (48.04 ± 6.28º), followed by either acetone treatment (70.19 ± 4.49º) or acid treatment (76.07 ± 6.61º). Decreased wettability was observed for airborne particle abraded (84.83 ± 4.56º) and laser-treated PEEK surfaces (103.06 ± 4.88º). The highest mean shear bond strength values were observed for acid-etched PEEK surfaces (15.82 ± 4.23 MPa) followed by laser irradiated (11.46 ± 1.97 MPa), airborne particle abraded (10.81 ± 3.06 MPa

  4. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    Science.gov (United States)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated

  5. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  6. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  7. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  8. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    Science.gov (United States)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  9. 10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings

    Science.gov (United States)

    Kang, J. H.; Wenzel, H.; Hoffmann, V.; Freier, E.; Sulmoni, L.; Unger, R.-S.; Einfeldt, S.; Wernicke, T.; Kneissl, M.

    2018-02-01

    Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.

  10. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    Science.gov (United States)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  11. Influence of surface geometry on the culture of human cell lines: A comparative study using flat, round-bottom and v-shaped 96 well plates.

    Directory of Open Access Journals (Sweden)

    Sara Shafaie

    Full Text Available In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates, as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial, A549 (alveolar epithelial and Malme-3M (dermal fibroblastic cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS, LDH release profiles (CytoTox ONE and absolute cell counts (Guava ViaCount, respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05 on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05 at the later time point. Accordingly, these results highlight the impact of

  12. Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties.

    Science.gov (United States)

    Lyu, Lian-Ming; Wang, Wei-Ching; Huang, Michael H

    2010-12-17

    We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.

  13. Analysis of surface integrity in machining of AISI 304 stainless steel under various cooling and cutting conditions

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lung, S.; Seelbach, T.; Jawahir, I. S.

    2018-05-01

    Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers from low yield strength that limits its technological applications. In this paper, liquid nitrogen (LN2) as cryogenic coolant, as well as minimum quantity lubrication (MQL), was applied and investigated. As a reference, conventional flood cooling was examined. Besides the cooling conditions, the feed rate was varied in four steps. A large rounded cutting edge radius and finishing cutting parameters were chosen to increase the mechanical load on the machined surface. The surface integrity was evaluated at both, the microstructural and the topographical levels. After turning experiments, a detailed analysis of the microstructure was carried out including the imaging of the surface layer and hardness measurements at varying depths within the machined layer. Along with microstructural investigations, different topological aspects, e.g., the surface roughness, were analyzed. It was shown that the resulting microstructure strongly depends on the cooling condition. This study also shows that it was possible to increase the micro hardness in the top surface layer significantly.

  14. Equilibrium Crystal Shape of BaZrO{sub 3} and Space Charge Formation in the (011) Surface by Using Ab-Initio Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Kim, Yeong-Cheol [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2017-01-15

    We investigated the equilibrium crystal shape of BaZrO{sub 3} and the space charge formation in an O-terminated (011) surface by using ab-initio thermodynamics. Twenty-two low-indexed (001), (011), and (111) surfaces were calculated to analyze their surface Gibbs-free energy under the stable condition of BaZrO{sub 3}. Based on the Gibbs-Wulff theorem, the equilibrium crystal shape of BaZrO{sub 3} changed from cubic to decaoctahedral with decreasing Ba chemical potential. The dominant facets of BaZrO{sub 3} were {001} and {011}, which were well consistent with experimental observations. The space charge formation in the (011) surface was evaluated using the space-charge model. We found that the (011) surface was even more resistive than the (001) surface.

  15. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  16. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  17. The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP.

    Science.gov (United States)

    Lützenkirchen, J; Franks, G V; Plaschke, M; Zimmermann, R; Heberling, F; Abdelmonem, A; Darbha, G K; Schild, D; Filby, A; Eng, P; Catalano, J G; Rosenqvist, J; Preocanin, T; Aytug, T; Zhang, D; Gan, Y; Braunschweig, B

    2018-01-01

    A wide range of isoelectric points (IEPs) has been reported in the literature for sapphire-c (α-alumina), also referred to as basal plane, (001) or (0001), single crystals. Interestingly, the available data suggest that the variation of IEPs is comparable to the range of IEPs encountered for particles, although single crystals should be much better defined in terms of surface structure. One explanation for the range of IEPs might be the obvious danger of contaminating the small surface areas of single crystal samples while exposing them to comparatively large solution reservoirs. Literature suggests that factors like origin of the sample, sample treatment or the method of investigation all have an influence on the surfaces and it is difficult to clearly separate the respective, individual effects. In the present study, we investigate cause-effect relationships to better understand the individual effects. The reference IEP of our samples is between 4 and 4.5. High temperature treatment tends to decrease the IEP of sapphire-c as does UV treatment. Increasing the initial miscut (i.e. the divergence from the expected orientation of the crystal) tends to increase the IEP as does plasma cleaning, which can be understood assuming that the surfaces have become less hydrophobic due to the presence of more and/or larger steps with increasing miscut or due to amorphisation of the surface caused by plasma cleaning. Pre-treatment at very high pH caused an increase in the IEP. Surface treatments that led to IEPs different from the stable value of reference samples typically resulted in surfaces that were strongly affected by subsequent exposure to water. The streaming potential data appear to relax to the reference sample behavior after a period of time of water exposure. Combination of the zeta-potential measurements with AFM investigations support the idea that atomically smooth surfaces exhibit lower IEPs, while rougher surfaces (roughness on the order of nanometers) result

  18. To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques.

    Science.gov (United States)

    Chakraborty, Madhurima; Paul, Somnath; Mitra, Ishani; Bardhan, Munmun; Bose, Mridul; Saha, Abhijit; Ganguly, Tapan

    2018-01-01

    The nature of interactions between heme protein human hemoglobin (HHb) and gold nanoparticles of two different morphologies that is GNP (spherical) and GNS (star-shaped) have been investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, resonance light scattering (RLS), time resolved fluorescence, FT-IR, and circular dichroism (CD) techniques under physiological condition of pH ~7 at ambient and different temperatures. Analysis of the steady state fluorescence quenching of HHb in aqueous solution in the presence of GNP and GNS suggests that the nature of the quenching is of static type. The static nature of the quenching is also confirmed from time resolved data. The static type of quenching also indicates the possibility of formation of ground state complex for both HHb-GNP and HHb-GNS systems. From the measurements of Stern-Volmer (SV) constants K SV and binding constants, K A and number of binding sites it appears that HHb forms stronger binding with GNP relative to GNS. Analysis of the thermodynamic parameters indicates that the formation of HHb-GNP and HHb-GNS complexes are spontaneous molecular interaction processes (∆G<0). In both cases hydrogen bonding and van der Waals interactions play a dominant role (∆H<0, ∆S<0). Synchronous fluorescence spectroscopy further reveals that the ground state complex formations of HHb-GNP and HHb-GNS preferably occur by binding with the amino acid tyrosine through hydrogen bonding interactions. Moreover the α-helicity contents of the proteins as obtained from the circular dichroism (CD) spectra appears to be marginally reduced by increasing concentrations of GNP and GNS and the α-helical structures of HHb retain its identity as native secondary structure in spite of complex formations with GNP or GNS. These findings demonstrate the efficiency of biomedical applications of GNP and GNS nanoparticles as well as in elucidating their mechanisms of action as drugs or drug delivery

  19. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report.

    Science.gov (United States)

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2014-01-23

    The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  1. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    KAUST Repository

    Thabet, Ali Kassem

    2014-01-23

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  2. Utilizing various data sources for surface transportation human factors research : workshop summary report, November 6-7, 2013

    Science.gov (United States)

    2014-07-01

    The report summarizes a 2-day workshop held on November 6-7, 2013, to discuss data sources for surface transportation human factors research. The workshop was designed to assess the increasing number of different datasets and multiple ways of collect...

  3. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  4. Improvement of surface integrity of Nimonic C 263 super alloy produced by WEDM through various post-processing techniques

    Czech Academy of Sciences Publication Activity Database

    Mandal, A.; Dixit, A. R.; Chattopadhyaya, S.; Paramanik, A.; Hloch, Sergej; Królczyk, G.

    2017-01-01

    Roč. 93, 1-4 (2017), s. 433-443 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : surface integrity * wire-EDM * Nimonic C-263 * multi-cut * recast layer Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 2.209, year: 2016 https://link.springer.com/article/10.1007/s00170-017-9993-x

  5. Improvement of surface integrity of Nimonic C 263 super alloy produced by WEDM through various post-processing techniques

    Czech Academy of Sciences Publication Activity Database

    Mandal, A.; Dixit, A. R.; Chattopadhyaya, S.; Paramanik, A.; Hloch, Sergej; Królczyk, G.

    2017-01-01

    Roč. 93, 1-4 (2017), s. 433-443 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : surface integrity * wire-EDM * Nimonic C-263 * multi-cut * recast layer Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 2.209, year: 2016 https://link.springer.com/ article /10.1007/s00170-017-9993-x

  6. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter

    International Nuclear Information System (INIS)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document

  7. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  8. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe_2O_3) nanocrystals

    International Nuclear Information System (INIS)

    Luna, Carlos; Cuan-Guerra, Aída D.; Barriga-Castro, Enrique D.; Núñez, Nuria O.; Mendoza-Reséndez, Raquel

    2016-01-01

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe_2O_3) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects

  9. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  10. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    Science.gov (United States)

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  11. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  12. Ion desorption phenomena induced by various types of multiply charged projectiles and by photons on solid surfaces

    International Nuclear Information System (INIS)

    Beyec, Y. Le.

    1991-01-01

    Ion desorption experiments are described in two regions of primary ion velocities corresponding to two distinct classes of interaction mechanism. At low speeds, atomic collisions take place, at higher speeds than the electron velocity, electronic collisions occur. Experiments with fast ions above 0.2 MeV/u are described, using 32 S and 235 U ions obtained in a cyclotron and a linear accelerator. Emission of H + ions from solid surfaces is measured and analyzed, and applied to the determination of the charge state of a fast ion in a solid. Experiments using single atomic and polyatomic, keV ions, and organic and CsI cluster ions as projectiles are also presented. Finally, laser desorption is discussed. (R.P.) 81 refs., 27 figs., 2 tabs

  13. Seasonal and spatial variations in microbial activity at various phylogenetic resolutions at a groundwater – surface water interface

    DEFF Research Database (Denmark)

    Yu, Ran; Smets, Barth F.; Gan, Ping

    2014-01-01

    analysis. Consistently higher microbial activities with less variation in depth were measured in the AIMC traps than in the ambient sediments. Flood disturbance appeared to control AIMC activity distributions at the gradually elevated GSI. The highest AIMC activities were generally obtained from locations...... closest to the free surface water boundary except during the dry season when microbial activities were similar across the entire GSI. A clone library of AIMC 16S rRNA genes was constructed, and it confirmed the predominant role of the targeted alphaproteobacterial group in AIMC activity and composition...... phylogenetically related to putative IOB, supporting the occurrence and persistence of active microbial iron oxidation across the studied iron-rich GSI ecosystem....

