WorldWideScience

Sample records for variants modulate mtdna

  1. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA

  2. Analysis of mtDNA sequence variants in colorectal adenomatous polyps

    Directory of Open Access Journals (Sweden)

    Grizzle William

    2010-10-01

    Full Text Available Abstract Colorectal tumors mostly arise from sporadic adenomatous polyps. Polyps are defined as a mass of cells that protrudes into the lumen of the colon. Adenomatous polyps are benign neoplasms that, by definition display some characteristics of dysplasia. It has been shown that polyps were benign tumors which may undergo malignant transformation. Adenomatous polyps have been classified into three histologic types; tubular, tubulovillous, and villous with increasing malignant potential. The ability to differentially diagnose these colorectal adenomatous polyps is important for therapeutic intervention. To date, little efforts have been directed to identifying genetic changes involved in adenomatous polyps. This study was designed to examine the relevance of mitochondrial genome alterations in the three adenomatous polyps. Using high resolution restriction endonucleases and PCR-based sequencing, fifty-seven primary fresh frozen tissues of adenomatous polyps (37 tumors and 20 matched surrounding normal tissues obtained from the southern regional Cooperative Human Tissue Network (CHTN and Grady Memorial Hospital at Atlanta were screened with three mtDNA regional primer pairs that spanned 5.9 kbp. Results from our data analyses revealed the presence of forty-four variants in some of these mitochondrial genes that the primers spanned; COX I, II, III, ATP 6, 8, CYT b, ND 5, 6 and tRNAs. Based on the MITODAT database as a sequence reference, 25 of the 44 (57% variants observed were unreported. Notably, a heteroplasmic variant C8515G/T in the MT-ATP 8 gene and a germline variant 8327delA in the tRNAlys was observed in all the tissue samples of the three adenomatous polyps in comparison to the referenced database sequence. A germline variant G9055A in the MT-ATP 6 gene had a frequency of 100% (17/17 in tubular and 57% (13/23 in villous adenomas; no corresponding variant was in tubulovillous adenomas. Furthermore, A9006G variant at MT-ATP 6 gene was

  3. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    Science.gov (United States)

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  4. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    Science.gov (United States)

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Science.gov (United States)

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  6. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    Science.gov (United States)

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and

  7. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-01-01

    Highlights: → Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. → This process is independent of endogenous ROS production. → Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O 2 ) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  8. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    Science.gov (United States)

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    between mutant and wild type mtDNA molecules is not a consequence of a random repopulation of depleted pool of mtDNA genomes. The heteroplasmy change could be also modulated by cell growth conditions, namely increased by cells culturing in a carbohydrate-free medium, thus forcing them to use oxidative phosphorylation and providing a selective advantage for cells with improved respiration capacities. We discuss the advantages and limitations of this approach and propose further development of the anti-replicative strategy based on the RNA import into human mitochondria.

  9. mtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage

    Czech Academy of Sciences Publication Activity Database

    Burgstaller, J. P.; Johnston, I. G.; Jones, N. S.; Albrechtová, Jana; Kolbe, T.; Vogl, C.; Futschik, A.; Mayrhofer, C.; Klein, D.; Sabitzer, S.; Blattner, M.; Gülly, C.; Poulton, J.; Rülicke, T.; Piálek, Jaroslav; Steinborn, R.; Brem, G.

    2014-01-01

    Roč. 7, č. 6 (2014), s. 2031-2041 ISSN 2211-1247 Institutional support: RVO:68081766 Keywords : mitochondrial DNA * mice * transmission * evolution * selection * mutation * replication * variants * growth * blood Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.358, year: 2014

  10. Measurement with SR-0 experimental modules of the SPHINX nuclear transmutation system. Variants 2008

    International Nuclear Information System (INIS)

    Rypar, Vojtech; Juricek, Vlastimil; Svadlenkova, Marie; Heraltova, Lenka; Viererbl, Ladislav; Lahodova, Zdena

    2008-12-01

    Experiments were performed with two LR-0 rector core arrangements and 3 variants of SR-0 insertion modules with a view to establishing the critical parameters of the reactor cores for the 3 module variants comprising different materials and different numbers of LR-0 fuel pins. The effect of the materials on the photon dose distribution and, on the axial and radial neutron field distributions (via 140 Ba and 140 La activities) was examined and the reaction rate distribution of activation foils inside the experimental module was measured

  11. Multiple Functional Variants in cis Modulate PDYN Expression.

    Science.gov (United States)

    Babbitt, Courtney C; Silverman, Jesse S; Haygood, Ralph; Reininga, Jennifer M; Rockman, Matthew V; Wray, Gregory A

    2010-02-01

    Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.

  12. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    Science.gov (United States)

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  13. Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3.

    Directory of Open Access Journals (Sweden)

    Tanja Dodenhof

    Full Text Available Perlucin is one of the proteins of the organic matrix of nacre (mother of pearl playing an important role in biomineralisation. This nacreous layer can be predominately found in the mollusc lineages and is most intensively studied as a compound of the shell of the marine Australian abalone Haliotis laevigata. A more detailed analysis of Perlucin will elucidate some of the still unknown processes in the complex interplay of the organic/inorganic compounds involved in the formation of nacre as a very interesting composite material not only from a life science-based point of view. Within this study we discovered three unknown Perlucin splice variants of the Australian abalone H. laevigata. The amplified cDNAs vary from 562 to 815 base pairs and the resulting translation products differ predominantly in the absence or presence of a varying number of a 10 mer peptide C-terminal repeat. The splice variants could further be confirmed by matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF MS analysis as endogenous Perlucin, purified from decalcified abalone shell. Interestingly, we observed that the different variants expressed as maltose-binding protein (MBP fusion proteins in E. coli showed strong differences in their influence on precipitating CaCO3 and that these differences might be due to a splice variant-specific formation of large protein aggregates influenced by the number of the 10 mer peptide repeats. Our results are evidence for a more complex situation with respect to Perlucin functional regulation by demonstrating that Perlucin splice variants modulate the crystallisation of calcium carbonate. The identification of differentially behaving Perlucin variants may open a completely new perspective for the field of nacre biomineralisation.

  14. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    Science.gov (United States)

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  15. Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q.

    Directory of Open Access Journals (Sweden)

    Yaou Ren

    Full Text Available Trinucleotide repeat (TNR instability is associated with human neurodegenerative diseases and cancer. Recent studies have pointed out that DNA base excision repair (BER mediated by DNA polymerase β (pol β plays a crucial role in governing somatic TNR instability in a damage-location dependent manner. It has been shown that the activities and function of BER enzymes and cofactors can be modulated by their polymorphic variations. This could alter the function of BER in regulating TNR instability. However, the roles of BER polymorphism in modulating TNR instability remain to be elucidated. A previous study has shown that a pol β polymorphic variant, polβR137Q is associated with cancer due to its impaired polymerase activity and its deficiency in interacting with a BER cofactor, proliferating cell nuclear antigen (PCNA. In this study, we have studied the effect of the pol βR137Q variant on TNR instability. We showed that pol βR137Q exhibited weak DNA synthesis activity to cause TNR deletion during BER. We demonstrated that similar to wild-type pol β, the weak DNA synthesis activity of pol βR137Q allowed it to skip over a small loop formed on the template strand, thereby facilitating TNR deletion during BER. Our results further suggest that carriers with pol βR137Q polymorphic variant may not exhibit an elevated risk of developing human diseases that are associated with TNR instability.

  16. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-02-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.

  17. A variant in ANKK1 modulates acute subjective effects of cocaine: a preliminary study

    Science.gov (United States)

    Spellicy, Catherine J.; Harding, Mark J.; Hamon, Sara C.; Mahoney, James J.; Reyes, Jennifer A.; Kosten, Thomas R.; Newton, Thomas F.; De La Garza, Richard; Nielsen, David A.

    2014-01-01

    This study aimed to evaluate whether functional variants in the ankyrin repeat and kinase domain-containing 1 gene (ANKK1) and/or the dopamine receptor D2 gene (DRD2) modulate the subjective effects (reward or non-reward response to a stimulus) produced by cocaine administration. Cocaine-dependent participants (N = 47) were administered 40 mg of cocaine or placebo at time 0, and a subjective effects questionnaire (visual analog scale) was administered 15 minutes prior to cocaine administration, and at 5, 10,15, and 20 minutes following administration. The influence of polymorphisms in the ANKK1 and DRD2 genes on subjective experience of cocaine in the laboratory was tested. Participants with a T allele of ANKK1 rs1800497 experienced greater subjective ‘high’ (p = 0.00006), ‘any drug effect’ (p = 0.0003), and ‘like’ (p = 0.0004) relative to the CC genotype group. Although the variant in the DRD2 gene was shown to be associated with subjective effects, LD analysis revealed this association was driven by the ANKK1 rs1800497 variant. A participant’s ANKK1 genotype may identify individuals who are likely to experience greater positive subjective effects following cocaine exposure, including greater ‘high’ and ‘like’, and these individuals may have increased vulnerability to continue using cocaine or they may be at greater risk to relapse during periods of abstinence. However, these results are preliminary and replication is necessary to confirm these findings. PMID:24528631

  18. Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease.

    Science.gov (United States)

    Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego

    2016-08-01

    Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Melanesian mtDNA complexity.

    Directory of Open Access Journals (Sweden)

    Jonathan S Friedlaender

    Full Text Available Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA sequences from hypervariable regions 1 and 2 (HVR1 and HVR2 from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups. Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP, and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal Austronesian influence in this region remains unresolved.

  20. Common and rare variants in SCN10A modulate the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Jabbari, Javad; Olesen, Morten S; Yuan, Lei

    2015-01-01

    BACKGROUND: Genome-wide association studies have shown that the common single nucleotide polymorphism rs6800541 located in SCN10A, encoding the voltage-gated Nav1.8 sodium channel, is associated with PR-interval prolongation and atrial fibrillation (AF). Single nucleotide polymorphism rs6800541...... is in high linkage disequilibrium with the nonsynonymous variant in SCN10A, rs6795970 (V1073A, r(2)=0.933). We therefore sought to determine whether common and rare SCN10A variants are associated with early onset AF. METHODS AND RESULTS: SCN10A was sequenced in 225 AF patients in whom there was no evidence...... of other cardiovascular disease or dysfunction (lone AF). In an association study of the rs6795970 single nucleotide polymorphism variant, we included 515 AF patients and 2 control cohorts of 730 individuals free of AF and 6161 randomly sampled individuals. Functional characterization of SCN10A variants...

  1. Functional genetic variants in the vesicular monoamine transporter 1 (VMAT1) modulate emotion processing

    Science.gov (United States)

    Lohoff, Falk W.; Hodge, Rachel; Narasimhan, Sneha; Nall, Aleksandra; Ferraro, Thomas N.; Mickey, Brian J.; Heitzeg, Mary M.; Langenecker, Scott A.; Zubieta, Jon-Kar; Bogdan, Ryan; Nikolova, Yuliya S.; Drabant, Emily; Hariri, Ahmad R.; Bevilacqua, Laura; Goldman, David; Doyle, Glenn A.

    2012-01-01

    SUMMARY Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits, and risk for psychopathology. PMID:23337945

  2. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    Science.gov (United States)

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  3. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  4. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    Directory of Open Access Journals (Sweden)

    Nesli Avgan

    2017-03-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265 and long-term visual memory (p-value = 0.003 in a small cohort (n = 181 comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II. VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006 that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  5. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    Science.gov (United States)

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory ( p -value = 0.003) in a small cohort ( n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism ( p -value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF , and its anti-sense transcript BDNF-AS , in long-term visual memory performance.

  6. Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia

    DEFF Research Database (Denmark)

    Kästner, Anne; Grube, Sabrina; El-Kordi, Ahmed

    2012-01-01

    -term memory readouts, with one particular combination of genotypes superior to all others (p 800), these associations were confirmed. A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenic......Erythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsic role of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations of EPO and EPO receptor (EPOR......) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short...

  7. Modulation of Malaria Phenotypes by Pyruvate Kinase (PKLR Variants in a Thai Population.

    Directory of Open Access Journals (Sweden)

    Rebekah van Bruggen

    Full Text Available Pyruvate kinase (PKLR is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41 is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.

  8. FTO gene variant modulates the neural correlates of visual food perception.

    Science.gov (United States)

    Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc

    2016-03-01

    Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genetic Schizophrenia Risk Variants Jointly Modulate Total Brain and White Matter Volume

    DEFF Research Database (Denmark)

    Terwisscha van Scheltinga, Afke F; Bakker, Steven C; van Haren, Neeltje E M

    2013-01-01

    with total brain volume (R(2)=.048, p=1.6×10(-4)) and white matter volume (R(2)=.051, p=8.6×10(-5)) equally in patients and control subjects. The number of (independent) SNPs that substantially influenced both disease risk and white matter (n=2020) was much smaller than the entire set of SNPs that modulated...... modulating schizophrenia and brain volume. METHODS: Odds ratios for genome-wide SNP data were calculated in the sample collected by the Psychiatric Genome-wide Association Study Consortium (8690 schizophrenia patients and 11,831 control subjects, excluding subjects from the present study). These were used...

  10. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing.

    Science.gov (United States)

    Boucret, L; Bris, C; Seegers, V; Goudenège, D; Desquiret-Dumas, V; Domin-Bernhard, M; Ferré-L'Hotellier, V; Bouet, P E; Descamps, P; Reynier, P; Procaccio, V; May-Panloup, P

    2017-10-01

    Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes? Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing. Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing. This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group. mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother. There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being

  11. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    Directory of Open Access Journals (Sweden)

    Johansson Ingegerd

    2007-06-01

    Full Text Available Abstract Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries, harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19 or low (n = 19 caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively. The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37 and saliva adhesion of S. mutans Ingbritt (VIP = 1.47. The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries

  12. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia.

    Directory of Open Access Journals (Sweden)

    Shaorong Zhao

    Full Text Available The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2, a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC. In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.

  13. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    Science.gov (United States)

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  14. A functional genetic variant in fragile-site gene FATS modulates the risk of breast cancer in triparous women

    International Nuclear Information System (INIS)

    Song, Fangfang; Zhang, Jun; Qiu, Li; Zhao, Yawen; Xing, Pan; Lu, Jiachun; Chen, Kexin; Li, Zheng

    2015-01-01

    The fragile-site associated tumor suppressor (FATS, formerly known as C10orf90), a regulator of p53-p21 pathway has been involved in the onset of breast cancer. Recent data support the idea that the crosstalk between FATS and p53 may be of physiological importance for reproduction during evolution. The aim of the current study was to test the hypothesis that FATS genetic polymorphism can influence the risk of breast cancer. We conducted population-based studies in two independent cohorts comprising 1 532 cases and 1 573 controls in Tianjin of North China, and 804 cases and 835 controls in Guangzhou of South China, coupled with functional validation methods, to investigate the role of FATS genetic variant in breast cancer risk. We identified a functional variant rs11245007 (905C > T, 262D/N) in fragile-site gene FATS that modulates p53 activation. FATS-262 N exhibited stronger E3 activity to polyubiquitinate p53 than did FATS-262D, leading to the stronger transcriptional activity of p53 and more pronounced stabilization of p53 protein and its activation in response to DNA damage. Case–control studies found that CT or TT genotype was significantly associated with a protective effect on breast cancer risk in women with parity ≥ 3, which was not affected by family history. Our findings suggest the role of FATS-p53 signaling cascade in suppressing pregnancy-related carcinogenesis and potential application of FATS genotyping in breast cancer prevention. The online version of this article (doi:10.1186/s12885-015-1570-9) contains supplementary material, which is available to authorized users

  15. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Brandi Rollins

    Full Text Available Mitochondria provide most of the energy for brain cells by the process of oxidative phosphorylation. Mitochondrial abnormalities and deficiencies in oxidative phosphorylation have been reported in individuals with schizophrenia (SZ, bipolar disorder (BD, and major depressive disorder (MDD in transcriptomic, proteomic, and metabolomic studies. Several mutations in mitochondrial DNA (mtDNA sequence have been reported in SZ and BD patients.Dorsolateral prefrontal cortex (DLPFC from a cohort of 77 SZ, BD, and MDD subjects and age-matched controls (C was studied for mtDNA sequence variations and heteroplasmy levels using Affymetrix mtDNA resequencing arrays. Heteroplasmy levels by microarray were compared to levels obtained with SNaPshot and allele specific real-time PCR. This study examined the association between brain pH and mtDNA alleles. The microarray resequencing of mtDNA was 100% concordant with conventional sequencing results for 103 mtDNA variants. The rate of synonymous base pair substitutions in the coding regions of the mtDNA genome was 22% higher (p = 0.0017 in DLPFC of individuals with SZ compared to controls. The association of brain pH and super haplogroup (U, K, UK was significant (p = 0.004 and independent of postmortem interval time.Focusing on haplogroup and individual susceptibility factors in psychiatric disorders by considering mtDNA variants may lead to innovative treatments to improve mitochondrial health and brain function.

  16. Keeping mtDNA in shape between generations.

    Directory of Open Access Journals (Sweden)

    James B Stewart

    2014-10-01

    Full Text Available Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.

  17. A low frequency variant within the GWAS locus of MTNR1B affects fasting glucose concentrations: genetic risk is modulated by obesity.

    Science.gov (United States)

    Been, L F; Hatfield, J L; Shankar, A; Aston, C E; Ralhan, S; Wander, G S; Mehra, N K; Singh, J R; Mulvihill, J J; Sanghera, D K

    2012-11-01

    Two common variants (rs1387153, rs10830963) in MTNR1B have been reported to have independent effects on fasting blood glucose (FBG) levels with increased risk to type 2 diabetes (T2D) in recent genome-wide association studies (GWAS). In this investigation, we report the association of these two variants, and an additional variant (rs1374645) within the GWAS locus of MTNR1B with FBG, 2h glucose, insulin resistance (HOMA IR), β-cell function (HOMA B), and T2D in our sample of Asian Sikhs from India. Our cohort comprised 2222 subjects [1201 T2D, 1021 controls]. None of these SNPs was associated with T2D in this cohort. Our data also could not confirm association of rs1387153 and rs10830963 with FBG phenotype. However, upon stratifying data according to body mass index (BMI) (low ≤ 25 kg/m(2) and high > 25 kg/m(2)) in normoglycemic subjects (n = 1021), the rs1374645 revealed a strong association with low FBG levels in low BMI group (β = -0.073, p = 0.002, Bonferroni p = 0.01) compared to the high BMI group (β = 0.015, p = 0.50). We also detected a strong evidence of interaction between rs1374645 and BMI with respect to FBG levels (p = 0.002). Our data provide new information about the significant impact of another MTNR1B variant on FBG levels that appears to be modulated by BMI. Future confirmation on independent datasets and functional studies will be required to define the role of this variant in fasting glucose variation. Published by Elsevier B.V.

  18. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities.

    Science.gov (United States)

    Hertweck, Kate L; Dasgupta, Santanu

    2017-01-01

    Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.

  19. A Deletion Variant of the α2b-Adrenoceptor Modulates the Stress-Induced Shift from "Cognitive" to "Habit" Memory.

    Science.gov (United States)

    Wirz, Lisa; Wacker, Jan; Felten, Andrea; Reuter, Martin; Schwabe, Lars

    2017-02-22

    Stress induces a shift from hippocampus-based "cognitive" toward dorsal striatum-based "habitual" learning and memory. This shift is thought to have important implications for stress-related psychopathologies, including post-traumatic stress disorder (PTSD). However, there is large individual variability in the stress-induced bias toward habit memory, and the factors underlying this variability are completely unknown. Here we hypothesized that a functional deletion variant of the gene encoding the α2b-adrenoceptor ( ADRA2B ), which has been linked to emotional memory processes and increased PTSD risk, modulates the stress-induced shift from cognitive toward habit memory. In two independent experimental studies, healthy humans were genotyped for the ADRA2B deletion variant. After a stress or control manipulation, participants completed a dual-solution learning task while electroencephalographic (Study I) or fMRI measurements (Study II) were taken. Carriers compared with noncarriers of the ADRA2B deletion variant exhibited a significantly reduced bias toward habit memory after stress. fMRI results indicated that, whereas noncarriers of the ADRA2B deletion variant showed increased functional connectivity between amygdala and putamen after stress, this increase in connectivity was absent in carriers of the deletion variant, who instead showed overall enhanced connectivity between amygdala and entorhinal cortex. Our results indicate that a common genetic variation of the noradrenergic system modulates the impact of stress on the balance between cognitive and habitual memory systems, most likely via altered amygdala orchestration of these systems. SIGNIFICANCE STATEMENT Stressful events have a powerful effect on human learning and memory. Specifically, accumulating evidence suggests that stress favors more rigid dorsal striatum-dependent habit memory, at the expense of flexible hippocampus-dependent cognitive memory. Although this shift may have important implications

  20. Dataset of mitochondrial genome variants in oncocytic tumors

    Directory of Open Access Journals (Sweden)

    Lihua Lyu

    2018-04-01

    Full Text Available This dataset presents the mitochondrial genome variants associated with oncocytic tumors. These data were obtained by Sanger sequencing of the whole mitochondrial genomes of oncocytic tumors and the adjacent normal tissues from 32 patients. The mtDNA variants are identified after compared with the revised Cambridge sequence, excluding those defining haplogroups of our patients. The pathogenic prediction for the novel missense variants found in this study was performed with the Mitimpact 2 program.

  1. Functional modulation of the glutamate transporter variant GLT1b by the PDZ domain protein PICK1

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Borre, Lars; Braunstein, Thomas H

    2013-01-01

    The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulato...

  2. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    Science.gov (United States)

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Evolutionary analyses of entire genomes do not support the association of mtDNA mutations with Ras/MAPK pathway syndromes.

    Directory of Open Access Journals (Sweden)

    Alberto Gómez-Carballa

    Full Text Available BACKGROUND: There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS and related disorders (such as LEOPARD, neurofibromatosis type 1, although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM, which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45, most of them classified as NS patients (n = 42. METHODS/PRINCIPAL FINDINGS: The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg patterns of a typical Iberian dataset (including hgs H, T, J, and U. Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5 are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. CONCLUSIONS/SIGNIFICANCE: As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS.

  4. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    Science.gov (United States)

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  5. Intestinal DMBT1 expression is modulated by Crohn's disease-associated IL23R variants and by a DMBT1 variant which influences binding of the transcription factors CREB1 and ATF-2.

    Directory of Open Access Journals (Sweden)

    Julia Diegelmann

    Full Text Available OBJECTIVES: DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs regarding inflammatory bowel disease (IBD susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. METHODS: Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn's disease (CD patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. RESULTS: IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0 × 10(-7, OR 1.42; 95% CI 1.24-1.63. All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1 × 10(-18. The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. CONCLUSION: We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important

  6. Intestinal DMBT1 expression is modulated by Crohn's disease-associated IL23R variants and by a DMBT1 variant which influences binding of the transcription factors CREB1 and ATF-2.

    Science.gov (United States)

    Diegelmann, Julia; Czamara, Darina; Le Bras, Emmanuelle; Zimmermann, Eva; Olszak, Torsten; Bedynek, Andrea; Göke, Burkhard; Franke, Andre; Glas, Jürgen; Brand, Stephan

    2013-01-01

    DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs) regarding inflammatory bowel disease (IBD) susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn's disease (CD) patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0 × 10(-7), OR 1.42; 95% CI 1.24-1.63). All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1 × 10(-18)). The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important role of DMBT1 in CD pathogenesis.

  7. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    International Nuclear Information System (INIS)

    Contreras-Paredes, Adriana; Cruz-Hernandez, Erick de la; Martinez-Ramirez, Imelda; Duenas-Gonzalez, Alfonso; Lizano, Marcela

    2009-01-01

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation

  8. Association of low race performance with mtDNA haplogroup L3b of Australian thoroughbred horses.

    Science.gov (United States)

    Lin, Xiang; Zheng, Hong-Xiang; Davie, Allan; Zhou, Shi; Wen, Li; Meng, Jun; Zhang, Yong; Aladaer, Qimude; Liu, Bin; Liu, Wu-Jun; Yao, Xin-Kui

    2018-03-01

    Mitochondrial DNA (mtDNA) encodes the genes for respiratory chain sub-units that determine the efficiency of oxidative phosphorylation in mitochondria. The aim of this study was to determine if there were any haplogroups and variants in mtDNA that could be associated with athletic performance of Thoroughbred horses. The whole mitochondrial genomes of 53 maternally unrelated Australian Thoroughbred horses were sequenced and an association study was performed with the competition histories of 1123 horses within their maternal lineages. A horse mtDNA phylogenetic tree was constructed based on a total of 195 sequences (including 142 from previous reports). The association analysis showed that the sample groups with poor racing performance history were enriched in haplogroup L3b (p = .0003) and its sub-haplogroup L3b1a (p = .0007), while those that had elite performance appeared to be not significantly associated with haplogroups G2 and L3a1a1a (p > .05). Haplogroup L3b and L3b1a bear two and five specific variants of which variant T1458C (site 345 in 16s rRNA) is the only potential functional variant. Furthermore, secondary reconstruction of 16s RNA showed considerable differences between two types of 16s RNA molecules (with and without T1458C), indicating a potential functional effect. The results suggested that haplogroup L3b, could have a negative association with elite performance. The T1458C mutation harboured in haplogroup L3b could have a functional effect that is related to poor athletic performance.

  9. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    Science.gov (United States)

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. Copyright © 2016, American Association for the Advancement of Science.

  10. Rare variants in calcium homeostasis modulator 1 (CALHM1 found in early onset Alzheimer's disease patients alter calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Fanny Rubio-Moscardo

    Full Text Available Calcium signaling in the brain is fundamental to the learning and memory process and there is evidence to suggest that its dysfunction is involved in the pathological pathways underlying Alzheimer's disease (AD. Recently, the calcium hypothesis of AD has received support with the identification of the non-selective Ca(2+-permeable channel CALHM1. A genetic polymorphism (p. P86L in CALHM1 reduces plasma membrane Ca(2+ permeability and is associated with an earlier age-at-onset of AD. To investigate the role of CALHM1 variants in early-onset AD (EOAD, we sequenced all CALHM1 coding regions in three independent series comprising 284 EOAD patients and 326 controls. Two missense mutations in patients (p.G330D and p.R154H and one (p.A213T in a control individual were identified. Calcium imaging analyses revealed that while the mutation found in a control (p.A213T behaved as wild-type CALHM1 (CALHM1-WT, a complete abolishment of the Ca(2+ influx was associated with the mutations found in EOAD patients (p.G330D and p.R154H. Notably, the previously reported p. P86L mutation was associated with an intermediate Ca(2+ influx between the CALHM1-WT and the p.G330D and p.R154H mutations. Since neither expression of wild-type nor mutant CALHM1 affected amyloid ß-peptide (Aß production or Aß-mediated cellular toxicity, we conclude that rare genetic variants in CALHM1 lead to Ca(2+ dysregulation and may contribute to the risk of EOAD through a mechanism independent from the classical Aß cascade.

  11. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

    Directory of Open Access Journals (Sweden)

    Mastana Sarabjit

    2004-08-01

    Full Text Available Abstract Background Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia. Results Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades. Conclusions Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.

  12. Spatial power distribution in the SR-0 experimental module of the SPHINX nuclear transmutation system - 2006 and 2007 variants

    International Nuclear Information System (INIS)

    Rypar, Vojtech; Svadlenkova, Marie; Novak, Evzen; Viererbl, Ladislav; Lahodova, Zdena; Bily, Tomas

    2007-11-01

    Experiments were performed with various assemblies modelling the SPHINX transmutation system with the aim to investigate the effect of materials in the SR-0 modules, i.e. LiF, NaF, graphite, on the spatial power distribution of the reaction rates of the activation detectors, axial and radial distribution of the fission products of the fuel pins located in some points of the reactor core, and photon dose distribution by using thermoluminescent dosemeters

  13. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.

    Science.gov (United States)

    Diot, Alan; Hinks-Roberts, Alex; Lodge, Tiffany; Liao, Chunyan; Dombi, Eszter; Morten, Karl; Brady, Stefen; Fratter, Carl; Carver, Janet; Muir, Rebecca; Davis, Ryan; Green, Charlotte J; Johnston, Iain; Hilton-Jones, David; Sue, Carolyn; Mortiboys, Heather; Poulton, Joanna

    2015-10-01

    Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses. Copyright © 2015. Published by Elsevier Ltd.

  14. Somatic mtDNA mutation spectra in the aging human putamen.

    Directory of Open Access Journals (Sweden)

    Siôn L Williams

    Full Text Available The accumulation of heteroplasmic mitochondrial DNA (mtDNA deletions and single nucleotide variants (SNVs is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the "common" deletion and other "major arc" deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ(- mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.

  15. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  16. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Science.gov (United States)

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  17. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors

    International Nuclear Information System (INIS)

    Pereira, Luísa; Soares, Pedro; Máximo, Valdemar; Samuels, David C

    2012-01-01

    The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype

  18. MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.

    Science.gov (United States)

    Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu

    2018-06-01

    Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.

  19. Valenced action/inhibition learning in humans is modulated by a genetic variant linked to dopamine D2 receptor expression

    Directory of Open Access Journals (Sweden)

    Anni eRichter

    2014-08-01

    Full Text Available Motivational salience plays an important role in shaping human behavior, but recent studies demonstrate that human performance is not uniformly improved by motivation. Instead, action has been shown to dominate valence in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward, but the neural mechanism behind this behavioral specificity is yet unclear. In all mammals, including humans, the monoamine neurotransmitter dopamine is particularly important in the neural manifestation of appetitively motivated behavior, and the human dopamine system is subject to considerable genetic variability. The well-studied TaqIA restriction fragment length polymorphism (rs1800497 has previously been shown to affect striatal dopamine metabolism. In this study we investigated a potential effect of this genetic variation on motivated action/inhibition learning. Two independent cohorts consisting of 87 and 95 healthy participants, respectively, were tested using the previously described valenced go/no-go learning paradigm in which participants learned the reward-associated no-go condition significantly worse than all other conditions. This effect was modulated by the TaqIA polymorphism, with carriers of the A1 allele showing a diminished learning-related performance enhancement in the rewarded no-go condition compared to the A2 homozygotes. This result highlights a modulatory role for genetic variability of the dopaminergic system in individual learning differences of action-valence interaction.

  20. Alterations in mtDNA, gastric carcinogenesis and early diagnosis.

    Science.gov (United States)

    Rodrigues-Antunes, S; Borges, B N

    2018-05-26

    Gastric cancer remains one of the most prevalent cancers in the world. Due to this, efforts are being made to improve the diagnosis of this neoplasm and the search for molecular markers that may be involved in its genesis. Within this perspective, the mitochondrial DNA is considered as a potential candidate, since it has several well documented changes and is readily accessible. However, numerous alterations have been reported in mtDNA, not facilitating the visualization of which alterations and molecular markers are truly involved with gastric carcinogenesis. This review presents a compilation of the main known changes relating mtDNA to gastric cancer and their clinical significance.

  1. Product Variant Master as a Means to Handle Variant Design

    DEFF Research Database (Denmark)

    Hildre, Hans Petter; Mortensen, Niels Henrik; Andreasen, Mogens Myrup

    1996-01-01

    be implemented in the CAD system I-DEAS. A precondition for high degree of computer support is identification of a product variant master from which new variants can be derived. This class platform defines how a product build up fit certain production methods and rules governing determination of modules...

  2. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015

  3. Private mitochondrial DNA variants in danish patients with hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM......>G, and MT-CYB: m.15024G>A, p.C93Y remained. A detailed analysis of these variants indicated that none of them are likely to cause HCM. In conclusion, private mtDNA mutations are frequent, but they are rarely, if ever, associated with HCM....

  4. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition.

    Science.gov (United States)

    Pu, Shuaihua; Eck, Peter; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Jones, Peter J H

    2016-03-28

    Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid.

  5. Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2.

    Science.gov (United States)

    Taurisano, Paolo; Romano, Raffaella; Mancini, Marina; Giorgio, Annabella Di; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Quarto, Tiziana; Gelao, Barbara; Porcelli, Annamaria; Papazacharias, Apostolos; Ursini, Gianluca; Caforio, Grazia; Masellis, Rita; Niccoli-Asabella, Artor; Todarello, Orlando; Popolizio, Teresa; Rubini, Giuseppe; Blasi, Giuseppe; Bertolino, Alessandro

    2014-01-01

    "Schizotypy" is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [(123)I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.

  6. MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population.

    Science.gov (United States)

    Zheng, Hong-Xiang; Li, Lei; Jiang, Xiao-Yan; Yan, Shi; Qin, Zhendong; Wang, Xiaofeng; Jin, Li

    2017-10-01

    Considerable attention has been focused on the effect of deleterious mutations caused by the recent relaxation of selective constraints on human health, including the prevalence of obesity, which might represent an adaptive response of energy-conserving metabolism under the conditions of modern society. Mitochondrial DNA (mtDNA) encoding 13 core subunits of oxidative phosphorylation plays an important role in metabolism. Therefore, we hypothesized that a relaxation of selection constraints on mtDNA and an increase in the proportion of deleterious mutations have played a role in obesity prevalence. In this study, we collected and sequenced the mtDNA genomes of 722 Uyghurs, a typical population with a high prevalence of obesity. We identified the variants that occurred in the Uyghur population for each sample and found that the number of nonsynonymous mutations carried by Uyghur individuals declined with elevation of their BMI (P = 0.015). We further calculated the nonsynonymous and synonymous ratio (N/S) of the high-BMI and low-BMI haplogroups, and the results showed that a significantly higher N/S occurred in the whole mtDNA genomes of the low-BMI haplogroups (0.64) than in that of the high-BMI haplogroups (0.35, P = 0.030) and ancestor haplotypes (0.41, P = 0.032); these findings indicated that low-BMI individuals showed a recent relaxation of selective constraints. In addition, we investigated six clinical characteristics and found that fasting plasma glucose might be correlated with the N/S and selective pressures. We hypothesized that a higher proportion of deleterious mutations led to mild mitochondrial dysfunction, which helps to drive glucose consumption and thereby prevents obesity. Our results provide new insights into the relationship between obesity predisposition and mitochondrial genome evolution.

  7. Improvement of a predictive model of castration-resistant prostate cancer: functional genetic variants in TGFβ1 signaling pathway modulation.

    Directory of Open Access Journals (Sweden)

    Ana L Teixeira

    Full Text Available Prostate cancer (PC is the most frequently diagnosed cancer in men. The acquisition of castration-resistant (CR phenotype is associated with the activation of signaling pathways mediated by growth factors. The TGFβ1 and its receptors have an important role in tumor progression, being the pro-apoptotic function modulated by the expression of TGFBR2. A single nucleotide polymorphism -875 G > A in TGFBR2 gene has been described, which may influence the expression levels of the receptor. Our purpose was to investigate the potential role of TGFBR2-875G>A in PC risk and in the response to androgen deprivation therapy (ADT. TGFBR2-875G>A polymorphism was studied by allelic discrimination using real-time polymerase chain reaction (PCR in 891 patients with PC and 874 controls. A follow-up study was undertaken to evaluate response to ADT. The TGFBR2 and SMAD7 mRNA expression were analyzed by a quantitative real-time PCR. We found that TGFBR2-875GG homozygous patients present lower expression levels of TGFBR2 mRNA (AA/AG: 2(-ΔΔCT =1.5, P=0.016. GG genotype was also associated with higher Gleason grade (OR=1.51, P=0.019 and increased risk of an early relapse after ADT (HR=1.47, P=0.024. The concordance (c index analysis showed that the definition of profiles that contains information regarding tumor characteristics associated with genetic information present an increased capacity to predict the risk for CR development (c-index model 1: 0.683 vs model 2: 0.736 vs model 3: 0.746 vs model 4: 0.759. The TGFBR2-875G>A contribution to an early relapse in ADT patients, due to changes in mRNA expression, supports the involvement of TGFβ1 pathway in CRPC. Furthermore, according to our results, we hypothesize the potential benefits of the association of genetic information in predictive models of CR development.

  8. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pfeiffer Ronald F

    2010-04-01

    Full Text Available Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results The frequency of affected mothers of the proband with PD (83/167, 49.4% was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4% (Odds Ratio 1.22; 95%CI 0.83 - 1.81. After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic m

  9. MtDNA T4216C variation in multiple sclerosis

    DEFF Research Database (Denmark)

    Andalib, Sasan; Emamhadi, Mohammadreza; Yousefzadeh-Chabok, Shahrokh

    2016-01-01

    MtDNA T4216C variation has frequently been investigated in Multiple Sclerosis (MS) patients; nonetheless, controversy has existed about the evidence of association of this variation with susceptibility to MS. The present systematic review and meta-analysis converge the results of the preceding pu...