  14. Research of influence of ultrasound treatment in various liquid media on the surface microflora of semifinished meat

    Directory of Open Access Journals (Sweden)

    D. Maul

    2017-01-01

    Full Text Available In order to prevent microbial spoilage, meat and meat products could be treatedusing different types of processing. However, these methods do not ensures sterilization and can cause decrease of nutrition and biological value of food product. In this regardstudying of the innovative methods, that guaranteeing consumers safe and minimally-processed foods, is particularly relevant. The addition of lactic acid bacteria and ultrasound (US treatment have great potential in this direction.Thesurfacemicroflorainvestigations of semifinished meat products were carried out in order to state the positive influence on their microbiological stability by US treatment in different types of medium. Experiments included the study of antagonistic activity of bacteria strains of the genus Lactobacillus acidophilus(L. acidophilus in relation to typical microflora representatives of chilled meat semi-finished products. Basing on these experiments the strain 7m13 of L. acidophilus with the highest inhibitory activity was chosen. The lowest inhibitory activity was found for strain 5e. The parameters of ultrasonic treatment was established as follows: installed capacity of the treatment 350 Wt with the exposure time 2 minutes, avoiding undesired denaturation changes of muscle proteins. The handling of check samples included the following variants: control (without treatment; sample 1 – treatment in distilled water; sample 2 – treatment in milk whey; sample 3 – treatment in fermented milk whey. As the result of experiments it was found, that the strain 7m13 of L.acidophilus showed the highest antagonistic activity against used test cultures of bacteria. The quantitative and qualitative composition of the surface microflora of the check samples is not constant; coccal forms are less sensitive for ultrasound treatment in comparison with bacilli and yeast cells. The minimal surface microbial population was shown using the combination of fermented milk whey and

  15. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  16. High-Level Systemic Expression of Conserved Influenza Epitope in Plants on the Surface of Rod-Shaped Chimeric Particles

    Directory of Open Access Journals (Sweden)

    Natalia V. Petukhova

    2014-04-01

    Full Text Available Recombinant viruses based on the cDNA copy of the tobacco mosaic virus (TMV genome carrying different versions of the conserved M2e epitope from influenza virus A cloned into the coat protein (CP gene were obtained and partially characterized by our group previously; cysteines in the human consensus M2e sequence were changed to serine residues. This work intends to show some biological properties of these viruses following plant infections. Agroinfiltration experiments on Nicotiana benthamiana confirmed the efficient systemic expression of M2e peptides, and two point amino acid substitutions in recombinant CPs significantly influenced the symptoms and development of viral infections. Joint expression of RNA interference suppressor protein p19 from tomato bushy stunt virus (TBSV did not affect the accumulation of CP-M2e-ser recombinant protein in non-inoculated leaves. RT-PCR analysis of RNA isolated from either infected leaves or purified TMV-M2e particles proved the genetic stability of TMV‑based viral vectors. Immunoelectron microscopy of crude plant extracts demonstrated that foreign epitopes are located on the surface of chimeric virions. The rod‑shaped geometry of plant-produced M2e epitopes is different from the icosahedral or helical filamentous arrangement of M2e antigens on the carrier virus-like particles (VLP described earlier. Thereby, we created a simple and efficient system that employs agrobacteria and plant viral vectors in order to produce a candidate broad-spectrum flu vaccine.

  17. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  18. Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Moradian, Zohreh

    2014-01-01

    Highlights: • Surface tension of non-ideal binary systems of alcohol/DMSO determined. • The surface tension data of binary mixtures were correlated with five equations. • The interaction energy values were calculated by using LWW model. • The U 12 value shows different behavior for two systems with increasing temperature. - Abstract: Surface tension of binary mixtures of tert-butyl alcohol (TBA) and iso-amyl alcohol (IAA) with DMSO (dimethyl sulfoxide) were measured over the entire concentration range at pressure of 82.5 kPa at temperatures between (298.15 and 328.15) K. Correlating the surface tension and surface tension deviation of the above mentioned binary systems was performed with empirical and thermodynamic based models. The average relative error obtained from the comparison of experimental and calculated surface tension values for the two binary systems with five models at various temperatures is less than 2%. The effect of temperature on the interaction energy values in binary mixtures has been used to obtain information about solute structural effects on DMSO. Also, the experimental data were used to evaluate the nature and type of intermolecular interactions in binary mixtures

  19. Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials

    CERN Document Server

    Heinrichs, U; Bussmann, N; Engels, R; Kemmerling, G; Weber, S; Ziemons, K

    2002-01-01

    The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2x2x10 mm sup 3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO sub 4) and exposed to a sup 2 sup 2 Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551+-35% by mechanical polishing the surface compared to 100+-5% for raw crystals. Etching the surface increased the light output to 441+-29%. The untreated crystals had an energy resolution of 24.6+-4.0%. By mechanical polishing the surfac...

  20. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  1. Experimental investigation of the effect of variously-shaped ribs on local heat transfer on the outer wall of the turning portion of a U-channel inside solar air heater

    Science.gov (United States)

    Salameh, Tareq; Alami, Abdul Hai; Sunden, Bengt

    2016-03-01

    In the present work, an experimental investigation of convective heat transfer and pressure drop was carried out for the turning portion of a U-channel where the outer wall was equipped with ribs. The shape of the ribs was varied. The investigation aims to give guidelines for improving the thermo-hydraulic performance of a solar air heater at the turning portion of a U-channel. Both the U-channel and the ribs were made in acrylic material to allow optical access for measuring the surface temperature by using a high-resolution technique based on narrow band thermochromic liquid crystals (TLC R35C5 W) and a CCD camera placed to face the turning portion of the U-channel. The uncertainties were estimated to 5 and 7 % for the Nusselt number and friction factor, respectively. The pressure drop was approximately the same for all the considered shapes of the ribs while the dimpled rib case gave the highest heat transfer coefficient while the grooved rib presented the highest performance index.

  2. A comprehensive approach to identify dominant controls of the behavior of a land surface-hydrology model across various hydroclimatic conditions

    Science.gov (United States)

    Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al

    2017-04-01

    Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.

  3. High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3D surface-shape measurement.

    Science.gov (United States)

    Liu, Xinran; Kofman, Jonathan

    2017-07-10

    A new fringe projection method for surface-shape measurement was developed using four high-frequency phase-shifted background modulation fringe patterns. The pattern frequency is determined using a new fringe-wavelength geometry-constraint model that allows only two corresponding-point candidates in the measurement volume. The correct corresponding point is selected with high reliability using a binary pattern computed from intensity background encoded in the fringe patterns. Equations of geometry-constraint parameters permit parameter calculation prior to measurement, thus reducing measurement computational cost. Experiments demonstrated the ability of the method to perform 3D shape measurement for a surface with geometric discontinuity, and for spatially isolated objects.

  4. In vitro Assessment of Influence of Various Bleaching Protocols on the Strength of Ceramic Orthodontic Brackets bonded to Bleached Tooth Surface: A Comparative Study.

    Science.gov (United States)

    Iska, Divya; Devanna, Raghu; Singh, Madhvi; Chitumalla, Rajkiran; Balasubramanian, Sai C Bala; Goutam, Manish

    2017-12-01

    Esthetics is one of the common issues because of which patients consult dental orthodontic treatment. Two ways of tooth bleaching are available these days, which includes in-office bleach and home bleach. Various bleaching protocols are available these days for treating the tooth surfaces. Hence, we planned the present study for investigating the impact of various intracoronal bleaching protocols on shear bond strength of ceramic brackets bonded to tooth surface after bleaching. The present study included assessment of 100 extracted maxillary central incisors with the integrated buccal surface. A resin block was made and individual teeth were embedded in each block. Root canal therapy procedure was performed in all the teeth, after which 2 mm short of tooth apex up to the level of cementoenamel junction, removal of the root canal filling was done. All the samples were broadly divided into four study groups with 25 samples in each group. Bleaching procedure was carried in all the samples intracoronally followed by testing of shear bond strength using universal force testing machine. Following the modified adhesive remnant index (AI), assessment of remaining adhesive on the brackets was done. All the results were compiled and analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0. In the control group, mean shear bond strength was found to be 17.9 MPa. While comparing the carbamide peroxide (CP) group with sodium perborate study group, we observed a statistically significant difference. Nonsignificant results were obtained while comparing the shear bond strength in between sodium perborate group and hydrogen peroxide (HP) group. Intracoronal bleaching does affect the shear bond strength of ceramic brackets. Sodium perborate bleaching influences shear bond strength more strongly than other bleaching agents such as CP and HP. In patients undergoing orthodontic treatment, HP is a preferred agent where bleaching has to be followed by

  5. Determination of position and shape of flexible mri surface coils using the Microsoft Kinect for attenuation correction in PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn; He, Mirco; Buther, Florian; Safers, Klaus [European Institute for Molecular Imaging, University of Muenster (Germany)

    2015-05-18

    Due to the varying position and shape of flexible MRI RF surface coils, the creation of attenuation maps for these coils is a challenging task. Nevertheless, coil material (metal, plastic, rubber) attenuates the PET signal to a considerable amount. Thus, including a coil μ-map into the human μ-map is essential. In this work, we present a method to determine the position and shape of flexible coils with the help of the Microsoft Kinect depth camera. Phantom PET/MRI (Siemens Biograph mMR) and CT scans (Siemens Biograph mCT) were performed with and without the flexible 32-channel coil equipped with 15 markers visible in CT and Kinect. Prior to the PET/MRI acquisition, Kinect data is acquired of the phantom with the coil on top. The manually extracted marker positions from CT and Kinect are used to non-rigidly transform the template CT according to the Kinect marker positions describing the shape of the coil during PET/MRI acquisition. An appropriate μ-map can then be calculated from the transformed CT dataset. Subsequently, the μ-map is placed in relation to the patient table according to the Kinect-derived marker positions. First results show that the coil shape can be determined with the help of the Kinect camera. The transformation of the template CT dataset according to Kinect marker positions during PET/MRI leads to appropriate results. Furthermore, the position of the coil can also be determined for an accurate placement of the μ-map in relation to the patient table. The determination of position and shape of flexible surface coils using the Kinect camera can be a way to include the CT-based coil μ-map in PET/MRI acquisitions without the need for additional MRI scans. Accuracy and practicability of the method have to be tested in further experiments.

  6. Determination of position and shape of flexible mri surface coils using the Microsoft Kinect for attenuation correction in PET/MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn; He, Mirco; Buther, Florian; Safers, Klaus

    2015-01-01

    Due to the varying position and shape of flexible MRI RF surface coils, the creation of attenuation maps for these coils is a challenging task. Nevertheless, coil material (metal, plastic, rubber) attenuates the PET signal to a considerable amount. Thus, including a coil μ-map into the human μ-map is essential. In this work, we present a method to determine the position and shape of flexible coils with the help of the Microsoft Kinect depth camera. Phantom PET/MRI (Siemens Biograph mMR) and CT scans (Siemens Biograph mCT) were performed with and without the flexible 32-channel coil equipped with 15 markers visible in CT and Kinect. Prior to the PET/MRI acquisition, Kinect data is acquired of the phantom with the coil on top. The manually extracted marker positions from CT and Kinect are used to non-rigidly transform the template CT according to the Kinect marker positions describing the shape of the coil during PET/MRI acquisition. An appropriate μ-map can then be calculated from the transformed CT dataset. Subsequently, the μ-map is placed in relation to the patient table according to the Kinect-derived marker positions. First results show that the coil shape can be determined with the help of the Kinect camera. The transformation of the template CT dataset according to Kinect marker positions during PET/MRI leads to appropriate results. Furthermore, the position of the coil can also be determined for an accurate placement of the μ-map in relation to the patient table. The determination of position and shape of flexible surface coils using the Kinect camera can be a way to include the CT-based coil μ-map in PET/MRI acquisitions without the need for additional MRI scans. Accuracy and practicability of the method have to be tested in further experiments.

  7. Distribution of Cr atoms in the surface zone of Fe-rich Fe–Cr alloys quenched into various media: Mössbauer spectroscopic study

    International Nuclear Information System (INIS)

    Dubiel, Stanisław M.; Cieślak, Jakub; Żukrowski, Jan

    2015-01-01

    Graphical abstract: Chromium depletion, Δx = x_k − x, in Fe_1_0_0_−_xCr_x (x = 2.2, 3.9, 6.4, 8.5, 10.25, 10.75, 14.9, 15.15) alloys quenched into LN (left panel) and those quenched onto brass (right panel) as found from CEMS (pre surface zone) and TRANS (bulk) Mössbauer spectra (x_k – Cr content in the pre surface or bulk as estimated from the average hyperfine field found for the quenched samples). - Highlights: • Effect of quenching media on Cr atom distribution in Fe–Cr alloys was determined. • Significant differences between bulk and pre surface zone were revealed. • Quenching into water and LH resulted in surface oxidation of samples. • Samples quenched onto a block of brass were not oxidized. - Abstract: Effect of a quenching medium (water, liquid nitrogen and block of brass) on a distribution of Cr atoms in the surface zone of Fe_1_0_0_−_xCr_x (x ≤ 19) alloys was studied with the Mössbauer spectroscopy. The distribution of Cr atoms was expressed in terms of the Cowley–Warren short-range order (SRO) parameters: 〈α_1〉 for the first neighbor-shell, 〈α_2〉 for the second neighbor-shell and 〈α_1_2〉 for both neighbor-shells. It was revealed that none of the quenching media resulted in a random distribution of atoms, yet the degree of randomness was the highest for the samples quenched onto the block of brass. The quenching into water and liquid nitrogen caused a partial oxidation of samples’ surface accompanied by a chromium depletion of the bulk. Quantitative analysis of various phases in the studied samples both in their bulk as well as in pre surface zones was carried out.

  8. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  9. Comparative Evaluation of Fluoride Releasing Ability of Various Restorative Materials after the Application of Surface Coating Agents - An In-vitro Study.

    Science.gov (United States)

    Kishore, Gvs; Sai-Sankar, A J; Pratap-Gowd, Mjs; Sridhar, M; Pranitha, Kakarla; Sai-Krishna, V S

    2016-12-01

    Fluoride plays a key role in prevention of dental caries and is also an essential element for oral health promotion both in children and adults. The aim of the present study was to evaluate the effect of surface coating (petroleum jelly, G-Coat Plus) on the fluoride releasing property of conventional Glass Ionomer Cement (GIC) and Zirconomer. A total of 30 disk shaped brass mold specimens (6±0.1mm in diameter and 2±0.1mm thickness) for each test group were fabricated with conventional GIC (Group A) and Zirconomer (Group B). These test groups were further divided into three subgroups of 10 each. The unprotected specimens act as control (Group A1 and B1), G-Coat Plus specimens as (Group A2 and B2) and for the remaining specimens petroleum jelly was applied (Group A3 and B3). Fluoride ion concentration was measured with a combination of fluoride ion specific electrode and ion analyzer for every 24 hours for 15 days. The data was statistically analyzed using Kruskal Wallis and Mann-Whitney U test. The Group B released significantly more fluoride than Group A. Among all the subgroups the greatest amount of fluoride was released from Group B1, in the first 24 hours followed by A1 and B2. The least was observed on 15 th day with Group B3 and A3. Both the tested materials (GIC and Zirconomer) used in the study exhibited fluoride release whether protected or unprotected with surface coating. Though there was a difference between the groups, the pattern of fluoride release was similar and continuous throughout the study period i.e., first the initial burst followed by sustained release. The results revealed Zirconomer released more fluoride and is comparable to conventional GIC.

  10. Comparative Evaluation of Fluoride Releasing Ability of Various Restorative Materials after the Application of Surface Coating Agents – An In-vitro Study

    Science.gov (United States)

    Kishore, GVS; Sai-Sankar, AJ; Sridhar, M; Pranitha, Kakarla; Sai-Krishna, VS

    2016-01-01

    Introduction Fluoride plays a key role in prevention of dental caries and is also an essential element for oral health promotion both in children and adults. Aim The aim of the present study was to evaluate the effect of surface coating (petroleum jelly, G-Coat Plus) on the fluoride releasing property of conventional Glass Ionomer Cement (GIC) and Zirconomer. Materials and Methods A total of 30 disk shaped brass mold specimens (6±0.1mm in diameter and 2±0.1mm thickness) for each test group were fabricated with conventional GIC (Group A) and Zirconomer (Group B). These test groups were further divided into three subgroups of 10 each. The unprotected specimens act as control (Group A1 and B1), G-Coat Plus specimens as (Group A2 and B2) and for the remaining specimens petroleum jelly was applied (Group A3 and B3). Fluoride ion concentration was measured with a combination of fluoride ion specific electrode and ion analyzer for every 24 hours for 15 days. The data was statistically analyzed using Kruskal Wallis and Mann-Whitney U test. Results The Group B released significantly more fluoride than Group A. Among all the subgroups the greatest amount of fluoride was released from Group B1, in the first 24 hours followed by A1 and B2. The least was observed on 15th day with Group B3 and A3. Conclusion Both the tested materials (GIC and Zirconomer) used in the study exhibited fluoride release whether protected or unprotected with surface coating. Though there was a difference between the groups, the pattern of fluoride release was similar and continuous throughout the study period i.e., first the initial burst followed by sustained release. The results revealed Zirconomer released more fluoride and is comparable to conventional GIC. PMID:28209001

  11. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part I – Moulding technologies vs. zinc coating

    Directory of Open Access Journals (Sweden)

    Szczęsny A.

    2017-03-01

    Full Text Available Studies have demonstrated that in the process of hot dip galvanizing the decisive influence on the mechanism of zinc coating formation and properties has the quality of the mechanically untreated (raw surface layer of the galvanized product. The terms “casting surface layer” denote various parameters of the microstructure, including the type of metal matrix, the number of grains and the size of graphite nodules, possible presence of hard spots (the precipitates of eutectic cementite and parameters of the surface condition. The completed research has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing.

  12. Properties of the membranes with various number of asymmetrical pores obtained using the method of etching in the presence of a surface-active agent

    International Nuclear Information System (INIS)

    Gapeeva, A.; Orelovich, O.; Zielinska, K.; Apel', P.

    2013-01-01

    In this work we prepared the asymmetric track membranes with various thickness and number of pores. Pores with bullet-like tip were obtained using the method of etching in the presence of a surface-active agent. In electrolyte solution obtained nanopores are cation selective and rectify the ionic current. The current-voltage characteristics of nanopores are strongly non-linear at low and moderate electrolyte concentrations and close to linear in the electrolyte concentrations of 1-3 mol/L. A high level of heterogeneity of single asymmetrical nanopores was observed. This is due to the nonuniformity of semicrystalline polyethylene terephthalate in the nanometer scale. It was found that longer pores exhibit higher maximum rectification ratio values. (authors)

  13. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    Science.gov (United States)

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  14. Estimation of miniature forest parameters, species, tree shape, and distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model

    International Nuclear Information System (INIS)

    Ding, Y.; Arai, K.

    2007-01-01

    A method for estimation of forest parameters, species, tree shape, distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model is proposed. The model is verified through experiments with the miniature model of forest, tree array of relatively small size of trees. Two types of miniature trees, ellipse-looking and cone-looking canopy are examined in the experiments. It is found that the proposed model and experimental results show a coincidence so that the proposed method is validated. It is also found that estimation of tree shape, trunk tree distance as well as distinction between deciduous or coniferous trees can be done with the proposed model. Furthermore, influences due to multiple reflections between trees and interaction between trees and under-laying grass are clarified with the proposed method

  15. Electrostatic mechanism of shaping the wave micro-relief on the surface of a semiconductor, sputtered by an ion beam

    International Nuclear Information System (INIS)

    Grigor'ev, A.I.

    2000-01-01

    The effect of the electric field formed due to the surface charging, is not accounted for in the weakly-developed theoretical models for the ordered micro-relief formation on the surface of a semiconductor under the impact of an ion beam. It is shown, that the problem on modeling the physical mechanism of forming the ordered wave micro-relief on the semiconductor surface under the impact of a high-energy ion beam may be interpreted as an electrostatic one [ru

  16. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Guoyan [Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern (Switzerland)

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction. The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark

  17. Model Testing of an Oval Shaped Seal for Sealing of Large Gaps Between Mating Surfaces (The National Shipbuilding Research Program)

    National Research Council Canada - National Science Library

    Eutizzi, Nick F

    1988-01-01

    A pressure chamber was designed and manufactured in two parts which were clamped together at their flanges using a clamping ring and an "0" ring seal was used for sealing he gap between the mating surfaces...

  18. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    International Nuclear Information System (INIS)

    Brinckmann, Stephan A.; Frensemeier, Mareike; Laursen, Christopher M.; Maier, Hans J.; Britz, Dominik; Schneider, Andreas S.; Mücklich, Frank; Frick, Carl P.

    2016-01-01

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M f ) to above the austenite finish temperature (A f ) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M f or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  19. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brinckmann, Stephan A. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Frensemeier, Mareike [INM - Leibniz Institute for New Materials, Saarbrücken (Germany); Laursen, Christopher M. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Maier, Hans J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), Garbsen (Germany); Britz, Dominik [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Schneider, Andreas S. [AG der Dillinger Hüttenwerke, Department for Research, Development and Plate-Design, Dillingen (Germany); Mücklich, Frank [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Frick, Carl P., E-mail: cfrick@uwyo.edu [University of Wyoming, Mechanical Engineering Department, Laramie (United States)

    2016-10-15

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M{sub f}) to above the austenite finish temperature (A{sub f}) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M{sub f} or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  20. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  1. Characteristics of alpha-glucosidase production from recombinant Aspergillus oryzae by membrane-surface liquid culture in comparison with various cultivation methods.