  10. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  11. Cellulase variants

    Science.gov (United States)

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  12. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  13. Reduced Mtdna Diversity in the Ngobe Amerinds of Panama

    Science.gov (United States)

    Kolman, C. J.; Bermingham, E.; Cooke, R.; Ward, R. H.; Arias, T. D.; Guionneau-Sinclair, F.

    1995-01-01

    Mitochondrial DNA (mtDNA) haplotype diversity was determined for 46 Ngobe Amerinds sampled widely across their geographic range in western Panama. The Ngobe data were compared with mtDNA control region I sequences from two additional Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche and from one Na-Dene group, the Haida of the Pacific Northwest. The Ngobe exhibit the lowest mtDNA control region sequence diversity yet reported for an Amerind group. Moreover, they carry only two of the four Amerind founding lineages first described by Wallace and coworkers. We posit that the Ngobe passed through a population bottleneck caused by ethnogenesis from a small founding population and/or European conquest and colonization. Dating of the Ngobe population expansion using the HARPENDING et al. approach to the analysis of pairwise genetic differences indicates a Ngobe expansion at roughly 6800 years before present (range: 1850-14,000 years before present), a date more consistent with a bottleneck at Chibcha ethnogenesis than a conquest-based event. PMID:7635293

  14. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.

    Science.gov (United States)

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2015-04-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). © 2015 WILEY PERIODICALS, INC.

  15. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    Science.gov (United States)

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  16. Decreased Circulating mtDNA Levels in Professional Male Volleyball Players.

    Science.gov (United States)

    Nasi, Milena; Cristani, Alessandro; Pinti, Marcello; Lamberti, Igor; Gibellini, Lara; De Biasi, Sara; Guazzaloca, Alessandro; Trenti, Tommaso; Cossarizza, Andrea

    2016-01-01

    Exercise exerts various effects on the immune system, and evidence is emerging on its anti-inflammatory effects; the mechanisms on the basis of these modifications are poorly understood. Mitochondrial DNA (mtDNA) released from damaged cells acts as a molecule containing the so-called damage-associated molecular patterns and can trigger sterile inflammation. Indeed, high plasma levels of mtDNA are associated to several inflammatory conditions and physiological aging and longevity. The authors evaluated plasma mtDNA in professional male volleyball players during seasonal training and the possible correlation between mtDNA levels and clinical parameters, body composition, and physical performance. Plasma mtDNA was quantified by real-time PCR every 2 mo in 12 professional volleyball players (PVPs) during 2 consecutive seasons. As comparison, 20 healthy nonathlete male volunteers (NAs) were analyzed. The authors found lower levels of mtDNA in plasma of PVPs than in NAs. However, PVPs showed a decrease of circulating mtDNA only in the first season, while no appreciable variations were observed during the second season. No correlation was observed among mtDNA, hematochemical, and anthropometric parameters. Regular physical activity appeared associated with lower levels of circulating mtDNA, further confirming the protective, anti-inflammatory effect of exercise.

  17. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  18. Metabolic rescue in pluripotent cells from patients with mtDNA disease.

    Science.gov (United States)

    Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat

    2015-08-13

    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

  19. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    Directory of Open Access Journals (Sweden)

    Mayra Eduardoff

    2017-09-01

    Full Text Available The analysis of mitochondrial DNA (mtDNA has proven useful in forensic genetics and ancient DNA (aDNA studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR is commonly sequenced using established Sanger-type Sequencing (STS protocols involving fragment sizes down to approximately 150 base pairs (bp. Recent developments include Massively Parallel Sequencing (MPS of (multiplex PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less, and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples, and tested challenging forensic samples (n = 2 as well as compromised solid tissue samples (n = 15 up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS

  20. Holoprosencephaly Variant

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-01-01

    Full Text Available The clinical manifestations in 15 patients (6 boys and 9 girls with middle interhemispheric variant (MIH of holoprosencephaly (HPE were compared with classic subtypes (alobar, semilobar, and lobar of HPE in a multicenter study at Stanford University School of Medicine and Lucile Packard Children’s Hospital; Children’s Hospital of Philadelphia; University of California at San Francisco; Texas Scottish Rite Hospital, Dallas; and Kennedy Krieger Institute, Baltimore, MD.

  1. Hypervariable region polymorphism of mtDNA of recurrent oral ulceration in Chinese.

    Directory of Open Access Journals (Sweden)

    Mao Sun

    Full Text Available BACKGROUND: MtDNA haplogroups could have important implication for understanding of the relationship between the mutations of the mitochondrial genome and diseases. Distribution of a variety of diseases among these haplogroups showed that some of the mitochondrial haplogroups are predisposed to disease. To examine the susceptibility of mtDNA haplogroups to ROU, we sequenced the mtDNA HV1, HV2 and HV3 in Chinese ROU. METHODOLOGY/PRINCIPAL FINDINGS: MtDNA haplogroups were analyzed in the 249 cases of ROU patients and the 237 cases of healthy controls respectively by means of primer extension analysis and DNA sequencing. Haplogroups G1 and H were found significantly more abundant in ROU patients than in healthy persons, while haplogroups D5 and R showed a trend toward a higher frequency in control as compared to those in patients. The distribution of C-stretch sequences polymorphism in mtDNA HV1, HV2 and HV3 regions was found in diversity. CONCLUSIONS/SIGNIFICANCE: For the first time, the relationship of mtDNA haplogroups and ROU in Chinese was investigated. Our results indicated that mtDNA haplogroups G1 and H might constitute a risk factor for ROU, which possibly increasing the susceptibility of ROU. Meanwhile, haplogroups D5 and R were indicated as protective factors for ROU. The polymorphisms of C-stretch sequences might being unstable and influence the mtDNA replication fidelity.

  2. Infantile presentation of the mtDNA A3243G tRNA(Leu (UUR)) mutation.

    NARCIS (Netherlands)

    Okhuijsen-Kroes, E.J.; Trijbels, J.M.F.; Sengers, R.C.A.; Mariman, E.C.M.; Heuvel, L.P.W.J. van den; Wendel, U.A.H.; Koch, G.; Smeitink, J.A.M.

    2001-01-01

    Mitochondrial DNA (mtDNA) disorders are clinically very heterogeneous, ranging from single organ involvement to severe multisystem disease. One of the most frequently observed mtDNA mutations is the A-to-G transition at position 3243 of the tRNA(Leu (UUR)) gene. This mutation is often related to

  3. Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells

    International Nuclear Information System (INIS)

    Akimoto, Miho; Niikura, Mamoru; Ichikawa, Masami; Yonekawa, Hiromichi; Nakada, Kazuto; Honma, Yoshio; Hayashi, Jun-Ichi

    2005-01-01

    Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (ρ 0 ) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties

  4. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction

    Science.gov (United States)

    Furda, Amy M.; Marrangoni, Adele M.; Lokshin, Anna; Van Houten, Bennett

    2013-01-01

    Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H2O2) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60 min treatment with H2O2 causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60 min treatment with 2 mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction. PMID:22766155

  5. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt).

    Science.gov (United States)

    Kenny, Timothy C; Germain, Doris

    2017-01-01

    While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPR mt ) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPR mt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPR mt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPR mt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPR mt in this setting.

  6. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2006-03-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin, by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea. Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes.

  7. Er{sub 1.33}Pt{sub 3}Ga{sub 8}: A modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Iain W.H. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Gourdon, Olivier [Research and Development, ZS Pharma, Coppell, TX 75109 (United States); Bekins, Amy; Evans, Jess [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Treadwell, LaRico J. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Macaluso, Robin T., E-mail: robin.macaluso@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639 (United States)

    2016-10-15

    Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder of this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.

  8. Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant.

    Science.gov (United States)

    Melchionda, Laura; Fang, Mingyan; Wang, Hairong; Fugnanesi, Valeria; Morbin, Michela; Liu, Xuanzhu; Li, Wenyan; Ceccherini, Isabella; Farina, Laura; Savoiardo, Mario; D'Adamo, Pio; Zhang, Jianguo; Costa, Alfredo; Ravaglia, Sabrina; Ghezzi, Daniele; Zeviani, Massimo

    2013-05-01

    We studied a family including two half-siblings, sharing the same mother, affected by slowly progressive, adult-onset neurological syndromes. In spite of the diversity of the clinical features, characterized by a mild movement disorder with cognitive impairment in the elder patient, and severe motor-neuron disease (MND) in her half-brother, the brain Magnetic Resonance Imaging (MRI) features were compatible with adult-onset Alexander's disease (AOAD), suggesting different expression of the same, genetically determined, condition. Since mutations in the alpha isoform of glial fibrillary acidic protein, GFAP-α, the only cause so far known of AOAD, were excluded, we applied exome Next Generation Sequencing (NGS) to identify gene variants, which were then functionally validated by molecular characterization of recombinant and patient-derived cells. Exome-NGS revealed a mutation in a previously neglected GFAP isoform, GFAP-ϵ, which disrupts the GFAP-associated filamentous cytoskeletal meshwork of astrocytoma cells. To shed light on the different clinical features in the two patients, we sought for variants in other genes. The male patient had a mutation, absent in his half-sister, in X-linked histone deacetylase 6, a candidate MND susceptibility gene. Exome-NGS is an unbiased approach that not only helps identify new disease genes, but may also contribute to elucidate phenotypic expression.

  9. Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study.

    Science.gov (United States)

    Poulton, Joanna; Luan, Jian'an; Macaulay, Vincent; Hennings, Susie; Mitchell, Jo; Wareham, Nicholas J

    2002-06-15

    Variants in mitochondrial DNA (mtDNA) could be associated with type 2 diabetes because ATP plays a critical role in the production and release of insulin. Diabetes can be precipitated both by mtDNA mutations and by exposure to mitochondrial poisons. The risk of inheriting diabetes from an affected mother is greater than that from an affected father, but this is not explained by maternally inherited diabetes and/or deafness (MIDD) caused by the 3243G : C mtDNA point mutation, which accounts for less than 0.5% of cases of diabetes. A common mtDNA variant (the 16189 variant) is positively correlated with blood fasting insulin, but there are no definitive studies demonstrating that it is associated with diabetes. We demonstrated a significant association between the 16189 variant and type 2 diabetes in a population-based case-control study in Cambridgeshire, UK (n=932, odds ratio=1.61 (1.0-2.7, P=0.048), which was greatly magnified in individuals with a family history of diabetes from the father's side (odds ratio=infinity; P<0.001).

  10. The -250G>A promoter variant in hepatic lipase associates with elevated fasting serum high-density lipoprotein cholesterol modulated by interaction with physical activity in a study of 16,156 Danish subjects

    DEFF Research Database (Denmark)

    Grarup, Niels; Andreasen, Camilla H; Andersen, Mette K

    2008-01-01

    -tolerant control subjects (n = 360). RESULTS: In the Inter99 study, the A allele of rs2070895 associated with a 0.057 mmol/liter [95% confidence interval (CI) 0.039-0.075] increase in fasting serum HDL-cholesterol (HDL-c) (P = 8 x 10(-10)) supported by association in the Anglo-Danish-Dutch Study of Intensive...... Treatment in People with Screen Detected Diabetes in Primary Care study [0.038 mmol/liter per allele (95% CI 0.024-0.053); P = 2 x 10(-7)). The allelic effect on HDL-c was modulated by interaction with self-reported physical activity (P(interaction) = 0.002) because vigorous physically active homozygous A...... of variants in LIPC on metabolic traits and type 2 diabetes in a large sample of Danes. Because behavioral factors influence hepatic lipase activity, we furthermore examined possible gene-environment interactions in the population-based Inter99 study. DESIGN: The LIPC -250G>A (rs2070895) variant was genotyped...

  11. Estimates of Continental Ancestry Vary Widely among Individuals with the Same mtDNA Haplogroup

    Science.gov (United States)

    Emery, Leslie S.; Magnaye, Kevin M.; Bigham, Abigail W.; Akey, Joshua M.; Bamshad, Michael J.

    2015-01-01

    The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual’s mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. PMID:25620206

  12. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    Science.gov (United States)

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  14. CAPSAICIN SUPPLEMENTATION FAILS TO MODULATE AUTONOMIC AND CARDIAC ELECTROPHYSIOLOGIC ACTIVITY DURING EXERCISE IN THE OBESE: WITH VARIANTS OF UCP2 AND UCP3 POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2008-09-01

    Full Text Available We investigated the effects of capsaicin supplementation (150mg on alterations of autonomic nervous system (ANS activity associated with adverse effects of cardiac depolarization-repolarization intervals during aerobic exercise in obese humans. Nine obese males (26.1 ± 1.5 yrs volunteered between study designed. The cardiac ANS activities evaluated by means of heart rate variability of power spectral analysis and cardiac QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilation threshold (50%VTmax on stationary ergometer with placebo (CON or capsaicin (CAP oral administration chosen at random. The uncoupling protein (UCP 2 and UCP 3 genetic variants of the subjects were analyzed by noninvasive genotyping method from collecting buccal mucosa cells. The results indicated that there were no significant differences in cardiac ANS activities during rest and exercise between CON and CAP trials. Although no significant difference, A/A allele of UCP2 polymorphism showed a reduced sympathetic nervous system (SNS index activity compared to G/G + G/A allele during exercise intervention in our subjects. On the other hand, the data on cardiac QT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, our results suggest that capsaicin supplementation 1 h before exercise intervention has no effect on cardiac ANS activities and cardiac electrical stability during exercise in obese individuals. Further studies should also consider genetic variants for exercise efficacy against obesity

  15. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    Science.gov (United States)

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  16. mtDNA point and length heteroplasmy in high- and low radiation areas of Kerala

    International Nuclear Information System (INIS)

    Forster, L.; Forster, P.; Gurney, S.M.; Spencer, M.; Huang, C.; Röhl, A.; Brinkmann, B.

    2010-01-01

    A coastal peninsula in Kerala (India) contains the world's highest level of natural radioactivity in a densely populated area, offering an opportunity to characterize radiation-associated DNA mutations. Here, we focus on mitochondrial DNA (mtDNA) mutations, which are passed exclusively from the mother to her children. To analyse point mutations, we sampled 248 pedigrees (988 individuals) in the high-radiation peninsula and in nearby low-radiation islands as a control population. Then, in an extended sample of 1,172 mtDNA sequences (containing some non-Indians for comparison), we also analysed length mutations, which in mtDNA can lead to the phenomenon of length heteroplasmy, i.e. the existence of different DNA types in the same cell. We wished to find out how fast mtDNA mutates between generations, and whether the mutation rate is increased in radioactive conditions compared to the low-irradiation sample

  17. Mitochondrial DNA (mtDNA haplogroups in 1526 unrelated individuals from 11 Departments of Colombia

    Directory of Open Access Journals (Sweden)

    Juan J. Yunis

    2013-01-01

    Full Text Available The frequencies of four mitochondrial Native American DNA haplogroups were determined in 1526 unrelated individuals from 11 Departments of Colombia and compared to the frequencies previously obtained for Amerindian and Afro-Colombian populations. Amerindian mtDNA haplogroups ranged from 74% to 97%. The lowest frequencies were found in Departments on the Caribbean coast and in the Pacific region, where the frequency of Afro-Colombians is higher, while the highest mtDNA Amerindian haplogroup frequencies were found in Departments that historically have a strong Amerindian heritage. Interestingly, all four mtDNA haplogroups were found in all Departments, in contrast to the complete absence of haplogroup D and high frequencies of haplogroup A in Amerindian populations in the Caribbean region of Colombia. Our results indicate that all four Native American mtDNA haplogroups were widely distributed in Colombia at the time of the Spanish conquest.

  18. Phylogeny and patterns of diversity of goat mtDNA haplogroup A revealed by resequencing complete mitogenomes.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Doro

    Full Text Available We sequenced to near completion the entire mtDNA of 28 Sardinian goats, selected to represent the widest possible diversity of the most widespread mitochondrial evolutionary lineage, haplogroup (Hg A. These specimens were reporters of the diversity in the island but also elsewhere, as inferred from their affiliation to each of 11 clades defined by D-loop variation. Two reference sequences completed the dataset. Overall, 206 variations were found in the full set of 30 sequences, of which 23 were protein-coding non-synonymous single nucleotide substitutions. Many polymorphic sites within Hg A were informative for the reconstruction of its internal phylogeny. Bayesian and network clustering revealed a general similarity over the entire molecule of sequences previously assigned to the same D-loop clade, indicating evolutionarily meaningful lineages. Two major sister groupings emerged within Hg A, which parallel distinct geographical distributions of D-loop clades in extant stocks. The pattern of variation in protein-coding genes revealed an overwhelming role of purifying selection, with the quota of surviving variants approaching neutrality. However, a simple model of relaxation of selection for the bulk of variants here reported should be rejected. Non-synonymous diversity of Hg's A, B and C denoted that a proportion of variants not greater than that allowed in the wild was given the opportunity to spread into domesticated stocks. Our results also confirmed that a remarkable proportion of pre-existing Hg A diversity became incorporated into domestic stocks. Our results confirm clade A11 as a well differentiated and ancient lineage peculiar of Sardinia.

  19. Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species.

    Science.gov (United States)

    Wagner, Steven L; Zhang, Can; Cheng, Soan; Nguyen, Phuong; Zhang, Xulun; Rynearson, Kevin D; Wang, Rong; Li, Yueming; Sisodia, Sangram S; Mobley, William C; Tanzi, Rudolph E

    2014-02-04

    Alzheimer's disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769-780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255-1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.

  20. The amount and integrity of mtDNA in maize decline with development.

    Science.gov (United States)

    Oldenburg, Delene J; Kumar, Rachana A; Bendich, Arnold J

    2013-02-01

    In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.

  1. F7 gene variants modulate protein levels in a large cohort of patients with factor VII deficiency. Results from a genotype-phenotype study.

    Science.gov (United States)

    Quintavalle, Gabriele; Riccardi, Federica; Rivolta, Gianna Franca; Martorana, Davide; Di Perna, Caterina; Percesepe, Antonio; Tagliaferri, Annarita

    2017-08-01

    Congenital factor VII (FVII) deficiency is a rare bleeding disorder caused by mutations in F7 gene with autosomal recessive inheritance. A clinical heterogeneity with poor correlation with FVII:C levels has been described. It was the objective of this study to identify genetic defects and to evaluate their relationships with phenotype in a large cohort of patients with FVII:C<50 %. One hundred twenty-three probands were genotyped for F7 mutations and three polymorphic variants and classified according to recently published clinical scores. Forty out of 123 patients (33 %) were symptomatic (43 bleedings). A severe bleeding tendency was observed only in patients with FVII:C<0.10 %. Epistaxis (11 %) and menorrhagia (32 % of females in fertile age) were the most frequent bleedings. Molecular analysis detected 48 mutations, 20 not reported in the F7 international databases. Most mutations (62 %) were missense, large deletions were 6.2 %. Compound heterozygotes/homozygotes for mutations presented lower FVII:C levels compared to the other classes (Chi 2 =43.709, p<0,001). The polymorphisms distribution was significantly different among the three F7 genotypic groups (Chi 2 =72.289, p<0,001). The presence of truncating mutations was associated with lowest FVII:C levels (Chi 2 =21.351, p=0.002). This study confirms the clinical and molecular variability of the disease and the type of symptoms. It shows a good correlation between the type of F7 mutation and/or polymorphisms and FVII:C levels, without a direct link between FVII:C and bleeding tendency. The results suggest that large deletions are underestimated and that they represent a common mechanism of F7 gene inactivation which should always be investigated in the diagnostic testing for FVII deficiency.

  2. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  3. Evidence of animal mtDNA recombination between divergent populations of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark

    2012-03-01

    Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.

  4. Do mtDNA Deletions Play a Role in the Development of Nasal Polyposis?

    Directory of Open Access Journals (Sweden)

    Arzu Tatar

    2014-04-01

    Full Text Available Objective:Nasal polyposis (NP is an inflammatory disease of the nasal mucosa and paranasal sinuses. Mitochondria are the cellular organelles which produce cellular energy by Oxidative Phosphorylation (OXPHOS, and they have own inheritance material, mtDNA. mtDNA is affected by reactive oxygen samples (ROS which are produced by both OXPHOS and the inflammatory process. The aim of this study was to investigate the 4977 bp and 7400 bp deletions of mtDNA in nasal polyposis tissue, and to indicate the possible association of mtDNA deletions with NP. Methods:Thirty-three patients, aged 15 to 65 years, with nasal polyposis were selected to be assessed for mitochondrial DNA deletions. The patients with possible mtDNA mutations due to mitochondrial disease, being treated with radiotherapy, of advanced age, with a familiar history, aspirin hypersensitivity, or a history of asthma, were excluded. Polyp excision surgery was applied to the treatment of the NP, and after histopathological diagnosis 1x1 cm of polyp tissue samples were used to isolate mtDNA. The 4977 bp and 7400 bp deletion regions, and two control regions of mtDNA were assessed by using four pairs of primers. DNA extractions from the NP tissues and peripheral blood samples of the patients were made, and then Polymerase Chain Reactions (PCR were made. PCR products were separated in 2% agarose gel.Results:No patient had either the 4977 bp deletion or the 7400 bp deletion in their NP tissue, and neither were these deletions evident in their peripheral blood. Two control sequences, one of them from a non-deleted region, and the other from a possible deletion region, were detected in the NP tissues and peripheral blood of all the patients.Conclusions:We had anticipated that some mtDNA deletion might have occurred in NP tissue due to the increased ROS levels caused by chronic inflammation, but we did not detect any deletion. Probably, the duration of inflammation in NP is insufficient to form mtDNA

  5. Inspecting close maternal relatedness: Towards better mtDNA population samples in forensic databases.

    Science.gov (United States)

    Bodner, Martin; Irwin, Jodi A; Coble, Michael D; Parson, Walther

    2011-03-01

    Reliable data are crucial for all research fields applying mitochondrial DNA (mtDNA) as a genetic marker. Quality control measures have been introduced to ensure the highest standards in sequence data generation, validation and a posteriori inspection. A phylogenetic alignment strategy has been widely accepted as a prerequisite for data comparability and database searches, for forensic applications, for reconstructions of human migrations and for correct interpretation of mtDNA mutations in medical genetics. There is continuing effort to enhance the number of worldwide population samples in order to contribute to a better understanding of human mtDNA variation. This has often lead to the analysis of convenience samples collected for other purposes, which might not meet the quality requirement of random sampling for mtDNA data sets. Here, we introduce an additional quality control means that deals with one aspect of this limitation: by combining autosomal short tandem repeat (STR) marker with mtDNA information, it helps to avoid the bias introduced by related individuals included in the same (small) sample. By STR analysis of individuals sharing their mitochondrial haplotype, pedigree construction and subsequent software-assisted calculation of likelihood ratios based on the allele frequencies found in the population, closely maternally related individuals can be identified and excluded. We also discuss scenarios that allow related individuals in the same set. An ideal population sample would be representative for its population: this new approach represents another contribution towards this goal. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. No evidence of Neandertal mtDNA contribution to early modern humans.

    Directory of Open Access Journals (Sweden)

    David Serre

    2004-03-01

    Full Text Available The retrieval of mitochondrial DNA (mtDNA sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.

  7. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru.

    Science.gov (United States)

    Lewis, Cecil M; Tito, Raúl Y; Lizárraga, Beatriz; Stone, Anne C

    2005-07-01

    Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. (c) 2004 Wiley-Liss, Inc

  8. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    International Nuclear Information System (INIS)

    Wang Huawei; Jia Xiaoyun; Ji Yanli; Kong Qingpeng; Zhang Qingjiong; Yao Yonggang; Zhang Yaping

    2008-01-01

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON

  9. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huawei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China); Jia Xiaoyun; Ji Yanli [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China); Kong Qingpeng [State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China)], E-mail: qingjiongzhang@yahoo.com; Yao Yonggang [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)], E-mail: ygyaozh@yahoo.com; Zhang Yaping [Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2008-08-25

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.

  10. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  11. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    International Nuclear Information System (INIS)

    Wang Chengye; Kong Qingpeng; Yao Yonggang; Zhang Yaping

    2006-01-01

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL

  12. Canis mtDNA HV1 database: a web-based tool for collecting and surveying Canis mtDNA HV1 haplotype in public database.

    Science.gov (United States)

    Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung

    2017-06-26

    Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.

  13. Mechanisms of mtDNA segregation and mitochondrial signalling in cells with the pathogenic A3243G mutation

    NARCIS (Netherlands)

    Jahangir Tafrechi, Roshan Sakineh

    2008-01-01

    Using newly developed single cell A3243G mutation load assays a novel mechanism of mtDNA segregation was identified in which the multi-copy mtDNA nucleoid takes a central position. Furthermore, likely due to low level changes in gene expression, no genes or gene sets could be identified with gene

  14. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    Science.gov (United States)

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  15. Allozyme and mtDNA variation of white seabream Diplodus sargus ...

    African Journals Online (AJOL)

    These results can be explained by the chaotic genetic patchiness hypothesis. In contrast, the mtDNA data indicated genetic homogeneity among localities showing the absence of structure in white seabream populations across the Siculo-Tunisian Strait. Historical demography of this species suggests that it has undergone ...

  16. Characterization of mtDNA haplogroups in 14 Mexican indigenous populations.

    Science.gov (United States)

    Peñaloza-Espinosa, Rosenda I; Arenas-Aranda, Diego; Cerda-Flores, Ricardo M; Buentello-Malo, Leonor; González-Valencia, Gerardo; Torres, Javier; Alvarez, Berenice; Mendoza, Irma; Flores, Mario; Sandoval, Lucila; Loeza, Francisco; Ramos, Irma; Muñoz, Leopoldo; Salamanca, Fabio

    2007-06-01

    In this descriptive study we investigated the genetic structure of 513 Mexican indigenous subjects grouped in 14 populations (Mixteca-Alta, Mixteca-Baja, Otomi, Purépecha, Tzeltal, Tarahumara, Huichol, Nahua-Atocpan, Nahua-Xochimilco, Nahua-Zitlala, Nahua-Chilacachapa, Nahua-Ixhuatlancillo, Nahua-Necoxtla, and Nahua-Coyolillo) based on mtDNA haplogroups. These communities are geographically and culturally isolated; parents and grandparents were born in the community. Our data show that 98.6% of the mtDNA was distributed in haplogroups A1, A2, B1, B2, C1, C2, D1, and D2. Haplotype X6 was present in the Tarahumara (1/53) and Huichol (3/15), and haplotype L was present in the Nahua-Coyolillo (3/38). The first two principal components accounted for 95.9% of the total variation in the sample. The mtDNA haplogroup frequencies in the Purépecha and Zitlala were intermediate to cluster 1 (Otomi, Nahua-Ixhuatlancillo, Nahua-Xochimilco, Mixteca-Baja, and Tzeltal) and cluster 2 (Nahua-Necoxtla, Nahua-Atocpan, and Nahua-Chilacachapa). The Huichol, Tarahumara, Mixteca-Alta, and Nahua-Coyolillo were separated from the rest of the populations. According to these findings, the distribution of mtDNA haplogroups found in Mexican indigenous groups is similar to other Amerindian haplogroups, except for the African haplogroup found in one population.

  17. Pleistocene-Holocene boundary in Southern Arabia from the perspective of human mtDNA variation

    Czech Academy of Sciences Publication Activity Database

    Al-Abri, A.-R.; Podgorná, E.; Rose, J. I.; Pereira, L.; Mulligan, C. J.; Silva, N. M.; Bayoumi, R.; Soares, P.; Černý, Viktor

    2012-01-01

    Roč. 149, č. 2 (2012), s. 291-298 ISSN 0002-9483 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA variation * Arabian Peninsula * migrations Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.481, year: 2012

  18. Mutations of mtDNA polymerase-γ and hyperlactataemia in the HIV ...

    African Journals Online (AJOL)

    Mutations of mtDNA polymerase-γ and hyperlactataemia in the HIV-infected Zulu population of South Africa. ... D B A Ojwach, C Aldous, P Kocheleff, B Sartorius ... of their capacity to impede human mitochondrial DNA polymerase-γ (POLG), ...

  19. Comprehensive view of the population history of Arabia as inferred by mtDNA variation

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Čížková, M.; Poloni, E. S.; Al-Meeri, A.; Mulligan, C. J.

    2016-01-01

    Roč. 159, č. 4 (2016), s. 607-616 ISSN 0002-9483 R&D Projects: GA ČR GA13-37998S Institutional support: RVO:67985912 Keywords : mtDNA variation * Arabian Peninsula * migrations Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.552, year: 2016

  20. The Expansion of mtDNA Haplogroup L3 within and out of Africa

    Czech Academy of Sciences Publication Activity Database

    Soares, P.; Alshamali, F.; Pereira, J. B.; Fernandes, V.; Silva, N. M.; Afonso, C.; Costa, M. D.; Musilová, E.; Macaulay, V.; Richards, M. B.; Černý, Viktor; Pereira, L.

    2012-01-01

    Roč. 29, č. 3 (2012), s. 915-927 ISSN 0737-4038 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA * complete genomes * haplogroup L3 * out of Africa * modern human expansions Sub ject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 10.353, year: 2012

  1. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    Science.gov (United States)

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    Science.gov (United States)

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  3. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    Science.gov (United States)

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  4. Genotype and phenotype spectrum of NRAS germline variants

    NARCIS (Netherlands)

    Altmuller, F.; Lissewski, C.; Bertola, D.; Flex, E.; Stark, Z.; Spranger, S.; Baynam, G.; Buscarilli, M.; Dyack, S.; Gillis, J.; Yntema, H.G.; Pantaleoni, F.; Loon, R.L. van; MacKay, S.; Mina, K.; Schanze, I.; Tan, T.Y.; Walsh, M.; White, S.M.; Niewisch, M.R.; Garcia-Minaur, S.; Plaza, D.; Ahmadian, M.R.; Cave, H.; Tartaglia, M.; Zenker, M.

    2017-01-01

    RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly

  5. CDKL5 variants

    Science.gov (United States)

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  6. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance

    Directory of Open Access Journals (Sweden)

    Keeney Paula M

    2009-09-01

    Full Text Available Abstract Background Sporadic Parkinson's disease (sPD is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA, heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1 inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V. Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age

  7. Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    Directory of Open Access Journals (Sweden)

    Scalais Emmanuel

    2009-06-01

    Full Text Available Abstract Background In muscle cytochrome oxidase (COX negative fibers (mitochondrial mosaics have often been visualized. Methods COX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis. Results Three unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of POLG were subsequently found in both the 2nd and 3rd patients. Conclusion Histoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent

  8. mtDNA copy number in oocytes of different sizes from individual pre- and post-pubertal pigs

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud Erik

    2014-01-01

    from ovaries of 10 pre- and 10 post-pubertal pigs. Cumulus cells were removed and the oocytes were measured (inside-ZP-diameter). Oocytes were transferred to DNAase-free tubes, snap-frozen, and stored at –80°C. The genes ND1 and COX1 were used to determine the mtDNA copy number. Plasmid preparations...... Reproduction 131, 233–245). However, the correlation between size and mtDNA copy number in single oocytes has not been determined. This study describes the relation between oocytes of defined diameters from individual pre- and postpubertal pigs and mtDNA copy number. Cumulus-oocyte complexes were aspirated...

  9. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  10. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    Science.gov (United States)

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji

    2018-01-01

    Background Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. Methodology We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. Conclusions We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity. PMID:29304129

  11. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    Science.gov (United States)

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji; Mannen, Hideyuki

    2018-01-01

    Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity.

  12. mtDNA of Fulani Nomads and Their Genetic Relationships to Neighboring Sedentary Populations

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Hájek, Martin; Bromová, Markéta; Čmejla, R.; Diallo, I.; Brdička, R.

    2006-01-01

    Roč. 78, č. 1 (2006), s. 9-27 ISSN 0018-7143 R&D Projects: GA ČR(CZ) GA404/03/0318 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA variation * HVS-I * Fulani nomads * sub-Saharan populations * Chad * Cameroon * Burkina Faso Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.132, year: 2006

  13. Does aerobic exercises induce mtDNA mutation in human blood ...

    African Journals Online (AJOL)

    The aim of this study was to determine the effect of eight weeks aerobic training on mitochondrial DNA (mtDNA) mutation in human blood leucocytes. Twenty untrained healthy students (training group: n =10, age = 20.7±1.5 yrs, weight = 67.7±10 kg, BF% = 17.5±7.35 & control group: n =10, age = 21±1.3 yrs, weight ...

  14. Variants of cellobiohydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  15. Internucleotide correlations and nucleotide periodicity in Drosophila mtDNA: New evidence for panselective evolution

    Directory of Open Access Journals (Sweden)

    Carlos Y Valenzuela

    2010-01-01

    Full Text Available Analysis for the homogeneity of the distribution of the second base of dinucleotides in relation to the first, whose bases are separated by 0, 1, 2,... 21 nucleotide sites, was performed with the VIH-1 genome (cDNA, the Drosophila mtDNA, the Drosophila Torso gene and the human p-globin gene. These four DNA segments showed highly significant heterogeneities of base distributions that cannot be accounted for by neutral or nearly neutral evolution or by the "neighbor influence" of nucleotides on mutation rates. High correlations are found in the bases of dinucleotides separated by 0, 1 and more number of sites. A periodicity of three consecutive significance values (measured by the x²9 was found only in Drosophila mtDNA. This periodicity may be due to an unknown structure or organization of mtDNA. This non-random distribution of the two bases of dinucleotides widespread throughout these DNA segments is rather compatible with panselective evolution and generalized internucleotide co-adaptation.

  16. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    Science.gov (United States)

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  17. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    Science.gov (United States)

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  18. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect beta-Oxidation

    OpenAIRE

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Dobeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathologica...

  19. MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation

    Directory of Open Access Journals (Sweden)

    Santa-Rita Pedro

    2005-06-01

    Full Text Available Abstract Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143 of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a breeds tend to display haplotypes belonging to different haplogroups; (b haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the

  20. Genetic association study of common mitochondrial variants on body fat mass.

    Directory of Open Access Journals (Sweden)

    Tie-Lin Yang

    Full Text Available Mitochondria play a central role in ATP production and energy metabolism. Previous studies suggest that common variants in mtDNA are associated with several common complex diseases, including obesity. To test the hypothesis that common mtDNA variants influence obesity-related phenotypes, including BMI and body fat mass, we genotyped a total of 445 mtSNPs across the whole mitochondrial genome in a large sample of 2,286 unrelated Caucasian subjects. 72 of these 445 mtSNPs passed quality control criteria, and were used for subsequent analyses. We also classified all subjects into nine common European haplogroups. Association analyses were conducted for both BMI and body fat mass with single mtSNPs and mtDNA haplogroups. Two mtSNPs, mt4823 and mt8873 were detected to be significantly associated with body fat mass, with adjusted P values of 4.94 × 10⁻³ and 4.58 × 10⁻², respectively. The minor alleles mt4823 C and mt8873 A were associated with reduced fat mass values and the effect size (β was estimated to be 3.52 and 3.18, respectively. These two mtSNPs also achieved nominally significant levels for association with BMI. For haplogroup analyses, we found that haplogroup X was strongly associated with both BMI (adjusted P = 8.31 × 10⁻³ and body fat mass (adjusted P = 5.67×10⁻⁴ Subjects classified as haplogroup X had lower BMI and fat mass values, with the β estimated to be 2.86 and 6.03, respectively. Our findings suggest that common variants in mitochondria might play a role in variations of body fat mass. Further molecular and functional studies will be needed to clarify the potential mechanism.

  1. Migraine Variants in Children

    Science.gov (United States)

    ... Headaches in Children FAQ Migraine Variants In Children Children Get Migraines Too! Learn More Migraine Information Find Help Doctors & Resources Get Connected Join the Conversation Follow Us on Social Media Company About News Resources Privacy Policy Contact Phone: ...

  2. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Directory of Open Access Journals (Sweden)

    Cook James M

    2009-03-01

    Full Text Available Abstract Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306 of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may

  3. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhou

    Full Text Available Thymidine kinase 2 (TK2 deficiency in humans causes mitochondrial DNA (mtDNA depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/- that progressively loses its mtDNA. The TK2(-/- mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/- mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/- mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/- mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/- mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  4. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Science.gov (United States)

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  5. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  6. Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.D.; Sun, F.; Wallace, D.C. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1997-02-01

    Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as {open_quotes}primary{close_quotes} LHON mutations. Fifteen other {open_quotes}secondary{close_quotes} LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended to be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed {chi}{sup 2}-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that {approximately}75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases. 18 refs., 3 tabs.