    Science.gov (United States)

    Morita, Masakazu; Shimamura, Hiroko; Ishida, Natsuko; Imamura, Koreyoshi; Sakiyama, Takaharu; Nakanishi, Kazuhiro

    2004-01-01

    alpha-Glucosidase was produced using recombinant Aspergillus oryzae by membrane-surface liquid culture (MSLC), a method previously developed by the authors and the results compared with other methods, including shaking flask culture (SFC), agar-plate culture (APC), culture on urethane sponge supports (USC), and liquid surface culture (LSC) to determine possible reasons for the advantageous features of MSLC. When yeast extract was used as a nitrogen source, the amount of enzyme produced by MSLC was 5 or more times higher than those for SFC and LSC, but similar to that using APC. Enzyme production in USC was slightly lower than in MSLC and APC. Cell growth was similar irrespective of the cultivation method used. When NaNO3, a typical inorganic nitrogen source was used, enzyme production in all the cultures was lower than that using yeast extract. However, even using NaNO3, the amount of the enzyme produced by MSLC was 8 to 20 times higher than those by SFC, APC, USC, and LSC. Although cell growth using NaNO3 was similar to that for yeast extract in MSLC, it was markedly decreased in SFC, APC, and LSC. The reason for the difference in enzyme productivity for various cultivation methods using yeast extract and NaNO3 as a nitrogen source is discussed, on the basis of the experimental findings. The role of the oxygen transfer effect and gene expression levels in enzyme production were also examined.

  2. Data in support on the shape of Schwann cells and sympathetic neurons onto microconically structured silicon surfaces

    Directory of Open Access Journals (Sweden)

    C. Simitzi

    2015-09-01

    Full Text Available This article contains data related to the research article entitled “Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth” in the Biomaterials journal [1]. Scanning electron microscopy (SEM analysis is performed to investigate whether Schwann cells and sympathetic neurons alter their morphology according to the underlying topography, comprising arrays of silicon microcones with anisotropic geometrical characteristics [1]. It is observed that although soma of sympathetic neurons always preserves its round shape, this is not the case for Schwann cells that become highly polarized in high roughness microconical substrates.

  3. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio

    Science.gov (United States)

    Harris, Leigh K.; Dye, Natalie A.; Theriot, Julie A.

    2014-01-01

    Summary Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly-shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells. PMID:25266768

  4. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  5. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk; Kim, Wooseung

    2011-01-01

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated

  6. An Improved Surface Simplification Method for Facial Expression Animation Based on Homogeneous Coordinate Transformation Matrix and Maximum Shape Operator

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2016-01-01

    Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.

  7. Analysis of Ventilation Regimes of the Oblique Wedge-Shaped Surface Piercing Hydrofoil During Initial Water Entry Process

    Directory of Open Access Journals (Sweden)

    Ghadimi Parviz

    2018-03-01

    Full Text Available The suction side of a surface piercing hydrofoil, as a section of a Surface Piercing Propeller (SPP, is usually exposed to three phases of flow consisting air, water, and vapour. Hence, ventilation and cavitation pattern of such section during the initial phase of water entry plays an essential role for the propeller’s operational curves. Accordingly, in the current paper a numerical simulation of a simple surface piercing hydrofoil in the form of an oblique wedge is conducted in three-phase environment by using the coupled URANS and VOF equations. The obtained results are validated against water entry experiments and super-cavitation tunnel test data. The resulting pressure curves and free surface profiles of the wedge water entry are presented for different velocity ratios ranging from 0.12 to 0.64. Non-dimensional forces and efficiency relations are defined in order to present the wedge water entry characteristics. Congruent patterns are observed between the performance curves of the propeller and the wedge in different fully ventilated or partially cavitated operation modes. The transition trend from fully ventilated to partially cavitated operation of the surface piercing section of a SPP is studied and analyzed through wedge’s performance during the transitional period.

  8. Various Contributions

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Various Contributions. Developed an Off –Diagonal MIMO Canceller to mitigate Upstream Crosstalk in VDSL. Developed a low complexity, Expectation Maximization based iterative Crosstalk cancellation. Developed an optimal way of computational complexity ...

  9. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii

    Science.gov (United States)

    Baum, R.L.; Messerich, J.; Fleming, R.W.

    1998-01-01

    Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.

  10. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    International Nuclear Information System (INIS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-01-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO 2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na 2 Ti 2 O 5 ·H 2 O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO 2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO 2 ), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C 9 H 10 ClN 5 O 2 ) degradation to CO 2 formation under UV irradiation because of its largest surface area 176 m 2 g −1 among the catalysts studied.

  11. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    Science.gov (United States)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  12. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  13. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  14. Prediction of the shape of inline wave force and free surface elevation using First Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    theory, that is, the most likely time history of inline force around a force peak of given value. The results of FORM and NewForce are linearly identical and show only minor deviations at second order. The FORM results are then compared to wave averaged measurements of the same criteria for crest height......In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... design wave height. As these wave theories super from limitations such as symmetry around the crest, other methods to estimate the wave loads are needed. In the present paper, the First Order Reliability Method, FORM, is used systematically to estimate the most likely extreme wave shapes. Two parameters...

  15. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  16. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...

  17. Sexual dimorphism of the human tibia through time: insights into shape variation using a surface-based approach

    Czech Academy of Sciences Publication Activity Database

    Brzobohatá, Hana; Krajíček, V.; Horák, Z.; Velemínská, J.

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0166461. E-ISSN 1932-6203 Institutional support: RVO:67985912 Keywords : human tibia * geometric morphometrics * sexual dimorphism * surface-based analysis Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.806, year: 2016

  18. The role of target 3D-reconstructions when analysyng qualitative characteristics of the surface of circular-shaped growth in the lungs

    Directory of Open Access Journals (Sweden)

    V. G. Kolmogorov

    2016-01-01

    Full Text Available The purpose of this paper is to improve the accuracy of X-ray diagnostics of circular-shaped growth (CSG by developing computed tomographic semiotics of qualitative characteristics of its surface and the state of the surrounding bronchi using target 3D-reconstruction.Material and methods. 560 patients at the age of 3–89 years were examined. Target 3D reconstruction was carried out with the use of 3D Fly Through program (Toshiba Medical Systems, Japan which removed the tissue surrounding CSG at a distance of 5–10 mm from the outer boundaries.CSG was inscribed into a cube. In case of the primary central and peripheral lung cancer a number of patients with severe rough surface of CSG prevailed over a number of patients with slightly rough surface was detected. In case of infiltrative tuberculosis, pneumonia, echinococcus, retention cysts the prevalence of a number of patients with slightly rough surface of CSG over a number of patients with rough surface was identified. In case of single cancer metastases, single and multiple tuberculomas the prevalence of a number of patients with non-uniform smooth surface of CSG over a number of patients with uniform smooth surface was identified. In case of multiple cancer metastasis, focal tuberculosis, cysticercosis the prevalence of a number of patients with a uniform smooth surface of CSG over a number of patients with uneven smooth surface was identified. In case of benign tumors, eosinophilic infiltrate, gamartohondroma, aspergilloma, chronic abscess, intrapulmonary hematoma there was not difference between the number of patients with a uniform smooth surface of CSG and a number of patients with uneven smooth surface. In case of primary lung cancer metastasis, single and multiple tuberkulomas, echinococcus, cysticercosis there was a prevalence of the number of patients with expressed deformed bronchi surrounding CSL over a number of patients with moderately deformed bronchi. In case of infiltrative

  19. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO{sub 2} nanostructures of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO{sub 2} catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO{sub 2} with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO{sub 2}), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C{sub 9}H{sub 10}ClN{sub 5}O{sub 2}) degradation to CO{sub 2} formation under UV irradiation because of its largest surface area 176 m{sup 2} g{sup −1} among the catalysts studied.

  20. Influence of stiffness and shape of contact surface on skull fractures and biomechanical metrics of the human head of different population underlateral impacts.

    Science.gov (United States)

    Shaoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2015-07-01

    The objective of this study was to determine the responses of 5th-percentile female, and 50th- and 95th-percentile male human heads during lateral impacts at different velocities and determine the role of the stiffness and shape of the impacting surface on peak forces and derived skull fracture metrics. A state-of-the-art validated finite element (FE) head model was used to study the influence of different population human heads on skull fracture for lateral impacts. The mass of the FE head model was altered to match the adult size dummies. Numerical simulations of lateral head impacts for 45 cases (15 experiments×3 different population human heads) were performed at velocities ranging from 2.4 to 6.5m/s and three impacting conditions (flat and cylindrical 90D; and flat 40D padding). The entire force-time signals from simulations were compared with experimental mean and upper/lower corridors at each velocity, stiffness (40 and 90 durometer) and shapes (flat and cylindrical) of the impacting surfaces. Average deviation of peak force from the 50th male to 95th male and 5th female were 6.4% and 10.6% considering impacts on the three impactors. These results indicate hierarchy of variables which can be used in injury mitigation efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regularities of shaping of a wheel profile as a result of deterioration of the rolling surface in exploitation

    Directory of Open Access Journals (Sweden)

    Aleksander VORON’KO

    2008-01-01

    Full Text Available In the middle of the 90s the deterioration of wheels flanges and lateral rail surfaces on roads in the countries of CIS from natural process of wear process of surfaces has turned to the sharp problem which has received the status of a «rail plague». On separate roads the lateral deterioration of rails has reached 1 mm times 106 tons, by exceeding a level of normative deterioration in some times. Thus the run of wheel pairs between regrinding on flange undercuts was reduced in by 3-5 times [5]. In the article some ways of elimination of deterioration of wheels and rails are considered. The technique of process modeling of parameters changes of deterioration is offered.

  2. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  3. Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios

    Directory of Open Access Journals (Sweden)

    Fei-Peng Yu

    2014-01-01

    Full Text Available In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH2 also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.

  4. Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Baran, E-mail: b.sarac@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Bera, Supriya [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Balakin, Sascha [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); ETH Zurich, Department of Materials, Metal physics und Technology, Vladimir-Prelog-Weg 4, HCI J 492, 8093 Zürich (Switzerland); Stoica, Mihai [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Politehnica University of Timisoara, P-ta Victoriei 2, RO-300006 Timisoara (Romania); Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277, Dresden (Germany); Calin, Mariana, E-mail: m.calin@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, A-8700 Leoben (Austria)

    2017-04-01

    In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50 nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials. - Highlights: • Micro to nano-scale hierarchical surface patterns achieved by TPN of BMGs • Ni- and Be-free Zr-/Ti-BMGs with different GFA compared in terms of flow kinetics • Correlation between filling depths of Zr- and Ti-BMGs best described by formability • Multi-scale hierarchical patterning envisaged to facilitate BMG-cell interaction.

  5. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    Science.gov (United States)

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  6. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    International Nuclear Information System (INIS)

    Pogrebnjak, A D; Bratushka, S N; Beresnev, V M; Levintant-Zayonts, N

    2013-01-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references

  7. Odd Shape Out

    Science.gov (United States)

    Cady, Jo Ann; Wells, Pamela

    2016-01-01

    The Odd Shape Out task was an open-ended problem that engaged students in comparing shapes based on their properties. Four teachers submitted the work of 116 students from across the country. This article compares various student's responses to the task. The problem allowed for differentiation, as shown by the many different ways that students…

  8. The Impacts of Various Environments Factors and Adaptive Management Strategies on Food Crops in the 21st Century Based on a Land Surface Model

    Science.gov (United States)

    Jain, A. K.; Lin, T. S.; Lawrence, P.; Kheshgi, H. S.

    2017-12-01

    Environmental factors - characterized by increasing levels of CO2, and changes in temperature and precipitation patterns - present potential risks to global food supply. To date, understanding of environmental factors' effects on crop production remains uncertain due to (1) uncertainties in projected trends of these factors and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to adaptive management practices (e.g. change in planting time, irrigation and N fertilization etc.) and (3) uncertainties in current land surface models to estimate the response of crop production to changes in environmental factors and management strategies. In this study we apply a process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of various environmental factors and management strategies on the production of row crops (corn, soybean and wheat) at regional and global scales. Results are compared to corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Each model is driven with historical atmospheric forcing data (1901-2005), and projected atmospheric forcing data under RCP 4.5 or RCP 8.5 (2006-2100) from CESM CMIP5 simulations to estimate the effects of different climate change projections on potential productivity of food crops at a global scale. For each set of atmospheric forcing data, production of each crop is simulated with and without inclusion of adaptive management practices (e.g. application of irrigation, N fertilization, change in planting time and crop cultivars etc.) to assess the effect of adaptation on projected crop production over the 21st century. In detail, three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of adaptive management practices on projected crop production; and (3) how do differences in model

  9. Evaluation of surface contamination of bacteria in various dental clinics with special reference to obligate and facultative anaerobic spore bearing bacilli

    Directory of Open Access Journals (Sweden)

    Kannan I, Jessica Yolanda Jeevitha, Sambandam Cecilia, Jayalakshmi M, Premavathy RK and Shantha S

    2014-07-01

    Full Text Available Introduction: The occupational health and safety is an important prerequisite in dental clinic setup for well being of both the doctor and patient. Both the patient and dentist are always at the risk of infections. Aim and objectives: There is no proper literature on the survey of bacterial spores, especially of Clostridium species in dental clinics. Hence an attempt has been made in the present pilot study to evaluate the surface contamination with special reference to bacterial spores. Materials and methods: Various dental clinics from Chennai city, India were selected for the present study. Samples were collected from two clinics each from endodontic, prosthodontic, orthodontic, and periodontic. In each clinic important places were selected for sampling. The samples were collected in the form of swabs. The swabs thus obtained were inoculated into Robertson Cooked Meat Medium and was incubated in anaerobic condition at 370C for 7 days. Each day the tubes were examined for turbidity and colour change and were noted. At the end of 7th day the smear was prepared from each tube and gram staining was performed. The gram stained slides were examined microscopically for the presence of spore bearing bacilli especially with special reference to terminal spore bearing bacilli. Results and conclusion: From the present study it is clear that the dental clinics invariably posses a lot of aerobic and anaerobic spores irrespective of stringent disinfection procedures. Hence it is mandatory for the dental clinics to undergo periodical microbiological surveillance and to take proper steps in the control of bacterial spores.

  10. The effect of the shape of single, sub-ms voltage pulses on the rates of surface immobilization and hybridization of DNA

    International Nuclear Information System (INIS)

    Cabeca, R; Rodrigues, M; Chu, V; Conde, J P; Prazeres, D M F

    2009-01-01

    Electric fields generated by single square and sinusoidal voltage pulses with amplitudes below 2 V were used to assist the covalent immobilization of single-stranded, thiolated DNA probes, onto a chemically functionalized SiO 2 surface and to assist the specific hybridization of single-stranded DNA targets with immobilized complementary probes. The single-stranded immobilized DNA probes were either covalently immobilized (chemisorption) or electrostatically adsorbed (physisorption) to a chemically functionalized surface. Comparing the speed of electric field assisted immobilization and hybridization with the corresponding control reactions (without electric field), an increase of several orders of magnitude is observed, with the reaction timescaled down from 1 to 2 h to a range between 100 ns and 1 ms. The influence of the shape of the voltage pulse (square versus sinusoidal) and its duration were studied for both immobilization and hybridization reactions. The results show that pulsed electric fields are a useful tool to achieve temporal and spatial control of surface immobilization and hybridization reactions of DNA.

  11. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    Science.gov (United States)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-06-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  12. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  13. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  14. Influence exerted by the shape of the surfaces of working roll barrels upon the course of the MEFASS (Metal Forming Aided by Shear Stresses rolling process

    Directory of Open Access Journals (Sweden)

    Świątoniowski A.

    2017-03-01

    Full Text Available The essential aspect of the MEFASS rolling process is introducing the cyclic axial counter movement of the rolls transverse to the direction of rolling in the course of a band pass through a rolling gap. The effect of a change in the way of deformation obtained in this manner makes it possible to set in one roll pass a deformation several times larger than it is possible in a conventional process. In this paper, upon the basis of the computer model of the MES process, supported by experimental research, the analysis of the influence exerted by the shape of the surface of roll barrels upon the distribution of the intensity of stresses σi and deformations εi in the section of the band being rolled, and also upon the kinematic and force parameters of the process.

  15. Correction of dental artifacts within the anatomical surface in PET/MRI using active shape models and k-nearest-neighbors

    DEFF Research Database (Denmark)

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune H.

    2014-01-01

    n combined PET/MR, attenuation correction (AC) is performed indirectly based on the available MR image information. Metal implant-induced susceptibility artifacts and subsequent signal voids challenge MR-based AC. Several papers acknowledge the problem in PET attenuation correction when dental...... artifacts are ignored, but none of them attempts to solve the problem. We propose a clinically feasible correction method which combines Active Shape Models (ASM) and k- Nearest-Neighbors (kNN) into a simple approach which finds and corrects the dental artifacts within the surface boundaries of the patient...... anatomy. ASM is used to locate a number of landmarks in the T1-weighted MR-image of a new patient. We calculate a vector of offsets from each voxel within a signal void to each of the landmarks. We then use kNN to classify each voxel as belonging to an artifact or an actual signal void using this offset...

  16. Using a Combination of FEM and Perturbation Method in Frequency Split Calculation of a Nearly Axisymmetric Shell with Middle Surface Shape Defect

    Directory of Open Access Journals (Sweden)

    D. S. Vakhlyarskiy

    2016-01-01

    Full Text Available This paper proposes a method to calculate the splitting of natural frequency of the shell of hemispherical resonator gyro. (HRG. The paper considers splitting that arises from the small defect of the middle surface, which makes the resonator different from the rotary shell. The presented method is a combination of the perturbation method and the finite element method. The method allows us to find the frequency splitting caused by defects in shape, arbitrary distributed in the circumferential direction. This is achieved by calculating the perturbations of multiple natural frequencies of the second and higher orders. The proposed method allows us to calculate the splitting of multiple frequencies for the shell with the meridian of arbitrary shape.A developed finite element is an annular element of the shell and has two nodes. Projections of movements are used on the axis of the global cylindrical system of coordinates, as the unknown. To approximate the movements are used polynomials of the second degree. Within the finite element the geometric characteristics are arranged in a series according to the small parameter of perturbations of the middle surface geometry.Movements on the final element are arranged in series according to the small parameter, and in a series according to circumferential angle. With computer used to implement the method, three-dimensional arrays are used to store the perturbed quantities. This allows the use of regular expressions for the mass and stiffness matrices, when building the finite element, instead of analytic dependencies for each perturbation of these matrices of the required order with desirable mathematical operations redefined in accordance with the perturbation method.As a test task, is calculated frequency splitting of non-circular cylindrical resonator with Navier boundary conditions. The discrepancy between the results and semi-analytic solution to this problem is less than 1%. For a cylindrical shell is

  17. Action of insulin on the surface morphology of hepatocytes: role of phosphatidylinositol 3-kinase in insulin-induced shape change of microvilli.

    Science.gov (United States)

    Lange, K; Brandt, U; Gartzke, J; Bergmann, J

    1998-02-25

    In previous studies we have shown that the insulin-responding glucose transporter isoform of 3T3-L1 adipocytes, GluT4, is almost completely located on microvilli. Furthermore, insulin caused the integration of these microvilli into the plasma membrane, suggesting that insulin-induced stimulation of glucose uptake may be due to the destruction of the cytoskeletal diffusion barrier formed by the actin filament bundle of the microvillar shaft regions [Lange et al. (1990) FEBS Lett. 261, 459-463; Lange et al. (1990) FEBS Lett. 276, 39-41]. Similar shape changes in microvilli were observed when the transport rates of adipocytes were modulated by glucose feeding or starvation. Here we demonstrate that the action of insulin on the surface morphology of hepatocytes is identical to that on 3T3L1 adipocytes; small and narrow microvilli on the surface of unstimulated hepatocytes were rapidly shortened and dilated on top of large domed surface areas. The aspect and mechanism of this effect are closely related to "membrane ruffling" induced by insulin and other growth factors. Pretreatment of hepatocytes with the PI 3-kinase inhibitor wortmannin (100 nM), which completely prevents transport stimulation by insulin in adipocytes and other cell types, also inhibited insulin-induced shape changes in microvilli on the hepatocyte surface. In contrast, vasopressin-induced microvillar shape changes in hepatocytes [Lange et al. (1997) Exp. Cell Res. 234, 486-497] were insensitive to wortmannin pretreatment. These findings indicate that PI 3-kinase products are necessary for stimulation of submembrane microfilament dynamics and that cytoskeletal reorganization is critically involved in insulin stimulation of transport processes. The mechanism of the insulin-induced cytoskeletal reorganization can be explained on the basis of the recent finding of Lu et al. [Biochemistry 35(1996) 14027-14034] that PI 3-kinase products exhibit much higher affinity for the profilin-actin complex than the

  18. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  19. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi

    2013-07-01

    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  20. Shape estimation of the buried body from the ground surface potential distributions generated by current injection; Tsuryu ni yoru chihyomen den`i bunpu wo riyoshita maizobutsu keijo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y; Okamoto, Y [Chiba Institute of Technology, Chiba (Japan); Noguchi, K [Waseda University, Tokyo (Japan); Teramachi, Y [University of Industrial Technology, Kanagawa (Japan); Akabane, H; Agu, M [Ibaraki University, Ibaraki (Japan)

    1996-10-01

    Ground surface potential distribution generated by current injection was studied to estimate the shape of buried bodies. Since the uniform ground system including a homogeneous buried body is perfectly determined with the surface shape of a buried body and resistivities in/around a buried body, inversion is easy if the surface shape is described with some parameters. N electrodes are arranged in 2-D grid manner on the ground, and two electrodes among them are used for current injection, while the others for measurement of potentials. M times of measurements are repeated while changing combination of electrodes for current injection. The potential distribution measured by the mth electrode pair is represented by N-2 dimensional vectors. The square error between this distribution and calculated one is the function of k parameters on the surface shape and resistivities on a buried body. Both shape and resistivities can be estimated by solving an optimum value problem using the square error as evaluation function. Analysis is easy for a spherical body with 6 unknown parameters, however, it is difficult for more complex bodies than elliptical one or more than two bodies. 5 refs., 9 figs.

  1. Shape modification of bridge cables for aerodynamic vibration control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    In this paper, the viability of modifying cable shape and surface for the purpose of controlling wind-induced vibrations is examined. To this end, an extensive wind-tunnel test campaign was carried out on various cable sections in the critical Reynolds number region under both smooth and turbulen...