  7. Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

    Science.gov (United States)

    Qin, Zhen-Dong; Wang, Yi; Tan, Jing-Ze; Li, Hui; Jin, Li

    2011-01-01

    It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture. PMID:21998705

  8. Defining mtDNA origins and population stratification in Rio de Janeiro.

    Science.gov (United States)

    Simão, Filipa; Ferreira, Ana Paula; de Carvalho, Elizeu Fagundes; Parson, Walther; Gusmão, Leonor

    2018-05-01

    The genetic composition of the Brazilian population was shaped by interethnic admixture between autochthonous Native Americans, Europeans settlers and African slaves. This structure, characteristic of most American populations, implies the need for large population forensic databases to capture the high diversity that is usually associated with admixed populations. In the present work, we sequenced the control region of mitochondrial DNA from 205 non-related individuals living in the Rio de Janeiro metropolitan region. Overall high haplotype diversity (0.9994 ± 0.0006) was observed, and pairwise comparisons showed a high proportion of haplotype pairs with more than one-point differences. When ignoring homopolymeric tracts, pairwise comparisons showed no differences 0.18% of the time, and differences in a single position were found with a frequency of 0.32%. A high percentage of African mtDNA was found (42%), with lineages showing a major South West origin. For the West Eurasian and Native American haplogroups (representing 32% and 26%, respectively) it was not possible to evaluate a clear geographic or linguistic affiliation. When grouping the mtDNA lineages according to their continental origin (Native American, European and African), differences were observed for the ancestry proportions estimated with autosomal ancestry-informative markers, suggesting some level of genetic substructure. The results from this study are in accordance with historical data where admixture processes are confirmed with a strong maternal contribution of African maternal ancestry and a relevant contribution of Native American maternal ancestry. Moreover, the evidence for some degree of association between mtDNA and autosomal information should be considered when combining these types of markers in forensic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. mtDNA variation in caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.

  10. Heterogeneous periodicity of drosophila mtDNA: new refutations of neutral and nearly neutral evolution

    Directory of Open Access Journals (Sweden)

    Carlos Y Valenzuela

    2011-01-01

    Full Text Available We found a consistent 3-site periodicity of the X²9 values for the heterogeneity of the distribution of the second base in relation to the first base of dinucleotides separated by 0 (contiguous, 1, 2, 3 ... 17 (K nucleotide sites in Drosophila mtDNA. Triplets of X²9 values were found where the first was over 300 and the second and third ranged between 37 and 114 (previous studies. In this study, the periodicity was significant until separation of 2011K, and a structure of deviations from randomness among dinucleotides was found. The most deviant dinucleotides were G-G, G-C and C-G for the first, second and third element of the triplet, respectively. In these three cases there were more dinucleotides observed than expected. This inter-bases correlation and periodicity may be related to the tertiary structure of circular DNA, like that of prokaryotes and mitochondria, to protect and preserve it. The mtDNA with 19.517 bp was divided into four equal segments of 4.879 bp. The fourth sub-segment presented a very low proportion of G and C, the internucleotide interaction was weaker in this sub-segment and no periodicity was found. The maintenance of this mtDNA structure and organization for millions of generations, in spite of a high recurrent mutation rate, does not support the notion of neutralism or near neutralism. The high level of internucleotide interaction and periodicity indicate that every nucleotide is co-adapted with the residual genome.

  11. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant's gazelles

    DEFF Research Database (Denmark)

    Lorenzen, Eline Deidre; Arctander, Peter; Siegismund, Hans Redlef

    2008-01-01

    are discussed in reference to the four currently recognised subspecies. We suggest Grant's gazelles be raised to the superspecies Nanger (granti) comprising three taxonomic units corresponding to the three mtDNA lineages. There was no evidence of gene flow between the notata and granti lineages, despite...... their geographic proximity, suggesting reproductive isolation. These constitute evolutionary significant units within the adaptive evolutionary framework. Due to its restricted geographic distribution and genetic and morphological distinctiveness, we suggest the petersii lineage be raised to the species Nanger...

  12. Forensic and phylogeographic characterisation of mtDNA lineages from Somalia

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Fendt, Liane; Röck, Alexander W.

    2012-01-01

    Somali individuals to enrich the severely underrepresented African mtDNA pool. The majority (60.5 %) of the haplotypes were of sub-Saharan origin with L0a1d, L2a1h and L3f being the most frequently observed haplogroups. This is in sharp contrast to previous data reported from the Y-chromosome, where only...... about 5 % of the observed haplogroups were of sub-Saharan provenance. We compared the genetic distances based on population pairwise F (st) values between 11 published East, Central and North African as well as western Asian populations and the Somali sequences and displayed them in a multi...

  13. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  15. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    Science.gov (United States)

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  16. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease

    Directory of Open Access Journals (Sweden)

    Johanna H.K. Kauppila

    2016-09-01

    Full Text Available Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials.

  17. Identification of West Eurasian mitochondrial haplogroups by mtDNA SNP screening: results of the 2006-2007 EDNAP collaborative exercise

    DEFF Research Database (Denmark)

    Parson, Walther; Fendt, Liane; Ballard, David

    2008-01-01

    no previous experience with the technology and/or mtDNA analysis. The results of this collaborative exercise stimulate the expansion of screening methods in forensic laboratories to increase efficiency and performance of mtDNA typing, and thus demonstrates that mtDNA SNP typing is a powerful tool for forensic......The European DNA Profiling (EDNAP) Group performed a collaborative exercise on a mitochondrial (mt) DNA screening assay that targeted 16 nucleotide positions in the coding region and allowed for the discrimination of major west Eurasian mtDNA haplogroups. The purpose of the exercise was to evaluate...

  18. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    Science.gov (United States)

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  19. Mitochondrial DNA Variants Mediate Energy Production and Expression Levels for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degeneration

    Science.gov (United States)

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Pavlis, Janelle M.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Hsu, Tiffany; Woo, Grace; Soe, Kyaw; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2013-01-01

    Background Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD). Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt) DNA haplogroups (as defined by combinations of mtDNA polymorphisms) that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid) model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD) versus J haplogroup (high risk for AMD). Methodology/Principal Findings Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19) that was devoid of mitochondrial DNA (Rho0). In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism. Conclusion/Significance Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD. PMID:23365660

  20. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    M Cristina Kenney

    Full Text Available Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD. Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt DNA haplogroups (as defined by combinations of mtDNA polymorphisms that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD versus J haplogroup (high risk for AMD.Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19 that was devoid of mitochondrial DNA (Rho0. In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism.Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD.

  1. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef – Australia

    Directory of Open Access Journals (Sweden)

    Graham G. Pegg

    2006-10-01

    Full Text Available Planktonic larvae were captured above a shallow coral reef study site on the Great Barrier Reef (GBR around spring-summer new moon periods (October-February using light trap or net capture devices. Larvae were identified to the genus or species level by comparison with a phylogenetic tree of tropical marine fish species using mtDNA HVR1 sequence data. Further analysis showed that within-species HVR1 sequence variation was typically 1-3%, whereas between-species variation for the same genus ranged up to 50%, supporting the suitability of HVR1 for species identification. Given the current worldwide interest in DNA barcoding and species identification using an alternative mtDNA gene marker (cox1, we also explored the efficacy of different primer sets for amplification of cox1 in reef fish, and its suitability for species identification. Of those tested, the Fish-F1 and -R1 primer set recently reported by Ward et al. (2005 gave the best results.

  2. Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta).

    Science.gov (United States)

    Dumilag, Richard V; Gallardo, William George M; Garcia, Christian Philip C; You, YeaEun; Chaves, Alyssa Keren G; Agahan, Lance

    2017-11-09

    Members of the carrageenan-producing seaweeds of the genus Kappapphycus have a complicated taxonomic history particularly with regard to species identification. Many taxonomic challenges in this group have been currently addressed with the use of mtDNA sequences. The phylogenetic status and genetic diversity of one of the lesser known species, Kappaphycus cottonii, have repeatedly come into question. This study explored the genetic variation in Philippine K. cottonii using the mtDNA COI-5P gene and cox2-3 spacer sequences. The six phenotypic forms in K. cottonii did not correspond to the observed genetic variability; hinting at the greater involvement of environmental factors in determining changes to the morphology of this alga. Our results revealed that the Philippine K. cottonii has the richest number of haplotypes that have been detected, so far, for any Kappaphycus species. Our inferred phylogenetic trees suggested two lineages: a lineage, which exclusively includes K. cottonii and another lineage comprising the four known Kappaphycus species: K. alvarezii, K. inermis, K. malesianus, and K. striatus. The dichotomy supports the apparent synamorphy for each of these lineages (the strictly terete thalli, lack of protuberances, and the presence of a hyphal central core in the latter group, while the opposite of these morphologies in K. cottonii). These findings shed new light on understanding the evolutionary history of the genus. Assessing the breadth of the phenotypic and genetic variation in K. cottonii has implications for the conservation and management of the overall Kappaphycus genetic resources, especially in the Philippines.

  3. Molecular Characterization of Sudanese and Southern Sudanese Chicken Breeds Using mtDNA D-Loop

    Directory of Open Access Journals (Sweden)

    Charles E. Wani

    2014-01-01

    Full Text Available The objective of this study was to assess the genetic relationships and diversity and to estimate the amount of gene flow among the five chicken populations from Sudan and South Sudan and commercial strain of egg line White Leghorn chickens. The chicken populations were genotyped using mtDNA D-loop as a molecular marker. PCR product of the mtDNA D-loop segment was 600 bp and 14 haplotypes were identified. The neighbor-joining phylogenetic tree indicated that the indigenous Sudanese chickens can be grouped into two clades, IV and IIIa only. Median joining networks analysis showed that haplotype LBB49 has the highest frequency. The hierarchal analysis of molecular variance (AMOVA showed that genetic variation within the population was 88.6% and the differentiation among the population was 11.4%. When the populations was redefined into two geographical zones, rich and poor Savanna, the results were fractioned into three genetic variations: between individuals within population 95.5%, between populations within the group 0.75%, and genetic variation between groups 3.75%. The pair wise Fst showed high genetic difference between Betwil populations and the rest with Fst ranging from 0.1492 to 0.2447. We found that there is large number of gene exchanges within the Sudanese indigenous chicken (Nm=4.622.

  4. A new view on dam lines in Polish Arabian horses based on mtDNA analysis

    Directory of Open Access Journals (Sweden)

    Sell Jerzy

    2007-09-01

    Full Text Available Abstract Polish Arabian horses are one of the oldest and the most important Arab populations in the world. The Polish Arabian Stud Book and the Genealogical Charts by Skorkowski are the main sources of information on the ancestors of Polish Arabs. Both publications were viewed as credible sources of information until the 1990s when the data regarding one of the dam lines was questioned. The aim of the current study was to check the accuracy of the pedigree data of Polish dam lines using mtDNA analysis. The analyses of a 458 bp mtDNA D-loop fragment from representatives of 15 Polish Arabian dam lines revealed 14 distinct haplotypes. The results were inconsistent with pedigree data in the case of two lines. A detailed analysis of the historical sources was performed to explain these discrepancies. Our study revealed that representatives of different lines shared the same haplotypes. We also noted a genetic identity between some lines founded by Polish mares of unknown origin and lines established by desert-bred mares.

  5. Comparative mtDNA analyses of three sympatric macropodids from a conservation area on the Huon Peninsula, Papua New Guinea.

    Science.gov (United States)

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2016-07-01

    Matschie's tree kangaroo (Dendrolagus matschiei), New Guinea pademelon (Thylogale browni), and small dorcopsis (Dorcopsulus vanheurni) are sympatric macropodid taxa, of conservation concern, that inhabit the Yopno-Urawa-Som (YUS) Conservation Area on the Huon Peninsula, Papua New Guinea. We sequenced three partial mitochondrial DNA (mtDNA) genes from the three taxa to (i) investigate network structure; and (ii) identify conservation units within the YUS Conservation Area. All three taxa displayed a similar pattern in the spatial distribution of their mtDNA haplotypes and the Urawa and Som rivers on the Huon may have acted as a barrier to maternal gene flow. Matschie's tree kangaroo and New Guinea pademelon within the YUS Conservation Area should be managed as single conservation units because mtDNA nucleotides were not fixed for a given geographic area. However, two distinct conservation units were identified for small dorcopsis from the two different mountain ranges within the YUS Conservation Area.

  6. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    Science.gov (United States)

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  7. MELAS and Kearns–Sayre overlap syndrome due to the mtDNA m. A3243G mutation and large-scale mtDNA deletions

    Directory of Open Access Journals (Sweden)

    Nian Yu

    2016-09-01

    Full Text Available This paper reported an unusual manifestation of a 19-year-old Chinese male patient presented with a complex phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome and Kearns–Sayre syndrome (KSS. He was admitted to our hospital with the chief complaint of “acute fever, headache and slow reaction for 21 days”. He was initially misdiagnosed as “viral encephalitis”. This Chinese man with significant past medical history of intolerating fatigue presented paroxysmal neurobehavioral attacks that started about 10 years ago. During this span, 3 or 4 attack clusters were described during which several attacks occurred over a few days. The further examination found that the hallmark signs of this patient included progressive myoclonus epilepsy, cerebellar ataxia, hearing loss, myopathic weakness, ophthalmoparesis, pigmentary retinopathy and bifascicular heart block (Wolff–Parkinson–White syndrome. By young age the disease progression is characterized by the addition of migraine, vomiting, and stroke-like episodes, symptoms of MELAS expression, which indicated completion of the MELAS/KSS overlap syndrome. The m. A3243G mitochondrial DNA mutation and single large-scale mtDNA deletions were found in this patient. This mutation has been reported with MELAS, KSS, myopathy, deafness and mental disorder with cognitive impairment. This is the first description with a MELAS/KSS syndrome in Chinese.

  8. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    Science.gov (United States)

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  9. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study

    DEFF Research Database (Denmark)

    Rose, Giuseppina; Romeo, Giuseppe; Dato, Serena

    2010-01-01

    and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions....

  10. Recent introgressive hybridization revealed by exclusive mtDNA transfer from Oreochromis leucostictus (Trewavas, 1933) to Oreochromis niloticus (Linnaeus, 1758) in Lake Baringo, Kenya

    OpenAIRE

    Nyingi, Dorothy W.; Agnèse, Jean-François

    2007-01-01

    Nuclear DNA and mtDNA polymorphisms were surveyed in various species of East African Oreochromis. In Lake Baringo, where only Oreochromis niloticus baringoensis is present, alien mtDNA haplotypes were observed, apparently the result of introgressive hybridization with Oreochromis leucostictus. This introgression is not accompanied by any substantial or recorded transfer of nuclear genes into O. n. baringoensis.

  11. Histone variants and lipid metabolism

    NARCIS (Netherlands)

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  12. Primary quantitative analysis of the mtDNA4977bp deletion induced by lonizing radiation in human peripheral blood u-sing real-time PCR

    International Nuclear Information System (INIS)

    Duan Zhikai; Liu Jiangong; Guo Wanlong; Zhang Shuxian

    2011-01-01

    Objective: To observe the influence of mtDNA4977bp deletion induced by different dose of γ ray in human peripheral blood in order to explore the feasibility of mtDNA4977bp deletion as biodosimeter. Methods: Human peripheral blood samples were collected from three healthy donors and irradiated by γ ray, MtDNA4977bp deletion was detected by real-time PCR. Results: It indicated that that from the range of 0 ∼ 8 Gy, the relationship between mtDNA4977bp deletion and irradiation dose represents certain curvilinear correlation (Y=1.2693+1.0660X+0.0198X 2 ). Conclusion: We find that γ ray has influence on the mtDNA4977bp deletion, so it may be an important biodosmeter in future. (authors)

  13. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  14. A Signal, from Human mtDNA, of Postglacial Recolonization in Europe

    Science.gov (United States)

    Torroni, Antonio; Bandelt, Hans-Jürgen; Macaulay, Vincent; Richards, Martin; Cruciani, Fulvio; Rengo, Chiara; Martinez-Cabrera, Vicente; Villems, Richard; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Tolk, Helle-Viivi; Tambets, Kristiina; Forster, Peter; Karger, Bernd; Francalacci, Paolo; Rudan, Pavao; Janicijevic, Branka; Rickards, Olga; Savontaus, Marja-Liisa; Huoponen, Kirsi; Laitinen, Virpi; Koivumäki, Satu; Sykes, Bryan; Hickey, Eileen; Novelletto, Andrea; Moral, Pedro; Sellitto, Daniele; Coppa, Alfredo; Al-Zaheri, Nadia; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Scozzari, Rosaria

    2001-01-01

    Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T→C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed “pre*V,” since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory. PMID:11517423

  15. Rare mtDNA haplogroups and genetic differences in rich and poor Danish Iron-Age villages

    DEFF Research Database (Denmark)

    Melchior, L; Gilbert, M T P; Kivisild, T

    2008-01-01

    The Roman Iron-Age (0-400 AD) in Southern Scandinavia was a formative period, where the society changed from archaic chiefdoms to a true state formation, and the population composition has likely changed in this period due to immigrants from Middle Scandinavia. We have analyzed mtDNA from 22 indi...

  16. An economical mtDNA SNP assay detecting different mitochondrial haplogroups in identical HVR 1 samples of Caucasian ancestry.

    Science.gov (United States)

    Köhnemann, Stephan; Hohoff, Carsten; Pfeiffer, Heidi

    2009-09-01

    We had sequenced 329 Caucasian samples in Hypervariable Region 1 (HVR 1) and found that they belong to eleven different mitochondrial DNA (mtDNA) haplotypes. The sample set was further analysed by an mtDNA assay examining 32 single nucleotide polymorphisms (SNPs) for haplogroup discrimination. In a validation study on 160 samples of different origin it was shown that these SNPs were able to discriminate between the evolved superhaplogroups worldwide (L, M and N) and between the nine most common Caucasian haplogroups (H, I, J, K, T, U, V, W and X). The 32 mtDNA SNPs comprised 42 different SNP haplotypes instead of only eleven haplotypes after HVR 1 sequencing. The assay provided stable results in a range of 5ng genomic DNA down to virtually no genomic DNA per reaction. It was possible to detect samples of African, Asian and Eurasian ancestry, respectively. The 32 mtDNA SNP assay is a helpful adjunct to further distinguish between identical HVR 1 sequences of Caucasian origin. Our results suggest that haplogroup prediction using HVR 1 sequencing provides instable results. The use of coding region SNPs for haplogroup assignment is more suited than using HVR 1 haplotypes.

  17. Human aging and somatic point mutations in mtDNA: a comparative study of generational differences (grandparents and grandchildren

    Directory of Open Access Journals (Sweden)

    Anderson Nonato do Rosário Marinho

    2011-01-01

    Full Text Available The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years and their 62 grandchildren (mean age: 15 ± 4.1 years, the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old mutations (homoplasia and heteroplasmy. It is possible that both of these situations (homoplasia and heteroplasmy were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.

  18. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.

    Science.gov (United States)

    Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro

    2017-05-04

    Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  20. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    Science.gov (United States)

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  2. Accurate genotyping across variant classes and lengths using variant graphs

    DEFF Research Database (Denmark)

    Sibbesen, Jonas Andreas; Maretty, Lasse; Jensen, Jacob Malte

    2018-01-01

    of read k-mers to a graph representation of the reference and variants to efficiently perform unbiased, probabilistic genotyping across the variation spectrum. We demonstrate that BayesTyper generally provides superior variant sensitivity and genotyping accuracy relative to existing methods when used...... collecting a set of candidate variants across discovery methods, individuals and databases, and then realigning the reads to the variants and reference simultaneously. However, this realignment problem has proved computationally difficult. Here, we present a new method (BayesTyper) that uses exact alignment...... to integrate variants across discovery approaches and individuals. Finally, we demonstrate that including a ‘variation-prior’ database containing already known variants significantly improves sensitivity....

  3. Variants of Moreau's sweeping process

    International Nuclear Information System (INIS)

    Siddiqi, A.H.; Manchanda, P.

    2001-07-01

    In this paper we prove the existence and uniqueness of two variants of Moreau's sweeping process -u'(t) is an element of Nc (t) (u(t)), where in one variant we replace u(t) by u'(t) in the right-hand side of the inclusion and in the second variant u'(t) and u(t) are respectively replaced by u''(t) and u'(t). (author)

  4. Hairy cell leukemia-variant

    International Nuclear Information System (INIS)

    Quadri, Mohammad I.; Al-Sheikh, Iman H.

    2001-01-01

    Hairy cell leukaemia variant is a very rare chronic lymphoproliferative disorder and is closely related to hairy cell leukemia. We hereby describe a case of hairy cell leukaemia variant for the first time in Saudi Arabia. An elderly Saudi man presented with pallor, massive splenomegaly, and moderate hepatomegaly. Hemoglobin was 7.7 g/dl, Platelets were 134 x109/l and white blood count was 140x10 9/l with 97% being abnormal lymphoid cells with cytoplasmic projections. The morphology, cytochemistry, and immunophenotype of the lymphoid cells were classical of hairy cell leukaemia variant. The bone marrow was easily aspirated and findings were consistent with hairy cell leukaemia variant. (author)

  5. Forensic and phylogeographic characterisation of mtDNA lineages from Somalia.

    Science.gov (United States)

    Mikkelsen, Martin; Fendt, Liane; Röck, Alexander W; Zimmermann, Bettina; Rockenbauer, Eszter; Hansen, Anders J; Parson, Walther; Morling, Niels

    2012-07-01

    The African mitochondrial (mt) phylogeny is coarsely resolved but the majority of population data generated so far is limited to the analysis of the first hypervariable segment (HVS-1) of the control region (CR). Therefore, this study aimed on the investigation of the entire CR of 190 unrelated Somali individuals to enrich the severely underrepresented African mtDNA pool. The majority (60.5 %) of the haplotypes were of sub-Saharan origin with L0a1d, L2a1h and L3f being the most frequently observed haplogroups. This is in sharp contrast to previous data reported from the Y-chromosome, where only about 5 % of the observed haplogroups were of sub-Saharan provenance. We compared the genetic distances based on population pairwise F (st) values between 11 published East, Central and North African as well as western Asian populations and the Somali sequences and displayed them in a multi-dimensional scaling plot. Genetic proximity evidenced by clustering roughly reflected the relative geographic location of the populations. The sequences will be included in the EMPOP database ( www.empop.org ) under accession number EMP00397 upon publication (Parson and Dür Forensic Sci Int Genet 1:88-92, 2007).

  6. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    Science.gov (United States)

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-11-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.

  7. MtDNA diversity and genetic lineages of four cattle breeds in Malaysia

    Directory of Open Access Journals (Sweden)

    Somarny, W.W.M.Z.

    2015-06-01

    Full Text Available There is lack of comprehensive studies on the genetic diversity or phylogenetic analysis of beef cattle breeds in Malaysia. In this study, the partial sequence of mitochondrial DNA cytochrome b gene (cyt b was analysed from blood samples obtained from 25 Chinese Yellow Cattle (CY, 33 Kedah-Kelantan (KK, 32 Brakmas (BM and 30 Bali cattle (BC. Based on these 120 individuals, 19 mtDNA haplotypes (GenBank Accession No. GU67340 - GU67358 were identified by polymorphisms at 31 sites. Hap19 was predominant in BM (78%, KK (82% and CY (100% indicating similar origin or gene flow between breeds whilst Hap11 was exclusively for BC. However, there were only two nucleotide differences between these two major haplotypes. These results can be interpreted that these representative cattle in these haplotypes are admixtures of B. indicus or B. javanicus through maternal ancestry. Conversely, the CY cattle investigated are highly inbred where no variation could be observed in the short segment investigated.

  8. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    Science.gov (United States)

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  9. History of Lipizzan horse maternal lines as revealed by mtDNA analysis

    Directory of Open Access Journals (Sweden)

    Dovč Peter

    2002-09-01

    Full Text Available Abstract Sequencing of the mtDNA control region (385 or 695 bp of 212 Lipizzans from eight studs revealed 37 haplotypes. Distribution of haplotypes among studs was biased, including many private haplotypes but only one haplotype was present in all the studs. According to historical data, numerous Lipizzan maternal lines originating from founder mares of different breeds have been established during the breed's history, so the broad genetic base of the Lipizzan maternal lines was expected. A comparison of Lipizzan sequences with 136 sequences of domestic- and wild-horses from GenBank showed a clustering of Lipizzan haplotypes in the majority of haplotype subgroups present in other domestic horses. We assume that haplotypes identical to haplotypes of early domesticated horses can be found in several Lipizzan maternal lines as well as in other breeds. Therefore, domestic horses could arise either from a single large population or from several populations provided there were strong migrations during the early phase after domestication. A comparison of Lipizzan haplotypes with 56 maternal lines (according to the pedigrees showed a disagreement of biological parentage with pedigree data for at least 11% of the Lipizzans. A distribution of haplotype-frequencies was unequal (0.2%–26%, mainly due to pedigree errors and haplotype sharing among founder mares.

  10. Circumpolar diversity and geographic differentiation of mtDNA in the critically endangered Antarctic blue whale (Balaenoptera musculus intermedia.

    Directory of Open Access Journals (Sweden)

    Angela L Sremba

    Full Text Available The Antarctic blue whale (Balaenoptera musculus intermedia was hunted to near extinction between 1904 and 1972, declining from an estimated initial abundance of more than 250,000 to fewer than 400. Here, we describe mtDNA control region diversity and geographic differentiation in the surviving population of the Antarctic blue whale, using 218 biopsy samples collected under the auspices of the International Whaling Commission (IWC during research cruises from 1990-2009. Microsatellite genotypes and mtDNA sequences identified 166 individuals among the 218 samples and documented movement of a small number of individuals, including a female that traveled at least 6,650 km or 131° longitude over four years. mtDNA sequences from the 166 individuals were aligned with published sequences from 17 additional individuals, resolving 52 unique haplotypes from a consensus length of 410 bp. From this minimum census, a rarefaction analysis predicted that only 72 haplotypes (95% CL, 64, 86 have survived in the contemporary population of Antarctic blue whales. However, haplotype diversity was relatively high (0.968±0.004, perhaps as a result of the longevity of blue whales and the relatively recent timing of the bottleneck. Despite the potential for circumpolar dispersal, we found significant differentiation in mtDNA diversity (F(ST = 0.032, p<0.005 and microsatellite alleles (F(ST = 0.005, p<0.05 among the six Antarctic Areas historically used by the IWC for management of blue whales.

  11. Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers

    DEFF Research Database (Denmark)

    Takahashi, Hiroshi; Møller, Peter Rask; Shedko, Sergei V.

    2016-01-01

    Pungitius is a highly diversified genus of sticklebacks (Gasterosteidae) occurring widely in northern parts of the Northern Hemisphere. Several ecologically and genetically divergent types that are largely isolated reproductively but occasionally hybridize in sympatry have been discovered...... of hybridization and mtDNA introgression among distinct species. Our results highlight that the marginal seas of Northeast Asia played a key role as barriers to or facilitators of gene flow in the evolution of species diversity of Pungitius concentrated in this region...

  12. Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    Science.gov (United States)

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.

    2006-01-01

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991

  13. Anthropology. Response to Comment on "Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans".

    Science.gov (United States)

    Kemp, Brian M; Lindo, John; Bolnick, Deborah A; Malhi, Ripan S; Chatters, James C

    2015-02-20

    Prüfer and Meyer raise concerns over the mitochondrial DNA (mtDNA) results we reported for the Hoyo Negro individual, citing failure of a portion of these data to conform to their expectations of ancient DNA (aDNA). Because damage patterns in aDNA vary, outright rejection of our findings on this basis is unwarranted, especially in light of our other observations. Copyright © 2015, American Association for the Advancement of Science.

  14. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands.

    Science.gov (United States)

    Barik, S S; Sahani, R; Prasad, B V R; Endicott, P; Metspalu, M; Sarkar, B N; Bhattacharya, S; Annapoorna, P C H; Sreenath, J; Sun, D; Sanchez, J J; Ho, S Y W; Chandrasekar, A; Rao, V R

    2008-05-01

    The population genetics of the Indian subcontinent is central to understanding early human prehistory due to its strategic location on the proposed corridor of human movement from Africa to Australia during the late Pleistocene. Previous genetic research using mtDNA has emphasized the relative isolation of the late Pleistocene colonizers, and the physically isolated Andaman Island populations of Island South-East Asia remain the source of claims supporting an early split between the populations that formed the patchy settlement pattern along the coast of the Indian Ocean. Using whole-genome sequencing, combined with multiplexed SNP typing, this study investigates the deep structure of mtDNA haplogroups M31 and M32 in India and the Andaman Islands. The identification of a so far unnoticed rare polymorphism shared between these two lineages suggests that they are actually sister groups within a single haplogroup, M31'32. The enhanced resolution of M31 allows for the inference of a more recent colonization of the Andaman Islands than previously suggested, but cannot reject the very early peopling scenario. We further demonstrate a widespread overlap of mtDNA and cultural markers between the two major language groups of the Andaman archipelago. Given the "completeness" of the genealogy based on whole genome sequences, and the multiple scenarios for the peopling of the Andaman Islands sustained by this inferred genealogy, our study hints that further mtDNA based phylogeographic studies are unlikely to unequivocally support any one of these possibilities. (c) 2008 Wiley-Liss, Inc.

  15. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  16. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    Science.gov (United States)

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  17. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  18. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Wen C Aw

    Full Text Available Here we determine the sex-specific influence of mtDNA type (mitotype and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number and four physiological traits (fecundity, longevity, lipid content, and starvation resistance. Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.

  19. [Sequence polymorphism of mtDNA HVR Iand HVR II of Oroqen ethnic group in Inner Mongolia].

    Science.gov (United States)

    Yan, Chun-Xia; Chen, Feng; Dang, Yong-Hui; Li, Tao; Zheng, Hai-Bo; Chen, Teng; Li, Sheng-Bin

    2008-04-01

    Venous blood samples from 50 unrelated Oroqen individuals living in Inner Mongolia were collected and their mtDNA HVR I and HVR II sequences were detected by using ABI PRISM377 sequencers. The number of polymorphic loci, haplotype, haplotype frequence, average nucleotide variability and other polymorphic parameters were calculated. Based on Oroqen mtDNA sequence data obtained in our experiments and published data, genetic distance between Oroqen ethnic group and other populations were computered by Nei's measure. Phylogenetic tree was constructed by Neighbor Joining method. Comparing with Anderson sequence, 52 polymorphic loci in HVR I and 24 loci in HVR II were found in Oroqen mtDNA sequence, 38 and 27 haplotypes were defined herewith. Haplotype diversity and average nucleotide variability were 0.964+/-0.018 and 7.379 in HVR I, 0.929+/-0.019 and 2.408 in HVR II respectively. Fst and dA genetic distance between 12 populations were calculated based on HVR I sequence, and their relative coefficients were 0.993(P HVR I and HVR II in Oroqen ethnic group has some specificities compared with that of other populations. These data provide a useful tool in forensic identification, population genetic study and other research fields.

  20. Dysphagia is prevalent in patients with CPEO and single, large-scale deletions in mtDNA

    DEFF Research Database (Denmark)

    Pedersen, Gitte Hedermann; Løkken, Nicoline; Dahlqvist, Julia R.

    2017-01-01

    Background  The aim of this study was to assess the frequency of subjective and objective dysphagia in patients with chronic progressive external ophthalmoplegia (CPEO) due to single, large-scale deletions (LSDs) of mitochondrial DNA (mtDNA). Methods  Sixteen patients with CPEO and single LSDs...... and single LSDs of mtDNA had a prolonged cold-water test, including one with a PEG-tube, who was unable to perform the test, and nine patients reported subjective swallowing problems (56.3%). All mitochondrial myopathy patients in the control group had a normal duration of the cold-water test.  Conclusions......  The study shows that dysphagia is a common problem in patients with CPEO and LSDs of mtDNA. Dysphagia seems to be progressive with age as abnormal swallowing occurred preferentially in persons ≥ 45 years. The study shows that increased awareness of this symptom should be given to address appropriate...

  1. MtDNA variation in the Altai-Kizhi population of southern Siberia: a synthesis of genetic variation.

    Science.gov (United States)

    Phillips-Krawczak, Christine; Devor, Eric; Zlojutro, Mark; Moffat-Wilson, Kristin; Crawford, Michael H

    2006-08-01

    The native peoples of Gorno Altai in southern Siberia represent a genetically diverse population and have been of great interest to anthropological genetics. In particular, the southern Altaian population is argued to be the best candidate for the New World ancestral population. In this study we sampled Altai-Kizhi from the southern Altaian village of Mendur-Sokkon, analyzed mtDNA RFLP markers and HVS-I sequences, and compared the results to other published mtDNA data from Derenko et al. (2003) and Shields et al. (1993) encompassing the same region. Because each independent study uses different sampling techniques in characterizing gene pools, in this paper we explore the accuracy and reliability of evolutionary studies on human populations. All the major Native American haplogroups (A, B, C, and D) were identified in the Mendur-Sokkon sample, including a single individual belonging to haplogroup X. The most common mtDNA lineages are C (35.7%) and D (13.3%), which is consistent with the haplogroup profiles of neighboring Siberian groups. The Mendur-Sokkon sample exhibits depressed HVS-I diversity values and neutrality test scores, which starkly differs from the Derenko et al. (2003) data set and more closely resembles the results for neighboring south Siberian groups. Furthermore, the multidimensional scaling plot of DA genetic distances does not cluster the Altai samples, showing different genetic affinities with various Asian groups. The findings underscore the importance of sampling strategy in the reconstruction of evolutionary history at the population level.

  2. Beam manipulating by metallic nano-slits with variant widths.

    Science.gov (United States)

    Shi, Haofei; Wang, Changtao; Du, Chunlei; Luo, Xiangang; Dong, Xiaochun; Gao, Hongtao

    2005-09-05

    A novel method is proposed to manipulate beam by modulating light phase through a metallic film with arrayed nano-slits, which have constant depth but variant widths. The slits transport electro-magnetic energy in the form of surface plasmon polaritons (SPPs) in nanometric waveguides and provide desired phase retardations of beam manipulating with variant phase propagation constant. Numerical simulation of an illustrative lens design example is performed through finite-difference time-domain (FDTD) method and shows agreement with theory analysis result. In addition, extraordinary optical transmission of SPPs through sub-wavelength metallic slits is observed in the simulation and helps to improve elements' energy using factor.

  3. Variants of mtDNA among islanders of the lake Titicaca: highest frequency of haplotype B1 and evidence of founder effect

    OpenAIRE

    Sandoval, José; Delgado, Bedsabé; Rivas, Luis; Bonilla, Bertha; Nugent, Daniel; Fujita, Ricardo

    2004-01-01

    Los polimorfismos del ADN mitocondrial son herramientas en el estudio comparativo de poblaciones modernas y antiguas. Entre los más usados están los haplotipos mitocondriales basados en RFLP (polimorfismo de longitud de fragmentos de restricción) y un sistema de inserción /deleción. El presente estudio establece la frecuencia de estos haplotipos y compara un total de 144 individuos representativos de las islas Taquile y Amantaní (lengua quechua) y de las islas de Los Uros y Anapia (lengua aym...

  4. Phylogeography of mtDNA haplogroup R7 in the Indian peninsula

    Directory of Open Access Journals (Sweden)

    Shukla Parul

    2008-08-01

    Full Text Available Abstract Background Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic speaking populations originated in India or derive from a relatively recent migration from further East. Results Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1, is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between

  5. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa

    Science.gov (United States)

    Bertola, Laura D.; Tensen, Laura; van Hooft, Pim; White, Paula A.; Driscoll, Carlos A.; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A.; Tumenta, Pricelia N.; Jirmo, Tuqa H.; de Snoo, Geert R.

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted. PMID:26466139

  6. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Science.gov (United States)

    Bertola, Laura D; Tensen, Laura; van Hooft, Pim; White, Paula A; Driscoll, Carlos A; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A; Tumenta, Pricelia N; Jirmo, Tuqa H; de Snoo, Geert R; de Iongh, Hans H; Vrieling, Klaas

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  7. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Directory of Open Access Journals (Sweden)

    Laura D Bertola

    Full Text Available The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1 West/Central Africa, 2 East Africa, 3 Southern Africa and 4 India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  8. MtDNA genetic diversity and structure of Eurasian Collared Dove (Streptopelia decaocto).