  2. Design, Manufacturing and Test of a High Lift Secondary Flight Control Surface with Shape Memory Alloy Post-Buckled Precompressed Actuators

    Directory of Open Access Journals (Sweden)

    Thomas Sinn

    2015-07-01

    Full Text Available The use of morphing components on aerospace structures can greatly increase the versatility of an aircraft. This paper presents the design, manufacturing and testing of a new kind of adaptive airfoil with actuation through Shape Memory Alloys (SMA. The developed adaptive flap system makes use of a novel actuator that employs SMA wires in an antagonistic arrangement with a Post-Buckled Precompressed (PBP mechanism. SMA actuators are usually used in an antagonistic arrangement or are arranged to move structural components with linearly varying resistance levels similar to springs. Unfortunately, most of this strain energy is spent doing work on the passive structure rather than performing the task at hand, like moving a flight control surface or resisting air loads. A solution is the use of Post-Buckled Precompressed (PBP actuators that are arranged so that the active elements do not waste energy fighting passive structural stiffnesses. One major problem with PBP actuators is that the low tensile strength of the piezoelectric elements can often result in tensile failure of the actuator on the convex face. A solution to this problem is the use of SMA as actuator material due to their tolerance of tensile stresses. The power consumption to hold deflections is reduced by approximately 20% with the Post-Buckled Precompressed mechanism. Conventional SMAs are essentially non-starters for many classes of aircraft due to the requirement of holding the flight control surfaces in a given position for extremely long times to trim the vehicle. For the reason that PBP actuators balance out air and structural loads, the steady-state load on the SMAs is essentially negligible, when properly designed. Simulations and experiments showed that the SMAPBP actuator shows tip rotations on the order of 45°, which is nearly triple the levels achieved by piezoelectric PBP actuators. The developed SMAPBP actuator was integrated in a NACA0012 airfoil with a flexible skin

  3. A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: Various graft densities from hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Roghani-Mamaqani, Hossein, E-mail: r.mamaghani@sut.ac.ir [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Khezri, Khezrollah [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of)

    2016-01-01

    Graphical abstract: (3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. - Highlights: • A RAFT agent grafted GO was used in grafting from RAFT polymerization of styrene. • The efficiency of RAFT agent attachment at the surface of GO is 41.12% for high density sample. • Polystyrene molecular weight is decreased by the addition of graphene content and also graft density of RAFT agent. - Abstract: (3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. Grafting of APTES and RA was approved by Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, and Raman spectroscopy. Expansion of graphene interlayer by oxidation and functionalization processes was evaluated by X-ray diffraction. Conversion values of styrene were calculated using gas chromatography. Molecular weight and PDI values of attached polystyrene (PS) chains were studied by size exclusion chromatography. Thermogravimetric analysis was also used to investigate the degradation temperatures, char contents, and graft contents of modifiers and PS chains. GOHRH and GOHRL reach to char content of 55.3 and 45.2% at 600 °C, which shows that weight ratio of modifier (APTES and RA moieties) is 15.3 and 5.2%, respectively. Scanning and transmission electron microscopies show that

  4. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe{sub 2}O{sub 3}) nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Carlos, E-mail: carlos.lunacd@uanl.edu.mx [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Cuan-Guerra, Aída D. [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Barriga-Castro, Enrique D. [Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, 25294 Coahuila (Mexico); Núñez, Nuria O. [Instituto de Ciencia de Materiales de Sevilla (ICMS), CSIC-US, Avda. Americo Vespucio n° 49, Isla de la Cartuja, 41092 Sevilla (Spain); Mendoza-Reséndez, Raquel [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico)

    2016-08-15

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects.

  5. Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect.

    Science.gov (United States)

    Mengesha, Zebasil Tassew; Yang, Jyisy

    2016-11-15

    In this study, an active surface-enhanced Raman scattering (SERS) substrate with a thermally inducible hot spot effect for sensitive measurement of Raman-active molecules was successfully fabricated from silver nanoparticle (AgNP)-decorated shape-memory polystyrene (SMP) sheets. To prepare the SERS substrate, SMP sheets were first pretreated with n-octylamine for effective decoration with AgNPs. By varying the formulation and condition of the reduction reaction, AgNP-decorated SMP (Ag@SMP) substrates were successfully prepared with optimized particle gaps to produce inducible hot spot effects on thermal shrink. High-quality SERS spectra were easily obtained with enhancement factors higher than 10 8 by probing with aromatic thiols. Several Ag@SMP substrates produced under different reaction conditions were explored for the creation of inducible hot spot effects. The results indicated that AgNP spacing is crucial for strong hot spot effects. The suitability of Ag@SMP substrates for quantification was also evaluated according to the detection of adenine. Results confirmed that prepared Ag@SMP substrates were highly suitable for quantitative analysis because they yielded an estimated limit of detection as low as 120 pg/cm 2 , a linear range of up to 7 ng/cm 2 , and a regression coefficient (R 2 ) of 0.9959. Ag@SMP substrates were highly reproducible; the average relative standard deviation for all measurements was less than 10%.

  6. Rosettes, Engrailed Edges, and Star-Shaped Patterns: Between Rediscovery and Forgetfulness in the Early Accounts of Vibrating Liquid Drops Floating over Hot Surfaces.

    Science.gov (United States)

    Stewart, Seán M

    2017-12-01

    Small drops of liquid brought into contact with very hot surfaces float above it as beautiful, slightly flattened spheroids without coming to the boil. An example of film boiling, drops that are sessile can often suddenly and quite unexpectedly start to oscillate forming highly symmetric patterns of surprising pulchritude. The rim of these oscillating drops take on "star-shaped" patterns with many different modes of vibration possible. Still an object of study today, their discovery, early accounts, rediscovery and ensuing controversies over claims of priority, before quietly slipping away from the collective memory of the scientific community to become all but forgotten makes for a compelling story in the early history of film boiling. The episode serves not only as a valuable reminder of the importance the history of science can play in highlighting past achievements that would otherwise remain unknown to the modern practitioner. It also provides an example of how external pressures and personal ambition can often influence the work of a scientist in their pursuit of self-recognition and acclaim amongst their peers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Frequency of hepatitis B surface antibody (anti-HBs) in various Canadian populations as measured by modified solid-phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Bishai, F R; MacMillan, S; Rhodes, A J [Ontario Ministry of Health, Toronto, Ont.; Dempster, G [University Hospital, Saskatoon, Sask.; Spence, L [Toronto Univ., Ontario (Canada). Dept. of Medicine; Wrobel, D M [Toronto Centre of Canadian Red Cross Blood Transfusion Service, Ont.

    1977-01-01

    A short incubation solid-phase radioimmunoassay test was developed and used for the detection of hepatitis B surface antibody (anti-HBs) in the sera collected from patients recovering from hepatitis B infection, health care personnel, staff and residents of an intstitution for the mentally retarded and in pregnant and non-pregnant women in Ontario.

  8. Frequency of hepatitis B surface antibody (anti-HBs) in various Canadian populations as measured by modified solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Bishai, F.R.; MacMillan, S.; Rhodes, A.J.; Dempster, G.; Spence, L.; Wrobel, D.M.

    1977-01-01

    A short incubation solid-phase radioimmunoassay test was developed and used for the detection of hepatitis B surface antibody (anti-HBs) in the sera collected from patients recovering from hepatitis B infection, health care personnel, staff and residents of an intstitution for the mentally retarded and in pregnant and non-pregnant women in Ontario. (author)

  9. Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light

    International Nuclear Information System (INIS)

    Devi, L. Gomathi; Kumar, S. Girish

    2012-01-01

    Graphical abstract: The surface reactive acidic sites enhances on doping with rare earth ions which facilitates efficient adsorption of the dye molecules on the catalyst surface. In addition, the nature of the dopant, its concentration and electronic configuration additionally contributes to the overall efficiency. Highlights: ► The degradation of structurally different anionic dyes under different pH conditions is reported. ► Pre adsorption of pollutant on catalyst surface is vital for efficient photocatalysis. ► Adsorption of dye on the catalyst surface depends on the substituent's attached to it. ► The dopant with half filled electronic configuration served as shallow traps for charge carriers. - Abstract: The degradation of structurally different anionic dyes like Alizarin Red S (ARS) Amaranth (AR), Brilliant Yellow (BY), Congo Red (CR), Fast Red (FR), Methyl Orange (MO), and Methyl Red (MR) were carried out using Ln 3+ (Ln 3+ = La 3+ , Ce 3+ and Gd 3+ ) doped TiO 2 at different pH conditions under UV/solar light. All the anionic dyes underwent rapid degradation at acidic pH, while resisted at alkaline conditions due to the adsorptive tendency of these dyes on the catalyst surface at different pH conditions. Gd 3+ (0.15 mol%)-TiO 2 exhibited better activity compared to other photocatalyst ascribed to half filled electronic configuration of Gd 3+ ions. It is proposed that Ln 3+ serves only as charge carrier traps under UV light, while it also act as visible light sensitizers under solar light. Irrespective of the catalyst and excitation source, the dye degradation followed the order: AR > FR > MO > MR > ARS > BY > CR. The results suggest that pre-adsorption of the pollutant is vital for efficient photocatalysis which is dependent on the nature of the substituent's group attached to the dye molecule.

  10. The effects of various surface treatments on the shear bond strengths of stainless steel brackets to artificially-aged composite restorations.

    Science.gov (United States)

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2011-05-01

    To compare the shear bond strengths (SBS) of stainless steel brackets bonded to artificially-aged composite restorations after different surface treatments. Forty-five premolar teeth were restored with a nano-hybrid composite (Tetric EvoCeram), stored in deionised water for one week and randomly divided into three equal groups: Group I, he restorations were exposed to 5 per cent hydrofluoric acid for 60 seconds; Group II, the restorations were abraded with a micro-etcher (50 Iim alumina particles); Group III, the restorations were roughened with a coarse diamond bur. Similar premolar brackets were bonded to each restoration using the same resin adhesive and the specimens were then cycled in deionised water between 5 degrees C and 55 degrees C (500 cycles). The shear bond strengths were determined with a universal testing machine at a crosshead speed of 1 mm/min. The teeth and brackets were examined under a stereomicroscope and the adhesive remnants on the teeth scored with the adhesive remnant index (ARI). Specimens treated with the diamond bur had a significantly higher SBS (Mean: 18.45 +/- 3.82 MPa) than the group treated with hydrofluoric acid (Mean: 12.85 +/- 5.20 MPa). The mean SBS difference between the air-abrasion (Mean: 15.36 +/- 4.92 MPa) and hydrofluoric acid groups was not significant. High ARI scores occurred following abrasion with a diamond bur (100 per cent) and micro-etcher (80 per cent). In approximately two thirds of the teeth no adhesive was left on the restoration after surface treatment with hydofluoric acid. Surface treatment with a diamond bur resulted in a high bond strength between stainless steel brackets and artificially-aged composite restorations and was considered to be a safe and effective method of surface treatment. Most of the adhesive remained on the tooth following surface treatment with either the micro-etcher or the diamond bur.

  11. Development physicochemical and catalytic characteristics of Mo-containing catalysts for hydrotreatment based on various supports. 1. Adsorption of molybdate anions on the support surface

    International Nuclear Information System (INIS)

    Lur'e, M.A.; Kurest, I.Z.; Krasnopol'skaya, S.M.; Reznikov, S.A.; Babikov, A.F.; Shmidt, F.K.

    1994-01-01

    The amounts of basic OH-groups were determined by means of exchange by F-ions and the adsorption of Mo from acid and alkali ammonium paramolybdate (APM) solutions was investigated on the surface of hydrated titanium dioxide, γ-Al 2 O 3 and palygorskite-montmorillonite clay. The process is adequately described by the exchange equation at pH value of APM solution in excess of the isoelectric point (IEP) of the surface. At opposite correlation between pH of the solution and IEP the Langmuir model is adaptable. They concluded, on experimental data, that in the latter case OH-groups replaced by molybdate-anion stage of synthesis of catalyst. 22 refs., 3 figs

  12. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation.

    Science.gov (United States)

    Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna

    2017-02-22

    Four main tasks were presented: (i) ceramic membrane functionalization (TiO 2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).

  13. Time Course of Detection of Human Male DNA from Stained Blood Sample on Various Surfaces by Loop Mediated Isothermal Amplification and Polymerase Chain Reaction

    OpenAIRE

    Panan Kanchanaphum

    2018-01-01

    This study explores determining the sex of humans from blood stains taken from different surfaces and compares the time course of detection with the conventional PCR, Conventional Loop Mediated Isothermal Amplification (LAMP), and LAMP-Lateral Flow Dipstick (LFD). For the DNA templates, 7 male and 7 female blood stained samples were extracted and added to LAMP and PCR reaction solution to amplify the SRY gene. The DNA samples were extracted from the following blood stained materials: cloth, w...

  14. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  15. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  16. Aerodynamic shape optimization using preconditioned conjugate gradient methods

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay

    1993-01-01

    In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.

  17. Dosimetry of irregular shaped fields of β rays

    International Nuclear Information System (INIS)

    Supe, S.J.; Datta, S.

    1976-01-01

    The feasibility of using various shapes and sizes of field limiting devices and collimators with β-ray eye applicators has necessitated the study of dosimetry for these fields. A method of calculating surface and depth doses for any shaped field from the data for circular fields is presented. The depth dose evaluation is based on a measured dose function which is defined as the dose rate at a particular depth for a particular circular field. The evaluated values for the surface and depth dose were compared with experimentally obtained values for three non-circular fields. The good agreement in these data indicates the practicability of the method suggested. (author)

  18. The Effect of Autologous Serum Eye Drop Application on Epithelization in the Treatment of Various Ocular Surface Disorders and its Safety

    Directory of Open Access Journals (Sweden)

    Fatma Selin Kaya

    2012-10-01

    Full Text Available Pur po se: To evaluate the effect of autologous serum application on epithelization in the treatment of ocular surface disorders in hard cases and its safety. Ma te ri al and Met hod: Patients with serious ocular surface disorders, unresponsive to conventional treatment were recruited. Clinical features of retrospective cohort of patients who were prescribed serum drops are presented. From July 2007 to January 2010, 31 eyes of 21 patients, who were given autologous serum eye drops, were included into the study. Clinical examination included epithelial changes, rose bengal/lissamine green staining, fluorescein staining, and tear film break-up time. A history of systemic disease was recorded together with systemic medications used. A complete ocular history was also obtained. Re sults: Autologous serum was used in 7 patients with delayed epithelization after penetrating keratoplasty, in 4 patients with epithelial disturbances secondary to keratitis, in 2 patients with alkali burns, in 3 patients with Stevens-Johnson syndrome, in 1 patient with ligneous conjunctivitis, in 1 patient with epidermolysis bullosa, in 1 patient with corneal burn with hot water, and in 2 patients with Sjogren syndrome. The female:male ratio was 13:8. The mean age was 36.23±24.80 standard deviation (range: 7 months-87 years. No significant sight-threatening complication has been observed with the use of serum drops. Dis cus si on: Autologous serum application is safe and efficient additional therapy in the treatment of serious ocular surface problems in difficult cases. (Turk J Ophthalmol 2012; 42: 336-41

  19. In-situ study of surface relief due to cubic-tetragonal martensitic transformation in Mn_6_9_._4Fe_2_6_._0Cu_4_._6 antiferromagnetic shape memory alloy

    International Nuclear Information System (INIS)

    Liu, C.; Yuan, F.; Gen, Z.; Wang, L.; Cui, Y.G.; Wan, J.F.; Zhang, J.H.; Rong, Y.H.

    2016-01-01

    Temperature-dependence surface relief during cubic↔tetragonal martensitic transformation (MT) in Mn_6_9_._4Fe_2_6_._0Cu_4_._6 antiferromegnetic shape memory alloy was studied by means of in-situ atomic force microscopy. The surface morphology memory effect was found and the crystallography reversibility of the transformation and its shearing characters were directly verified. Twin shearing is suggested as the main mechanism of formation of tent-type surface relief. The surface relief angle (θ_α|θ_β)<0.5° was firstly measured and might be the smallest compared with that in other shape memory alloys. A Landau model was proposed to consider the shearing strain related with surface relief of MT varying with the coupling effect between second-order antiferromagnetic transition and first-order MT. According to this model, the Mn_6_9_._4Fe_2_6_._0Cu_4_._6 alloy belongs to the weak coupling system and this kind of weak coupling effect makes the main contribution to the small relief angle. - Highlights: • Temperature-dependence surface relief in Mn-Fe-Cu alloy was firstly studied. • The surface morphology memory effect in Mn-Fe-Cu alloy was found. • Smallest surface relief angle (θ_α|θ_β).

  20. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.

    Science.gov (United States)

    Gozem, Samer; Melaccio, Federico; Valentini, Alessio; Filatov, Michael; Huix-Rotllant, Miquel; Ferré, Nicolas; Frutos, Luis Manuel; Angeli, Celestino; Krylov, Anna I; Granovsky, Alexander A; Lindh, Roland; Olivucci, Massimo

    2014-08-12

    We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

  1. Effects of process parameters of various pretreatments on enzymatic hydrolysability of Ceiba pentandra (L.) Gaertn. (Kapok) fibre: A response surface methodology study

    International Nuclear Information System (INIS)

    Tye, Ying Ying; Lee, Keat Teong; Wan Abdullah, Wan Nadiah; Leh, Cheu Peng

    2015-01-01

    Kapok fibre is a promising raw material to produce sugar by enzymatic hydrolysis. In this work, effects of water, acid and alkaline pretreatments on the enzymatic sugar yield were studied through response surface methodology (RSM) and supported by the analysis of chemical compositions and physical structure of the fibre. For water pretreatment, reaction temperature and time were the independent variables while chemical concentration was also used as the third independent variable for acid and alkaline pretreatments. For all pretreatments, the enzymatic hydrolysis conditions were kept constant. The structure of pretreated fibre was also examined using scanning electron microscope (SEM). Results showed that water and acid pretreatments effectively dissolved hemicellulose of the fibre with the latter unveiled better results. The alkaline pretreatment resulted in the highest total glucose yield (g/kg of untreated fibre) as compared to water and acid pretreatments. SEM analysis illustrated that water and acid pretreatments led severe destruction of fibre structure; however, both of these pretreatments exhibited lower enhancement of enzymatic hydrolysability of kapok fibre as compared to that observed in alkaline pretreatment. - Highlights: • Effect of pretreatments on sugar yield was studied by response surface methodology. • Glucose yield was highly related to the chemical compositions of pretreated fibers. • Pretreatments altered the physical structure of kapok fibers. • Enzymatic hydrolysability of fibre was improved the most by alkaline treatment. • Over 94% cellulose of the pretreated fibres was converted to glucose

  2. Fluxgate vector magnetometers: Compensated multi-sensor devices for ground, UAV and airborne magnetic survey for various application in near surface geophysics

    Science.gov (United States)

    Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline

    2017-04-01

    Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.

  3. Time Course of Detection of Human Male DNA from Stained Blood Sample on Various Surfaces by Loop Mediated Isothermal Amplification and Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Panan Kanchanaphum

    2018-01-01

    Full Text Available This study explores determining the sex of humans from blood stains taken from different surfaces and compares the time course of detection with the conventional PCR, Conventional Loop Mediated Isothermal Amplification (LAMP, and LAMP-Lateral Flow Dipstick (LFD. For the DNA templates, 7 male and 7 female blood stained samples were extracted and added to LAMP and PCR reaction solution to amplify the SRY gene. The DNA samples were extracted from the following blood stained materials: cloth, wood, clay, and tile. Then, the samples were stored at room temperature for 1, 7, 30, and 60 day(s. After the DNA amplification, the gel electrophoresis process was applied to detect LAMP product. The LFD was combined with the LAMP to detect LAMP product on the male cloth samples. For the male samples, the time course of detection on the first and seventh days indicated positive for both LAMP and PCR products on all the surfaces while no DNA amplification was found on any of the female samples. On day 30, positive LAMP product was still found on all the male samples. However, it had faded on the tiles. Moreover, all the male samples, which had tested positive for PCR product, were blurred and unclear. On day 60, LAMP product was still found on all the male samples. Conversely, the PCR method resulted in no bands showing for any of the male samples. However, the LAMP-LFD method detected product on all the male samples of cloth. The results show that the LAMP is an effective, practical, and reliable molecular-biological method. Moreover, the LFD can increase the efficiency and sensitivity of the LAMP, making it more suitable for field studies because gel electrophoresis apparatus is not required.

  4. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  5. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    Directory of Open Access Journals (Sweden)

    Xinghua Li

    Full Text Available Soil phosphorus (P fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP. Runoff total P (TP was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  6. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    Science.gov (United States)

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi

    2017-01-01

    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  7. Interactive shape metamorphosis

    Science.gov (United States)

    Chen, David T.; State, Andrei; Banks, David

    1994-01-01

    A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.

  8. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  9. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  10. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  11. High-resolution liquid patterns via three-dimensional droplet shape control.

    Science.gov (United States)

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  12. Synthesis and characterization of polyhedral and quasi-sphere non-polyhedral Pt nanoparticles: effects of their various surface morphologies and sizes on electrocatalytic activity for fuel cell applications

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Ohtaki, Michitaka; Hien, Tong Duy; Jalem, Randy; Nogami, Masayuki

    2011-01-01

    In this article, polyhedral and non-polyhedral Pt nanoparticles were prepared by modified polyol method using AgNO 3 as a good structure-modifying agent. Their TEM and HRTEM images showed the particle size in the range of 8–16 nm for both the above cases. The structures and properties of the surfaces of Pt nanoparticles were investigated through cyclic voltammetry in dilute perchloric acid (HClO 4 ) electrolyte solution. A comparison of the electrocatalytic property in methanol electrooxidation was made. Here, the effects of polyhedral and non-polyhedral morphologies on their catalytic properties were studied. The results revealed that the special catalytic activity of quasi-sphere non-polyhedral Pt nanoparticles is higher than that of polyhedral Pt nanoparticles. In addition, Pt nanoparticles of un-sharp and quasi-sphere morphologies exhibit the tolerance to poisoning species better than that of Pt nanoparticles of sharp and polyhedral morphologies due to the various morphologies of the catalyst surfaces in the chronoamperometric plots. Therefore, these experimental evidences showed the morphology-dependent catalytic property according to the various morphologies and complexity of their catalyst surfaces.