    Science.gov (United States)

    Bagi, Zoltán; Dimopoulos, Evangelos Antonis; Loukovitis, Dimitrios; Eraud, Cyril; Kusza, Szilvia

    2018-01-01

    The Eurasian Collared Dove (Streptopelia decaocto) is one of the most successful biological invaders among terrestrial vertebrates. However, little information is available on the genetic diversity of the species. A total of 134 Eurasian Collared Doves from Europe, Asia and the Caribbean (n = 20) were studied by sequencing a 658-bp length of mitochondrial DNA (mtDNA) cytochrome oxidase I (COI). Fifty-two different haplotypes and relatively high haplotype and nucleotide diversities (Hd±SD = 0.843±0.037 and π±SD = 0.026±0.013) were detected. Haplotype Ht1 was particularly dominant: it included 44.03% of the studied individuals, and contained sequences from 75% of the studied countries. Various analyses (FST, AMOVA, STRUCTURE) distinguished 2 groups on the genetic level, designated 'A' and 'B'. Two groups were also separated in the median-joining network and the maximum likelihood tree. The results of the neutrality tests were negative (Fu FS = -25.914; Tajima D = -2.606) and significantly different from zero (P≤0.001) for group A, whereas both values for group B were positive (Fu FS = 1.811; Tajima D = 0.674) and not significant (P>0.05). Statistically significant positive autocorrelation was revealed among individuals located up to 2000 km apart (r = 0.124; P = 0.001). The present results provide the first information on the genetic diversity and structure of the Eurasian Collared Dove, and can thereby serve as a factual and comparative basis for similar studies in the future.

  9. CEACAM6 gene variants in inflammatory bowel disease.

    Science.gov (United States)

    Glas, Jürgen; Seiderer, Julia; Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-04-29

    The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  10. CEACAM6 gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 acts as a receptor for adherent-invasive E. coli (AIEC and its ileal expression is increased in patients with Crohn's disease (CD. Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD. METHODOLOGY: In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC, and 1,350 healthy, unrelated controls was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839. In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. CONCLUSIONS: This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  11. Network perturbation by recurrent regulatory variants in cancer.

    Directory of Open Access Journals (Sweden)

    Kiwon Jang

    2017-03-01

    Full Text Available Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes.

  12. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations.

    Science.gov (United States)

    Badro, Danielle A; Douaihy, Bouchra; Haber, Marc; Youhanna, Sonia C; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F; Wells, R Spencer; Tyler-Smith, Chris; Platt, Daniel E; Zalloua, Pierre A

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of F(ST)'s, R(ST)'s, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations.

  13. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies

    Directory of Open Access Journals (Sweden)

    Specht Günther

    2010-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle, security aspects (by using database technology and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs. It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  14. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies.

    Science.gov (United States)

    Weissensteiner, Hansi; Schönherr, Sebastian; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita

    2010-03-09

    Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  15. The phylogeny of the four pan-American MtDNA haplogroups: implications for evolutionary and disease studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Achilli

    Full Text Available Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s contributed only six (successful founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.

  16. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    Directory of Open Access Journals (Sweden)

    Beleza Sandra

    2009-04-01

    Full Text Available Abstract Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale. We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations. Results Correspondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12% and mtDNA (22% Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%, which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals. Conclusion Genetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus

  17. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  18. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    Science.gov (United States)

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  19. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  20. Tracing the phylogeography of human populations in Britain based on 4th-11th century mtDNA genotypes.

    Science.gov (United States)

    Töpf, A L; Gilbert, M T P; Dumbacher, J P; Hoelzel, A R

    2006-01-01

    Some of the transitional periods of Britain during the first millennium A.D. are traditionally associated with the movement of people from continental Europe, composed largely of invading armies (e.g., the Roman, Saxon, and Viking invasions). However, the extent to which these were migrations (as opposed to cultural exchange) remains controversial. We investigated the history of migration by women by amplifying mitochondrial DNA (mtDNA) from ancient Britons who lived between approximately A.D. 300-1,000 and compared these with 3,549 modern mtDNA database genotypes from England, Europe, and the Middle East. The objective was to assess the dynamics of the historical population composition by comparing genotypes in a temporal context. Towards this objective we test and calibrate the use of rho statistics to identify relationships between founder and source populations. We find evidence for shared ancestry between the earliest sites (predating Viking invasions) with modern populations across the north of Europe from Norway to Estonia, possibly reflecting common ancestors dating back to the last glacial epoch. This is in contrast with a late Saxon site in Norwich, where the genetic signature is consistent with more recent immigrations from the south, possibly as part of the Saxon invasions.

  1. Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations.

    Science.gov (United States)

    Speller, Camilla F; Nicholas, George P; Yang, Dongya Y

    2011-07-28

    The ability to accurately identify bird species is crucial for wildlife law enforcement and bird-strike investigations. However, such identifications may be challenging when only partial or damaged feathers are available for analysis. By applying vigorous contamination controls and sensitive PCR amplification protocols, we found that it was feasible to obtain accurate mitochondrial (mt)DNA-based species identification with as few as two feather barbs. This minimally destructive DNA approach was successfully used and tested on a variety of bird species, including North American wild turkey (Meleagris gallopavo), Canada goose (Branta canadensis), blue heron (Ardea herodias) and pygmy owl (Glaucidium californicum). The mtDNA was successfully obtained from 'fresh' feathers, historic museum specimens and archaeological samples, demonstrating the sensitivity and versatility of this technique. By applying appropriate contamination controls, sufficient quantities of mtDNA can be reliably recovered and analyzed from feather barbs. This previously overlooked substrate provides new opportunities for accurate DNA species identification when minimal feather samples are available for forensic analysis.

  2. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou.

    Directory of Open Access Journals (Sweden)

    Cornelya F C Klütsch

    Full Text Available Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ~1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544-22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.

  3. Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia.

    Science.gov (United States)

    Ferrando, Ainhoa; Ponsà, Montserrat; Marmi, Josep; Domingo-Roura, Xavier

    2004-01-01

    The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.

  4. Minding the gap: Frequency of indels in mtDNA control region sequence data and influence on population genetic analyses

    Science.gov (United States)

    Pearce, J.M.

    2006-01-01

    Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as FST, has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of ??ST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in ??ST with the inclusion of gap characters were those with control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels. ?? 2006 Blackwell Publishing Ltd.

  5. A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences.

    Directory of Open Access Journals (Sweden)

    David Caramelli

    Full Text Available BACKGROUND: DNA sequences from ancient specimens may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal and early modern (Cro-Magnoid Europeans. METHODOLOGY/PRINCIPAL FINDINGS: We typed the mitochondrial DNA (mtDNA hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23 and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. CONCLUSIONS/SIGNIFICANCE: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.

  6. Mutation of mtDNA ND1 Gene in 20 Type 2 Diabetes Mellitus Patients of Gorontalonese and Javanese Ethnicity

    Directory of Open Access Journals (Sweden)

    AMIEN RAMADHAN ISHAK

    2014-12-01

    Full Text Available Mitochondrial gene mutation plays a role in the development of type two diabetes mellitus (T2DM. A point mutation in the mitochondrial gene Nicotinamide adenine dinucleotide dehydrogenase 1 (mtDNA ND1 gene mainly reported as the most common mutation related to T2DM. However, several studies have identified another SNP (single-nucleotide polymorphisms in the RNA region of mtDNA from patients from specific ethnic populations in Indonesia. Building on those findings, this study aimed to use PCR and DNA sequencing technology to identify nucleotides in RNA and ND1 fragment from 20 Gorontalonese and 20 Javanese T2DM patients, that may trigger T2DM expression. The results showed successful amplification of RNA along 294 bp for all samples. From these samples, we found two types of point mutation in Javanese patients in the G3316A and T3200C points of the rRNA and ND1 gene. In samples taken from Gorontalonese patients, no mutation were found in the RNA or ND1 region. We conclude that T2DM was triggered differently in our two populations. While genetic mutation is implicated for the 20 Javanese patients, T2DM pathogenesis in the Gorontalonese patients must be traced to other genetic, environmental, or behavioral factors.

  7. Mitochondrial DNA (mtDNA haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Fernandez-Moreno Mercedes

    2011-11-01

    Full Text Available Abstract Background Oxidative stress play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. To prevent this, the chondrocytes possess a well-coordinated enzymatic antioxidant system. Besides, the mitochondrial DNA (mtDNA haplogroups are associated with the OA disease. Thus, the main goal of this work is to assess the incidence of the mtDNA haplogroups on serum levels of two of the main antioxidant enzymes, Manganese Superoxide Dismutase (Mn-SOD or SOD2 and catalase, and to test the suitability of these two proteins for potential OA-related biomarkers. Methods We analyzed the serum levels of SOD2 and catalase in 73 OA patients and 77 healthy controls carrying the haplogroups J, U and H, by ELISA assay. Knee and hip radiographs were classified according to Kellgren and Lawrence (K/L scoring from Grade 0 to Grade IV. Appropriate statistical analyses were performed to test the effects of clinical variables, including gender, body mass index (BMI, age, smoking status, diagnosis, haplogroups and radiologic K/L grade on serum levels of these enzymes. Results Serum levels of SOD2 appeared statistically increased in OA patients when compared with healthy controls (p Conclusions The increased levels of SOD2 in OA patients indicate an increased oxidative stress OA-related, therefore this antioxidant enzyme could be a suitable candidate biomarker for diagnosis of OA. Mitochondrial haplogroups significantly correlates with serum levels of catalase

  8. Novel 12S mtDNA findings in sloths (Pilosa, Folivora) and anteaters (Pilosa, Vermilingua) suggest a true case of long branch attraction

    OpenAIRE

    Barros, Maria Claudene; Sampaio, Iracilda; Schneider, Horacio

    2008-01-01

    We sequenced 12S RNA mtDNA for the majority of the extant species of sloths and anteaters and compared our results with previous data obtained by our group using 16S RNA mtDNA in the same specimens and to GenBank sequences of the extinct giant sloth Mylodon. Our results suggest that pigmy-anteaters may be a case of the long-branch attraction phenomenon and also show the large genetic difference between the Amazonian and Atlantic forest three-toed sloths, contrasting with the small differences...

  9. Data-variant kernel analysis

    CERN Document Server

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  10. GCPII Variants, Paralogs and Orthologs

    Czech Academy of Sciences Publication Activity Database

    Hlouchová, Klára; Navrátil, Václav; Tykvart, Jan; Šácha, Pavel; Konvalinka, Jan

    2012-01-01

    Roč. 19, č. 9 (2012), s. 1316-1322 ISSN 0929-8673 R&D Projects: GA ČR GAP304/12/0847 Institutional research plan: CEZ:AV0Z40550506 Keywords : PSMA * GCPIII * NAALADase L * splice variants * homologs * PSMAL Subject RIV: CE - Biochemistry Impact factor: 4.070, year: 2012

  11. Odontogenic keratocyst: a peripheral variant.

    Science.gov (United States)

    Vij, H; Vij, R; Gupta, V; Sengupta, S

    2011-01-01

    Odontogenic keratocyst, which is developmental in nature, is an intraosseous lesion though on rare occasions it may occur in an extraosseous location. The extraosseous variant is referred to as peripheral odontogenic keratocyst. Though, clinically, peripheral odontogenic keratocyst resembles the gingival cyst of adults, it has histologic features that are pathognomonic of odontogenic keratocyst. This article presents a case of this uncommon entity.

  12. Systematic identification of regulatory variants associated with cancer risk.

    Science.gov (United States)

    Liu, Song; Liu, Yuwen; Zhang, Qin; Wu, Jiayu; Liang, Junbo; Yu, Shan; Wei, Gong-Hong; White, Kevin P; Wang, Xiaoyue

    2017-10-23

    Most cancer risk-associated single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) are noncoding and it is challenging to assess their functional impacts. To systematically identify the SNPs that affect gene expression by modulating activities of distal regulatory elements, we adapt the self-transcribing active regulatory region sequencing (STARR-seq) strategy, a high-throughput technique to functionally quantify enhancer activities. From 10,673 SNPs linked with 996 cancer risk-associated SNPs identified in previous GWAS studies, we identify 575 SNPs in the fragments that positively regulate gene expression, and 758 SNPs in the fragments with negative regulatory activities. Among them, 70 variants are regulatory variants for which the two alleles confer different regulatory activities. We analyze in depth two regulatory variants-breast cancer risk SNP rs11055880 and leukemia risk-associated SNP rs12142375-and demonstrate their endogenous regulatory activities on expression of ATF7IP and PDE4B genes, respectively, using a CRISPR-Cas9 approach. By identifying regulatory variants associated with cancer susceptibility and studying their molecular functions, we hope to help the interpretation of GWAS results and provide improved information for cancer risk assessment.

  13. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    Science.gov (United States)

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, Ppopulations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  14. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA

    Directory of Open Access Journals (Sweden)

    Arthur Gusman

    2016-12-01

    Full Text Available There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA in the animal kingdom: a system named doubly uniparental inheritance (DUI, which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841and the veneroid Scrobicularia plana(Da Costa,1778, increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.

  15. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  16. A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae based on mtDNA COI gene: a test of traditional classification

    Directory of Open Access Journals (Sweden)

    Mahir Budak

    2011-09-01

    Full Text Available Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Monophyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report two species of Cephus for the first time from Turkey.

  17. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  18. Deciphering the link between doubly uniparental inheritance of mtDNA and sex determination in bivalves: Clues from comparative transcriptomics

    Science.gov (United States)

    Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A.; Sietman, Bernard E.; Stewart, Donald; Breton, Sophie

    2018-01-01

    Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.

  19. Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in Southern Africa.

    Directory of Open Access Journals (Sweden)

    Chiara Barbieri

    Full Text Available Bantu speech communities expanded over large parts of sub-Saharan Africa within the last 4000-5000 years, reaching different parts of southern Africa 1200-2000 years ago. The Bantu languages subdivide in several major branches, with languages belonging to the Eastern and Western Bantu branches spreading over large parts of Central, Eastern, and Southern Africa. There is still debate whether this linguistic divide is correlated with a genetic distinction between Eastern and Western Bantu speakers. During their expansion, Bantu speakers would have come into contact with diverse local populations, such as the Khoisan hunter-gatherers and pastoralists of southern Africa, with whom they may have intermarried. In this study, we analyze complete mtDNA genome sequences from over 900 Bantu-speaking individuals from Angola, Zambia, Namibia, and Botswana to investigate the demographic processes at play during the last stages of the Bantu expansion. Our results show that most of these Bantu-speaking populations are genetically very homogenous, with no genetic division between speakers of Eastern and Western Bantu languages. Most of the mtDNA diversity in our dataset is due to different degrees of admixture with autochthonous populations. Only the pastoralist Himba and Herero stand out due to high frequencies of particular L3f and L3d lineages; the latter are also found in the neighboring Damara, who speak a Khoisan language and were foragers and small-stock herders. In contrast, the close cultural and linguistic relatives of the Herero and Himba, the Kuvale, are genetically similar to other Bantu-speakers. Nevertheless, as demonstrated by resampling tests, the genetic divergence of Herero, Himba, and Kuvale is compatible with a common shared ancestry with high levels of drift, while the similarity of the Herero, Himba, and Damara probably reflects admixture, as also suggested by linguistic analyses.

  20. The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations

    Science.gov (United States)

    Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh

    2015-01-01

    Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873

  1. Integration of mtDNA pseudogenes into the nuclear genome coincides with speciation of the human genus. A hypothesis.

    Science.gov (United States)

    Gunbin, Konstantin; Peshkin, Leonid; Popadin, Konstantin; Annis, Sofia; Ackermann, Rebecca R; Khrapko, Konstantin

    2017-05-01

    Fragments of mitochondrial DNA are known to get inserted into nuclear DNA to form NUMTs, i.e. nuclear pseudogenes of the mtDNA. The insertion of a NUMT is a rare event. Hundreds of pseudogenes have been cataloged in the human genome. NUMTs are, in essence, a special type of mutation with their own internal timer, which is synchronized with an established molecular clock, the mtDNA. Thus insertion of NUMTs can be timed with respect to evolution milestones such as the emergence of new species. We asked whether NUMTs were inserted uniformly over time or preferentially during certain periods of evolution, as implied by the "punctuated evolution" model. To our surprise, the NUMT insertion times do appear nonrandom with at least one cluster positioned at around 2.8 million years ago (Ma). Interestingly, 2.8Ma closely corresponds to the time of emergence of the genus Homo, and to a well-documented period of major climate change ca. 2.9-2.5Ma. It is tempting to hypothesize that the insertion of NUMTs is related to the speciation process. NUMTs could be either "riders", i.e., their insertion could be facilitated by the overall higher genome rearrangement activity during speciation, or "drivers", i.e. they may more readily get fixed in the population due to positive selection associated with speciation. If correct, the hypothesis would support the idea that evolution of our genus may have happened in a rapid, punctuated manner. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  2. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    Science.gov (United States)

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  3. Data on haplotype diversity in the hypervariable region I, II and III of mtDNA amongst the Brahmin population of Haryana

    Directory of Open Access Journals (Sweden)

    Kapil Verma

    2018-04-01

    Full Text Available Human mitochondrial DNA (mtDNA is routinely analysed for pathogenic mutations, evolutionary studies, estimation of time of divergence within or between species, phylogenetic studies and identification of degraded remains. The data on various regions of human mtDNA has added enormously to the knowledge pool of population genetics as well as forensic genetics. The displacement-loop (D-loop in the control region of mtDNA is rated as the most rapidly evolving part, due to the presence of variations in this region. The control region consists of three hypervariable regions. These hypervariable regions (HVI, HVII and HVIII tend to mutate 5–10 times faster than nuclear DNA. The high mutation rate of these hypervariable regions is used in population genetic studies and human identity testing. In the present data, potentially informative hypervariable regions of mitochondrial DNA (mtDNA i.e. HVI (np 16024–16365, HVII (np 73–340 and HVIII (np 438–576 were estimated to understand the genetic diversity amongst Brahmin population of Haryana. Blood samples had been collected from maternally unrelated individuals from the different districts of Haryana. An array of parameters comprising of polymorphic sites, transitions, transversions, deletions, gene diversity, nucleotide diversity, pairwise differences, Tajima's D test, Fu's Fs test, mismatch observed variance and expected heterozygosity were estimated. The observed polymorphisms with their respective haplogroups in comparison to rCRS were assigned. Keywords: Mitochondrial DNA, D-loop, Hypervariable regions, Forensic genetics

  4. Variation and association to diabetes in 2000 full mtDNA sequences mined from an exome study in a Danish population

    DEFF Research Database (Denmark)

    Li, Shengting; Besenbacher, Soren; Li, Yingrui

    2014-01-01

    In this paper, we mine full mtDNA sequences from an exome capture data set of 2000 Danes, showing that it is possible to get high-quality full-genome sequences of the mitochondrion from this resource. The sample includes 1000 individuals with type 2 diabetes and 1000 controls. We characterise...

  5. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific

    DEFF Research Database (Denmark)

    Raule, Nicola; Sevini, Federica; Li, Shengting

    2014-01-01

    To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification...

  6. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region

    Science.gov (United States)

    Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark

    2014-01-01

    The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438

  7. Dandy walker variant and bipolar I disorder with graphomania.

    Science.gov (United States)

    Can, Serdar Suleyman; Karakaş Uğurlu, Görkem; Cakmak, Selcen

    2014-07-01

    Cerebellum is known to play an important role in coordination and motor functions. In some resent studies it is also considered to be involved in modulation of mood, cognition and psychiatric disorders. Dandy Walker Malformation is a congenital malformation that is characterized by hypoplasia or aplasia of the cerebellar vermis, cystic dilatation of the fourth ventricle and enlargement of the posterior fossa. When the volume of posterior fossa is normal, the malformation is called Dandy Walker Variant. Case is a 32 year old male with a 12 year history of Bipolar I Disorder presented with manic and depresive symptoms, including dysphoric and depressive affect, anhedonia, suicidal thoughts and behaviours, thoughts of fear about future, overtalkativeness and graphomania, increased energy, irregular sleep, loss of appetite, increased immersion in projects, irritability, agressive behavior, impulsivity. Cranial Magnetic Resonance Imaging was compatible to the morphological features of Dandy Walker Variant.

  8. A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity.

    Directory of Open Access Journals (Sweden)

    Borja Milá

    Full Text Available The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%, yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%, with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In

  9. Limited phylogeographic signal in sex-linked and autosomal loci despite geographically, ecologically, and phenotypically concordant structure of mtDNA variation in the Holarctic avian genus Eremophila.

    Directory of Open Access Journals (Sweden)

    Sergei V Drovetski

    Full Text Available Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early-Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris with respect to the Temminck's lark (E. bilopha. In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.

  10. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers.

    Science.gov (United States)

    Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K

    2005-12-01

    We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.

  11. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Genetic Variants in Transcription Factors Are Associated With the Pharmacokinetics and Pharmacodynamics of Metformin

    Science.gov (United States)

    Goswami, S; Yee, SW; Stocker, S; Mosley, JD; Kubo, M; Castro, R; Mefford, JA; Wen, C; Liang, X; Witte, J; Brett, C; Maeda, S; Simpson, MD; Hedderson, MM; Davis, RL; Roden, DM; Giacomini, KM; Savic, RM

    2014-01-01

    One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin transporters have been extensively studied as a likely contributor to this high failure rate. Here, we investigate, for the first time, the effect of genetic variants in transcription factors on metformin pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the expression of metformin transporters, were associated with changes in treatment HbA1c (P < 0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant, rs784888. Genetic variants in other transcription factors, peroxisome proliferator–activated receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change only. Overall, our study highlights the importance of genetic variants in transcription factors as modulators of metformin PK and response. PMID:24853734

  13. Coronary artery anatomy and variants

    Energy Technology Data Exchange (ETDEWEB)

    Malago, Roberto; Pezzato, Andrea; Barbiani, Camilla; Alfonsi, Ugolino; Nicoli, Lisa; Caliari, Giuliana; Pozzi Mucelli, Roberto [Policlinico G.B. Rossi, University of Verona, Department of Radiology, Verona (Italy)

    2011-12-15

    Variants and congenital anomalies of the coronary arteries are usually asymptomatic, but may present with severe chest pain or cardiac arrest. The introduction of multidetector CT coronary angiography (MDCT-CA) allows the detection of significant coronary artery stenosis. Improved performance with isotropic spatial resolution and higher temporal resolution provides a valid alternative to conventional coronary angiography (CCA) in many patients. MDCT-CA is now considered the ideal tool for three-dimensional visualization of the complex and tortuous anatomy of the coronary arteries. With multiplanar and volume-rendered reconstructions, MDCT-CA may even outperform CCA in determining the relative position of vessels, thus providing a better view of the coronary vascular anatomy. The purpose of this review is to describe the normal anatomy of the coronary arteries and their main variants based on MDCT-CA with appropriate reconstructions. (orig.)

  14. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    Science.gov (United States)

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Microcystic Variant of Urothelial Carcinoma

    Directory of Open Access Journals (Sweden)

    Anthony Kodzo-Grey Venyo

    2013-01-01

    Full Text Available Background. Microcystic variant of urothelial carcinoma is one of the new variants of urothelial carcinoma that was added to the WHO classification in 2004. Aims. To review the literature on microcystic variant of urothelial carcinoma. Methods. Various internet search engines were used to identify reported cases of the tumour. Results. Microscopic features of the tumour include: (i Conspicuous intracellular and intercellular lumina/microcysts encompassed by malignant urothelial or squamous cells. (ii The lumina are usually empty; may contain granular eosinophilic debris, mucin, or necrotic cells. (iii The cysts may be variable in size; round, or oval, up to 2 mm; lined by urothelium which are either flattened cells or low columnar cells however, they do not contain colonic epithelium or goblet cells; are infiltrative; invade the muscularis propria; mimic cystitis cystica and cystitis glandularis; occasionally exhibit neuroendocrine differentiation. (iv Elongated and irregular branching spaces are usually seen. About 17 cases of the tumour have been reported with only 2 patients who have survived. The tumour tends to be of high-grade and high-stage. There is no consensus opinion on the best option of treatment of the tumour. Conclusions. It would prove difficult at the moment to be dogmatic regarding its prognosis but it is a highly aggressive tumour. New cases of the tumour should be reported in order to document its biological behaviour.

  16. Characterization of form variants of Xenorhabdus luminescens.

    Science.gov (United States)

    Gerritsen, L J; de Raay, G; Smits, P H

    1992-01-01

    From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed. Images PMID:1622273

  17. OVAS: an open-source variant analysis suite with inheritance modelling.

    Science.gov (United States)

    Mozere, Monika; Tekman, Mehmet; Kari, Jameela; Bockenhauer, Detlef; Kleta, Robert; Stanescu, Horia

    2018-02-08

    The advent of modern high-throughput genetics continually broadens the gap between the rising volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally important variants has now shifted towards identifying the critical differences between normal variants and disease-causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible environment to process patient data, especially in circumstances where continuous internet usage is limited. To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS) pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling module in conjunction with 11 other filtering components can be used in sequence ranging from single quality control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of interpretation required, additional annotation is performed to identify organ specificity through gene expression and protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous disease pattern from exome-capture sequence input samples. OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a top-down filtering schema of

  18. Identification of copy number variants in horses

    KAUST Repository

    Doan, R.

    2012-03-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  19. Orofacial cleft risk is increased with maternal smoking and specific detoxification-gene variants

    DEFF Research Database (Denmark)

    Shi, Min; Christensen, Kaare; Weinberg, Clarice R

    2007-01-01

    Maternal smoking is a recognized risk factor for orofacial clefts. Maternal or fetal pharmacogenetic variants are plausible modulators of this risk. In this work, we studied 5,427 DNA samples, including 1,244 from subjects in Denmark and Iowa with facial clefting and 4,183 from parents, siblings,...

  20. Association of breast cancer risk with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional...

  1. Multiple differences in calling songs and other traits between solitary and gregarious Mormon crickets from allopatric mtDNA clades

    Directory of Open Access Journals (Sweden)

    Bailey William V

    2007-01-01

    Full Text Available Abstract Background In acoustic species, traits such as male calling song are likely to diverge quickly between allopatric populations due to sexual selection, and divergence in parameters such as carrier frequency, chirp structure, and other important song characters can influence sexual isolation. Here we make use of two forms of Mormon crickets to examine differences in a broad suite of traits that have the potential to influence speciation via sexual isolation. Mormon crickets in "gregarious" populations aggregate into dense migratory bands, and females are the sexually competitive sex (sex-role reversal. There is also a non-outbreak "solitary" form. These two forms are largely but not perfectly correlated with a significant mtDNA subdivision within the species that is thought to have arisen in allopatry. Combined information about multiple, independently evolving traits, such as morphology and structural and behavioural differences in calling song, provides greater resolution of the overall differences between these allopatric populations, and allows us to assess their stage of divergence. We test two predictions, first that the forms differ in song and second that gregarious males are more reluctant to sing than solitary males due to sex role reversal. We also tested for a difference in the relationship between the size of the forewing resonator, the mirror, and carrier frequency, as most models of sound production in crickets indicate that mirror size should predict carrier frequency. Results Multivariate analyses showed that solitary and gregarious individuals from different populations representing the two mtDNA clades had almost non-overlapping distributions based on multiple song and morphological measurements. Carrier frequency differed between the two, and gregarious males were more reluctant to sing overall. Mirror size predicted carrier frequency; however, the relationship between mirror size and surface area varied between

  2. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    Science.gov (United States)

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  3. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa

    Directory of Open Access Journals (Sweden)

    Pennarun Erwan

    2012-12-01

    Full Text Available Abstract Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.

  4. Shift-Variant Multidimensional Systems.

    Science.gov (United States)

    1985-05-29

    x,y;u,v) is the system response at (x,y) to an unit impulse applied at (u,v). The presence of additive noise in the preceding input-output model of a...space model developed works very effi- ciently to deblur images affected by 2-D linear shift- varying blurs, its use, in presence of noise needs to be...causal linear shift-variant (LSV) system, whose impulse res- ponse is a K-th order degenerate sequence, a K-th order state-space model was obtained

  5. Novel 12S mtDNA findings in sloths (Pilosa, Folivora and anteaters (Pilosa, Vermilingua suggest a true case of long branch attraction

    Directory of Open Access Journals (Sweden)

    Maria Claudene Barros

    2008-01-01

    Full Text Available We sequenced 12S RNA mtDNA for the majority of the extant species of sloths and anteaters and compared our results with previous data obtained by our group using 16S RNA mtDNA in the same specimens and to GenBank sequences of the extinct giant sloth Mylodon. Our results suggest that pigmy-anteaters may be a case of the long-branch attraction phenomenon and also show the large genetic difference between the Amazonian and Atlantic forest three-toed sloths, contrasting with the small differences observed between the two non-Atlantic forest forms of sloths. These results have important implications for the taxonomy of sloths and anteaters and strongly suggest the placement of pigmy anteaters in their own family (Cyclopidae and raising the taxonomic status of Bradypus torquatus to a genus.

  6. Reconstructing the origin of the Lapita Cultural Complex: mtDNA analyses of East Sepik Province, PNG.

    Science.gov (United States)

    Vilar, Miguel G; Kaneko, Akira; Hombhanje, Francis W; Tsukahara, Takahiro; Hwaihwanje, Ilomo; Lum, J Koji

    2008-01-01

    The colonization of Oceania occurred in two waves. By 32,000 BP, humans had reached New Guinea and settled all intervisible islands east to the Solomon Islands. Around 3,500 BP, a distinct intrusive group from Southeast Asia reached coastal New Guinea, integrated their components with indigenous resources, and gave rise to the Lapita Cultural Complex. Within 2,500 years, Lapita and its descendant cultures colonized the Pacific. To uncover the origin of the Lapita Cultural Complex, we analyzed the hypervariable region I of the mitochondrial deoxyribonucleic acid (mtDNA) in 219 individuals from eight East Sepik Province villages: two villages in each of four environmental zones. Same-zone villages spoke different languages: one Austronesian and three Papuan (Arapesh, Abelam, and Boiken). Our analysis examined whether language or geography better predicted gene flow. In general, language better predicted genetic affinities. Boiken villages across all four zones showed no significant genetic difference (F(ST) P value > 0.05). In contrast, the Austronesian village was significantly different to most other villages (P 0.05). We interpret the data to reflect limited gene flow inland by Austronesians overshadowed by a regional displacement by inland Boiken speakers migrating seaward. These results are consistent with oral histories and ethnographic accounts.

  7. Geographic structure and demographic history of Iranian brown bear (Ursus arctos based on mtDNA control region sequences

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ashrafzadeh

    2015-12-01

    Full Text Available In recent years, the brown bear's range has declined and its populations in some areas have faced extinction. Therefore, to have a comprehensive picture of genetic diversity and geographic structure of populations is essential for effective conservation strategies. In this research, we sequenced a 271bp segment of mtDNA control region of seven Iranian brown bears, where a total dataset of 467 sequences (brown and polar bears were used in analyses. Overall, 113 different haplotypes and 77 polymorphic sites were identified within the segment. Based on phylogenetic analyses, Iranian brown bears were not nested in any other clades. The low values of Nm (range=0.014-0.187 and high values of Fst (range=0.728-0.972 among Iranian bears and others revealed a genetically significant differentiation. We aren't found any significant signal of demographic reduction in Iranian bears. The time to the most recent common ancestor of Iranian brown bears (Northern Iran was found to be around 19000 BP.

  8. Comparison between Mt-DNA D-Loop and Cyt B primers for porcine DNA detection in meat products

    Science.gov (United States)

    Hamzah, Azhana; Mutalib, Sahilah Abd.; Babji, Abdul Salam

    2013-11-01

    This study was conducted to detect the presence of porcine DNA in meat products in the market using conventional polymerase chain reaction (PCR) and commercial PCR-southern hybridization analysis. Porcine DNA detection in meat products was tested due to some issues associated with the adulteration of food products in Malaysia. This is an important issue especially for Halal authentication which is required for some religious practices such as in Islam and Hinduisms. Many techniques have been developed for determining the Halal status of food products. In this paper, mt-DNA D-loop primer and cytochrome (cyt) b were used to detect the presence of porcine DNA in meat products. Positive and negative controls were always present for each batch of extraction. DNA of raw pork meat was used as a positive control while nucleus free water is used as negative control. A pair of oligonucleotide primer was used namely Pork1 and Pork2 which produced amplicon of 531 base pair (bp) in size. While, PCR-southern hybridization was conducted using primers readily supplied by commercial PCR-Southern hybridization and produced amplicon with 276 bp in size. In the present study, demonstrated that none of the samples were contaminated with porcine residuals but selected samples with pork meat were positive. The species-specific PCR amplification yielded excellent results for identification of pork derivatives in food products and it is a potentially reliable and suitable technique in routine food analysis for Halal certification.

  9. HUBUNGAN KEKERABATAN BEBERAPA POPULASI KERANG HIJAU (Perna viridis DI INDONESIA BERDASARKAN SEKUEN CYTROCROME B mtDNA

    Directory of Open Access Journals (Sweden)

    Achmad Sudradjat

    2016-11-01

    Full Text Available Penelitian ini dilakukan untuk mengetahui hubungan kekerabatan stok kerang hijau (Perna viridis di beberapa perairan Indonesia sebagai informasi dasar bagi program pemuliaan. Sampel kerang hijau yang berasal dari populasi alam perairan Tanjung Kait, Kamal, Panimbang, Cirebon, Pasuruan, Kenjeran, dan Pangkep diambil secara acak. Amplifikasi PCR dan sekuensing mitokondria daerah cytochrome B adalah HCO (F: 5’-TAA ACT TCA GGG TGA CCA AAA AAT CA-3’ (26 bp dan LCO (R: 5’-GGT CAA CAA ATC ATA AAG ATA TTG G-3’ (25 bp. Sekuen DNA yang diperoleh digunakan untuk analisis homologi, analisis genetic distance dan analisis kekerabatan. Hasil analisis homologi susunan nukleotida berdasarkan BLAST-N terhadap sekuen mtDNA Perna viridis yang tersimpan di Genebank menunjukkan similaritas 97%. Hasil analisis didapatkan jarak genetik yang terdekat adalah populasi Tanjung Kait dengan Kenjeran sedangkan jarak genetik terjauh adalah populasi Cirebon dengan Kamal. Hubungan kekerabatan yang ditunjukkan dengan dendrogram diperoleh 2 kelompok yaitu 6 populasi membentuk satu kelompok dan populasi Cirebon membentuk kluster tersendiri. Sekuens tersebut mungkin dapat digunakan sebagai penanda dalam program breeding kerang hijau di Indonesia

  10. Rozmanitost projevů heteroplazmické mtDNA mutace 8993 T>G ve dvou rodinách

    Czech Academy of Sciences Publication Activity Database

    Tesařová, M.; Hansíková, H.; Hlavatá, A.; Klement, P.; Houšťková, H.; Houštěk, Josef; Zeman, J.

    2002-01-01

    Roč. 141, č. 17 (2002), s. 551-554 ISSN 0008-7335 R&D Projects: GA MZd(CZ) NE6533; GA MZd(CZ) NE6555; GA MŠk(CZ) LN00A079 Institutional research plan: CEZ:AV0Z5011922 Keywords : NARP syndrome * mtDNA mutation 8993 T>G Subject RIV: EB - Genetics ; Molecular Biology

  11. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.

    Science.gov (United States)

    Kuo, Chung-Wen; Tsai, Meng-Han; Lin, Tsu-Kung; Tiao, Mao-Meng; Wang, Pei-Wen; Chuang, Jiin-Haur; Chen, Shang-Der; Liou, Chia-Wei

    2017-06-07

    Mitochondria consume O₂ to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ⁰) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.

  12. Comparison of two Neolithic mtDNA haplotypes from a Czech excavation site with the results of mitochondrial DNA studies on European Neolithic and Mesolithic individuals

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Emmerová, B.; Brzobohatá, Hana; Šumberová, Radka; Vaněk, D.

    2017-01-01

    Roč. 6, December (2017), „e125”-„e128” ISSN 1875-1768 R&D Projects: GA ČR GB14-36938G Institutional support: RVO:67985912 Keywords : ancient DNA * mtDNA * sequencing * haplotype * haplogroup Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://www.fsigeneticssup.com/article/S1875-1768(17)30162-2/pdf

  13. Regional Differences in the Distribution of the Sub-Saharan, West Eurasian, and South Asian mtDNA Lineages in Yemen

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Mulligan, C. J.; Rídl, J.; Žaloudková, M.; Edens, C. M.; Hájek, Martin; Pereira, L.

    2008-01-01

    Roč. 136, č. 2 (2008), s. 128-137 ISSN 0002-9483 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA diversity * regional sampling * population distances * phylogeography Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.353, year: 2008 http://www3.interscience.wiley.com/journal/117899911/abstract

  14. Human mtDNA hypervariable regions, HVR I and II, hint at deep common maternal founder and subsequent maternal gene flow in Indian population groups.

    Science.gov (United States)

    Sharma, Swarkar; Saha, Anjana; Rai, Ekta; Bhat, Audesh; Bamezai, Ramesh

    2005-01-01

    We have analysed the hypervariable regions (HVR I and II) of human mitochondrial DNA (mtDNA) in individuals from Uttar Pradesh (UP), Bihar (BI) and Punjab (PUNJ), belonging to the Indo-European linguistic group, and from South India (SI), that have their linguistic roots in Dravidian language. Our analysis revealed the presence of known and novel mutations in both hypervariable regions in the studied population groups. Median joining network analyses based on mtDNA showed extensive overlap in mtDNA lineages despite the extensive cultural and linguistic diversity. MDS plot analysis based on Fst distances suggested increased maternal genetic proximity for the studied population groups compared with other world populations. Mismatch distribution curves, respective neighbour joining trees and other statistical analyses showed that there were significant expansions. The study revealed an ancient common ancestry for the studied population groups, most probably through common founder female lineage(s), and also indicated that human migrations occurred (maybe across and within the Indian subcontinent) even after the initial phase of female migration to India.

  15. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  16. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    Science.gov (United States)

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  17. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  18. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA

    Science.gov (United States)

    Breton, Sophie; Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stephanie; Sietman, Bernard E.; Johnson, Nathan A.; Bettinazzi, Stefano; Dtewart, Donald T.; Guerra, Davide

    2017-01-01

    Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.

  19. Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases

    Science.gov (United States)

    Malik, Deepika; Hsu, Tiffany; Falatoonzadeh, Payam; Cáceres-del-Carpio, Javier; Tarek, Mohamed; Chwa, Marilyn; Atilano, Shari R.; Ramirez, Claudio; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2014-01-01

    Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be

  20. Developing consistent pronunciation models for phonemic variants

    CSIR Research Space (South Africa)

    Davel, M

    2006-09-01

    Full Text Available Pronunciation lexicons often contain pronunciation variants. This can create two problems: It can be difficult to define these variants in an internally consistent way and it can also be difficult to extract generalised grapheme-to-phoneme rule sets...

  1. Semantic prioritization of novel causative genomic variants

    KAUST Repository

    Boudellioua, Imene

    2017-04-17

    Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  2. Semantic prioritization of novel causative genomic variants

    KAUST Repository

    Boudellioua, Imene; Mohamad Razali, Rozaimi; Kulmanov, Maxat; Hashish, Yasmeen; Bajic, Vladimir B.; Goncalves-Serra, Eva; Schoenmakers, Nadia; Gkoutos, Georgios V.; Schofield, Paul N.; Hoehndorf, Robert

    2017-01-01

    Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  3. Fundamental Characteristics of Industrial Variant Specification Systems

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Hvam, Lars

    2004-01-01

    fundamental concepts related to this task, which are relevant to understand for academia and practitioners working with the subject. This is done through a description of variant specification tasks and typical aspects of system solutions. To support the description of variant specification tasks and systems...

  4. Characterization of form variants of Xenorhabdus luminescens.

    NARCIS (Netherlands)

    Gerritsen, L.J.M.; Raay, de G.; Smits, P.H.

    1992-01-01

    From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in

  5. CLEVER: Clique-Enumerating Variant Finder

    NARCIS (Netherlands)

    Marschall, T.; Costa, I.; Canzar, S.; bauer, m; Klau, G.W.; Schliep, A.; Schönhuth, A.

    2012-01-01

    Motivation: Next-generation sequencing techniques have facilitated a large-scale analysis of human genetic variation. Despite the advances in sequencing speed, the computational discovery of structural variants is not yet standard. It is likely that many variants have remained undiscovered in most

  6. WEBSITE EXECUTION OF CAD MODULES

    Directory of Open Access Journals (Sweden)

    A. A. Lyalinsky

    2013-01-01

    Full Text Available Web-based interface of modules that are part of the computer-aided design system in microelectronics is considered. The influence of several factors (available computer  memory, maximum allowed run time, degree of homogeneity of the software on the structure of the created system is investigated. Synchronous and asynchronous variants of interaction between control and executive parts are described. References on the systems that allow an access to applications in CAD microelectronics and are based on the principles discussed in this article are given.

  7. Variant Review with the Integrative Genomics Viewer.

    Science.gov (United States)

    Robinson, James T; Thorvaldsdóttir, Helga; Wenger, Aaron M; Zehir, Ahmet; Mesirov, Jill P

    2017-11-01

    Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV's variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Local binary patterns new variants and applications

    CERN Document Server

    Jain, Lakhmi; Nanni, Loris; Lumini, Alessandra

    2014-01-01

    This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.

  9. Congenital anomalies and normal skeletal variants

    International Nuclear Information System (INIS)

    Guebert, G.M.; Yochum, T.R.; Rowe, L.J.

    1987-01-01

    Congenital anomalies and normal skeletal variants are a common occurrence in clinical practice. In this chapter a large number of skeletal anomalies of the spine and pelvis are reviewed. Some of the more common skeletal anomalies of the extremities are also presented. The second section of this chapter deals with normal skeletal variants. Some of these variants may simulate certain disease processes. In some instances there are no clear-cut distinctions between skeletal variants and anomalies; therefore, there may be some overlap of material. The congenital anomalies are presented initially with accompanying text, photos, and references, beginning with the skull and proceeding caudally through the spine to then include the pelvis and extremities. The normal skeletal variants section is presented in an anatomical atlas format without text or references

  10. Y-chromosome and mtDNA variation confirms independent domestications and directional hybridization in South American camelids.

    Science.gov (United States)

    Marín, J C; Romero, K; Rivera, R; Johnson, W E; González, B A

    2017-10-01

    Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally-inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex-specific markers (male specific Y-chromosome and female-specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male-specific Y-chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y-chromosome. The haplotype network showed clear separation between haplogroups of guanaco-llama and vicuña-alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y-chromosome variation did not distinguish the two subspecies of vicuñas. © 2017 Stichting International Foundation for Animal Genetics.

  11. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  12. The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage

    Directory of Open Access Journals (Sweden)

    Kotal M

    2008-08-01

    Full Text Available Abstract Background The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP. However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. Results The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. Conclusion Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is

  13. Rare human papillomavirus 16 E6 variants reveal significant oncogenic potential

    Directory of Open Access Journals (Sweden)

    Tommasino Massimo

    2011-06-01

    Full Text Available Abstract The aim of this study was to determine whether low prevalence human papillomavirus (HPV 16 E6 variants differ from high prevalence types in their functional abilities. We evaluated functions relevant to carcinogenesis for the rarely-detected European variants R8Q, R10G and R48W as compared to the commonly detected L83V. Human immortalized keratinocytes (NIKS stably transduced with the E6 variants were used in most functional assays. Low and high prevalence E6 variants displayed similar abilities in abrogation of growth arrest and inhibition of p53 elevation induced by actinomycin D. Differences were detected in the abilities to dysregulate stratification and differentiation of NIKS in organotypic raft cultures, modulate detachment induced apoptosis (anoikis and hyperactivate Wnt signaling. No distinctive phenotype could be assigned to include all rare variants. Like L83V, raft cultures derived from variants R10G and R48W similarly induced hyperplasia and aberrantly expressed keratin 5 in the suprabasal compartment with significantly lower expression of keratin 10. Unlike L83V, both variants, and particularly R48W, induced increased levels of anoikis upon suspension in semisolid medium. R8Q induced a unique phenotype characterized by thin organotypic raft cultures, low expression of keratin 10, and high expression of keratins 5 and 14 throughout all raft layers. Interestingly, in a reporter based assay R8Q exhibited a higher ability to augment TCF/β-catenin transcription. The data suggests that differences in E6 variant prevalence in cervical carcinoma may not be related to the carcinogenic potential of the E6 protein.

  14. Somatic cancer variant curation and harmonization through consensus minimum variant level data

    Directory of Open Access Journals (Sweden)

    Deborah I. Ritter

    2016-11-01

    Full Text Available Abstract Background To truly achieve personalized medicine in oncology, it is critical to catalog and curate cancer sequence variants for their clinical relevance. The Somatic Working Group (WG of the Clinical Genome Resource (ClinGen, in cooperation with ClinVar and multiple cancer variant curation stakeholders, has developed a consensus set of minimal variant level data (MVLD. MVLD is a framework of standardized data elements to curate cancer variants for clinical utility. With implementation of MVLD standards, and in a working partnership with ClinVar, we aim to streamline the somatic variant curation efforts in the community and reduce redundancy and time burden for the interpretation of cancer variants in clinical practice. Methods We developed MVLD through a consensus approach by i reviewing clinical actionability interpretations from institutions participating in the WG, ii conducting extensive literature search of clinical somatic interpretation schemas, and iii survey of cancer variant web portals. A forthcoming guideline on cancer variant interpretation, from the Association of Molecular Pathology (AMP, can be incorporated into MVLD. Results Along with harmonizing standardized terminology for allele interpretive and descriptive fields that are collected by many databases, the MVLD includes unique fields for cancer variants such as Biomarker Class, Therapeutic Context and Effect. In addition, MVLD includes recommendations for controlled semantics and ontologies. The Somatic WG is collaborating with ClinVar to evaluate MVLD use for somatic variant submissions. ClinVar is an open and centralized repository where sequencing laboratories can report summary-level variant data with clinical significance, and ClinVar accepts cancer variant data. Conclusions We expect the use of the MVLD to streamline clinical interpretation of cancer variants, enhance interoperability among multiple redundant curation efforts, and increase submission of

  15. Irreducible Specht modules are signed Young modules

    OpenAIRE

    Hemmer, David J.

    2005-01-01

    Recently Donkin defined signed Young modules as a simultaneous generalization of Young and twisted Young modules for the symmetric group. We show that in odd characteristic, if a Specht module $S^\\lambda$ is irreducible, then $S^\\lambda$ is a signed Young module. Thus the set of irreducible Specht modules coincides with the set of irreducible signed Young modules. This provides evidence for our conjecture that the signed Young modules are precisely the class of indecomposable self-dual module...

  16. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  17. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  18. Different Variants of Fundamental Portfolio

    Directory of Open Access Journals (Sweden)

    Tarczyński Waldemar

    2014-06-01

    Full Text Available The paper proposes the fundamental portfolio of securities. This portfolio is an alternative for the classic Markowitz model, which combines fundamental analysis with portfolio analysis. The method’s main idea is based on the use of the TMAI1 synthetic measure and, in limiting conditions, the use of risk and the portfolio’s rate of return in the objective function. Different variants of fundamental portfolio have been considered under an empirical study. The effectiveness of the proposed solutions has been related to the classic portfolio constructed with the help of the Markowitz model and the WIG20 market index’s rate of return. All portfolios were constructed with data on rates of return for 2005. Their effectiveness in 2006- 2013 was then evaluated. The studied period comprises the end of the bull market, the 2007-2009 crisis, the 2010 bull market and the 2011 crisis. This allows for the evaluation of the solutions’ flexibility in various extreme situations. For the construction of the fundamental portfolio’s objective function and the TMAI, the study made use of financial and economic data on selected indicators retrieved from Notoria Serwis for 2005.

  19. Apoplejía, Convulsiones, Epilepsia, Heteroplasmia, MELAS, Migraña, Mutación, mtDNA Comportamiento de la mutación mtDNA A3243G en dos familias antioqueñas de pacientes diagnosticados con el síndrome MELAS

    Directory of Open Access Journals (Sweden)

    Gabriel Bedoya Berrío

    2010-02-01

    -layout-grid-align: none;">Conclusions: Severity of the symptoms in patients affected with MELAS is correlated with the amount of MDNA. Furthermore, it was found a correlation between MDNA and IAA, suggesting a possible effect of amerind nuclear ontext in The mitochondrial

    segregation and replication.

    Introducción: mutaciones en mtDNA causan citopatias mitocondriales, la más común de ellas es el síndrome MELAS; la transición A3243G en tRNA de leucina (tRNALeu se presenta en 80% de pacientes. La heteroplasmia, observada en citopatias mitocondriales, consiste en coexistencia de moléculas mutadas y normales en una célula, situación en la cual, dependiendo de su cantidad, afecta su función con expresión clínica variable.

    Objetivo: evaluar el comportamiento de la cantidad de heteroplasmia de la mutación 3243G en su expresión clínica y en la dependencia de variantes nucleares.

    Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Li Zongbin; Zhang Yudong; Esling, Claude; Zhao Xiang; Zuo Liang

    2011-01-01

    Highlights: → We determine orientation relationships of 5M modulated martensite in NiMnGa alloy. → Accurate EBSD mapping is performed using monoclinic superstructure. → Four distinct variants mutually twin-related to each other are revealed. → Three twinning types and full twinning elements are identified. → Twin interfaces do coincide with respective twinning planes. - Abstract: For Ni-Mn-Ga ferromagnetic shape memory alloys, the characteristic features of modulated martensite (including the number/shape of constituent variants, the inter-variant orientation relationship and the geometrical distribution of variant interfaces) determine the attainability of the shape memory effect. In the present work, a comprehensive microstructural and crystallographic investigation has been conducted on a bulk polycrystalline Ni 50 Mn 28 Ga 22 alloy. As a first attempt, the orientation measurements by electron backscatter diffraction (EBSD) - using the precise information on the commensurate 5M modulated monoclinic superstructure (instead of the conventionally simplified non-modulated tetragonal structure) - were successfully performed to identify the crystallographic orientations on an individual basis. Consequently, the morphology of modulated martensite, the orientation relationships between adjacent variants and the characters of twin interfaces were unambiguously determined. With the thus-obtained full-featured image on the configuration of martensitic variants, the possibility of microstructural modification by proper mechanical 'training' was further discussed. This new effort makes it feasible to explore the crystallographic/microstructural correlations in modulated martensite with high statistical reliability, which in turn provides useful guidance for optimizing the microstructure and shape memory performance.

  1. Ultrasonographic imaging of papillary thyroid carcinoma variants

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Hee [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Ultrasonography (US) is routinely used to evaluate thyroid nodules. The US features of papillary thyroid carcinoma (PTC), the most common thyroid malignancy, include hypoechogenicity, spiculated/microlobulated margins, microcalcifications, and a nonparallel orientation. However, many PTC variants have been identified, some of which differ from the classic type of PTC in terms of biological behavior and clinical outcomes. This review describes the US features and clinical implications of the variants of PTC. With the introduction of active surveillance replacing immediate biopsy or surgical treatment of indolent, small PTCs, an understanding of the US characteristics of PTC variants will facilitate the individualized management of patients with PTC.

  2. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Jo, Jihoon; Park, Jongsun; Lee, Hyun-Gwan; Kern, Elizabeth M A; Cheon, Seongmin; Jin, Soyeong; Park, Joong-Ki; Cho, Sung-Jin; Park, Chungoo

    2016-08-01

    The sea cucumber Apostichopus japonicus Selenka 1867 represents an important resource in biomedical research, traditional medicine, and the seafood industry. Much of the commercial value of A. japonicus is determined by dorsal/ventral color variation (red, green, and black), yet the taxonomic relationships between these color variants are not clearly understood. We performed the first comparative analysis of de novo assembled transcriptome data from three color variants of A. japonicus. Using the Illumina platform, we sequenced nearly 177,596,774 clean reads representing a total of 18.2Gbp of sea cucumber transcriptome. A comparison of over 0.3 million transcript scaffolds against the Uniprot/Swiss-Prot database yielded 8513, 8602, and 8588 positive matches for green, red, and black body color transcriptomes, respectively. Using the Panther gene classification system, we assessed an extensive and diverse set of expressed genes in three color variants and found that (1) among the three color variants of A. japonicus, genes associated with RNA binding protein, oxidoreductase, nucleic acid binding, transferase, and KRAB box transcription factor were most commonly expressed; and (2) the main protein functional classes are differently regulated in all three color variants (extracellular matrix protein and phosphatase for green color, transporter and potassium channel for red color, and G-protein modulator and enzyme modulator for black color). This work will assist in the discovery and annotation of novel genes that play significant morphological and physiological roles in color variants of A. japonicus, and these sequence data will provide a useful set of resources for the rapidly growing sea cucumber aquaculture industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Loss aversion and 5HTT gene variants in adolescent anxiety.

    Science.gov (United States)

    Ernst, Monique; Plate, Rista C; Carlisi, Christina O; Gorodetsky, Elena; Goldman, David; Pine, Daniel S

    2014-04-01

    Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Loss aversion and 5HTT gene variants in adolescent anxiety

    Directory of Open Access Journals (Sweden)

    Monique Ernst

    2014-04-01

    Full Text Available Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR in healthy and clinically anxious adolescents. Findings show that loss aversion (1 does manifest in adolescents, (2 does not differ between healthy and clinically anxious participants, and (3, when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents.

  5. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  6. Global mtDNA genetic structure and hypothesized invasion history of a major pest of citrus, Diaphorina citri (Hemiptera: Liviidae).

    Science.gov (United States)

    Luo, Yufa; Agnarsson, Ingi

    2018-01-01

    The Asian citrus psyllid Diaphorina citri Kuwayama is a key pest of citrus as the vector of the bacterium causing the "huanglongbing" disease (HLB). To assess the global mtDNA population genetic structure, and possible dispersal history of the pest, we investigated genetic variation at the COI gene collating newly collected samples with all previously published data. Our dataset consists of 356 colonies from 106 geographic sites worldwide. High haplotype diversity (H-mean = 0.702 ± 0.017), low nucleotide diversity (π-mean = 0.003), and significant positive selection (Ka/Ks = 32.92) were observed. Forty-four haplotypes (Hap) were identified, clustered into two matrilines: Both occur in southeastern and southern Asia, North and South America, and Africa; lineages A and B also occur in eastern and western Asia, respectively. The most abundant haplotypes were Hap4 in lineage A (35.67%), and Hap9 in lineage B (41.29%). The haplotype network identified them as the ancestral haplotypes within their respective lineages. Analysis of molecular variance showed significant genetic structure ( F ST  = 0.62, p  analysis suggests geographic structuring. We hypothesize a southern and/or southeastern Asia origin, three dispersal routes, and parallel expansions of two lineages. The hypothesized first route involved the expansion of lineage B from southern Asia into North America via West Asia. The second, the expansion of some lineage A individuals from Southeast Asia into East Asia, and the third involved both lineages from Southeast Asia spreading westward into Africa and subsequently into South America. To test these hypotheses and gain a deeper understanding of the global history of D. citri , more data-rich approaches will be necessary from the ample toolkit of next-generation sequencing (NGS). However, this study may serve to guide such sampling and in the development of biological control programs against the global pest D. citri .

  7. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target.

    Science.gov (United States)

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  8. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  9. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    Science.gov (United States)

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  10. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala and a New DNA Mini-Barcode Target.

    Directory of Open Access Journals (Sweden)

    Ping-Shin Lee

    Full Text Available Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp DNA mini-barcode could distinguish most mammal species (including separating dark taxa and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  11. RAGE splicing variants in mammals.

    Science.gov (United States)

    Sterenczak, Katharina Anna; Nolte, Ingo; Murua Escobar, Hugo

    2013-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

  12. Effects of mtDNA in SHR-mtF344 versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction

    Czech Academy of Sciences Publication Activity Database

    Houštěk, Josef; Vrbacký, Marek; Hejzlarová, Kateřina; Zídek, Václav; Landa, Vladimír; Šilhavý, Jan; Šimáková, Miroslava; Mlejnek, Petr; Kazdová, L.; Mikšík, Ivan; Neckář, Jan; Papoušek, František; Kolář, František; Kurtz, T. W.; Pravenec, Michal

    2014-01-01

    Roč. 46, č. 18 (2014), s. 671-678 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) LL1204; GA ČR(CZ) GB14-36804G; GA ČR(CZ) GA13-10267S; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : SHR conplastic strain with F344 mtDNA * impaired glucose tolerance * systolic dysfunction Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.374, year: 2014

  13. GENETIC DIFFERENTIATION AMONG POPULATIONS OF Chromobotia macracanthus BLEEKER FROM SUMATRA AND KALIMANTAN BASED ON SEQUENCING GENE OF MTDNA CYTOCHROME B AND NUCLEUS DNA RAG2

    Directory of Open Access Journals (Sweden)

    Sudarto Sudarto

    2008-12-01

    Full Text Available Research on genetic differentiation among populations of Chromobotia macracanthus Bleeker from Sumatra, based on sequencing gene of mtDNA Cytochrome b and nucleus DNA RAG2 has been done. The objectives of the study were to obtain the representation of genetic differentiation among population of clown loach fishes or botia (Chromobotia macracanthus from Sumatra and Kalimantan and to estimate the time divergence of both population group of botia. Samples of botia population were taken from 3 rivers in Sumatra namely Batanghari, Musi, and Tulang Bawang and one river from Kalimantan namely Kapuas. The genetic analysis was based on the sequencing of mtDNA Cytochrome b and nucleus DNA RAG2. The statistical analysis was done by using APE package on R language. The parameters observed were: nucleotide diversity, genetic distance, and neighbor-joining tree. The result showed that the highest nucleotide diversity was fish population of Musi, while the other two populations, Tulang Bawang (Sumatra and Kapuas (Kalimantan, were considered as the lowest genetic diversity especially based on nucleus DNA RAG2 sequencing. Based on mtDNA Cytochrome-b sequencing, the most distinct population among those populations based on genetic distance were fish populations of Musi and Kapuas. According to the result of neighbor-joining tree analysis, the populations of botia were classified into two groups namely group of Sumatra and group of Kalimantan. The estimation of time divergence among group of population of Sumatra and Kalimantan based on mtDNA Cytochrome b was about 9.25—9.46 million years (Miocene era. The high genetic differences between groups of Sumatra and Kalimantan suggested that the effort of restocking botia from Sumatra into Kalimantan has to be done carefully, because it may disturb the gene originality of both botia populations.

  14. Isolation of a variant of Candida albicans.

    Science.gov (United States)

    Buckley, H R; Price, M R; Daneo-Moore, L

    1982-01-01

    During the course of Candida albicans antigen production, a variant of this organism was encountered which did not produce hyphae at 37 degrees C. Presented here are some of the characteristics of this variant. It produces hyphae at 25 degrees C on cornmeal agar and synthetic medium plus N-acetylglucosamine and Tween 80. At 37 degrees C, it does not produce hyphae on these media, although C. albicans normally does produce hyphae under these circumstances. In liquid synthetic medium, this variant does not produce hyphae at 37 degrees C. The variant strain was analyzed for DNA, RNA, protein content, and particle size. After 50 to 70 h in balanced exponential-phase growth, particle size distribution was narrow, and there were no differences in the DNA, RNA, or protein content per particle in the two strains. When balanced exponential-phase cultures were brought into stationary phase, both strains contained the same amount of DNA per cell. Images PMID:6752021

  15. Isolation of a variant of Candida albicans.

    Science.gov (United States)

    Buckley, H R; Price, M R; Daneo-Moore, L

    1982-09-01

    During the course of Candida albicans antigen production, a variant of this organism was encountered which did not produce hyphae at 37 degrees C. Presented here are some of the characteristics of this variant. It produces hyphae at 25 degrees C on cornmeal agar and synthetic medium plus N-acetylglucosamine and Tween 80. At 37 degrees C, it does not produce hyphae on these media, although C. albicans normally does produce hyphae under these circumstances. In liquid synthetic medium, this variant does not produce hyphae at 37 degrees C. The variant strain was analyzed for DNA, RNA, protein content, and particle size. After 50 to 70 h in balanced exponential-phase growth, particle size distribution was narrow, and there were no differences in the DNA, RNA, or protein content per particle in the two strains. When balanced exponential-phase cultures were brought into stationary phase, both strains contained the same amount of DNA per cell.

  16. Genetic variants of ghrelin in metabolic disorders.

    Science.gov (United States)

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Signed Young Modules and Simple Specht Modules

    OpenAIRE

    Danz, Susanne; Lim, Kay Jin

    2015-01-01

    By a result of Hemmer, every simple Specht module of a finite symmetric group over a field of odd characteristic is a signed Young module. While Specht modules are parametrized by partitions, indecomposable signed Young modules are parametrized by certain pairs of partitions. The main result of this article establishes the signed Young module labels of simple Specht modules. Along the way we prove a number of results concerning indecomposable signed Young modules that are of independent inter...

  18. TREM2 Variants in Alzheimer's Disease

    Science.gov (United States)

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  19. Paraxial diffractive elements for space-variant linear transforms

    Science.gov (United States)

    Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan

    1998-06-01

    Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.

  20. Memory Modulation

    NARCIS (Netherlands)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive

  1. Module descriptor

    DEFF Research Database (Denmark)

    Vincenti, Gordon; Klausen, Bodil; Kjær Jensen, Jesper

    2016-01-01

    The Module Descriptor including a Teacher’s Guide explains and describes how to work innovatively and co-creatively with wicked problems and young people. The descriptor shows how interested educators and lecturers in Europe can copy the lessons of the Erasmus+ project HIP when teaching their own...

  2. Association analysis of calpain 10 gene variants/haplotypes with gestational diabetes mellitus among Mexican women.

    Science.gov (United States)

    Castro-Martínez, Anna Gabriela; Sánchez-Corona, José; Vázquez-Vargas, Adriana Patricia; García-Zapién, Alejandra Guadalupe; López-Quintero, Andres; Villalpando-Velazco, Héctor Javier; Flores-Martínez, Silvia Esperanza

    2018-02-28

    Gestational diabetes mellitus (GDM) is a metabolically complex disease with major genetic determinants. GDM has been associated with insulin resistance and dysfunction of pancreatic beta cells, so the GDM candidate genes are those that encode proteins modulating the function and secretion of insulin, such as that for calpain 10 (CAPN10). This study aimed to assess whether single nucleotide polymorphism (SNP)-43, SNP-44, SNP-63, and the indel-19 variant, and specific haplotypes of the CAPN10 gene were associated with gestational diabetes mellitus. We studied 116 patients with gestational diabetes mellitus and 83 women with normal glucose tolerance. Measurements of anthropometric and biochemical parameters were performed. SNP-43, SNP-44, and SNP-63 were identified by polymerase chain reaction (PCR)-restriction fragment length polymorphisms, while the indel-19 variant was detected by TaqMan qPCR assays.  The allele, genotype, and haplotype frequencies of the four variants did not differ significantly between women with gestational diabetes mellitus and controls. However, in women with gestational diabetes mellitus, glucose levels were significantly higher bearing the 3R/3R genotype than in carriers of the 3R/2R genotype of the indel-19 variant (p = 0.006). In conclusion, the 3R/3R genotype of the indel-19 variant of the CAPN-10 gene influenced increased glucose levels in these Mexican women with gestational diabetes mellitus.

  3. OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants

    KAUST Repository

    Boudellioua, Imene

    2018-05-02

    Purpose: An increasing number of Mendelian disorders have been identified for which two or more variants in one or more genes are required to cause the disease, or significantly modify its severity or phenotype. It is difficult to discover such interactions using existing approaches. The purpose of our work is to develop and evaluate a system that can identify combinations of variants underlying oligogenic diseases in individual whole exome or whole genome sequences. Methods: Information that links patient phenotypes to databases of gene-phenotype associations observed in clinical research can provide useful information and improve variant prioritization for Mendelian diseases. Additionally, background knowledge about interactions between genes can be utilized to guide and restrict the selection of candidate disease modules. Results: We developed OligoPVP, an algorithm that can be used to identify variants in oligogenic diseases and their interactions, using whole exome or whole genome sequences together with patient phenotypes as input. We demonstrate that OligoPVP has significantly improved performance when compared to state of the art pathogenicity detection methods. Conclusions: Our results show that OligoPVP can efficiently detect oligogenic interactions using a phenotype-driven approach and identify etiologically important variants in whole genomes.

  4. Reduced Order Fractional Fourier Transform A New Variant to Fractional Signal Processing Definition and Properties

    OpenAIRE

    Kumar, Sanjay

    2018-01-01

    In this paper, a new variant to fractional signal processing is proposed known as the Reduced Order Fractional Fourier Transform. Various properties satisfied by its transformation kernel is derived. The properties associated with the proposed Reduced Order Fractional Fourier Transform like shift, modulation, time-frequency shift property are also derived and it is shown mathematically that when the rotation angle of Reduced Order Fractional Fourier Transform approaches 90 degrees, the propos...

  5. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  6. Beta-glucosidase variants and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Harris, Paul; Osborn, David

    2017-06-27

    The present invention relates to beta-glucosidase variants, e.g. beta-glucosidase variants of a parent Family GH3A beta-glucosidase from Aspergillus fumigatus. The present invention also relates to polynucleotides encoding the beta-glucosidase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the beta-glucosidase variants.

  7. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  8. Thimerosal-Derived Ethylmercury Is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA

    Directory of Open Access Journals (Sweden)

    Martyn A. Sharpe

    2012-01-01

    Full Text Available Thimerosal generates ethylmercury in aqueous solution and is widely used as preservative. We have investigated the toxicology of Thimerosal in normal human astrocytes, paying particular attention to mitochondrial function and the generation of specific oxidants. We find that ethylmercury not only inhibits mitochondrial respiration leading to a drop in the steady state membrane potential, but also concurrent with these phenomena increases the formation of superoxide, hydrogen peroxide, and Fenton/Haber-Weiss generated hydroxyl radical. These oxidants increase the levels of cellular aldehyde/ketones. Additionally, we find a five-fold increase in the levels of oxidant damaged mitochondrial DNA bases and increases in the levels of mtDNA nicks and blunt-ended breaks. Highly damaged mitochondria are characterized by having very low membrane potentials, increased superoxide/hydrogen peroxide production, and extensively damaged mtDNA and proteins. These mitochondria appear to have undergone a permeability transition, an observation supported by the five-fold increase in Caspase-3 activity observed after Thimerosal treatment.

  9. Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) based on PCR-RFLP analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, V; Klossa-Kilia, E; Kilias, G; Alahiotis, S

    2002-04-01

    The genetic differentiation and phylogenetic relationships among five species of the Mugilidae family (Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens) were investigated at the mtDNA level, on samples taken from Messolongi lagoon-Greece. RFLP analysis of three PCR-amplified mtDNA gene segments (12s rRNA, 16s rRNA, and CO I) was used. Ten, eight, and nine restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA, and CO I genes, respectively. Several fragment patterns were revealed to be species-specific, and thus they could be useful in species taxonomy as diagnostic markers, as well as for further evolutionary studies. Seven different haplotypes were detected. The greatest amount of genetic differentiation was observed at the interspecific level, while little variation was revealed at the intraspecific level. The highest values of nucleotide sequence divergence were observed between M. cephalus and all the other species, while the lowest was found between C. labrosus and L. saliens. Dendrograms obtained by the three different methods (UPGMA, Neighbor-Joining, and Dollo parsimony), were found to exhibit in all cases the same topology. According to this, the most distinct species is M. cephalus, while the other species are clustered in two separate groups, thefirst one containing L. aurata and L. ramada, the other L. saliens and C. labrosus. This last clustering makes the monophyletic origin of the genus Liza questionable.

  10. Genetic structure in contemporary south Tyrolean isolated populations revealed by analysis of Y-chromosome, mtDNA, and Alu polymorphisms.

    Science.gov (United States)

    Pichler, Irene; Mueller, Jakob C; Stefanov, Stefan A; De Grandi, Alessandro; Volpato, Claudia Beu; Pinggera, Gerd K; Mayr, Agnes; Ogriseg, Martin; Ploner, Franz; Meitinger, Thomas; Pramstaller, Peter P

    2006-08-01

    Most of the inhabitants of South Tyrol in the eastern Italian Alps can be considered isolated populations because of their physical separation by mountain barriers and their sociocultural heritage. We analyzed the genetic structure of South Tyrolean populations using three types of genetic markers: Y-chromosome, mitochondrial DNA (mtDNA), and autosomal Alu markers. Using random samples taken from the populations of Val Venosta, Val Pusteria, Val Isarco, Val Badia, and Val Gardena, we calculated genetic diversity within and among the populations. Microsatellite diversity and unique event polymorphism diversity (on the Y chromosome) were substantially lower in the Ladin-speaking population of Val Badia compared to the neighboring German-speaking populations. In contrast, the genetic diversity of mtDNA haplotypes was lowest for the upper Val Venosta and Val Pusteria. These data suggest a low effective population size, or little admixture, for the gene pool of the Ladin-speaking population from Val Badia. Interestingly, this is more pronounced for Ladin males than for Ladin females. For the pattern of genetic Alu variation, both Ladin samples (Val Gardena and Val Badia) are among the samples with the lowest diversity. An admixture analysis of one German-speaking valley (Val Venosta) indicates a relatively high genetic contribution of Ladin origin. The reduced genetic diversity and a high genetic differentiation in the Rhaetoroman- and German-speaking South Tyrolean populations may constitute an important basis for future medical genetic research and gene mapping studies in South Tyrol.

  11. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    Science.gov (United States)

    Duggan, Ana T; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.

  12. Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers

    Science.gov (United States)

    Duggan, Ana T.; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north. PMID:24349531

  13. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    Directory of Open Access Journals (Sweden)

    Ana T Duggan

    Full Text Available Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.

  14. Uniparental (mtDNA, Y-chromosome) polymorphisms in French Guiana and two related populations--implications for the region's colonization.

    Science.gov (United States)

    Mazières, S; Guitard, E; Crubézy, E; Dugoujon, J-M; Bortolini, M C; Bonatto, S L; Hutz, M H; Bois, E; Tiouka, F; Larrouy, G; Salzano, F M

    2008-01-01

    Blood samples collected in four Amerindian French Guiana populations (Palikur, Emerillon, Wayampi and Kali'na) in the early 1980s were screened for selected mtDNA and Y-chromosome length polymorphisms, and sequenced for the mtDNA hypervariable segment I (HVS-I). In addition, two other Amerindian populations (Apalaí and Matsiguenga) were examined for the same markers to establish the genetic relationships in the area. Strong dissimilarities were observed in the distribution of the founding Amerindian haplogroups, and significant p-values were obtained from F(ST) genetic distances. Interpopulation similarities occurred mainly due to geography. The Palikur did not show obvious genetic similarity to the Matsiguenga, who speak the same language and live in a region from where they could have migrated to French Guiana. The African-origin admixture observed in the Kali'na probably derives from historical contacts they had with the Bushinengue (Noir Marron), a group of escaped slaves who now lead independent lives in a nearby region. This analysis has identified significant clues about the Amerindian peopling of the North-East Amazonian region.

  15. Male infertility is significantly associated with multiple deletions in an 8.7-kb segment of sperm mtDNA in Pakistan.

    Science.gov (United States)

    Mughal, Irfan Afzal; Irfan, Asma; Jahan, Sarwat; Hameed, Abdul

    2017-06-12

    This study aimed to find a link between sperm mitochondrial DNA mutations and male infertility in Pakistan. DNA from semen samples was extracted and amplified by PCR using 7.8-kb deletion-specific primers. The PCR products were separated on agarose gel, visualized under UV-illumination, and then photographed. The results were genotyped and the data were analyzed using SPSS. Deletion analysis of the 8.7-kb fragment by long PCR revealed multiple deletions. The frequency of deletion was much higher in infertile groups as compared to the control group. Further, on comparison between different subtypes of infertile groups, the deletions were highest in the oligoasthenoteratozoospermia (OAT) group. The statistical analysis of case and control groups showed a significant association of the 8.7-kb deletion with human male infertile groups (P = 0.031), and particularly a very significant association with the OAT subgroup (P = 0.019). A significant association has been found between human male infertility and mtDNA deletions in an 8.7-kb segment of sperm mtDNA in a Pakistani population.

  16. Non-replication of genome-wide based associations between common variants in INSIG2 and PFKP and obesity in studies of 18,014 Danes

    DEFF Research Database (Denmark)

    Sandholt, Camilla Helene; Mogensen, Mette S; Borch-Johnsen, Knut

    2008-01-01

    The INSIG2 rs7566605 and PFKP rs6602024 polymorphisms have been identified as obesity gene variants in genome-wide association (GWA) studies. However, replication has been contradictory for both variants. The aims of this study were to validate these obesity-associations through case-control stud......The INSIG2 rs7566605 and PFKP rs6602024 polymorphisms have been identified as obesity gene variants in genome-wide association (GWA) studies. However, replication has been contradictory for both variants. The aims of this study were to validate these obesity-associations through case......-control studies and analyses of obesity-related quantitative traits. Moreover, since environmental and genetic factors may modulate the impact of a genetic variant, we wanted to perform such interaction analyses. We focused on physical activity as an environmental risk factor, and on the GWA identified obesity...

  17. Word Variant Identification in Old French

    Directory of Open Access Journals (Sweden)

    Peter Willett

    1997-01-01

    Full Text Available Increasing numbers of historical texts are available in machine-readable form, which retain the original spelling, which can be very different from the modern-day equivalents due to the natural evolution of a language, and because the concept of standardisation in spelling is comparatively modern. Among medieval vernacular writers, the same word could be spelled in different ways and the same author (or scribe might even use several alternative spellings in the same passage. Thus, we do not know,a priori, how many variant forms of a particular word there are in such texts, let alone what these variants might be. Searching on the modern equivalent, or even the commonest historical variant, of a particular word may thus fail to retrieve an appreciable number of occurrences unless the searcher already has an extensive knowledge of the language of the documents. Moreover, even specialist scholars may be unaware of some idiosyncratic variants. Here, we consider the use of computer methods to retrieve variant historical spellings.

  18. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y

    2015-01-01

    by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c......Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently...... needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined...

  19. Impact of constitutional copy number variants on biological pathway evolution.

    Science.gov (United States)

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  20. Genetics in psychiatry: common variant association studies

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2010-03-01

    Full Text Available Abstract Many psychiatric conditions and traits are associated with significant heritability. Genetic risk for psychiatric conditions encompass rare variants, identified due to major effect, as well as common variants, the latter analyzed by association analyses. We review guidelines for common variant association analyses, undertaking after assessing evidence of heritability. We highlight the importance of: suitably large sample sizes; an experimental design that controls for ancestry; careful data cleaning; correction for multiple testing; small P values for positive findings; assessment of effect size for positive findings; and, inclusion of an independent replication sample. We also note the importance of a critical discussion of any prior findings, biological follow-up where possible, and a means of accessing the raw data.

  1. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  2. [Clinico-pathogenetic variants of chronic gastritis].

    Science.gov (United States)

    Chernin, V V; Dzhulaĭ, G S

    2004-01-01

    To evaluate specific features of the course of chronic gastritis (CG), morphofunctional condition of gastric mucosa, vegetative regulation, adrenergic and cholinergic shifts, histamine metabolism and effects of exogenic and endogenic risk factors in CG patients; to study clinicopathogenetic variants of CG. A total of 311 CG patients aged from 16 to 72 years were studied. They were divided into three groups by their gastric mucosa condition. The control group consisted of 30 healthy donors. The following parameters were studied: visual and histological condition of gastric mucosa, total acidity, the levels of free hydrochloric acid, pepsin, bioelectric gastric activity, general autonomic tonicity, cholinesterase activity. Three clinicopathogenetic variants of the disease have been identified. Variant 1 was characterized by a recurrent course, subjective manifestation of the disease only in exacerbation, surface (primarily antral) mucosal affection, normal or enhanced secretory and motor functions of the stomach, adequate reaction of acid production to caffeine and histamine stimulation, parasympathicotonia, absolute hyperhistaminemia, relative hypoacetylcholinemia, subnormal urinary excretion of adrenalin. Variant 2 manifested with rare recurrences, longer and more severe exacerbations, frequent spontaneous and provoked aggravations, moderate focal atrophy of the mucosa, secretory insufficiency with adequate reaction to histamine and minor to caffeine stimuli, hypomotor gastric dyskinesia, vegetative eutonia, normohistaminemia, absolute hypoacetylcholinemia, subnormal urinary excretion of noradrenaline. Variant 3 runs without definite remissions and exacerbations, with continuous abdominal pain and dyspepsia, frequent spontaneous aggravations, marked extended mucosal atrophy with secretory insufficiency up to achlorhydria, no stimulation of acid production in response to caffeine and histamine, gastric hypomotility, sympathicotonia, absolute hypohistaminemia

  3. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.

    Directory of Open Access Journals (Sweden)

    Saumya Gupta

    2015-06-01

    Full Text Available Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants' effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage

  4. Normal variants of skin in neonates

    Directory of Open Access Journals (Sweden)

    Kulkarni M

    1996-01-01

    Full Text Available 2221 consecutive live births taking place between March 1994 and February 1995 were evaluated for a minimum period of 5 days to note for the occurrence of various normal anatomical variants specially those of skin. Birth weight, gestational age, maternal age, socio-economic status and consanguinity were carefully recorded in all the cases. Mongolian spots (72%, Epstein pearls (43.8%, Milia (26.2% and Erythema toxicum (25.2%, were the common dermatological variants noted. Maturity of the babies and possibly genetic factors (consanguinity are important factors in their causation as ordered in our study.

  5. Leigh-Like Syndrome Due to Homoplasmic m.8993T>G Variant with Hypocitrullinemia and Unusual Biochemical Features Suggestive of Multiple Carboxylase Deficiency (MCD).

    Science.gov (United States)

    Balasubramaniam, Shanti; Lewis, B; Mock, D M; Said, H M; Tarailo-Graovac, M; Mattman, A; van Karnebeek, C D; Thorburn, D R; Rodenburg, R J; Christodoulou, J

    2017-01-01

    Leigh syndrome (LS), or subacute necrotizing encephalomyelopathy, is a genetically heterogeneous, relentlessly progressive, devastating neurodegenerative disorder that usually presents in infancy or early childhood. A diagnosis of Leigh-like syndrome may be considered in individuals who do not fulfil the stringent diagnostic criteria but have features resembling Leigh syndrome.We describe a unique presentation of Leigh-like syndrome in a 3-year-old boy with elevated 3-hydroxyisovalerylcarnitine (C5-OH) on newborn screening (NBS). Subsequent persistent plasma elevations of C5-OH and propionylcarnitine (C3) as well as fluctuating urinary markers were suggestive of multiple carboxylase deficiency (MCD). Normal enzymology and mutational analysis of genes encoding holocarboxylase synthetase (HLCS) and biotinidase (BTD) excluded MCD. Biotin uptake studies were normal excluding biotin transporter deficiency. His clinical features at 13 months of age comprised psychomotor delay, central hypotonia, myopathy, failure to thrive, hypocitrullinemia, recurrent episodes of decompensation with metabolic keto-lactic acidosis and an episode of hyperammonemia. Biotin treatment from 13 months of age was associated with increased patient activity, alertness, and attainment of new developmental milestones, despite lack of biochemical improvements. Whole exome sequencing (WES) analysis failed to identify any other variants which could likely contribute to the observed phenotype, apart from the homoplasmic (100%) m.8993T>G variant initially detected by mitochondrial DNA (mtDNA) sequencing.Hypocitrullinemia has been reported in patients with the m.8993T>G variant and other mitochondrial disorders. However, persistent plasma elevations of C3 and C5-OH have previously only been reported in one other patient with this homoplasmic mutation. We suggest considering the m.8993T>G variant early in the diagnostic evaluation of MCD-like biochemical disturbances, particularly when associated with

  6. The curation of genetic variants: difficulties and possible solutions.

    Science.gov (United States)

    Pandey, Kapil Raj; Maden, Narendra; Poudel, Barsha; Pradhananga, Sailendra; Sharma, Amit Kumar

    2012-12-01

    The curation of genetic variants from biomedical articles is required for various clinical and research purposes. Nowadays, establishment of variant databases that include overall information about variants is becoming quite popular. These databases have immense utility, serving as a user-friendly information storehouse of variants for information seekers. While manual curation is the gold standard method for curation of variants, it can turn out to be time-consuming on a large scale thus necessitating the need for automation. Curation of variants described in biomedical literature may not be straightforward mainly due to various nomenclature and expression issues. Though current trends in paper writing on variants is inclined to the standard nomenclature such that variants can easily be retrieved, we have a massive store of variants in the literature that are present as non-standard names and the online search engines that are predominantly used may not be capable of finding them. For effective curation of variants, knowledge about the overall process of curation, nature and types of difficulties in curation, and ways to tackle the difficulties during the task are crucial. Only by effective curation, can variants be correctly interpreted. This paper presents the process and difficulties of curation of genetic variants with possible solutions and suggestions from our work experience in the field including literature support. The paper also highlights aspects of interpretation of genetic variants and the importance of writing papers on variants following standard and retrievable methods. Copyright © 2012. Published by Elsevier Ltd.

  7. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics

    Directory of Open Access Journals (Sweden)

    Zhou Jianjin

    2011-01-01

    Full Text Available Abstract Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S r

  8. Green turtles (Chelonia mydas foraging at Arvoredo Island in Southern Brazil: genetic characterization and mixed stock analysis through mtDNA control region haplotypes

    Directory of Open Access Journals (Sweden)

    Maíra Carneiro Proietti

    2009-01-01

    Full Text Available We analyzed mtDNA control region sequences of green turtles (Chelonia mydas from Arvoredo Island, a foraging ground in southern Brazil, and identified eight haplotypes. Of these, CM-A8 (64% and CM-A5 (22% were dominant, the remainder presenting low frequencies ( 0.05. Mixed Stock Analysis, incorporating eleven Atlantic and one Mediterranean rookery as possible sources of individuals, indicated Ascension and Aves islands as the main contributing stocks to the Arvoredo aggregation (68.01% and 22.96%, respectively. These results demonstrate the extensive relationships between Arvoredo Island and other Atlantic foraging and breeding areas. Such an understanding provides a framework for establishing adequate management and conservation strategies for this endangered species.

  9. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

    Science.gov (United States)

    Montesino, Marta; Prieto, Lourdes

    2012-01-01

    Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.

  10. Probing the phylogenetic relationships of a few newly recorded intertidal zoanthids of Gujarat coast (India) with mtDNA COI sequences.

    Science.gov (United States)

    Joseph, Sneha; Poriya, Paresh; Kundu, Rahul

    2016-11-01

    The present study reports the phylogenetic relationship of six zoanthid species belonging to three genera, Isaurus, Palythoa, and Zoanthus identified using systematic computational analysis of mtDNA gene sequences. All six species are first recorded from the coasts of Kathiawar Peninsula, India. Genus: Isaurus is represented by Isaurus tuberculatus, genus Zoanthus is represented by Zoanthus kuroshio and Zoanthus sansibaricus, while genus Palythoa is represented by Palythoa tuberculosa, P. sp. JVK-2006 and Palythoa heliodiscus. Results of the present study revealed that among the various species observed along the coastline, a minimum of 99% sequence divergence and a maximum of 96% sequence divergence were seen. An interspecific divergence of 1-4% and negligible intraspecific divergence was observed. These results not only highlighted the efficiency of the COI gene region in species identification but also demonstrated the genetic variability of zoanthids along the Saurashtra coastline of the west coast of India.

  11. Magnetic resonance angiography: infrequent anatomic variants

    International Nuclear Information System (INIS)

    Trejo, Mariano; Meli, Francisco; Lambre, Hector; Blessing, Ricardo; Gigy Traynor, Ignacio; Miguez, Victor

    2002-01-01

    We studied through RM angiography (3D TOF) with high magnetic field equipment (1.5 T) different infrequent intracerebral vascular anatomic variants. For their detection we emphasise the value of post-processed images obtained after conventional angiographic sequences. These post-processed images should be included in routine protocols for evaluation of the intracerebral vascular structures. (author)

  12. Report of a rare anatomic variant

    DEFF Research Database (Denmark)

    De Brucker, Y; Ilsen, B; Muylaert, C

    2015-01-01

    We report the CT findings in a case of partial anomalous pulmonary venous return (PAPVR) from the left upper lobe in an adult. PAPVR is an anatomic variant in which one to three pulmonary veins drain into the right atrium or its tributaries, rather than into the left atrium. This results in a left...

  13. Analysis of the energy development variants

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    Analysis of the variants of energy development is made as the third stage of a procedure of energy-economy interrelations dynamics study, the other two stages being the scenarios description and the formulation of the variants. This stage includes a research on the dimensions and the dynamics of the resources demands, the general features and the trends of the national energy development. There is a presentation of a comparative analysis of the variants in terms of economic indices and energy values, computed by the model IMPACT-B. A resource evaluation of the development variants is given in terms of investments, requirements (direct, indirect and total) and limited national resources demands of the energy system. The trends of the national energy development discussed are: trends characterizing the changes in the structure of the energy consumption, resulting from changes in the economy; trends of the energy system impact on the productivity of labor; general trends of the proportionality in the industrial, the household and services sector development. 16 refs., 16 figs., 4 tabs. (R.Ts.)

  14. Cellobiohydrolase I gene and improved variants

    Science.gov (United States)

    Adney, William S [Golden, CO; Decker, Stephen R [Berthoud, CO; Mc Carter, Suzanne [San Carlos, CA; Baker, John O [Golden, CO; Nieves, Raphael [Lakewood, CO; Himmel, Michael E [Littleton, CO; Vinzant, Todd B [Golden, CO

    2008-05-20

    The disclosure provides a method for preparing an active exoglucanase in a heterologous host of eukaryotic origin. The method includes mutagenesis to reduce glycosylation of the exoglucanase when expressed in a heterologous host. It is further disclosed a method to produce variant cellobiohydrolase that is stable at high temperature through mutagenesis.

  15. XVCL: XML-based Variant Configuration Language

    DEFF Research Database (Denmark)

    Jarzabek, Stan; Basset, Paul; Zhang, Hongyu

    2003-01-01

    XVCL (XML-based Variant Configuration Language) is a meta-programming technique and tool that provides effective reuse mechanisms. XVCL is an open source software developed at the National University of Singapore. Being a modern and versatile version of Bassett's frames, a technology that has...

  16. Glucose 6-phosphate dehydrogenase variants in Japan.

    Science.gov (United States)

    Miwa, S

    1980-01-01

    Fifty-four cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency have so far been reported in Japan. Among them, 21 G6PD variants have been characterized. Nineteen out of the 21 variants were characterized in our laboratory and G6PD Heian and "Kyoto" by others. G6PD Tokyo, Tokushima, Ogikubo, Kurume, Fukushima, Yokohama, Yamaguchi, Wakayama, Akita, Heian and "Kyoto" were classified as Class 1, because all these cases showed chronic hemolytic anemia and severe enzyme deficiency. All these variants showed thermal instability. G6PD Mediterranean-like, Ogori, Gifu and Fukuoka were classified as Class 2, whereas G6PD Hofu, B(-) Chinese, Ube, Konan, Kamiube and Kiwa belonged to Class 3. All the 6 Class 3 variants were found as the results of the screening tests. The incidence of the deficiency in Japanese seems to be 0.1-0.5% but that of the cases which may slow drug-induced hemolysis would be much less. G6PD Ube and Konan appear to be relatively common in Japan.

  17. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  18. Genetic variants associated with lung function

    DEFF Research Database (Denmark)

    Thyagarajan, Bharat; Wojczynski, Mary; Minster, Ryan L

    2014-01-01

    with exceptional longevity have not been identified. METHOD: We conducted a genome wide association study (GWAS) to identify novel genetic variants associated with lung function in the Long Life Family Study (LLFS) (n = 3,899). Replication was performed using data from the CHARGE/SpiroMeta consortia...

  19. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  20. Understanding influences of culture and history on mtDNA variation and population structure in three populations from Assam, Northeast India.

    Science.gov (United States)

    Rej, Peter H; Deka, Ranjan; Norton, Heather L

    2017-05-06

    Positioned at the nexus of India, China, and Southeast Asia, Northeast India is presumed to have served as a channel for land-based human migration since the Upper Pleistocene. Assam is the largest state in the Northeast. We characterized the genetic background of three populations and examined the ways in which their population histories and cultural practices have influenced levels of intrasample and intersample variation. We examined sequence data from the mtDNA hypervariable control region and selected diagnostic mutations from the coding region in 128 individuals from three ethnic groups currently living in Assam: two Scheduled tribes (Sonowal Kachari and Rabha), and the non-Scheduled Tai Ahom. The populations of Assam sampled here express mtDNA lineages indicative of South Asian, Southeast Asian, and East Asian ancestry. We discovered two completely novel haplogroups in Assam that accounted for 6.2% of the lineages in our sample. We also identified a new subhaplogroup of M9a that is prevalent in the Sonowal Kachari of Assam (19.1%), but not present in neighboring Arunachal Pradesh, indicating substantial regional population structuring. Employing a large comparative dataset into a series of multidimensional scaling (MDS) analyses, we saw the Rabha cluster with populations sampled from Yunnan Province, indicating that the historical matrilineality of the Rabha has maintained lineages from Southern China. Assam has undergone multiple colonization events in the time since the initial peopling event, with populations from Southern China and Southeast Asia having the greatest influence on maternal lineages in the region. © 2017 Wiley Periodicals, Inc.

  1. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China

    Science.gov (United States)

    2013-01-01

    Background Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China. Methods The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China. Results ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301). Conclusions The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations. PMID:24192424

  2. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations.

    Science.gov (United States)

    Elkamel, Sarra; Boussetta, Sami; Khodjet-El-Khil, Houssein; Benammar Elgaaied, Amel; Cherni, Lotfi

    2018-05-01

    Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE. © 2018 Wiley Periodicals, Inc.

  3. MtDNA and Y-chromosomal diversity in the Chachapoya, a population from the northeast Peruvian Andes-Amazon divide.

    Science.gov (United States)

    Guevara, Evelyn K; Palo, Jukka U; Guillén, Sonia; Sajantila, Antti

    2016-11-01

    The ancient Chachapoya were an aggregate of several ethnic groups that shared a common language, religion, and material culture. They inhabited a territory at the juncture of the Andes and the Amazon basin. Their position between those ecozones most likely influenced their genetic composition. We attempted to better understand their population history by assessing the contemporary genetic diversity in the Chachapoya and three of their immediate neighbors (Huancas, Jivaro, and Cajamarca). We inferred signatures of demographic history and genetic affinities, and contrasted the findings with data from other populations on local and continental scales. We studied mitochondrial DNA (mtDNA; hypervariable segment [HVSI and HVSII]) and Y chromosome (23 short tandem repeats (STRs)) marker data in 382 modern individuals. We used Sanger sequencing for mtDNA and a commercially available kit for Y-chromosomal STR typing. The Chachapoya had affinities with various populations of Andean and Amazonian origin. When examining the Native American component, the Chachapoya displayed high levels of genetic diversity. Together with other parameters, for example, large Tajima's D and Fu's Fs, the data indicated no drastic reduction of the population size in the past. The high level of diversity in the Chachapoya, the lack of evidence of drift in the past, and genetic affinities with a broad range of populations in the Americas reflects an intricate population history in the region. The new genetic data from the Chachapoya indeed seems to point to a genetic complexity that is not yet resolved but beginning to be elucidated. Am. J. Hum. Biol. 28:857-867, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. MtDNA and nuclear data reveal patterns of low genetic differentiation for the isopods Stenosoma lancifer and Stenosoma acuminatum, with low dispersal ability along the northeast Atlantic coast

    Directory of Open Access Journals (Sweden)

    Raquel Xavier

    2011-11-01

    Full Text Available Evidence for a general lack of genetic differentiation of intertidal invertebrate assemblages in the North Atlantic, based on mtDNA sequence variation, has been interpreted as resulting from recent colonization following the Last Glacial Maximum. In the present study, the phylogeographic patterns of one nuclear and one mtDNA gene fragments of two isopods, Stenosoma lancifer (Miers, 1881 and Stenosoma acuminatum Leach, 1814, from the northeast Atlantic were investigated. These organisms have direct development, which makes them poor dispersers, and are therefore expected to maintain signatures of past historical events in their genomes. Lack of genetic structure, significant deviations from neutrality and star-like haplotype networks have been observed for both mtDNA and nuclear markers of S. lancifer, as well as for the mtDNA of S. acuminatum. No sequence variation was observed for the nuclear gene fragment of S. acuminatum. These results suggest a scenario of recent colonization and demographic expansion and/or high population connectivity driven by ocean currents and sporadic long-distance dispersal through rafting.

  5. Influenza A (H3N2) Variant Virus

    Science.gov (United States)

    ... Swine Variant Pandemic Other Influenza A (H3N2) Variant Virus Language: English (US) Español Recommend on Facebook Tweet Share Compartir Influenza viruses that normally circulate in pigs are called “variant” ...

  6. Treatment of spelling variants in Setswana monolingual dictionaries

    African Journals Online (AJOL)

    user

    . ..... Table 8: Variants of Names of persons and places. Setswana variants. English. Aforika, Aferika. Africa. Baebele, Babele, Beibele. Bible. Ennyelane, Engelane ..... MWEs. As in variation amongst individual words, the MWEs such as idioms.

  7. Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides.

    Directory of Open Access Journals (Sweden)

    Lygia T Budnik

    Full Text Available There is a need for a panel of suitable biomarkers for detection of environmental chemical exposure leading to the initiation or progression of degenerative diseases or potentially, to cancer. As the peripheral blood may contain increased levels of circulating cell-free DNA in diseased individuals, we aimed to evaluate this DNA as effect biomarker recognizing vulnerability after exposure to environmental chemicals. We recruited 164 individuals presumably exposed to halo-alkane-based pesticides. Exposure evaluation was based on human biomonitoring analysis; as biomarker of exposure parent halo-methanes, -ethanes and their metabolites, as well as the hemoglobin-adducts methyl valine and hydroxyl ethyl valine in blood were used, complemented by expert evaluation of exposure and clinical intoxication symptoms as well as a questionnaire. Assessment showed exposures to halo alkanes in the concentration range being higher than non-cancer reference doses (RfD but (mostly lower than the occupational exposure limits. We quantified circulating DNA in serum from 86 individuals with confirmed exposure to off-gassing halo-alkane pesticides (in storage facilities or in home environment and 30 non-exposed controls, and found that exposure was significantly associated with elevated serum levels of circulating mitochondrial DNA (in size of 79 bp, mtDNA-79, p = 0.0001. The decreased integrity of mtDNA (mtDNA-230/mtDNA-79 in exposed individuals implicates apoptotic processes (p = 0.015. The relative amounts of mtDNA-79 in serum were positively associated with the lag-time after intoxication to these chemicals (r = 0.99, p<0.0001. Several months of post-exposure the specificity of this biomarker increased from 30% to 97% in patients with intoxication symptoms. Our findings indicate that mitochondrial DNA has a potential to serve as a biomarker recognizing vulnerable risk groups after exposure to toxic/carcinogenic chemicals.

  8. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses.

    Science.gov (United States)

    Morin, Phillip A; Foote, Andrew D; Baker, C Scott; Hancock-Hanser, Brittany L; Kaschner, Kristin; Mate, Bruce R; Mesnick, Sarah L; Pease, Victoria L; Rosel, Patricia E; Alexander, Alana

    2018-04-19

    Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates, and cultural hitchhiking (linkage of genetic variation to culturally transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion versus a selective sweep due to cultural-hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance, and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Combined analyses of 20 common obesity susceptibility variants

    DEFF Research Database (Denmark)

    Sandholt, Camilla Helene; Sparsø, Thomas; Grarup, Niels

    2010-01-01

    Genome-wide association studies and linkage studies have identified 20 validated genetic variants associated with obesity and/or related phenotypes. The variants are common, and they individually exhibit small-to-modest effect sizes.......Genome-wide association studies and linkage studies have identified 20 validated genetic variants associated with obesity and/or related phenotypes. The variants are common, and they individually exhibit small-to-modest effect sizes....

  10. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  11. Fast Convolution Module (Fast Convolution Module)

    National Research Council Canada - National Science Library

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  12. Development of industrial variant specification systems

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer

    be developed from a holistic and strategically anchored point of view. Another assumption is that this is a challenge for many industrial companies. Even though the literature presents many considerations on general issues covering new information technology, little work is found on the business perspectives...... are discussed. A list of structural variables and solution components has been created. These are related to four design aspects in the holistic system design covering the aspects of process design, selection of resources (such as hardware, software and humans), the design of information structures...... solution elements and structural variables to be used in the design of variant specification systems. The thesis presents a “top-down” procedure to be used to develop variant specification systems from a strategically anchored and holistic point of view. A methodology and related task variables...

  13. The Saccharomyces Genome Database Variant Viewer.

    Science.gov (United States)

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Angiography of histopathologic variants of synovial sarcoma

    International Nuclear Information System (INIS)

    Lois, J.F.; Fischer, H.J.; Mirra, J.M.; Gomes, A.S.; California Univ., Los Angeles

    1986-01-01

    Synovial sarcomas are rare soft tissue tumors which histopathologically can be divided into monophasic, biphasic and mixed variants. As part of a protocol for intra-arterial chemotherapy 12 patients with biopsy proven synovial sarcoma underwent angiography. The angiograms on these patients were reviewed to determine whether synovial sarcomas and their variants demonstrated a characteristic angiographic appearance. Synovial sarcomas appeared angiographically as soft tissue masses which showed a fine network of tumor vessels with an inhomogeneous capillary blush. Their degree of vascularity varied according to their histopathology. Monophasic synovial sarcomas demonstrated in general a higher degree of neovascularity than the biphasic form. This finding was also suggested by histopathologic analysis of the vessels in the tumor. Although angiography did not show a distinctive vascular pattern it may be useful to evaluate tumor size and vascularity. (orig.)

  15. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants.

    Directory of Open Access Journals (Sweden)

    Mengmeng Du

    Full Text Available Genome-wide association studies (GWAS have identified many common single nucleotide polymorphisms (SNPs associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs. We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33. We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s.

  16. Glucose oxidase variants with improved properities

    OpenAIRE

    Fischer, Rainer; Ostafe, Raluca; Prodanovic, Radivoje

    2014-01-01

    Source: WO14173822A3 [EN] The technology provided herein relates to novel variants of microbial glucose oxidase with improved properties, more specifically to polypeptides having glucose oxidase activity as their major enzymatic activity; to nucleic acid molecules encoding said glucose oxidases; vectors and host cells containing the nucleic acids and methods for producing the glucose oxidase; compositions comprising said glucose oxidase; methods for the preparation and production of such enzy...

  17. Unusual variant of Cantrell′s pentalogy?

    Directory of Open Access Journals (Sweden)

    Kumar Basant

    2008-01-01

    Full Text Available A 12-hour-old male infant presented with prolapsed abdominal content through a defect on left side of chest wall with respiratory distress. A thorough clinical examination suggested absence of ectopia cordis, abdominal wall defect, and any bony anomaly. The child expired after 6 hours of admission because of respiratory distress and electrolyte imbalance. Is congenital defect of chest wall associated with diaphragmatic hernia without ectopia cordis and omphalocele, an unusual variant of Cantrell′s pentalogy?

  18. Effect of Two Lipoprotein (a-Associated Genetic Variants on Plasminogen Levels and Fibrinolysis

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-11-01

    Full Text Available Two genetic variants (rs3798220 and rs10455872 in the apolipoprotein (a gene (LPA have been implicated in cardiovascular disease (CVD, presumably through their association with lipoprotein (a [Lp(a] levels. While Lp(a is recognized as a lipoprotein with atherogenic and thrombogenic characteristics, it is unclear whether or not the two Lp(a-associated genetic variants are also associated with markers of thrombosis (i.e., plasminogen levels and fibrinolysis. In the present study, we genotyped the two genetic variants in 2919 subjects of the Old Order Amish (OOA and recruited 146 subjects according to the carrier and noncarrier status for rs3798220 and rs10455872, and also matched for gender and age. We measured plasma Lp(a and plasminogen levels in these subjects, and found that the concentrations of plasma Lp(a were 2.62- and 1.73-fold higher in minor allele carriers of rs3798220 and rs10455872, respectively, compared with noncarriers (P = 2.04 × 10−17 and P = 1.64 × 10−6, respectively. By contrast, there was no difference in plasminogen concentrations between carriers and noncarriers of rs3798220 and rs10455872. Furthermore, we observed no association between carrier status of rs3798220 or rs10455872 with clot lysis time. Finally, plasminogen mRNA expression in liver samples derived from 76 Caucasian subjects was not significantly different between carriers and noncarriers of these two genetic variants. Our results provide further insight into the mechanism of action behind two genetic variants previously implicated in CVD risk and show that these polymorphisms are not major modulating factors for plasma plasminogen levels and fibrinolysis.

  19. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy.

    Directory of Open Access Journals (Sweden)

    Vinicius M Fava

    2016-02-01

    Full Text Available Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R. The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility.An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs. Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels.A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863 that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen.The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn's disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases.

  20. Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus.

    Science.gov (United States)

    Zhang, Xiao-Feng; Guo, Jiangbo; Zhang, Xiuchun; Meulia, Tea; Paul, Pierce; Madden, Laurence V; Li, Dawei; Qu, Feng

    2015-10-20

    Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.

  1. Module theory, extending modules and generalizations

    CERN Document Server

    Tercan, Adnan

    2016-01-01

    The main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the...

  2. Spatially variant periodic structures in electromagnetics

    Science.gov (United States)

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  3. Warty Carcinoma Penis: An Uncommon Variant

    Directory of Open Access Journals (Sweden)

    Sushma Thapa

    2017-01-01

    Full Text Available Penile carcinoma frequency varies widely in different parts of the world and comprises 1–10% of all the malignancies in males. Majority of the cases of penile carcinoma are squamous cell carcinoma of penis comprising 60% to 70% of all cases. Warty carcinoma of penis is an unusual neoplasm and a variant of penile squamous cell carcinoma comprising 5%–10% of all the variants. The other histological variants include basaloid, verrucous, papillary, sarcomatous, mixed, and adenosquamous carcinoma. The various histological entities with an exophytic papillary lesions including warty carcinoma are together referred to as the “verruciform” group of neoplasms. The warty carcinoma has to be differentiated from these lesions and is typically distinguished by histological features of hyperkeratosis, arborescent papillomatosis, acanthosis, and prominent koilocytosis with nuclear pleomorphism. We present a case of 65-year-old male with growth measuring 6×4 cm in the penis who underwent total penectomy and was diagnosed as warty carcinoma penis.

  4. Cryptanalysis of RSA and its variants

    CERN Document Server

    Hinek, M Jason

    2009-01-01

    Thirty years after RSA was first publicized, it remains an active research area. Although several good surveys exist, they are either slightly outdated or only focus on one type of attack. Offering an updated look at this field, Cryptanalysis of RSA and Its Variants presents the best known mathematical attacks on RSA and its main variants, including CRT-RSA, multi-prime RSA, and multi-power RSA. Divided into three parts, the book first introduces RSA and reviews the mathematical background needed for the majority of attacks described in the remainder of the text. It then brings together all of the most popular mathematical attacks on RSA and its variants. For each attack presented, the author includes a mathematical proof if possible or a mathematical justification for attacks that rely on assumptions. For the attacks that cannot be proven, he gives experimental evidence to illustrate their practical effectiveness. Focusing on mathematical attacks that exploit the structure of RSA and specific parameter choic...

  5. MR imaging of the ankle: Normal variants

    International Nuclear Information System (INIS)

    Noto, A.M.; Cheung, Y.; Rosenberg, Z.S.; Norman, A.; Leeds, N.E.

    1987-01-01

    Thirty asymptomatic ankles were studied with high-resolution surface coil MR imaging. The thirty ankles were reviewed for identification or normal structures. The MR appearance of the deltoid and posterior to talo-fibular ligaments, peroneous brevis and longus tendons, and posterior aspect of the tibial-talar joint demonstrated several normal variants not previously described. These should not be misinterpreted as pathologic processes. The specific findings included (1) cortical irregularity of the posterior tibial-talar joint in 27 of 30 cases which should not be mistaken for osteonecrois; (2) normal posterior talo-fibular ligament with irregular and frayed inhomogeneity, which represents a normal variant in seven of ten cases; and (3) fluid in the shared peroneal tendons sheath which may be confused for a longitudinal tendon tear in three of 30 cases. Ankle imaging with the use of MR is still a relatively new procedure. Further investigation is needed to better define normal anatomy as well as normal variants. The authors described several structures that normally present with variable MR imaging appearances. This is clinically significant in order to maintain a high sensitivity and specificity in MR imaging interpretation

  6. MDV-1 variant of Qβ RNA. Final report

    International Nuclear Information System (INIS)

    Gordon, M.P.

    1981-01-01

    MDV-1 is a variant of Qβ RNA which consists of complementary plus (+) and minus (-) strands. The sequences of these strands are well established. MDV-1 is an active template in replication reactions. High-resolution polyacrylamide gel electrophoresis was used to locate sites of replication inhibition in the molecule induced by irradiation of (+) and (-) MDV-1 RNA templates with 254 nanometer (uv) light at a dose of 2500 Jm -2 . Presumably, this inhibition was caused by uridine hydrates and pyrimidine cyclobutane dimers. Each of the ten inhibition sites identified corresponds to regions in the template which contain two or more pyrimidines. Dose-response studies showed that the uv-induced inactivation of the template activity of MDV-1 RNA closely paralleled the formation of uridine hydrates when replication occurred at 12 0 C. At higher temperatures, the template activity of MDV-1 appeared to be less sensitive to uv light. Since pre-incubation of irradiated MDV-1 at 37 0 for 35 min did not affect replication inhibition at 12 0 C, inhibition of replication at 37 0 C does not appear to be due to dehydration of uridine hydrate at the higher temperature. Pauses in nucleic acid synthesis, attributed to kinetic modulators, were observed in a number of systems and were proposed to play a role in the regulation of nucleic acid synthesis. The results reported here suggest that some photolesions might mimic such modulators. The replication of (+) MDV-1 RNA was also inhibited at specific sites by kethoxal, semicarbazide, and methoxyamine. These sites were near some of the sites at which uv-induced replication inhibition occurred. These results suggested that some regions of the (+) MDV-1 molecule are structurally exposed to modification by uv and base-specific chemicals, and were consistent with some features of a computer-generated model of the secondary structure of (+) MDV-1 RNA

  7. Modulating Neuroinflammation to Treat Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Franziska A. Radtke

    2017-01-01

    Full Text Available Neuroinflammation is recognised as one of the potential mechanisms mediating the onset of a broad range of psychiatric disorders and may contribute to nonresponsiveness to current therapies. Both preclinical and clinical studies have indicated that aberrant inflammatory responses can result in altered behavioral responses and cognitive deficits. In this review, we discuss the role of inflammation in the pathogenesis of neuropsychiatric disorders and ask the question if certain genetic copy-number variants (CNVs associated with psychiatric disorders might play a role in modulating inflammation. Furthermore, we detail some of the potential treatment strategies for psychiatric disorders that may operate by altering inflammatory responses.

  8. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci

    DEFF Research Database (Denmark)

    Glubb, Dylan M; Johnatty, Sharon E; Quinn, Michael C J

    2017-01-01

    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D...... and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity...... and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates...

  9. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  10. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Directory of Open Access Journals (Sweden)

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  11. ZNF804A variants confer risk for heroin addiction and affect decision making and gray matter volume in heroin abusers.

    Science.gov (United States)

    Sun, Yan; Zhao, Li-Yan; Wang, Gui-Bin; Yue, Wei-Hua; He, Yong; Shu, Ni; Lin, Qi-Xiang; Wang, Fan; Li, Jia-Li; Chen, Na; Wang, Hui-Min; Kosten, Thomas R; Feng, Jia-Jia; Wang, Jun; Tang, Yu-De; Liu, Shu-Xue; Deng, Gui-Fa; Diao, Gan-Huan; Tan, Yun-Long; Han, Hong-Bin; Lin, Lu; Shi, Jie

    2016-05-01

    Drug addiction shares common neurobiological pathways and risk genes with other psychiatric diseases, including psychosis. One of the commonly identified risk genes associated with broad psychosis has been ZNF804A. We sought to test whether psychosis risk variants in ZNF804A increase the risk of heroin addiction by modulating neurocognitive performance and gray matter volume (GMV) in heroin addiction. Using case-control genetic analysis, we compared the distribution of ZNF804A variants (genotype and haplotype) in 1035 heroin abusers and 2887 healthy subjects. We also compared neurocognitive performance (impulsivity, global cognitive ability and decision-making ability) in 224 subjects and GMV in 154 subjects based on the ZNF804A variants. We found significant differences in the distribution of ZNF804A intronic variants (rs1344706 and rs7597593) allele and haplotype frequencies between the heroin and control groups. Decision-making impairment was worse in heroin abusers who carried the ZNF804A risk allele and haplotype. Subjects who carried more risk alleles and haplotypes of ZNF804A had greater GMV in the bilateral insular cortex, right temporal cortex and superior parietal cortex. The interaction between heroin addiction and ZNF804A variants affected GMV in the left sensorimotor cortex. Our findings revealed several ZNF804A variants that were significantly associated with the risk of heroin addiction, and these variants affected decision making and GMV in heroin abusers compared with controls. The precise neural mechanisms that underlie these associations are unknown, which requires future investigations of the effects of ZNF804A on both dopamine neurotransmission and the relative increases in the volume of various brain areas. © 2015 Society for the Study of Addiction.

  12. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    International Nuclear Information System (INIS)

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena

    2016-01-01

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  13. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  14. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    NARCIS (Netherlands)

    Y. Hamdi (Yosr); Soucy, P. (Penny); Adoue, V. (Véronique); K. Michailidou (Kyriaki); S. Canisius (Sander); Lemaçon, A. (Audrey); A. Droit (Arnaud); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Arndt, V. (Volker); Baynes, C. (Caroline); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet K.); B. Bonnani (Bernardo); A.-L. Borresen-Dale (Anne-Lise); J.S. Brand (Judith S.); H. Brauch (Hiltrud); Brenner, H. (Hermann); A. Broeks (Annegien); B. Burwinkel (Barbara); J. Chang-Claude (Jenny); Couch, F.J. (Fergus J.); A. Cox (Angela); S.S. Cross (Simon); K. Czene (Kamila); H. Darabi (Hatef); J. Dennis (Joe); P. Devilee (Peter); T. Dörk (Thilo); I. dos Santos Silva (Isabel); M. Eriksson (Mats); P.A. Fasching (Peter); J.D. Figueroa (Jonine); H. Flyger (Henrik); M. García-Closas (Montserrat); Giles, G.G. (Graham G.); M.S. Goldberg (Mark); A. González-Neira (Anna); G. Grenaker Alnæs (Grethe); P. Guénel (Pascal); L. Haeberle (Lothar); C.A. Haiman (Christopher); U. Hamann (Ute); Hallberg, E. (Emily); M.J. Hooning (Maartje); J.L. Hopper (John); A. Jakubowska (Anna); M. Jones (Michael); M. Kabisch (Maria); V. Kataja (Vesa); Lambrechts, D. (Diether); L. Le Marchand (Loic); A. Lindblom (Annika); J. Lubinski (Jan); A. Mannermaa (Arto); M. Maranian (Melanie); S. Margolin (Sara); Marme, F. (Frederik); R.L. Milne (Roger); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Neven (Patrick); C. Olswold (Curtis); J. Peto (Julian); Plaseska-Karanfilska, D. (Dijana); K. Pykäs (Katri); P. Radice (Paolo); A. Rudolph (Anja); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); X.-O. Shu (Xiao-Ou); M.C. Southey (Melissa); A.J. Swerdlow (Anthony ); R.A.E.M. Tollenaar (Rob); I.P. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); C. Vachon (Celine); A.M.W. van den Ouweland (Ans); Q. Wang (Qin); R. Winqvist (Robert); W. Zheng (Wei); J. Benítez (Javier); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); P.D.P. Pharoah (Paul); Kristensen, V. (Vessela); P. Hall (Per); D.F. Easton (Douglas); T. Pastinen (Tomi); S. Nord (Silje); J. Simard (Jacques)

    2016-01-01

    textabstractThere are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are

  15. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    Science.gov (United States)

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  16. In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq

    Directory of Open Access Journals (Sweden)

    Olivieri Anna

    2011-10-01

    Full Text Available Abstract Background For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region. Results To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates. Conclusions Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of

  17. Perfection of badminton players’ speed-power fitness with the help of training means’ variable modules

    Directory of Open Access Journals (Sweden)

    I.V. Karatnyk

    2016-06-01

    Full Text Available Purpose: to determine effectiveness of badminton players’ speed power fitness program’s perfection at stage of specialized basic training with different variants of training means modules’ combination. Material: in experiment badminton players of 15-17 years’ age (from 1st sports grade to master of sports participated. The sportsmen were divided into three experimental groups (10 persons in each. The trainings were being conducted during 24 weeks by different variants of program. Results: we created different complexes of exercises, combined in three modules (every of each lasted eight week micro-cycles. Every module has more expressed meaningful parts (1 – speed, 2 – power, 3 – jumping. All modules were combined in program of badminton players’ speed power fitness perfection. For every experimental group we worked out distinguishing variant of modules’ combination in program (first variant – 1-2-3 modules; second – 2-3-1; third – 3-1-2. General duration of program was 24 week micro-cycles. Conclusions: we recommended some variants of variable modules’ combination for badminton players’ speed-power fitness perfection. With it, we can regard total influence on the following: speed-power endurance, work with support on own body, quick movements of different body links.

  18. Reduced multiplication modules

    Indian Academy of Sciences (India)

    if M is a von Neumann regular module (VNM); i.e., every principal submodule of M is a summand submodule. Also if M is an injective R-module, then M is a VNM. Keywords. Multiplication module; reduced module; minimal prime submodule;. Zariski topology; extremally disconnected. 1. Introduction. In this paper all rings are ...

  19. Genetic Variants Associated with Circulating Parathyroid Hormone.

    Science.gov (United States)

    Robinson-Cohen, Cassianne; Lutsey, Pamela L; Kleber, Marcus E; Nielson, Carrie M; Mitchell, Braxton D; Bis, Joshua C; Eny, Karen M; Portas, Laura; Eriksson, Joel; Lorentzon, Mattias; Koller, Daniel L; Milaneschi, Yuri; Teumer, Alexander; Pilz, Stefan; Nethander, Maria; Selvin, Elizabeth; Tang, Weihong; Weng, Lu-Chen; Wong, Hoi Suen; Lai, Dongbing; Peacock, Munro; Hannemann, Anke; Völker, Uwe; Homuth, Georg; Nauk, Matthias; Murgia, Federico; Pattee, Jack W; Orwoll, Eric; Zmuda, Joseph M; Riancho, Jose Antonio; Wolf, Myles; Williams, Frances; Penninx, Brenda; Econs, Michael J; Ryan, Kathleen A; Ohlsson, Claes; Paterson, Andrew D; Psaty, Bruce M; Siscovick, David S; Rotter, Jerome I; Pirastu, Mario; Streeten, Elizabeth; März, Winfried; Fox, Caroline; Coresh, Josef; Wallaschofski, Henri; Pankow, James S; de Boer, Ian H; Kestenbaum, Bryan

    2017-05-01

    Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies ( n =22,653 and n =6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 ( P =4.2 × 10 -53 ), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 ( P =6.6 × 10 -17 ), rs219779 adjacent to CLDN14 ( P =3.5 × 10 -16 ), rs4443100 near RTDR1 ( P =8.7 × 10 -9 ), and rs73186030 near CASR ( P =4.8 × 10 -8 ). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued. Copyright © 2017 by the American Society of Nephrology.

  20. Complex branchial fistula: a variant arch anomaly.

    Science.gov (United States)

    De Caluwé, D; Hayes, R; McDermott, M; Corbally, M T

    2001-07-01

    A 5-year-old boy presented with an infected left-sided branchial fistula. Despite antibiotic treatment and repeated excision of the fistula, purulent discharge from the wound persisted. Three-dimensional computed tomography (3D CT) reconstruction greatly facilitated the diagnosis and management of this case by showing the course of the fistulous tract. The complexity of the tract suggests that this represents a variant arch anomaly because it contains features of first, second, third, and fourth arch remnants. Copyright 2001 by W.B. Saunders Company.

  1. Anatomy, normal variants, and basic biomechanics

    International Nuclear Information System (INIS)

    Berquist, T.H.; Johnson, K.A.

    1989-01-01

    This paper reports on the anatomy and basic functions of the foot and ankle important to physicians involved in imaging procedures, clinical medicine, and surgery. New radiographic techniques especially magnetic resonance imaging, provide more diagnostic information owing to improved tissue contrast and the ability to obtain multiple image planes (axial, sagittal, coronal, oblique). Therefore, a thorough knowledge of skeletal and soft tissue anatomy is even more essential. Normal variants must also be understood in order to distinguish normal from pathologic changes in the foot and ankle. A basic understanding of biomechanics is also essential for selecting the proper diagnostic techniques

  2. Research progress of behavioral variant frontotemporal dementia

    Directory of Open Access Journals (Sweden)

    Xiao-hua GU

    2015-07-01

    Full Text Available There is no epidemiological data of frontotemporal dementia (FTD in China. The application of updated diagnostic criteria, publishing of frontotemporal lobar degeneration (FTLD consensus in China, development of multimodal imaging and biomarkers promote the clinical understanding on behavioral variant frontotemporal dementia (bvFTD. There is still no drugs treating FTD approved by U.S. Food and Drug Administration (FDA. Multidisciplinary intervention may delay the progression of bvFTD. DOI: 10.3969/j.issn.1672-6731.2015.07.006

  3. Oral fibrolipoma: A rare histological variant

    Directory of Open Access Journals (Sweden)

    Treville Pereira

    2014-01-01

    Full Text Available Lipomas are benign soft tissue mesenchymal neoplasms. Fibrolipoma is a histological variant of lipoma that mostly affects the buccal mucosa and causes functional and cosmetic disabilities. The diagnosis and differentiation of fibrolipoma with clinically similar lesions such as fibroma and pleomorphic adenoma is very essential for a correct treatment plan and complete follow-up. This article presents a case of a 35-year-old female with a fibrolipoma on the lingual marginal gingiva of the mandibular left third molar.

  4. Performance comparison of various time variant filters

    Energy Technology Data Exchange (ETDEWEB)

    Kuwata, M [JEOL Engineering Co. Ltd., Akishima, Tokyo (Japan); Husimi, K

    1996-07-01

    This paper describes the advantage of the trapezoidal filter used in semiconductor detector system comparing with the other time variant filters. The trapezoidal filter is the compose of a rectangular pre-filter and a gated integrator. We indicate that the best performance is obtained by the differential-integral summing type rectangular pre-filter. This filter is not only superior in performance, but also has the useful feature that the rising edge of the output waveform is linear. We introduce an example of this feature used in a high-energy experiment. (author)

  5. Population Structure of mtDNA Variation due to Pleistocene Fluctuations in the South American Maned Wolf (Chrysocyon brachyurus, Illiger, 1815): Management Units for Conservation.

    Science.gov (United States)

    González, Susana; Cosse, Mariana; Franco, María del Rosario; Emmons, Louise; Vynne, Carly; Duarte, José Maurício Barbanti; Beccacesi, Marcelo D; Maldonado, Jesús E

    2015-01-01

    The maned wolf (Chrysocyon brachyurus) is one of the largest South American canids, and conservation across this charismatic carnivore's large range is presently hampered by a lack of knowledge about possible natural subdivisions which could influence the population's viability. To elucidate the phylogeographic patterns and demographic history of the species, we used 2 mtDNA markers (D-loop and cytochrome b) from 87 individuals collected throughout their range, in Argentina, Bolivia, Brazil, and Uruguay. We found moderate levels of haplotype and nucleotide diversity, and the 14 D-loop haplotypes were closely related. Genetic structure results revealed 4 groups, and when coupled with model inferences from a coalescent analysis, suggested that maned wolves have undergone demographic fluctuations due to changes in climate and habitat during the Pleistocene glaciation period approximately 24000 years before present (YBP). This genetic signature points to an event that occurred within the timing estimated for the start of the contraction of the Cerrado around 50000 YBP. Our results reveal a genetic signature of population size expansion followed by contraction during Pleistocene interglaciations, which had similar impacts on other South American mammals. The 4 groups should for now be considered management units, within which future monitoring efforts should be conducted independently. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity.

    Science.gov (United States)

    Gomes, Sibylle M; Bodner, Martin; Souto, Luis; Zimmermann, Bettina; Huber, Gabriela; Strobl, Christina; Röck, Alexander W; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio; Côrte-Real, Francisco; Parson, Walther

    2015-02-14

    Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.

  7. Genetic characterisation of populations of the critically endangered Goliath grouper ( Epinephelus itajara, Serranidae from the Northern Brazilian coast through analyses of mtDNA

    Directory of Open Access Journals (Sweden)

    Gláucia C. Silva-Oliveira

    2008-01-01

    Full Text Available The Goliath grouper ( Epinephelus itajara is one of the most endangered species of fish of the subfamily Epinephelinae. Slow to develop and mature, and dependent on mangrove habitats for breeding, the species also suffers intense harvesting, which has reduced drastically in numbers in many areas. To contribute to the understanding of the characteristics of E. itajara populations, we conducted a molecular genetics study of the species, focusing on populations from the Northern Brazilian coast. The mtDNA control region (D-loop of 116 individuals from five localities (Bragança, Ajuruteua, Parnaíba, Fortaleza and Natal was analysed, and a sequence of 499 base pairs identified. Analyses of the sequences indicated that genetic variability was generally lower in E. itajara than in other endangered species of the genus. AMOVA found no significant grouping structure among the populations. Nested Clade Analysis revealed a significant association between genetic variability and geographic distribution among only three populations (Ajuruteua, Parnaíba and Natal. Genetic diversity was higher in populations from the Amazon region, which may be related to the better conservation of mangrove habitats in this area. Therefore, the present study could be used for the implementation of conservation and management measures in order to protect and consolidate these populations.

  8. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA.

    Science.gov (United States)

    E, Guang-Xin; Zhao, Yong-Ju; Chen, Li-Peng; Ma, Yue-Hui; Chu, Ming-Xing; Li, Xiang-Long; Hong, Qiong-Hua; Li, Lan-Hui; Guo, Ji-Jun; Zhu, Lan; Han, Yan-Guo; Gao, Hui-Jiang; Zhang, Jia-Hua; Jiang, Huai-Zhi; Jiang, Cao-De; Wang, Gao-Fu; Ren, Hang-Xing; Jin, Mei-Lan; Sun, Yuan-Zhi; Zhou, Peng; Huang, Yong-Fu

    2018-05-01

    The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.

  9. Restricted gene flow at the micro- and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Patarnello Tomaso

    2011-04-01

    Full Text Available Abstract Background The genetic structure of the marble trout Salmo trutta marmoratus, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA and microsatellite data. Results Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers and macro-geographic (among river systems scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes. Conclusion While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.

  10. KERAGAMAN GENETIK BENIH IKAN KERAPU SUNU, Plectrophomus leopardus TURUNAN PERTAMA (F1 DENGAN ANALISIS RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP MT-DNA

    Directory of Open Access Journals (Sweden)

    Gusti Ngurah Permana

    2016-11-01

    The variability of differences size was occurred on every culture period of coral trout. The aimed of this study was to know genetics variability and evaluated of which are expressed on large, medium, and small size fry on total of length sizes and different weight. Amplification of single fragment using set primer 16 SrDNA (F5’CGCCTG TTTAACAAAAACAT-3’ and reverse (R: 5’-CCGGTCTGAACTCAGATCATGT-3’. Result showed that PCR amplification of mt-DNA was 625 bp. Restriction digestion processed with Mnl I enzyme showed that polymorphism in large size and monomorphic in both medium and small sizes. Two types of haplotype were found in large size (ABABB and ABAAB while one haplotype observed in medium and small sizes ABABB. The heterozygosities value of large, medium and small sizes from Bali location were 0.480, 0.000, and 0.000 restectively. Heterozygosities value of samples from East Java were 0.211, 0.000, and 0.000 restectively. Samples from Lampung were monomorphic (0.000.

  11. mtDNA from the early Bronze Age to the Roman period suggests a genetic link between the Indian subcontinent and Mesopotamian cradle of civilization.

    Directory of Open Access Journals (Sweden)

    Henryk W Witas

    Full Text Available Ancient DNA methodology was applied to analyse sequences extracted from freshly unearthed remains (teeth of 4 individuals deeply deposited in slightly alkaline soil of the Tell Ashara (ancient Terqa and Tell Masaikh (ancient Kar-Assurnasirpal Syrian archaeological sites, both in the middle Euphrates valley. Dated to the period between 2.5 Kyrs BC and 0.5 Kyrs AD the studied individuals carried mtDNA haplotypes corresponding to the M4b1, M49 and/or M61 haplogroups, which are believed to have arisen in the area of the Indian subcontinent during the Upper Paleolithic and are absent in people living today in Syria. However, they are present in people inhabiting today's Tibet, Himalayas, India and Pakistan. We anticipate that the analysed remains from Mesopotamia belonged to people with genetic affinity to the Indian subcontinent since the distribution of identified ancient haplotypes indicates solid link with populations from the region of South Asia-Tibet (Trans-Himalaya. They may have been descendants of migrants from much earlier times, spreading the clades of the macrohaplogroup M throughout Eurasia and founding regional Mesopotamian groups like that of Terqa or just merchants moving along trade routes passing near or through the region. None of the successfully identified nuclear alleles turned out to be ΔF508 CFTR, LCT-13910T or Δ32 CCR5.

  12. Phylogenetic relationships of Scomberomorus commerson using sequence analysis of the mtDNA D-loop region in the Persian Gulf, Oman Sea and Arabian Sea

    Directory of Open Access Journals (Sweden)

    Ana Mansourkiaei

    2016-04-01

    Full Text Available Abstract Narrow-barred Spanish mackerel, Scomberomorus commerson, is an epipelagic and migratory species of family Scombridae which have a significant role in terms of ecology and fishery. 100 samples were collected from the Persian Gulf, Oman Sea and Arabian Sea. Part of their dorsal fins was snipped and transferred to micro-tubes containing ethanol; then, DNAs were extracted and HRM-Real Time PCR was performed to designate representative specimens for sequencing. Phylogenetic relationships of S. commerson from Persian Gulf, Oman Sea and Arabian Sea were investigated using sequence data of mitochondrial DNA D-loop region. None clustered Neighbor Joining tree indicated the proximity amid S. commerson in four sites. As numbers demonstrated in sequence analyses of mitochondrial DNA D-Loop region a sublimely high degree of genetic similarity among S. commerson from the Persian Gulf and Oman Sea were perceived, thereafter, having one stock structure of S. commerson in four regions were proved, and this approximation can be merely justified by their migration process along the coasts of Oman Sea and Persian Gulf. Therefore, the assessment of distribution patterns of 20 haplotypes in the constructed phylogenetic tree using mtDNA D-Loop sequences ascertained that no significant clustering according to the sampling sites was concluded.

  13. Modulational effects in accelerators

    International Nuclear Information System (INIS)

    Satogata, T.

    1997-01-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed

  14. Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns

    Directory of Open Access Journals (Sweden)

    Ojurongbe Olusola

    2012-05-01

    Full Text Available Abstract Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET method to genotype four functional SNPs including -986 G > A (#rs3124952, -602 G > A (#rs3124953, -4A > G (#rs17514136 and +6424 G > T (#rs7851696 in the ficolin-2 (FCN2 gene. We characterized the FCN2 variants in individuals representing Brazilian (n = 176, Nigerian (n = 180, Vietnamese (n = 172 and European Caucasian ethnicity (n = 165. Results We observed that the genotype distribution of three functional SNP variants (−986 G > A, -602 G > A and -4A > G differ significantly between the populations investigated (p p  Conclusions The observed distribution of the FCN2 functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

  15. Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.

    Science.gov (United States)

    Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng

    2015-12-01

    Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Optical cage generated by azimuthal- and radial-variant vector beams.

    Science.gov (United States)

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  17. Association between gene variants and response to buprenorphine maintenance treatment.

    Science.gov (United States)

    Gerra, Gilberto; Somaini, Lorenzo; Leonardi, Claudio; Cortese, Elena; Maremmani, Icro; Manfredini, Matteo; Donnini, Claudia

    2014-01-30

    A variety of studies were addressed to differentiate responders and non-responders to substitution treatment among heroin dependent patients, without conclusive findings. In particular, preliminary pharmacogenetic findings have been reported to predict treatment effectiveness in mental health and substance use disorders. Aim of the present study was to investigate the possible association of buprenorphine (BUP) treatment outcome with gene variants that may affect kappa-opioid receptors and dopamine system function. One hundred and seven heroin addicts (West European, Caucasians) who underwent buprenorphine maintenance treatment were genotyped and classified into two groups (A and B) on the basis of treatment outcome. Non-responders to buprenorphine (group B) have been identified taking into account early drop out, continuous use of heroin, severe behavioral or psychiatric problems, misbehavior and diversion during the 6 months treatment period. No difference was evidenced between responders and non-responders to BUP in the frequency of kappa opioid receptor (OPRK1) 36G>T SNP. The frequency of dopamine transporter (DAT) gene polymorphism (SLC6A3/DAT1), allele 10, was evidently much higher in "non-responder" than in "responder" individuals (64.9% vs. 55.93%) whereas the frequency of the category of other alleles (6, 7 and 11) was higher in responder than in non-responder individuals (11.02% vs. 2.13% respectively). On one hand, the hypothesis that possible gene-related changes in kappa-opioid receptor could consistently affect buprenorphine pharmacological action and clinical effectiveness was not confirmed in our study, at least in relation to the single nucleotide polymorphism 36G>T. On the other hand, the possibility that gene-related dopamine changes could have reduced BUP effectiveness and impaired maintenance treatment outcome was cautiously supported by our findings. DAT1 gene variants such as allele 10, previously reported in association with personality and

  18. Siberian population of the New Stone Age: mtDNA haplotype diversity in the ancient population from the Ust'-Ida I burial ground, dated 4020-3210 BC by 14C.

    Science.gov (United States)

    Naumova O, Y u; Rychkov S, Y u

    1998-03-01

    On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.

  19. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolin

  20. Structure of elementary module of Solanum dulcamara L.

    Directory of Open Access Journals (Sweden)

    Irina A. Zhuravlyeva

    2014-04-01

    Full Text Available The structures (metamers of Solanum dulcamara at the level of elementary module have been studied. The features for identification of their variability have been ascertained. 44 variants of metamers are described. The characteristic is represented for such individual features as: the type of lateral organ (leaf of a middle formation and axillary structure (bud, shoot, serial complex; the degree of development of the generative organs; and the presence and type of roots.

  1. Hb F Levels in Indian Sickle Cell Patients and Association with the HBB Locus Variant rs10128556 (C>T), and the HBG XmnI (Arab-Indian) Variant.

    Science.gov (United States)

    Bhanushali, Aparna A; Himani, Kumari; Patra, Pradeep K; Das, Bibhu R

    The prevalence of sickle cell disease in India is very high. Hb F is one of the most powerful modulators of disease severity in sickle cell disease patients. It was traditionally thought that the disease is milder in Indian sickle cell disease patients predominantly due to the Arab-Indian haplotype characterized by the HBG XmnI [rs7482144 (G>A)] variant, which is associated with increased Hb F levels. In the current study, we investigated the Hb F levels in individuals with the rs10128556 (C>T) variant and also determined its linkage with the HBG XmnI variant. The present study was conducted on a cohort of 275 individuals, which consisted of 221 patients with sickle cell disease and 54 patients with sickle cell trait. Analysis of hemoglobin (Hb) fractions and variants was done on the high performance liquid chromatography (HPLC) system. Genotyping for rs10128556 was done by direct sequencing of the products. Mean Hb F levels in the sickle cell disease patients was 19.36 ± 6.79. The genotypic frequencies for rs10128556 were 82.0% (TT), 16.7% (CT) and 1.3% (CC) for sickle cell disease patients. The minor C allele resulted in 52.0% decrease in Hb F levels when homozygous and 7.0% decrease when heterozygous. The rs10128556 single nucleotide polymorphism (SNP) was in strong but not complete linkage with the HBG XmnI variant. In conclusion, the study determined for the first time the frequency and association of rs10128556 in Indian sickle cell disease patients with Hb F. It also established that it was not in complete linkage with the HBG XmnI variant in this high risk population.

  2. Fault Detection Variants of the CloudBus Protocol for IoT Distributed Embedded Systems

    Directory of Open Access Journals (Sweden)

    BARKALOV, A.

    2017-05-01

    Full Text Available Distributed embedded systems have become larger, more complex and complicated. More often, such systems operate accordingly to the IoT or Industry 4.0 concept. However, large number of end modules operating in the system leads to a significant load and consequently, to an overload of the communication interfaces. The CloudBus protocol is one of the methods which is used for data exchange and concurrent process synchronization in the distributed systems. It allows the significant savings in the amount of transmitted data between end modules, especially when compared with the other protocols used in the industry. Nevertheless, basic version of the protocol does not protect against the system failure in the event of failure of one of the nodes. This paper proposes four novel variants of the CloudBus protocol, which allow the fault detection. The comparison and performance analysis was executed for all proposed CloudBus variants. The verification and behavior analysis of the distributed systems were performed on SoC hardware research platform. Furthermore, a simple test application was proposed.

  3. Differential Expression Profile of ZFX Variants Discriminates Breast Cancer Subtypes

    Science.gov (United States)

    Pourkeramati, Fatemeh; Asadi, Malek Hossein; Shakeri, Shahryar; Farsinejad, Alireza

    2018-05-13

    ZFX is a transcriptional regulator in embryonic stem cells that plays an important role in pluripotency and self-renewal. ZFX is widely expressed in pluripotent stem cells and is down-regulated during differentiation of embryonic stem cells. ZFX has five different variants that encode three different protein isoforms. While several reports have determined the overexpression of ZFX in a variety of somatic cancers, the expression of ZFX-spliced variants in cancer cells is not well-understood. We investigated the expression of ZFX variants in a series of breast cancer tissues and cell lines using quantitative PCR. The expression of ZFX variant 1/3 was higher in tumor tissue compared to marginal tissue. In contrast, the ZFX variant 5 was down-regulated in tumor tissues. While the ZFX variant 1/3 and ZFX variant 5 expression significantly increased in low-grade tumors, ZFX variant 4 was strongly expressed in high-grade tumors and demonstrating lymphatic invasion. In addition, our result revealed a significant association between the HER2 status and the expression of ZFX-spliced variants. Our data suggest that the expression of ZFX-spliced transcripts varies between different types of breast cancer and may contribute to their tumorigenesis process. Hence, ZFX-spliced transcripts could be considered as novel tumor markers with a probable value in diagnosis, prognosis, and therapy of breast cancer.

  4. Population structure analysis using rare and common functional variants

    Directory of Open Access Journals (Sweden)

    Ding Lili

    2011-11-01

    Full Text Available Abstract Next-generation sequencing technologies now make it possible to genotype and measure hundreds of thousands of rare genetic variations in individuals across the genome. Characterization of high-density genetic variation facilitates control of population genetic structure on a finer scale before large-scale genotyping in disease genetics studies. Population structure is a well-known, prevalent, and important factor in common variant genetic studies, but its relevance in rare variants is unclear. We perform an extensive population structure analysis using common and rare functional variants from the Genetic Analysis Workshop 17 mini-exome sequence. The analysis based on common functional variants required 388 principal components to account for 90% of the variation in population structure. However, an analysis based on rare variants required 532 significant principal components to account for similar levels of variation. Using rare variants, we detected fine-scale substructure beyond the population structure identified using common functional variants. Our results show that the level of population structure embedded in rare variant data is different from the level embedded in common variant data and that correcting for population structure is only as good as the level one wishes to correct.

  5. Human papillomavirus variants among Inuit women in northern Quebec, Canada.

    Science.gov (United States)

    Gauthier, Barbara; Coutlée, Francois; Franco, Eduardo L; Brassard, Paul

    2015-01-01

    Inuit communities in northern Quebec have high rates of human papillomavirus (HPV) infection, cervical cancer and cervical cancer-related mortality as compared to the Canadian population. HPV types can be further classified as intratypic variants based on the extent of homology in their nucleotide sequences. There is limited information on the distribution of intratypic variants in circumpolar areas. Our goal was to describe the HPV intratypic variants and associated baseline characteristics. We collected cervical cell samples in 2002-2006 from 676 Inuit women between the ages of 15 and 69 years in Nunavik. DNA isolates from high-risk HPVs were sequenced to determine the intratypic variant. There were 149 women that were positive for HPVs 16, 18, 31, 33, 35, 45, 52, 56 or 58 during follow-up. There were 5 different HPV16 variants, all of European lineage, among the 57 women positive for this type. There were 8 different variants of HPV18 present and all were of European lineage (n=21). The majority of samples of HPV31 (n=52) were of lineage B. The number of isolates and diversity of the other HPV types was low. Age was the only covariate associated with HPV16 variant category. These frequencies are similar to what was seen in another circumpolar region of Canada, although there appears to be less diversity as only European variants were detected. This study shows that most variants were clustered in one lineage for each HPV type.

  6. Determination of uranium by luminescent method (tablet variant)

    International Nuclear Information System (INIS)

    Sergeev, A.N.; Yufa, B.Ya.

    1985-01-01

    A new tablet variant of luminescent determination of uranium in rocks is developed. The analytical process includes the following operations: sample decomposition, uranium separation from luminescence quencher impurities, preparation of luminescent sample (tablet), photometry of the tablet. The method has two variants developed: the first one is characterized by a more hard decomposition, sample mass being 0.2 g; the second variant has a better detection limit (5x10 -6 %), the sample mass being 0.2-1 g. Procedures of the sample preparation for both variants of analysis are described

  7. Superior and inferior vena cavae: Embryology, variants, and pathology

    International Nuclear Information System (INIS)

    Mendelson, D.S.; Mitty, H.; Janus, C.; Gendal, E.; Berson, B.

    1987-01-01

    The superior and inferior venae cavae may be involved in a host of disease processes. Knowledge of the normal anatomy and variants of these structures is valuable in interpreting plain films and the results of angiographic procedures and all cross-sectional modalities. The authors review the embryology of venae cavae and proceed to describe their normal anatomy and variants. An awareness of the variants can prevent mistaking variants for pathologic processes. Finally, the authors describe pathology involving these vessels and demonstrate the radiographic manifestations

  8. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A.

    Science.gov (United States)

    Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E

    2017-01-01

    Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a

  9. IDOL N342S Variant, Atherosclerosis Progression and Cardiovascular Disorders in the Italian General Population.

    Directory of Open Access Journals (Sweden)

    Ashish Dhyani

    Full Text Available Inducible degrader of the low density lipoprotein receptor (IDOL, is an E3 ubiquitin ligase that negatively modulates low density lipoprotein receptor (LDL-R expression. Genome-wide association studies (GWAS indicated that genetic variants in IDOL gene contributes to variation in LDL-C plasma levels and the detailed analysis of a specific locus resulted in the identification of the functional common single nucleotide polymorphism (SNP rs9370867 (c.G1025A, p.N342S associates with increased LDL-R degradation and increased LDL-C levels. These findings, however, were not confirmed in two other independent cohorts and no data about the impact of this variant on atherosclerosis progression and cardiovascular risk are available. Aim of this study was to investigate the association between a functional variant in IDOL and atherosclerosis progression in an Italian general population. 1384 subjects enrolled in the PLIC study (Progression of Lesions in the Intima of Carotid were genotyped by Q-PCR allelic discrimination and the association with anthropometric parameters, plasma lipids and the carotid intima media thickness (cIMT and the impact on cardiovascular disease (CVD incidence were investigated. The N342S variant was not associated with changes of the plasma lipid profile among GG, AG or AA carriers, including total cholesterol (249±21, 249±19 and 248±21 mg/dl respectively, LDL-C (158±25, 161±22 and 160±23 mg/dL, cIMT (0.74±0.14, 0.75±0.17 and 0.77±0.15 mm and CVD incidence. In agreement, the expression of LDLR and the uptake of LDL was similar in macrophages derived from GG and AA carriers. Taken together our findings indicate that the N342S variant does not impact plasma lipid profile and is not associated with atherosclerosis progression and CVD in the general population, suggesting that other variants in the IDOL gene might be functionally linked with cholesterol metabolism.

  10. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Katrina Soderquest

    2017-02-01

    Full Text Available The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21 specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.

  11. A rabies virus vampire bat variant shows increased neuroinvasiveness in mice when compared to a carnivore variant.

    Science.gov (United States)

    Mesquita, Leonardo Pereira; Gamon, Thais Helena Martins; Cuevas, Silvia Elena Campusano; Asano, Karen Miyuki; Fahl, Willian de Oliveira; Iamamoto, Keila; Scheffer, Karin Correa; Achkar, Samira Maria; Zanatto, Dennis Albert; Mori, Cláudia Madalena Cabrera; Maiorka, Paulo César; Mori, Enio

    2017-12-01

    Rabies is one of the most important zoonotic diseases and is caused by several rabies virus (RABV) variants. These variants can exhibit differences in neurovirulence, and few studies have attempted to evaluate the neuroinvasiveness of variants derived from vampire bats and wild carnivores. The aim of this study was to evaluate the neuropathogenesis of infection with two Brazilian RABV street variants (variant 3 and crab-eating fox) in mice. BALB/c mice were inoculated with RABV through the footpad, with the 50% mouse lethal dose (LD 50 ) determined by intracranial inoculation. The morbidity of rabies in mice infected with variant 3 and the crab-eating fox strain was 100% and 50%, respectively, with an incubation period of 7 and 6 days post-inoculation (dpi), respectively. The clinical disease in mice was similar with both strains, and it was characterized initially by weight loss, ruffled fur, hunched posture, and hind limb paralysis progressing to quadriplegia and recumbency at 9 to 12 dpi. Histological lesions within the central nervous system (CNS) characterized by nonsuppurative encephalomyelitis with neuronal degeneration and necrosis were observed in mice infected with variant 3 and those infected with the crab-eating fox variant. However, lesions and the presence of RABV antigen, were more widespread within the CNS of variant-3-infected mice, whereas in crab-eating fox-variant-infected mice, RABV antigens were more restricted to caudal areas of the CNS, such as the spinal cord and brainstem. In conclusion, the results shown here demonstrate that the RABV vampire bat strain (variant 3) has a higher potential for neuroinvasiveness than the carnivore variant.

  12. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  13. Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Mark A. Wallet

    2017-10-01

    Full Text Available At least 57 independent loci within the human genome confer varying degrees of risk for the development of type 1 diabetes (T1D. The majority of these variants are thought to contribute to overall genetic risk by modulating host innate and adaptive immune responses, ultimately resulting in a loss of immunological tolerance to β cell antigens. Early efforts to link specific risk variants with functional alterations in host immune responses have employed animal models or genotype-selected individuals from clinical bioresource banks. While some notable genotype:phenotype associations have been described, there remains an urgent need to accelerate the discovery of causal variants and elucidate the molecular mechanisms by which susceptible alleles alter immune functions. One significant limitation has been the inability to study human T1D risk loci on an isogenic background. The advent of induced pluripotent stem cells (iPSCs and genome-editing technologies have made it possible to address a number of these outstanding questions. Specifically, the ability to drive multiple cell fates from iPSC under isogenic conditions now facilitates the analysis of causal variants in multiple cellular lineages. Bioinformatic analyses have revealed that T1D risk genes cluster within a limited number of immune signaling pathways, yet the relevant immune cell subsets and cellular activation states in which candidate risk genes impact cellular activities remain largely unknown. In this review, we summarize the functional impact of several candidate risk variants on host immunity in T1D and present an isogenic disease-in-a-dish model system for interrogating risk variants, with the goal of expediting precision therapeutics in T1D.

  14. Variant facial artery in the submandibular region.

    Science.gov (United States)

    Vadgaonkar, Rajanigandha; Rai, Rajalakshmi; Prabhu, Latha V; Bv, Murlimanju; Samapriya, Neha

    2012-07-01

    Facial artery has been considered to be the most important vascular pedicle in facial rejuvenation procedures and submandibular gland (SMG) resection. It usually arises from the external carotid artery and passes from the carotid to digastric triangle, deep to the posterior belly of digastric muscle, and lodges in a groove at the posterior end of the SMG. It then passes between SMG and the mandible to reach the face after winding around the base of the mandible. During a routine dissection, in a 62-year-old female cadaver, in Kasturba Medical College Mangalore, an unusual pattern in the cervical course of facial artery was revealed. The right facial artery was found to pierce the whole substance of the SMG before winding around the lower border of the mandible to enter the facial region. Awareness of existence of such a variant and its comparison to the normal anatomy will be useful to oral and maxillofacial surgeons.

  15. Fast Ordered Sampling of DNA Sequence Variants

    Directory of Open Access Journals (Sweden)

    Anthony J. Greenberg

    2018-05-01

    Full Text Available Explosive growth in the amount of genomic data is matched by increasing power of consumer-grade computers. Even applications that require powerful servers can be quickly tested on desktop or laptop machines if we can generate representative samples from large data sets. I describe a fast and memory-efficient implementation of an on-line sampling method developed for tape drives 30 years ago. Focusing on genotype files, I test the performance of this technique on modern solid-state and spinning hard drives, and show that it performs well compared to a simple sampling scheme. I illustrate its utility by developing a method to quickly estimate genome-wide patterns of linkage disequilibrium (LD decay with distance. I provide open-source software that samples loci from several variant format files, a separate program that performs LD decay estimates, and a C++ library that lets developers incorporate these methods into their own projects.

  16. Fast Ordered Sampling of DNA Sequence Variants.

    Science.gov (United States)

    Greenberg, Anthony J

    2018-05-04

    Explosive growth in the amount of genomic data is matched by increasing power of consumer-grade computers. Even applications that require powerful servers can be quickly tested on desktop or laptop machines if we can generate representative samples from large data sets. I describe a fast and memory-efficient implementation of an on-line sampling method developed for tape drives 30 years ago. Focusing on genotype files, I test the performance of this technique on modern solid-state and spinning hard drives, and show that it performs well compared to a simple sampling scheme. I illustrate its utility by developing a method to quickly estimate genome-wide patterns of linkage disequilibrium (LD) decay with distance. I provide open-source software that samples loci from several variant format files, a separate program that performs LD decay estimates, and a C++ library that lets developers incorporate these methods into their own projects. Copyright © 2018 Greenberg.

  17. Genetic variants in periodontal health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Dumitrescu, Alexandrina L [Tromsoe Univ. (Norway). Inst. of Clinical Dentistry; Kobayashi, Junya [Kyoto Univ. (Japan). Dept. of Genome Repair Dynamics

    2010-07-01

    Periodontitis is a complex, multifactorial disease and its susceptibility is genetically determined. The present book systematically reviews the evidence of the association between the genetic variants and periodontitis progression and/or treatment outcomes. Genetic syndromes known to be associated with periodontal disease, the candidate gene polymorphisms investigated in relation to periodontitis, the heritability of chronic and aggressive periodontitis, as well as common guidelines for association studies are described. This growing understanding of the role of genetic variation in inflammation and periodontal chronic disease presents opportunities to identify healthy persons who are at increased risk of disease and to potentially modify the trajectory of disease to prolong healthy aging. The book represents a new concept in periodontology with its pronounced focus on understanding through knowledge rather than presenting the presently valid answers. Connections between genetics and periodontology are systematically reviewed and covered in detail. (orig.)

  18. Electroabsorption optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, Erik J.

    2017-11-21

    An electroabsorption modulator incorporates waveguiding regions along the length of the modulator that include quantum wells where at least two of the regions have quantum wells with different bandgaps. In one embodiment of the invention, the regions are arranged such that the quantum wells have bandgaps with decreasing bandgap energy along the length of the modulator from the modulator's input to its output. The bandgap energy of the quantum wells may be decreased in discrete steps or continuously. Advantageously, such an arrangement better distributes the optical absorption as well as the carrier density along the length of the modulator. Further advantageously, the modulator may handle increased optical power as compared with prior art modulators of similar dimensions, which allows for improved link gain when the optical modulator is used in an analog optical communication link.

  19. CDC 7600 module slice

    CERN Multimedia

    Each module contained 8 circuit cards for a total of about 300-500 uncovered transistors packaged with face plates so the Freon plates wouldn't touch the circuits. (cooling plates that surrounded each module).

  20. Exploration Augmentation Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Augmentation Module (EAM) project goal is to design and deliver a flight module that is to be deployed to Earth-Lunar Distant Retrograde Orbit (DRO)....

  1. Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA.

    Science.gov (United States)

    Laurimäe, Teivi; Kinkar, Liina; Andresiuk, Vanessa; Haag, Karen Luisa; Ponce-Gordo, Francisco; Acosta-Jamett, Gerardo; Garate, Teresa; Gonzàlez, Luis Miguel; Saarma, Urmas

    2016-11-01

    Echinococcus granulosus is a taeniid cestode and the etiological agent of an infectious zoonotic disease known as cystic echinococcosis (CE) or hydatid disease. CE is a serious public health concern in many parts of the world, including the Americas, where it is highly endemic in many regions. Echinococcus granulosus displays high intraspecific genetic variability and is divided into multiple genotypes (G1-G8, G10) with differences in their biology and etiology. Of these, genotype G1 is responsible for the majority of human and livestock infections and has the broadest host spectrum. However, despite the high significance to the public and livestock health, the data on genetic variability and regional genetic differences of genotype G1 in America are scarce. The aim of this study was to evaluate the genetic variability and phylogeography of G1 in several countries in America by sequencing a large portion of the mitochondrial genome. We analysed 8279bp of mtDNA for 52 E. granulosus G1 samples from sheep, cattle and pigs collected in Argentina, Brazil, Chile and Mexico, covering majority of countries in the Americas where G1 has been reported. The phylogenetic network revealed 29 haplotypes and a high haplotype diversity (Hd=0.903). The absence of phylogeographic segregation between different regions in America suggests the importance of animal transportation in shaping the genetic structure of E. granulosus G1. In addition, our study revealed many highly divergent haplotypes, indicating a long and complex evolutionary history of E. granulosus G1 in the Americas. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. West Eurasian mtDNA lineages in India: an insight into the spread of the Dravidian language and the origins of the caste system.

    Science.gov (United States)

    Palanichamy, Malliya Gounder; Mitra, Bikash; Zhang, Cai-Ling; Debnath, Monojit; Li, Gui-Mei; Wang, Hua-Wei; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2015-06-01

    There is no indication from the previous mtDNA studies that west Eurasian-specific subclades have evolved within India and played a role in the spread of languages and the origins of the caste system. To address these issues, we have screened 14,198 individuals (4208 from this study) and analyzed 112 mitogenomes (41 new sequences) to trace west Eurasian maternal ancestry. This has led to the identification of two autochthonous subhaplogroups--HV14a1 and U1a1a4, which are likely to have originated in the Dravidian-speaking populations approximately 10.5-17.9 thousand years ago (kya). The carriers of these maternal lineages might have settled in South India during the time of the spread of the Dravidian language. In addition to this, we have identified several subsets of autochthonous U7 lineages, including U7a1, U7a2b, U7a3, U7a6, U7a7, and U7c, which seem to have originated particularly in the higher-ranked caste populations in relatively recent times (2.6-8.0 kya with an average of 5.7 kya). These lineages have provided crucial clues to the differentiation of the caste system that has occurred during the recent past and possibly, this might have been influenced by the Indo-Aryan migration. The remaining west Eurasian lineages observed in the higher-ranked caste groups, like the Brahmins, were found to cluster with populations who possibly arrived from west Asia during more recent times.

  3. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey.

    Science.gov (United States)

    Spice, Erin K; Goodman, Damon H; Reid, Stewart B; Docker, Margaret F

    2012-06-01

    Most species with lengthy migrations display some degree of natal homing; some (e.g. migratory birds and anadromous salmonids) show spectacular feats of homing. However, studies of the sea lamprey (Petromyzon marinus) indicate that this anadromous species locates spawning habitat based on pheromonal cues from larvae rather than through philopatry. Previous genetic studies in the anadromous Pacific lamprey (Entosphenus tridentatus) have both supported and rejected the hypothesis of natal homing. To resolve this, we used nine microsatellite loci to examine the population structure in 965 Pacific lamprey from 20 locations from central British Columbia to southern California and supplemented this analysis with mitochondrial DNA restriction fragment length polymorphism analysis on a subset of 530 lamprey. Microsatellite analysis revealed (i) relatively low but often statistically significant genetic differentiation among locations (97% pairwise F(ST) values were <0.04 but 73.7% were significant); and (ii) weak but significant isolation by distance (r(2) = 0.0565, P = 0.0450) but no geographic clustering of samples. The few moderate F(ST) values involved comparisons with sites that were geographically distant or far upstream. The mtDNA analysis--although providing less resolution among sites (only 4.7%F(ST) values were significant)--was broadly consistent with the microsatellite results: (i) the southernmost site and some sites tributary to the Salish Sea were genetically distinct; and (ii) southern sites showed higher haplotype and private haplotype richness. These results are inconsistent with philopatry, suggesting that anadromous lampreys are unusual among species with long migrations, but suggest that limited dispersal at sea precludes panmixia in this species. © 2012 Blackwell Publishing Ltd.

  4. Population Genetic Structure of Rock Bream (Oplegnathus fasciatus Temminck & Schlegel, 1884) Revealed by mtDNA COI Sequence in Korea and China

    Science.gov (United States)

    Park, Hyun Suk; Kim, Choong-Gon; Kim, Sung; Park, Yong-Joo; Choi, Hee-Jung; Xiao, Zhizhong; Li, Jun; Xiao, Yongshuang; Lee, Youn-Ho

    2018-04-01

    The rock bream, Oplegnathus fasciatus, is a common rocky reef game fish in East Asia and recently has become an aquaculture species. Despite its commercial importance, the population genetic structure of this fish species remains poorly understood. In this study, 163 specimens were collected from 6 localities along the coastal waters of Korea and China and their genetic variation was analyzed with mtDNA COI sequences. A total of 34 polymorphic sites were detected which determined 30 haplotypes. The genetic pattern reveals a low level of nucleotide diversity (0.04 ± 0.003) but a high level of haplotype diversity (0.83 ± 0.02). The 30 haplotypes are divided into two major genealogical clades: one that consists of only Zhoushan (ZS, East China Sea) specific haplotypes from the southern East China Sea and the other that consists of the remaining haplotypes from the northern East China Sea, Yellow Sea, Korea Strait, and East Sea/Sea of Japan. The two clades are separated by approximately 330 435 kyBP. Analyses of AMOVA and F st show a significant population differentiation between the ZS sample and the other ones, corroborating separation of the two genealogical clades. Larval dispersal and the fresh Yangtze River plume are invoked as the main determining factors for this population genetic structure of O. fasciatus. Neutrality tests and mismatch distribution analyses indicate late Pleistocene population expansion along the coastal waters of Korea and China approximately 133-183 kyBP during which there were periodic cycles of glaciations and deglaciations. Such population information needs to be taken into account when stock enhancement and conservation measures are implemented for this fisheries species.

  5. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Charfeddine, Ilhem; Fakhfakh, Faiza

    2008-01-01

    The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene

  6. Nuclear variants of bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Meinhart Christopher A

    2010-03-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts. Results In all three proteins, a bipartite nuclear localization signal (NLS was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5 containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle. Conclusions The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.

  7. CDC 6600 Cordwood Module

    CERN Multimedia

    1964-01-01

    The CDC 6600 cordwood module containing 64 silicon transistors. The module was mounted between two plates that were cooled conductive by a refrigeration unit via the front panel. The construction of this module uses the cord method, so called because the resistors seem to be stacked like cord between the two circuit boards in order to obtain a high density. The 6600 model contained nearly 6,000 such modules.

  8. A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake

    DEFF Research Database (Denmark)

    Hasselbalch, Ann L; Angquist, Lars; Christiansen, Lene

    2010-01-01

    We investigated the role of the fat mass and obesity associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) in modulating habitual intake of total energy and macronutrients, glycemic index, glycemic load, dietary energy density, and energy from 20 food groups in adults...... with intake of energy from whole grains (P >or= 0.04). These associations did not remain significant after controlling for multiple testing. The outcome of this study indicates that polymorphisms in the FTO gene and near the MC4R gene do not have a role in regulating food intake and preference for specific....... In a population-based sample of 756 healthy adult twin pairs, we studied associations between FTO rs9939609, near-MC4R rs12970134, rs17700633, and rs17782313 single nucleotide polymorphisms (SNP) and habitual dietary intake. Habitual dietary intake was assessed by a 247-question FFQ. Nontransformed variables...

  9. Modulating lignin in plants

    Science.gov (United States)

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  10. An investigation into modulators

    International Nuclear Information System (INIS)

    Heine, E.

    1988-01-01

    In the framework of the MEA-update it is important to establish which modulators are necessary. In this report it is lookedif the existing modulators can be maintained or new modulators have to be made. Besides technical aspects also material expenses and necessary manpower play a role. 12 figs.; 6 tabs

  11. Weakly Coretractable Modules

    Science.gov (United States)

    Hadi, Inaam M. A.; Al-aeashi, Shukur N.

    2018-05-01

    If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.

  12. Deep-Coverage MPS Analysis of Heteroplasmic Variants within the mtGenome Allows for Frequent Differentiation of Maternal Relatives

    Directory of Open Access Journals (Sweden)

    Mitchell M. Holland

    2018-02-01

    Full Text Available Distinguishing between maternal relatives through mitochondrial (mt DNA sequence analysis has been a longstanding desire of the forensic community. Using a deep-coverage, massively parallel sequencing (DCMPS approach, we studied the pattern of mtDNA heteroplasmy across the mtgenomes of 39 mother-child pairs of European decent; haplogroups H, J, K, R, T, U, and X. Both shared and differentiating heteroplasmy were observed on a frequent basis in these closely related maternal relatives, with the minor variant often presented as 2–10% of the sequencing reads. A total of 17 pairs exhibited differentiating heteroplasmy (44%, with the majority of sites (76%, 16 of 21 occurring in the coding region, further illustrating the value of conducting sequence analysis on the entire mtgenome. A number of the sites of differentiating heteroplasmy resulted in non-synonymous changes in protein sequence (5 of 21, and to changes in transfer or ribosomal RNA sequences (5 of 21, highlighting the potentially deleterious nature of these heteroplasmic states. Shared heteroplasmy was observed in 12 of the 39 mother-child pairs (31%, with no duplicate sites of either differentiating or shared heteroplasmy observed; a single nucleotide position (16093 was duplicated between the data sets. Finally, rates of heteroplasmy in blood and buccal cells were compared, as it is known that rates can vary across tissue types, with similar observations in the current study. Our data support the view that differentiating heteroplasmy across the mtgenome can be used to frequently distinguish maternal relatives, and could be of interest to both the medical genetics and forensic communities.

  13. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    Science.gov (United States)

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  14. Genomewide association study identifies no major founder variant in ...

    Indian Academy of Sciences (India)

    2013-12-10

    Dec 10, 2013 ... variant in Caucasian moyamoya disease ... 1Department of Health and Environmental Sciences, Kyoto University Graduate ... a low prevalence in European countries (Goto and Yonekawa. 1992; Kuroda and Houkin 2008). We have found that the p.R4810K variant in the ring finger protein 213 (RNF213).

  15. Managing Process Variants in the Process Life Cycle

    NARCIS (Netherlands)

    Hallerbach, A.; Bauer, Th.; Reichert, M.U.

    2007-01-01

    When designing process-aware information systems, often variants of the same process have to be specified. Each variant then constitutes an adjustment of a particular process to specific requirements building the process context. Current Business Process Management (BPM) tools do not adequately

  16. Germline Variants of Prostate Cancer in Japanese Families.

    Directory of Open Access Journals (Sweden)

    Takahide Hayano

    Full Text Available Prostate cancer (PC is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family. We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family. We identified two deleterious HOXB13 variants (F127C and G132E. Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3. The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.

  17. Holographic representation of space-variant systems: system theory.

    Science.gov (United States)

    Marks Ii, R J; Krile, T F

    1976-09-01

    System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

  18. Detecting rare variants in case-parents association studies.

    Directory of Open Access Journals (Sweden)

    Kuang-Fu Cheng

    Full Text Available Despite the success of genome-wide association studies (GWASs in detecting common variants (minor allele frequency ≥0.05 many suggested that rare variants also contribute to the genetic architecture of diseases. Recently, researchers demonstrated that rare variants can show a strong stratification which may not be corrected by using existing methods. In this paper, we focus on a case-parents study and consider methods for testing group-wise association between multiple rare (and common variants in a gene region and a disease. All tests depend on the numbers of transmitted mutant alleles from parents to their diseased children across variants and hence they are robust to the effect of population stratification. We use extensive simulation studies to compare the performance of four competing tests: the largest single-variant transmission disequilibrium test (TDT, multivariable test, combined TDT, and a likelihood ratio test based on a random-effects model. We find that the likelihood ratio test is most powerful in a wide range of settings and there is no negative impact to its power performance when common variants are also included in the analysis. If deleterious and protective variants are simultaneously analyzed, the likelihood ratio test was generally insensitive to the effect directionality, unless the effects are extremely inconsistent in one direction.

  19. Androgen Receptor Splice Variants and Resistance to Taxane Chemotherapy

    Science.gov (United States)

    2017-10-01

    resistant prostate cancer ; docetaxel; cabazitaxel; chemotherapy; androgen receptor splice variants; microtubule; ligand-binding domain; microtubule... receptor splice variants (AR-Vs) are associated with resistance to taxane chemotherapy in castration- resistant prostate cancer (CRPC). However, this...androgen receptor inhibitors in prostate cancer . Nat Rev Cancer . 2015;15:701–11.

  20. Hepatitis E Virus Variant in Farmed Mink, Denmark

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Breum, Solvej Østergaard; Jensen, Trine Hammer

    2013-01-01

    Hepatitis E virus (HEV) is a zoonotic virus for which pigs are the primary animal reservoir. To investigate whether HEV occurs in mink in Denmark, we screened feces and tissues from domestic and wild mink. Our finding of a novel HEV variant supports previous findings of HEV variants in a variety...

  1. Variant Creutzfeldt-Jakob Disease (vCJD)

    Science.gov (United States)

    ... Form Controls Cancel Submit Search the CDC Variant Creutzfeldt-Jakob Disease (vCJD) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Variant Creutzfeldt-Jakob disease (vCJD) is a prion disease that was first ...

  2. Genetics Home Reference: GM2-gangliosidosis, AB variant

    Science.gov (United States)

    ... Resources Genetic Testing (1 link) Genetic Testing Registry: Tay-Sachs disease, variant AB General Information from MedlinePlus (5 links) ... AB variant Activator Deficiency/GM2 Gangliosidosis Activator-deficient Tay-Sachs disease GM2 Activator Deficiency Disease GM2 gangliosidosis, type AB ...

  3. Assessment of Functional Effects of Unclassified Genetic Variants

    NARCIS (Netherlands)

    Couch, Fergus J.; Rasmussen, Lene Juel; Hofstra, Robert; Monteiro, Alvaro N. A.; Greenblatt, Marc S.; de Wind, Niels

    2008-01-01

    Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been

  4. Assessment of Functional Effects of Unclassified Genetic Variants

    NARCIS (Netherlands)

    Couch, Fergus J.; Rasmussen, Lene Juel; Hofstra, Robert; Monteiro, Alvaro N. A.; Greenblatt, Marc S.; de Wind, Niels

    Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been

  5. Association analysis identifies ZNF750 regulatory variants in psoriasis

    Directory of Open Access Journals (Sweden)

    Birnbaum Ramon Y

    2011-12-01

    Full Text Available Abstract Background Mutations in the ZNF750 promoter and coding regions have been previously associated with Mendelian forms of psoriasis and psoriasiform dermatitis. ZNF750 encodes a putative zinc finger transcription factor that is highly expressed in keratinocytes and represents a candidate psoriasis gene. Methods We examined whether ZNF750 variants were associated with psoriasis in a large case-control population. We sequenced the promoter and exon regions of ZNF750 in 716 Caucasian psoriasis cases and 397 Caucasian controls. Results We identified a total of 47 variants, including 38 rare variants of which 35 were novel. Association testing identified two ZNF750 haplotypes associated with psoriasis (p ZNF750 promoter and 5' UTR variants displayed a 35-55% reduction of ZNF750 promoter activity, consistent with the promoter activity reduction seen in a Mendelian psoriasis family with a ZNF750 promoter variant. However, the rare promoter and 5' UTR variants identified in this study did not strictly segregate with the psoriasis phenotype within families. Conclusions Two haplotypes of ZNF750 and rare 5' regulatory variants of ZNF750 were found to be associated with psoriasis. These rare 5' regulatory variants, though not causal, might serve as a genetic modifier of psoriasis.

  6. ADULT VARIANT BARTTER’S SYNDROME- A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Ishwar Sidappa Hasabi

    2017-02-01

    Full Text Available BACKGROUND Bartter syndrome is a group of channelopathies with different genetic origins and molecular pathophysiologies, but sharing common feature of decreased tubular transport of sodium chloride in thick ascending loop of Henle (TAL, 1 although more common in antenatal group. Classic adult variant of Bartter syndrome is a rare entity. We hereby present a rare adult variant of classic Bartter syndrome.

  7. Amplitude modulation detection with concurrent frequency modulation.

    Science.gov (United States)

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  8. Combinations of Genetic Variants Occurring Exclusively in Patients

    Directory of Open Access Journals (Sweden)

    Erling Mellerup

    Full Text Available In studies of polygenic disorders, scanning the genetic variants can be used to identify variant combinations. Combinations that are exclusively found in patients can be separated from those combinations occurring in control persons. Statistical analyses can be performed to determine whether the combinations that occur exclusively among patients are significantly associated with the investigated disorder. This research strategy has been applied in materials from various polygenic disorders, identifying clusters of patient-specific genetic variant combinations that are significant associated with the investigated disorders. Combinations from these clusters are found in the genomes of up to 55% of investigated patients, and are not present in the genomes of any control persons. Keywords: Genetic variants, Polygenic disorder, Combinations of genetic variants, Patient-specific combinations

  9. Golden Rule of Morphology and Variants of Word forms

    Directory of Open Access Journals (Sweden)

    Hlaváčová Jaroslava

    2017-12-01

    Full Text Available In many languages, some words can be written in several ways. We call them variants. Values of all their morphological categories are identical, which leads to an identical morphological tag. Together with the identical lemma, we have two or more wordforms with the same morphological description. This ambiguity may cause problems in various NLP applications. There are two types of variants – those affecting the whole paradigm (global variants and those affecting only wordforms sharing some combinations of morphological values (inflectional variants. In the paper, we propose means how to tag all wordforms, including their variants, unambiguously. We call this requirement “Golden rule of morphology”. The paper deals mainly with Czech, but the ideas can be applied to other languages as well.

  10. Electrophoretic variants of blood proteins in Japanese, 7

    International Nuclear Information System (INIS)

    Satoh, Chiyoko; Takahashi, Norio; Kimura, Yasukazu; Miura, Akiko; Kaneko, Junko; Fujita, Mikio; Toyama, Kyoko.

    1986-11-01

    A total of 16,835 children, of whom 11,737 are unrelated, from Hiroshima and Nagasaki were examined for erythrocyte cytoplasmic glutamate-oxaloacetate transaminase (GOT1) by starch gel electrophoresis. A variant allele named GOT1*2HR1 which seems to be identical with GOT1*2 was encountered in polymorphic frequency. Five kinds of rare variants, 3NG1, 4NG1, 5NG1, 6HR1, and 7NG1 were encountered in a total of 109 children. Except for 7NG1 for which complete family study was unable, family studies confirmed the genetic nature of these rare variants, since for all instances in which both parents could be examined, one of the parents exhibited the same variant as that of their child. Thermostability profiles of these six variants were normal. The enzyme activities of five were decreased, while the value of one was normal compared to that of GOT1 1. (author)

  11. Common and rare variants in SCN10A> modulate the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Jabbari, Javad; Olesen, Morten S.; Yuan, Lei

    2015-01-01

    Background: Genome-wide assocn. studies have shown that the common single nucleotide polymorphism rs6800541 located in SCN10A, encoding the voltage-gated Nav1.8 sodium channel, is assocd. with PR-interval prolongation and atrial fibrillation (AF). Single nucleotide polymorphism rs6800541 is in hi...

  12. Genetic Variants in Serotonin and Corticosteroid Systems Modulate Neuroendocrine and Cardiovascular Responses to Intense Stress

    Science.gov (United States)

    2014-05-10

    approximately 8–20 min fter termination of the acute mock-captivity challenge, depend- ng on individual salivary flow rates. At each time point...Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States Institute for Interdisciplinary Salivary Bioscience Research...antihypertensive medication use (e.g., beta-blockers); and current diagnosis of type 1 diabetes or type 2 diabetes and treated with prescribed medication

  13. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Musak, L.; Frank, Ch.; Kazimirová, A.; Vymetálková, Veronika; Barančoková, M.; Smolková, B.; Dzupinková, Z.; Jirásková, Kateřina; Vodenková, Soňa; Kroupa, Michal; Osina, O.; Naccarati, Alessio; Palitti, F.; Forsti,, A.; Dusinska, M.; Vodičková, Ludmila; Hemminki, K.

    2015-01-01

    Roč. 36, č. 11 (2015), s. 1299-1306 ISSN 0143-3334 R&D Projects: GA ČR(CZ) GA15-14789S Institutional support: RVO:68378041 Keywords : individual susceptibility * colorectal - cancer * oxidative damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.874, year: 2015

  14. Divisible ℤ-modules

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

  15. Bayesian detection of causal rare variants under posterior consistency.

    KAUST Repository

    Liang, Faming

    2013-07-26

    Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  16. Bayesian detection of causal rare variants under posterior consistency.

    Directory of Open Access Journals (Sweden)

    Faming Liang

    Full Text Available Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD, to tackle this problem. The new method simultaneously addresses two issues: (i (Global association test Are there any of the variants associated with the disease, and (ii (Causal variant detection Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  17. Bayesian detection of causal rare variants under posterior consistency.

    KAUST Repository

    Liang, Faming; Xiong, Momiao

    2013-01-01

    Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  18. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis

    NARCIS (Netherlands)

    Rivas, Manuel A.; Graham, Daniel; Sulem, Patrick; Stevens, Christine; Desch, A. Nicole; Goyette, Philippe; Gudbjartsson, Daniel; Jonsdottir, Ingileif; Thorsteinsdottir, Unnur; Degenhardt, Frauke; Mucha, Soeren; Kurki, Mitja I.; Li, Dalin; D'Amato, Mauro; Annese, Vito; Vermeire, Severine; Weersma, Rinse K.; Halfvarson, Jonas; Paavola-Sakki, Paulina; Lappalainen, Maarit; Lek, Monkol; Cummings, Beryl; Tukiainen, Taru; Haritunians, Talin; Halme, Leena; Koskinen, Lotta L. E.; Ananthakrishnan, Ashwin N.; Luo, Yang; Heap, Graham A.; Visschedijk, Marijn C.; MacArthur, Daniel G.; Neale, Benjamin M.; Ahmad, Tariq; Anderson, Carl A.; Brant, Steven R.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Palotie, Aarno; Saavalainen, Paivi; Kontula, Kimmo; Farkkila, Martti; McGovern, Dermot P. B.; Franke, Andre; Stefansson, Kari; Rioux, John D.; Xavier, Ramnik J.; Daly, Mark J.

    Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants

  19. Genetics Home Reference: Ohdo syndrome, Say-Barber-Biesecker-Young-Simpson variant

    Science.gov (United States)

    ... SBBYS variant Ohdo syndrome, Say-Barber-Biesecker-Young-Simpson variant Printable PDF Open All Close All Enable ... collapse boxes. Description The Say-Barber-Biesecker-Young-Simpson (SBBYS) variant of Ohdo syndrome is a rare ...

  20. Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Directory of Open Access Journals (Sweden)

    Marta A Ślimak

    2014-01-01

    Full Text Available The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3 and β4 nicotinic acetylcholine receptor (nAChR subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs with allele frequencies > 0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS, showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine

  1. Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Science.gov (United States)

    Jordan, Valerie K.; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J.; Balci, Tugce B.; Carter, Melissa T.; Bernat, John A.; Moccia, Amanda N.; Srivastava, Anshika; Martin, Donna M.; Bielas, Stephanie L.; Pappas, John; Svoboda, Melissa D.; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M.; Scaglia, Fernando; Kohler, Jennefer N.; Bernstein, Jonathan A.; Dries, Annika M.; Rosenfeld, Jill A.; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H.; Bi, Weimin; Scott, Daryl A.

    2018-01-01

    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. PMID:29330883

  2. Gain-of-function HCN2 variants in genetic epilepsy.

    Science.gov (United States)

    Li, Melody; Maljevic, Snezana; Phillips, A Marie; Petrovski, Slave; Hildebrand, Michael S; Burgess, Rosemary; Mount, Therese; Zara, Federico; Striano, Pasquale; Schubert, Julian; Thiele, Holger; Nürnberg, Peter; Wong, Michael; Weisenberg, Judith L; Thio, Liu Lin; Lerche, Holger; Scheffer, Ingrid E; Berkovic, Samuel F; Petrou, Steven; Reid, Christopher A

    2018-02-01

    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism. © 2017 Wiley Periodicals, Inc.

  3. NMNAT1 variants cause cone and cone-rod dystrophy.

    Science.gov (United States)

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  4. A geometric framework for evaluating rare variant tests of association.

    Science.gov (United States)

    Liu, Keli; Fast, Shannon; Zawistowski, Matthew; Tintle, Nathan L

    2013-05-01

    The wave of next-generation sequencing data has arrived. However, many questions still remain about how to best analyze sequence data, particularly the contribution of rare genetic variants to human disease. Numerous statistical methods have been proposed to aggregate association signals across multiple rare variant sites in an effort to increase statistical power; however, the precise relation between the tests is often not well understood. We present a geometric representation for rare variant data in which rare allele counts in case and control samples are treated as vectors in Euclidean space. The geometric framework facilitates a rigorous classification of existing rare variant tests into two broad categories: tests for a difference in the lengths of the case and control vectors, and joint tests for a difference in either the lengths or angles of the two vectors. We demonstrate that genetic architecture of a trait, including the number and frequency of risk alleles, directly relates to the behavior of the length and joint tests. Hence, the geometric framework allows prediction of which tests will perform best under different disease models. Furthermore, the structure of the geometric framework immediately suggests additional classes and types of rare variant tests. We consider two general classes of tests which show robustness to noncausal and protective variants. The geometric framework introduces a novel and unique method to assess current rare variant methodology and provides guidelines for both applied and theoretical researchers. © 2013 Wiley Periodicals, Inc.

  5. Behavioural-variant frontotemporal dementia: An update

    Directory of Open Access Journals (Sweden)

    Olivier Piguet

    Full Text Available ABSTRACT Behavioural-variant frontotemporal dementia (bvFTD is characterised by insidious changes in personality and interpersonal conduct that reflect progressive disintegration of the neural circuits involved in social cognition, emotion regulation, motivation and decision making. The underlying pathology is heterogeneous and classified according to the presence of intraneuronal inclusions of tau, TDP-43 or occasionally FUS. Biomarkers to detect these histopathological changes in life are increasingly important with the development of disease-modifying drugs. Gene mutations have been found which collectively account for around 10-20% of cases including a novel hexanucleotide repeat on chromosome 9 (C9orf72. The recently reviewed International Consensus Criteria for bvFTD propose three levels of diagnostic certainly: possible, probable and definite. Detailed history taking from family members to elicit behavioural features underpins the diagnostic process with support from neuropsychological testing designed to detect impairment in decision-making, emotion processing and social cognition. Brain imaging is important for increasing the level of diagnosis certainty. Carer education and support remain of paramount importance.

  6. Spatially variant morphological restoration and skeleton representation.

    Science.gov (United States)

    Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan

    2006-11-01

    The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.

  7. CRY2 genetic variants associate with dysthymia.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI. In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419 associated significantly with dysthymia (false discovery rate q<0.05. This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.

  8. Variant Carvajal syndrome with additional dental anomalies.

    Science.gov (United States)

    Barber, Sophy; Day, Peter; Judge, Mary; Toole, Edell O'; Fayle, Stephen

    2012-09-01

    This paper aims to review the case of a girl who presented with a number of dental anomalies, in addition to unusual skin, nail and hair conditions. Tragically an undiagnosed cardiomyopathy caused unexpected sudden death. The case is discussed with reference to a number of dermatological and oral conditions which were considered as possible diagnoses. AW had been under long term dental care for prepubertal periodontitis, premature root resorption of primary teeth, soft tissue and dental anomalies, and angular cheilitis. Separately she had also been seen by several dermatologists with respect to palmar plantar keratosis, striae keratoderma, wiry hair and abnormal finger nails. Tragically the patient suffered a sudden unexpected death and the subsequent post mortem identified an undiagnosed dilated cardiomyopathy. The most likely diagnosis is that this case is a variant of Carvajal Syndrome with additional dental anomalies. To date we have been unable to identify mutations in the desoplakin gene. We aim to emphasise the importance of recognising these dental and dermatological signs when they present together as a potential risk factor for cardiac abnormalities. © 2012 The Authors. International Journal of Paediatric Dentistry © 2012 BSPD, IAPD and Blackwell Publishing Ltd.

  9. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America.

    Science.gov (United States)

    Bermingham, E; Martin, A P

    1998-04-01

    Historical biogeography seeks to explain contemporary distributions of taxa in the context of intrinsic biological and extrinsic geological and climatic factors. To decipher the relative importance of biological characteristics vs. environmental conditions, it is necessary to ask whether groups of taxa with similar distributions share the same history of diversification. Because all of the taxa will have shared the same climatic and geological history, evidence of shared history across multiple species provides an estimate of the role of extrinsic factors in shaping contemporary biogeographic patterns. Similarly, differences in the records of evolutionary history across species will probably be signatures of biological differences. In this study, we focus on inferring the evolutionary history for geographical populations and closely related species representing three genera of primary freshwater fishes that are widely distributed in lower Central America (LCA) and northwestern Colombia. Analysis of mitochondrial gene trees provides the opportunity for robust tests of shared history across taxa. Moreover, because mtDNA permits inference of the temporal scale of diversification we can test hypotheses regarding the chronological development of the Isthmian corridor linking North and South America. We have focused attention on two issues. First, we show that many of the distinct populations of LCA fishes diverged in a relatively brief period of time thus limiting the phylogenetic signal available for tests of shared history. Second, our results provide reduced evidence of shared history when all drainages are included in the analysis because of inferred dispersion events that obscure the evolutionary history among drainage basins. When we restrict the analysis to areas that harbour endemic mitochondrial lineages, there is evidence of shared history across taxa. We hypothesize that there were two to three distinct waves of invasion into LCA from putative source

  10. Rapid radiation in spiny lobsters (Palinurus spp) as revealed by classic and ABC methods using mtDNA and microsatellite data.

    Science.gov (United States)

    Palero, Ferran; Lopes, Joao; Abelló, Pere; Macpherson, Enrique; Pascual, Marta; Beaumont, Mark A

    2009-11-09

    Molecular tools may help to uncover closely related and still diverging species from a wide variety of taxa and provide insight into the mechanisms, pace and geography of marine speciation. There is a certain controversy on the phylogeography and speciation modes of species-groups with an Eastern Atlantic-Western Indian Ocean distribution, with previous studies suggesting that older events (Miocene) and/or more recent (Pleistocene) oceanographic processes could have influenced the phylogeny of marine taxa. The spiny lobster genus Palinurus allows for testing among speciation hypotheses, since it has a particular distribution with two groups of three species each in the Northeastern Atlantic (P. elephas, P. mauritanicus and P. charlestoni) and Southeastern Atlantic and Southwestern Indian Oceans (P. gilchristi, P. delagoae and P. barbarae). In the present study, we obtain a more complete understanding of the phylogenetic relationships among these species through a combined dataset with both nuclear and mitochondrial markers, by testing alternative hypotheses on both the mutation rate and tree topology under the recently developed approximate Bayesian computation (ABC) methods. Our analyses support a North-to-South speciation pattern in Palinurus with all the South-African species forming a monophyletic clade nested within the Northern Hemisphere species. Coalescent-based ABC methods allowed us to reject the previously proposed hypothesis of a Middle Miocene speciation event related with the closure of the Tethyan Seaway. Instead, divergence times obtained for Palinurus species using the combined mtDNA-microsatellite dataset and standard mutation rates for mtDNA agree with known glaciation-related processes occurring during the last 2 my. The Palinurus speciation pattern is a typical example of a series of rapid speciation events occurring within a group, with very short branches separating different species. Our results support the hypothesis that recent climate

  11. [Genetic structure of Hemibarbus labeo and Hemibarbus medius in South China based on mtDNA COI and ND5 genes].

    Science.gov (United States)

    Lan, Zhao Jun; Lin, Long Feng; Zhao, Jun

    2017-04-18

    Both Hemibarbus labeo and H. medius (Cypriniformes: Cyprinidae: Gobioninae) are primary freshwater fishes and are widely distributed. As such, they provide an ideal model for phylogeographical studies. However, the similarity in morphological characters between these two species made the description of their distributions and the validation of species quite challenging. Here we employed variations in the DNA sequences of mitochondrial COI and ND5 genes (2151 bp) to solve this challenge and to study the population genetics structure of these two species. Among the 130 specimens belonging to 8 populations of H. labeo and 9 populations of H. medius from 17 drainage systems in southern China,196 variable sites (9.1% in the full sequences) falling into 50 haplotypes were identified. The haplotype diversity (h) and the nucleotide diversity (π) were 0.964 and 0.019, respectively, indicating a high level of genetic diversity and an evolutionary potential in both species. The result of neighbor-joining tree based on composite nucleotide sequences of the mtDNA COI and ND5 genes showed that the H. labeo and H. medius fell into two major clades (clade1and clade2): clade1was composed of some specimens of Oujiang River, all the specimens of Hanjiang River and Jiulongjiang River, whereas all remaining populations fell in clade2. The genetic distance between clade I and clade II was 0.036, while that between H. labeo and H. medius was 0.027. The haplotype network analyses indicated that the populations of Hanjiang River and Jiulongjiang River had relatively high genetic variation with the rest rivers. The po-pulations of Hainan Island migrated northward to Moyangjaing River. Haplotypes of the rivers of Hainan Island and Moyangjang River had relatively higher genetic variation with the Yangtze River than Pearl River. The populations of Xiangjiang River had no genetic variation with the populations of Guijiang River and Liujiang River. Analysis of molecular variance (AMOVA

  12. Phylogeography of the common vampire bat (Desmodus rotundus: Marked popu