  13. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi; Tai, Chiewlan; Zhang, Eugene; Xu, Pengfei

    2013-01-01

    efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  14. Variability in palatal shape and size in patients with bilateral complete cleft lip and palate assessed using dense surface model construction and 3D geometric morphometrics

    Czech Academy of Sciences Publication Activity Database

    Bejdová, Š.; Krajíček, V.; Peterka, Miroslav; Trefný, P.; Velemínská, J.

    2012-01-01

    Roč. 40, č. 3 (2012), s. 201-208 ISSN 1010-5182 Institutional research plan: CEZ:AV0Z50390512 Keywords : orofacial cleft * palatal shape * laser scranning Subject RIV: EA - Cell Biology Impact factor: 1.610, year: 2012

  15. An analytic study on laminar film condensation along the interior surface of a cave-shaped cavity of a flat plate heat pipe

    International Nuclear Information System (INIS)

    Lee, Jin Sung; Kim, Tae Gyu; Park, Tae Sang; Kim, Choong Sik; Park, Chan Hoon

    2002-01-01

    An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ crit =3∼7%, Ψ crit =0.5∼1.3%, respectively, in the range of heat flux q = 5∼90kW/m 2

  16. Fluidic-Based Virtual Aerosurface Shaping

    National Research Council Canada - National Science Library

    Glezer, Ari

    2004-01-01

    Recent work on a novel approach to the control of the aerodynamic performance of lifting surfaces by fluidic modification of their apparent aerodynamic shape, or virtual aerosurface shaping is reviewed...

  17. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.

    1988-01-01

    The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)

  18. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, M.; Tasaka, K.; Kawasaki, Y.

    1989-01-01

    Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps

  19. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  20. The exact calculation of the e. m. field arising from the scattering of twodimensional electromagnetic waves at a perfectly conducting cylindrical surface of arbitrary shape

    NARCIS (Netherlands)

    Hoenders, B.J.

    1982-01-01

    The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.

  1. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    Science.gov (United States)

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  2. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  3. Automating the design of resection guides specific to patient anatomy in knee replacement surgery by enhanced 3D curvature and surface modeling of distal femur shape models.

    Science.gov (United States)

    Cerveri, Pietro; Manzotti, Alfonso; Confalonieri, Norberto; Baroni, Guido

    2014-12-01

    Personalized resection guides (PRG) have been recently proposed in the domain of knee replacement, demonstrating clinical outcome similar or even superior to both manual and navigated interventions. Among the mandatory pre-surgical steps for PRG prototyping, the measurement of clinical landmarks (CL) on the bony surfaces is recognized as a key issue due to lack of standardized methodologies, operator-dependent variability and time expenditure. In this paper, we focus on the reliability and repeatability of an anterior-posterior axis, also known as Whiteside line (WL), of the distal femur proposing automatic surface processing and modeling methods aimed at overcoming some of the major concerns related to the manual identification of such CL on 2D images and 3D models. We show that the measurement of WL, exploiting the principle of mean-shifting surface curvature, is highly repeatable and coherent with clinical knowledge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  5. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  6. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  7. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  8. Shape coexistence in selenium isotopes

    International Nuclear Information System (INIS)

    Liu Ying; Cao Zhongbin; Xu Furong

    2010-01-01

    Nuclear shape change and shape coexistence in the Selenium isotopes have been investigated by Total-Routhian-Surface (TRS) calculations. It is found that nuclear shapes vary significantly with increasing neutron number. The TRS calculations for the ground states of 66,72,92,94 Se isotopes show that both neutron-deficient and neutron-dripline Selenium isotopes have oblate and prolate shape coexistence. The cranking shell-model calculations for 72,94 Se give that prolate and oblate shape coexistence in low rotational frequency. However, oblate rotational bands disappear and prolate rotational bands become yrast bands with increasing rotational frequency, which is due to the intrusion of the g 9/2 orbitals. (authors)

  9. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  10. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    International Nuclear Information System (INIS)

    Alayo, Nerea; Bausells, Joan; Pérez-Murano, Francesc; Conde-Rubio, Ana; Labarta, Amilcar; Batlle, Xavier; Borrisé, Xavier

    2015-01-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition. (paper)

  11. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.

    Science.gov (United States)

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-06

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  12. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  13. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part II – Technological formula and value of diffusion coefficient

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2017-03-01

    Full Text Available The completed research presented in the first part of the article has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing. On the basis of these data simulations were carried out to examine the behaviour of zinc diffusion coefficient D in the galvanized coating. The adopted model of zinc coating growth helped to explain the cases of excessive growth of the intermetallic phases in this type of coating. The paper analyzes covered the relationship between the roughness and phase composition of the top layer of product and the thickness and kinetics of zinc coating growth referred to individual sub-layers of the intermetallic phases.Roughness and phase composition in the surface layer of product were next related to the diffusion coefficient D examined in respective sublayers of the intermetallic phases.

  14. Influence of the whispering-gallery mode resonators shape on its inertial movement sensitivity

    Science.gov (United States)

    Filatov, Yuri V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2018-01-01

    The optical whispering-gallery mode (WGM) resonators are axially symmetrical resonators with smooth edges, supporting the existence of the WGMs by the total internal reflection on the surface of the resonator. As of today, various types of such resonators have been developed, namely the ball shaped, tor shaped, bottle shaped, disk shaped, etc. The movement of WGM resonators in inertial space causes the changes in their shape. The result is a spectral shift of the WGMs. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement in different manners. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. The work is devoted to investigation of these aspects.

  15. The influence of the whispering gallery modes resonators shape on their sensitivity to the movement

    Science.gov (United States)

    Filatov, Yuri V.; Govorenko, Ekaterina V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2017-05-01

    The optical whispering gallery modes resonators are axially symmetrical resonators with smooth edges, supporting the existence of the whispering gallery modes by the total internal reflection on the surface of the resonator. For today various types of such resonators were developed, namely the ball-shaped, tor-shaped, bottle-shaped, disk-shaped etc. The movement of whispering gallery modes resonators in inertial space causes the changes of their shape. The result is a spectral shift of the whispering gallery modes. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement on a miscellaneous. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. This work is devoted to a research of these aspects.

  16. Radiation processing technology for preparation of fine shaped biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M.; Yoshida, M.; Asano, M. (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Yamanaka, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-06-01

    Radiation processing technology for the preparation of fine shaped biomedical materials was studied from the aspect of a development of the technology and its application. Electron beam irradiation technology was applied to the preparation of fine shaped biomedical materials such as thin polymer films in diagnosis, in which enzyme and antibody were used as a bioactive substance. Electron beam cast-polymerization and electron beam repeat surface-polymerization, that are surface irradiation techniques of homogeneous hydrophilic monomer solution containing enzymes made it possible to form the immobilized antibody films. In this technique, the films with various thicknesses (50-500 [mu]m) were obtained by regulating the electron beam energy. The thin polymer films immobilizing anti-[alpha]-fetoprotein were evaluated from the aspect of immunoagents for diagnosis of liver cancer. (Author).

  17. Antibacterial Au nanostructured surfaces.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  18. The role of sea–land air thermal difference, shape of the coastline and sea surface temperature in the nocturnal offshore convection

    Directory of Open Access Journals (Sweden)

    Jordi Mazón

    2013-01-01

    Full Text Available Nocturnal precipitation cells and lines occur near the coastline in the whole Mediterranean basin in all seasons. The precipitation events are mainly located in areas where coastal mountain ranges and rivers enhance convergence though the interaction of nocturnal mesoscale and local flows (land breeze, katabatic and drainages winds with prevailing synoptic wind or with other mesoscale and local flows. The methodology used here to study this phenomenon consists of three stages. First, the Tropical Rainfall Measuring Mission (TRMM radar satellite database is used to detect nocturnal precipitation near the coastline, from 18 to 09 UTC. An event is included in the study if the 3 hours accumulated precipitation detected by TRMM is stationary near the coast, or has moved slightly onshore or offshore, and has lasted no more than six consecutive hours. Second, the NCEP reanalysis database is used to describe the synoptic conditions and to discard precipitation associated with synoptic events (large low pressure areas, dynamic polar fronts, or troughs, for example. In the final step by using the version 3 of the Weather Research Forecast model, we simulate and analyse some of the selected events to determine the role of the land–sea temperature differences, the curvature of the coastline and the sea surface temperature.The simulations confirm that the nocturnal precipitation studied in the Mediterranean basin near the coastline is formed from the interaction between relatively warm and wet sea-air with the cold air mass from drainage winds, as well as from the convergence of several drainage winds offshore. The mechanism is the same that is used to explain nocturnal precipitation in tropical areas.

  19. Shape Synthesis in Mechanical Design

    Directory of Open Access Journals (Sweden)

    C. P. Teng

    2007-01-01

    Full Text Available The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order curves is usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not necessarily the most suitable when the designed element must withstand loads that can lead to failure-prone stress concentrations. Indeed, as mechanical designers have known for a while, stress concentrations occur, first and foremost, by virtue of either dramatic changes in curvature or extremely high values thereof. As an alternative, we propose here the use of smooth curves that can be simply generated using standard concepts such as non-parametric cubic splines. These curves can be readily used to produce either extruded surfaces or surfaces of revolution. 

  20. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems

    Science.gov (United States)

    Gielis, Johan; Caratelli, Diego; Fougerolle, Yohan; Ricci, Paolo Emilio; Tavkelidze, Ilia; Gerats, Tom

    2012-01-01

    Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way. PMID:23028417

  1. Comparison of inventory of tritium in various ceramic breeder blankets

    International Nuclear Information System (INIS)

    Nishikawa, M.; Beloglazov, S.; Nakashima, N.; Hashimoto, K.; Enoeda, M.

    2002-01-01

    It has been pointed out by the present authors that it is essential to understand such mass transfer steps as diffusion of tritium in the grain of breeder material, absorption of water vapor into bulk of the grain, and adsorption of water on surface of the grain, together with the isotope exchange reaction between hydrogen in purge gas and tritium on surface of breeder material and the isotope exchange reaction between water vapor in purge gas and tritium on surface, for estimation of the tritium inventory in a uniform ceramic breeder blanket under the steady-state condition. It has been also pointed out by the present authors that the water formation reaction on the surface of ceramic breeder materials at introduction of hydrogen can give effect on behavior of bred tritium and lithium transfer in blanket. The tritium inventory for various ceramic breeder blankets are compared in this study basing on adsorption capacity, absorption capacity, isotope exchange capacity, and isotope exchange reactions on the Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 4 SiO 4 and Li 2 TiO 3 surface experimentally obtained by the present authors. Effect of each mass transfer steps on the shape of release curve of bred tritium at change of the operational conditions is also discussed from the observation at out pile experiment in KUR. (orig.)

  2. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    Science.gov (United States)

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarc