WorldWideScience

Sample records for variables temperature pressure

  1. Pressure and pressure derivative analysis for injection tests with variable temperature without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Martinez, Javier Andres; Montealegre Matilde

    2008-01-01

    The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases

  2. Variability of temperature, evaporation, insolation and sea level pressure in East Malaysia

    International Nuclear Information System (INIS)

    Camerlengo, A.L.; Mohd Nasir Saadon; Lim You Rang; Nhakhorn Somchit; Mohd Mahatir Osman

    1999-01-01

    The interrelation between global warming and certain meteorological parameters - temperature, evaporation, sea level pressure and isolation (hours of sunshine) - in East Malaysia is addressed in this study. The inter-annual climatic variability mainly due to ENSO warm events, is also investigated. The study of the monthly distribution of both evaporation and insolation in East Malaysia (i.e., the Malaysian states of Sabah and Sarawak, both of them situated in the northern part of the island of Borneo) is also covered in this paper (author)

  3. Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts.

    Science.gov (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Voce, Sabrina; Zironi, Roberto

    2017-06-01

    The effects of the number of passes and processing temperature management (controlled vs. uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150MPa. Both variables were able to affect cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic colloids), but the effect of temperature was more important. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a processing temperature of 75°C). The two processing variables also affected the volatile composition of the autolysates produced: higher temperatures led to a lower concentration of volatile compounds. The management of the operating conditions may allow the compositional characteristics of the products to be modulated, making them suitable for different winemaking applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    Science.gov (United States)

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  5. Temperature variability in the day-night cycle is associated with further intracranial pressure during therapeutic hypothermia.

    Science.gov (United States)

    Nogueira, Adriano Barreto; Annen, Eva; Boss, Oliver; Farokhzad, Faraneh; Sikorski, Christopher; Keller, Emanuela

    2017-08-03

    To assess whether circadian patterns of temperature correlate with further values of intracranial pressure (ICP) in severe brain injury treated with hypothermia. We retrospectively analyzed temperature values in subarachnoid hemorrhage patients treated with hypothermia by endovascular cooling. The circadian patterns of temperature were correlated with the mean ICP across the following day (ICP 24 ). We analyzed data from 17 days of monitoring of three subarachnoid hemorrhage patients that underwent aneurysm coiling, sedation and hypothermia due to refractory intracranial hypertension and/or cerebral vasospasm. ICP 24 ranged from 11.5 ± 3.1 to 24.2 ± 6.2 mmHg. The ratio between the coefficient of variation of temperature during the nocturnal period (18:00-6:00) and the preceding diurnal period (6:00-18:00) [temperature variability (TV)] ranged from 0.274 to 1.97. Regression analysis showed that TV correlated with ICP 24 (Pearson correlation = -0.861, adjusted R square = 0.725, p TV) mmHg or, for 80% prediction interval, [Formula: see text] mmHg. The results indicate that the occurrence of ICP 24 higher than 20 mmHg is unlikely after a day with TV ≥1.0. TV correlates with further ICP during hypothermia regardless the strict range that temperature is maintained. Further studies with larger series could clarify whether intracranial hypertension in severe brain injury can be predicted by analysis of oscillation patterns of autonomic parameters across a period of 24 h or its harmonics.

  6. Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - I. Near-surface temperature, precipitation and mean sea level pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seung-Ki; Hense, Andreas [Univ. of Bonn (Germany). Meteorological Inst.; Legutke, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kwon, Won-Tae [Meteorological Research Inst., Seoul (Korea, Republic of)

    2005-08-01

    The internal variability in a 1000-yr control simulation with the coupled atmosphere/ocean global climate model ECHO-G is analysed using near-surface temperature, precipitation and mean sea level pressure variables, and is compared with observations and other coupled climate model simulations. ECHO-G requires annual mean flux adjustments for heat and freshwater in order to simulate no significant climate drift for 1000 yr, but no flux adjustments for momentum. The ECHO-G control run captures well most aspects of the observed seasonal and annual climatology and of the interannual to decadal variability of the three variables. Model biases are very close to those in ECHAM4 (atmospheric component of ECHO-G) stand-alone integrations with prescribed observed sea surface temperature. A trend comparison between observed and modelled near-surface temperatures shows that the observed near-surface global warming is larger than internal variability produced by ECHO-G, supporting previous studies. The simulated global mean near-surface temperatures, however, show a 2-yr spectral peak which is linked with a strong biennial bias of energy in the El Nino Southern Oscillation signal. Consequently, the interannual variability (39 yr) is underestimated.

  7. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  8. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  9. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  10. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  11. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  12. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  13. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  14. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  15. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  16. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  17. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  18. Creep rupture of structures subjected to variable loading and temperature

    International Nuclear Information System (INIS)

    Wojewodzki, W.

    1975-01-01

    The aim of the present paper is to show on the basis of equations and the analysis of creep mechanisms the possibilities of a description of the creep behavior of material under variable temperature and loading conditions. Also the influence of cyclic proportional loading and temperature gradient upon the rupture life and strains of a thick cylinder is investigated in detail. The obtained theoretical creep curves coincide with the experimental results for investigated steel in the temperature range from 500 0 C to 575 0 C. The constitutive equations together with the functions determined previously are applied to solve the problem of thick cylinder subjected to cyclic proportional pressure and temperature gradient. Numerical results for the thick steel cylinder are presented both in diagrammatical and tabular form. The obtained new results clearly show the significant influence of temperature gradient, cyclic temperature gradient, and cyclic pressure upon the stress redistribution, the magnitude of deformation, the propagation of the front damage and the rupture life. It was found that small temperature fluctuations at elevated temperature can shorten the rupture life very considerably. The introduced description of the creep rupture behavior of material under variable temperature and loading conditions together with the results for the thick cylinder indicate the possibilities of solutions of practical problems encountered in structural mechanics of reactor technology

  19. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  20. Variable effects of temperature on insect herbivory

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2014-05-01

    Full Text Available Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.

  1. [Blood pressure variability: clinical interest or simple curiosity?].

    Science.gov (United States)

    Ciaroni, Stefano

    2007-03-14

    Blood pressure variability is a physiological phenomenon influenced by many internal and external factors. This variability could be also influenced by pathological conditions such as arterial hypertension. Two forms must be mainly distinguished: the blood pressure variability at long and short-term. The latter could only be studied by continuous recordings. In this article will be analysed the interest of measuring blood pressure variability, its cardiovascular prognosis and the therapeutic tools when it is increased.

  2. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  3. Transformations in refractory compounds, caused by high pressures and temperatures

    International Nuclear Information System (INIS)

    Zajnulin, Yu.G.; Alyamovskij, S.I.; Shvejkin, G.P.

    1979-01-01

    Considered is the effect of high pressures and temperatures on structural features of refractory carbides, nitrides and monooxides of transition metals. The results are discussed on the basis of one component of the theory on daltonides and bertollides by N.S. Kurnakov - the theory of imaginary compounds, developed by G.B. Bokij. Several new ideas, resulting from this consideration, are formulated, It is shown that at high pressures and temperatures it is possible to obtain new electron modifications of compounds and to expand sufficiently the region of the existance of variable composition phases. The concept on imaginary compounds is shown to be true. A supposition is made on realization of numerous imaginary compounds at high pressures and temperatures. Other ways of production of imaginary compounds are recommended

  4. Quasi-dynamic pressure and temperature

    International Nuclear Information System (INIS)

    Zaug, J M.; Farber, D L; Blosch, L L; Craig, I M; Hansen, D W; Aracne-Ruddle, C M; Shuh, D K

    1998-01-01

    The phase transformation of(beta)-HMX ( and lt; 0.5% RDX) to the(delta) phase has been studied for over twenty years and more recently with an optically sensitive second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al.[l] in 1978. However the stability field favors the(beta) polymorph over(delta) as pressure is increased (up to 5.4 GPa) along any sensible isotherm. In this experiment strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced(beta) - and gt;(delta) transition, the pressure induced is heterogeneous in nature. The room pressure and temperature(delta) - and gt;(beta) transition is not immediate although it seems to occur over tens of hours. Transition points and kinetics are path dependent and so this paper describes our work in progress

  5. Students' Investigations in Temperature and Pressure

    Science.gov (United States)

    Brown, Patrick L.; Concannon, James; Hansert, Bernhard; Frederick, Ron; Frerichs, Glen

    2015-01-01

    Why does a balloon deflate when it is left in a cold car; or why does one have to pump up his or her bike tires in the spring after leaving them in the garage all winter? To answer these questions, students must understand the relationships among temperature, pressure, and volume of a gas. The purpose of the Predict, Share, Observe, and Explain…

  6. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  7. Measurement of very rapidly variable temperatures

    International Nuclear Information System (INIS)

    Elberg, S.; Mathonnet, P.

    1974-01-01

    Bibliographical research and visits to laboratories were undertaken in order to survey the different techniques used to measure rapidly variable temperatures, specifying the limits in maximum temperature and variation rate (time constant). On the basis of the bibliographical study these techniques were classified in three categories according to the physical meaning of their response time. Extension of the bibliographical research to methods using fast temperature variation measurement techniques and visits to research and industrial laboratories gave in an idea of the problems raised by the application of these methods. The use of these techniques in fields other than those for which they were developed can sometimes be awkward in the case of thermometric probe devices where the time constant cannot generally be specified [fr

  8. Pavement Response to Variable Tyre Pressure of Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2016-01-01

    Full Text Available In recent years, the effect of overinflated tyre pressure and increased heavy vehicles’ axle load on flexible pavements has become a subject of great concern because of the higher stress levels induced and damage caused to road pavements. This paper aims to evaluate the effect of variable tyre inflation pressures (using actual tyre contact/footprint area to determine the responses of flexible pavement. A full scale experiment was conducted on a heavy vehicle with 1:1:2 axle configuration, 10 R 20 tyre size and attached trailer with constant axle load. Measurements were made for actual tyre-pavement contact area. KENPAVE linear elastic program was then used to analyse the effects of the measured actual tyre-pavement contact area and the results was compared using conventional circular tyre contact area. A comparative analysis was then made between the actual contact area and the conventional circular tyre contact area. It was found that high tyre inflation pressure produce smaller contact area, giving more detrimental effect on the flexible pavement. It was also found that the temperature of tyres when the heavy vehicles are operational give less significant impact on tyre inflation pressure for the Malaysian climate.

  9. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  10. Transient modelling of a natural circulation loop under variable pressure

    International Nuclear Information System (INIS)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian; Instituto de Engenharia Nuclear

    2017-01-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  11. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  12. Variable pattern contamination control under positive pressure

    International Nuclear Information System (INIS)

    Philippi, H.M.

    1997-01-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs

  13. Variable pattern contamination control under positive pressure

    Energy Technology Data Exchange (ETDEWEB)

    Philippi, H.M. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.

  14. Flexible MOFs under stress: pressure and temperature.

    Science.gov (United States)

    Clearfield, Abraham

    2016-03-14

    In the recent past an enormous number of Metal-Organic Framework type compounds (MOFs) have been synthesized. The novelty resides in their extremely high surface area and the ability to include additional features to their structure either during synthesis or as additives to the MOF. This versatility allows for MOFs to be designed for specific applications. However, the question arises as to whether a particular MOF can withstand the stress that may be encountered in fulfillment of the designated application. In this study we describe the behavior of two flexible MOFs under pressure and several others under temperature increase. The pressure study includes both experimental and theoretical calculations. In the thermal processes evidence for colossal negative thermal expansion were encountered.

  15. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  16. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  17. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  18. Borehole temperature variability at Hoher Sonnblick, Austria

    Science.gov (United States)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  19. Effects of aging on blood pressure variability in resting conditions

    NARCIS (Netherlands)

    Veerman, D. P.; Imholz, B. P.; Wieling, W.; Karemaker, J. M.; van Montfrans, G. A.

    1994-01-01

    The objective of this study was to determine the effect of aging on beat-to-beat blood pressure and pulse interval variability in resting conditions and to determine the effect of aging on the sympathetic and vagal influence on the cardiovascular system by power spectral analysis of blood pressure

  20. Temperature-compensated pressure detectors and transmitter for use in hostile environment

    International Nuclear Information System (INIS)

    Di Noia, E.J.; Breunich, T.R.

    1984-01-01

    A pressure or differential pressure detector suitable for use in a hostile environment, for example, under high pressure, temperature, and radiation conditions in the containment vessel of a nuclear generating plant includes as a transducer a linear variable differential transformer (LVDT) disposed within a detector housing designed to withstand temperatures of about 260 deg C. A signal detecting and conditioning circuit remote from the detector housing includes a demodulator for producing X and Y demodulated signals respectively from A and B secondary windings of the LVDT, a summing circuit for producing a temperature analog voltage X + Y, a subtractor for providing a differential pressure analog voltage X - Y, and a multiplier for multiplying the differential pressure analog voltage X - Y by a temperature compensation voltage X + Y - Ref based on the temperature analog voltage to provide a resulting temperature-compensated differential pressure analog signal. (author)

  1. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  2. Influence of short-term blood pressure variability on blood pressure determinations

    NARCIS (Netherlands)

    Bos, W. J.; van Goudoever, J.; van Montfrans, G. A.; Wesseling, K. H.

    1992-01-01

    To evaluate the effect of blood pressure variability on Riva Rocci Korotkoff blood pressure determinations, we studied the intra-arterial pressure during Riva Rocci Korotkoff determinations in 25 patients. In 50 measurements with a cuff deflation rate of 2.5 mm Hg/sec, the systolic intra-arterial

  3. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Cha, Junepyo

    2015-01-01

    -octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel

  4. Pressure sensor based on distributed temperature sensing

    NARCIS (Netherlands)

    van Baar, J.J.J.; Wiegerink, Remco J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    A differential pressure sensor has been realized with thermal readout. The thermal readout allows simultaneous measurement of the membrane deflection due to a pressure difference and measurement of the absolute pressure by operating the structure as a Pirani pressure sensor. The measuring of the

  5. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  6. Comparing the effect of pressure and temperature on ion mobilities

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2005-01-01

    The effect of pressure on ion mobilities has been investigated and compared with that of temperature. In this connection, an ion mobility spectrometry (IMS) cell, which employs a corona discharge as the ionization source, has been designed and constructed to allow varying pressure inside the drift region. IMS spectra were recorded at various pressures ranging from 15 Torr up to atmospheric pressure. The results show that IMS peaks shift perfectly linear with pressure which is in excellent agreement with the ion mobility theory. However, experimental ion mobilities versus temperature show deviation from the theoretical trend. The deviation is attributed to formation of clusters. The different behaviour of pressure and temperature was explained on the basis of the different impact of pressure and temperature on hydration and clustering of ions. Pressure affects the clustering reactions linearly but temperature affects it exponentially

  7. Clinical study on influences of enteric coated aspirin on blood pressure and blood pressure variability.

    Science.gov (United States)

    Ji, A-L; Chen, W-W; Huang, W-J

    2016-12-01

    We investigated the effects of oral administration of enteric coated aspirin (ASA) on blood pressure and blood pressure variability of hypertension patients before sleep. We observed 150 hypertension cases, classified as Grade 1-2, from September 2006 to March 2008. They are divided into a control group with 30 cases, ASA I group with 60 cases and ASA II group with 60 cases randomly. Subjects in the control group had proper diets, were losing weight, exercising and maintaining a healthy mentality and were taking 30 mg Adalat orally once a day. Based on the treatment of control group, patients in ASA I group were administered 0.1 g Bayaspirin (produced by Bayer Company) at drought in the morning. Also, based on the treatment of control group, patients in ASA II group were administered 0.1 g Bayaspirin at draught before sleep. The course of treatment is 3 months and then after the treatment, decreasing blood pressure and blood pressure variability conditions in three groups will be compared. Through the comparison of ASA II group with the control group, they have differences in terms of systolic blood pressure (SBP), diastolic blood pressure (DBP), decreasing range of blood pressure and blood pressure variability (p sleep has synergistic effects on decreasing blood pressure of hypertension patients and improving blood pressure variability.

  8. Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study

    Science.gov (United States)

    Mahanama, S. P.; Koster, R. D.; Liu, P.

    2006-05-01

    Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.

  9. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  10. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  11. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  12. Conduction mechanism in a novel oxadiazole derivative: effects of temperature and hydrostatic pressure

    International Nuclear Information System (INIS)

    Luo Jifeng; Han Yonghao; Tang Bencheng; Gao Chunxiao; Li Min; Zou Guangtian

    2005-01-01

    The quasi-four-probe resistivity measurement on the microcrystal of 1,4-bis[(4-heptyloxyphenyl)-1,3,4-oxadiazolyl]phenylene (OXD-3) is carried out under variable pressure and temperature conditions using a diamond anvil cell (DAC). Sample resistivity is calculated with a finite element analysis method. The temperature and pressure dependences of the resistivity of OXD-3 microcrystal are measured up to 150 0 C and 15 GPa, and the resistivity of OXD-3 decreases with increasing temperature, indicating that OXD-3 exhibits organic semiconductor transport property in the region of experimental pressure. With an increase of pressure, the resistivity of OXD-3 first increases and reaches a maximum at about 8 GPa, and then begins to decrease at high pressures. From the x-ray diffraction data in DAC under pressure, we can conclude that the anomaly of resistivity variation at 8 GPa results from the pressure-induced amorphism of OXD-3

  13. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  14. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  15. The Benefit of Variable-Speed Turbine Operation for Low Temperature Thermal Energy Power Recovery

    OpenAIRE

    Brasz, Joost J.

    2014-01-01

    This paper analyzes, given the large variation in turbine discharge pressure with changing ambient temperatures, whether variable-speed radial-inflow turbine operation has a similar benefit for Organic Rankine Cycle (ORC) power recovery systems as variable-speed centrifugal compression has for chiller applications. The benefit of variable-speed centrifugal compression over fixed-speed operation is a reduction in annual electricity consumption of almost 40 %. Air-conditioning systems are by ne...

  16. Pirani pressure sensor with distributed temperature measurement

    NARCIS (Netherlands)

    de Jong, B.R.; Bula, W.P.; Zalewski, D.R.; van Baar, J.J.J.; Wiegerink, Remco J.

    2003-01-01

    Surface micro-machined distributed Pirani pressure gauges, with designed heater-to-heat sink distances (gap-heights) of 0.35 μm and 1.10 μm, are successfully fabricated, modeled and characterized. Measurements and model response correspond within 5% of the measured value in a pressure range of 10 to

  17. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Blood Pressure Variability and Cognitive Function Among Older African Americans: Introducing a New Blood Pressure Variability Measure.

    Science.gov (United States)

    Tsang, Siny; Sperling, Scott A; Park, Moon Ho; Helenius, Ira M; Williams, Ishan C; Manning, Carol

    2017-09-01

    Although blood pressure (BP) variability has been reported to be associated with cognitive impairment, whether this relationship affects African Americans has been unclear. We sought correlations between systolic and diastolic BP variability and cognitive function in community-dwelling older African Americans, and introduced a new BP variability measure that can be applied to BP data collected in clinical practice. We assessed cognitive function in 94 cognitively normal older African Americans using the Mini-Mental State Examination (MMSE) and the Computer Assessment of Mild Cognitive Impairment (CAMCI). We used BP measurements taken at the patients' three most recent primary care clinic visits to generate three traditional BP variability indices, range, standard deviation, and coefficient of variation, plus a new index, random slope, which accounts for unequal BP measurement intervals within and across patients. MMSE scores did not correlate with any of the BP variability indices. Patients with greater diastolic BP variability were less accurate on the CAMCI verbal memory and incidental memory tasks. Results were similar across the four BP variability indices. In a sample of cognitively intact older African American adults, BP variability did not correlate with global cognitive function, as measured by the MMSE. However, higher diastolic BP variability correlated with poorer verbal and incidental memory. By accounting for differences in BP measurement intervals, our new BP variability index may help alert primary care physicians to patients at particular risk for cognitive decline.

  19. Characterizing Temperature Variability and Associated Large Scale Meteorological Patterns Across South America

    Science.gov (United States)

    Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.

    2017-12-01

    South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.

  20. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  1. Dynamic of vapor bubble growth in fields of variable pressure

    International Nuclear Information System (INIS)

    Pedroso, H.K.

    1982-01-01

    A mathematical model for the description of the growth from an initial nucleus of a vapor bubble imersed in liquid, subjected to a loss of pressure is presented. The model is important for analysing LOCA (Loss of Coolant Acident) in P.W.R. type reactors. Several simplifications were made in the phenomenum governing equations. With such simplifications the heat diffusion equation became the determining factor for the bubble growth, and the problem was reduced to solve the heat diffusion equation for semi infinite solid whose surface temperature is a well known function of time (it is supposed that the surface temperature is equal to the saturation temperature of the liquid at the system pressure at a given moment). The model results in an analytical expression for the bubble radius as a function of time. Comparisons with experimental data and previous models were made, with reasonable agreement. (author) [pt

  2. Effects of pressure and temperature on gate valve unwedging

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-12-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. {open_quotes}Pressure locking{close_quotes} and {open_quotes}thermal binding{close_quotes} refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an {open_quotes}interference{close_quotes} between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat {open_quotes}interference{close_quotes}. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat {open_quotes}interference{close_quotes} or disk-to-seat friction.

  3. Effects of pressure and temperature on gate valve unwedging

    International Nuclear Information System (INIS)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-01-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. open-quotes Pressure lockingclose quotes and open-quotes thermal bindingclose quotes refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an open-quotes interferenceclose quotes between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat open-quotes interferenceclose quotes. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat open-quotes interferenceclose quotes or disk-to-seat friction

  4. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  5. Viscosity of low-temperature substances at pressure

    International Nuclear Information System (INIS)

    Rudenko, N.S.; Slyusar', V.P.

    1976-01-01

    The review presents an analysis of data available on the viscosity coefficients of hydrogen, deuterohydrogen, deuterium, neon, argon, krypton, xenon, nitrogen and methane under pressure in the temperature range from triple points to 300 deg K. Averaged values of viscosity coefficients for all the substances listed above versus temperature, pressure and density are tabulated

  6. Optical Pressure-Temperature Sensor for a Combustion Chamber

    Science.gov (United States)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  7. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  8. Ambulatory blood pressure monitoring-derived short-term blood pressure variability in primary hyperparathyroidism.

    Science.gov (United States)

    Concistrè, A; Grillo, A; La Torre, G; Carretta, R; Fabris, B; Petramala, L; Marinelli, C; Rebellato, A; Fallo, F; Letizia, C

    2018-04-01

    Primary hyperparathyroidism is associated with a cluster of cardiovascular manifestations, including hypertension, leading to increased cardiovascular risk. The aim of our study was to investigate the ambulatory blood pressure monitoring-derived short-term blood pressure variability in patients with primary hyperparathyroidism, in comparison with patients with essential hypertension and normotensive controls. Twenty-five patients with primary hyperparathyroidism (7 normotensive,18 hypertensive) underwent ambulatory blood pressure monitoring at diagnosis, and fifteen out of them were re-evaluated after parathyroidectomy. Short-term-blood pressure variability was derived from ambulatory blood pressure monitoring and calculated as the following: 1) Standard Deviation of 24-h, day-time and night-time-BP; 2) the average of day-time and night-time-Standard Deviation, weighted for the duration of the day and night periods (24-h "weighted" Standard Deviation of BP); 3) average real variability, i.e., the average of the absolute differences between all consecutive BP measurements. Baseline data of normotensive and essential hypertension patients were matched for age, sex, BMI and 24-h ambulatory blood pressure monitoring values with normotensive and hypertensive-primary hyperparathyroidism patients, respectively. Normotensive-primary hyperparathyroidism patients showed a 24-h weighted Standard Deviation (P blood pressure higher than that of 12 normotensive controls. 24-h average real variability of systolic BP, as well as serum calcium and parathyroid hormone levels, were reduced in operated patients (P blood pressure variability is increased in normotensive patients with primary hyperparathyroidism and is reduced by parathyroidectomy, and may potentially represent an additional cardiovascular risk factor in this disease.

  9. The land/ocean temperature contrast in natural variability

    OpenAIRE

    Tyrrell, Nicholas Luke

    2017-01-01

    In global warming scenarios, global land surface temperatures (T_land) warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/ocean warming temperature contrast. This land/ocean contrast is not only due to the different heat capacities of the land and ocean as it exists for transient and equilibrium scenarios. Similarly, the interannual variability of T_land is larger than the covariant interannual SST variability, leading to a land/ocean ...

  10. Bounding the conservatism in flaw-related variables for pressure vessel integrity analyses

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.

    1993-01-01

    The fracture mechanics-based integrity analysis of a pressure vessel, whether performed deterministically or probabilistically, requires use of one or more flaw-related input variables, such as flaw size, number of flaws, flaw location, and flaw type. The specific values of these variables are generally selected with the intent to ensure conservative predictions of vessel integrity. These selected values, however, are largely independent of vessel-specific inspection results, or are, at best, deduced by ''conservative'' interpretation of vessel-specific inspection results without adequate consideration of the pertinent inspection system performance (reliability). In either case, the conservatism associated with the flaw-related variables chosen for analysis remains examination (NDE) technology and the recently formulated ASME Code procedures for qualifying NDE system capability and performance (as applied to selected nuclear power plant components) now provides a systematic means of bounding the conservatism in flaw-related input variables for pressure vessel integrity analyses. This is essentially achieved by establishing probabilistic (risk)-based limits on the assigned variable values, dependent upon the vessel inspection results and on the inspection system unreliability. Described herein is this probabilistic method and its potential application to: (i) defining a vessel-specific ''reference'' flaw for calculating pressure-temperature limit curves in the deterministic evaluation of pressurized water reactor (PWR) reactor vessels, and (ii) limiting the flaw distribution input to a PWR reactor vessel-specific, probabilistic integrity analysis for pressurized thermal shock loads

  11. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  12. Time and space variability of spectral estimates of atmospheric pressure

    Science.gov (United States)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  13. Contribution of solar radiation to decadal temperature variability over land.

    Science.gov (United States)

    Wang, Kaicun; Dickinson, Robert E

    2013-09-10

    Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

  14. An analysis of system pressure and temperature distribution in self-pressurizer of SMART and calculation of sizing of wet thermal insulator and pressurizer cooler

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    To evaluate the amount of heat transfer from coolant to gas in reactor vessel heat transfer through the structure of pressurizer and evaporation/condensation on surface of liquid pool should be considered. And, also the heat exchange by pressurizer cooler and heat transfer to upper plate of reactor vessel should be considered. Thus, overall examinations on design variables which affect the heat transfer from coolant to gas are needed to maintain the pressurizer conditions at designed value for normal operation through heatup process. The major design variables, which affect system pressure and gas temperature during heatup, and the sizes of wet thermal insulator and pressurizer cooler, and volume of gas cylinder connected to pressurizer. A computer program is developed for the prediction of system pressure and temperature of pressurizer gas region with considering volume expansion of coolant and heat transfer from coolant to gas during heatup. Using the program, this report suggests the optimized design values of wet thermal insulator, pressurizer cooler, and volume of gas cylinder to meet the target conditions for normal operation of SMART. (author). 6 refs., 17 figs., 5 tabs.

  15. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  16. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  17. Temperature noise characteristics of pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1984-01-01

    The core exit temperature noise RMS is linearly related to the core ΔT at a commercial PWR and LOFT. Test loop observations indicate that this linear behavior becomes nonlinear with blockages, boiling, or power skews. The linear neutron flux to temperature noise phase behavior is indicative of a pure time delay process, which has been shown to be related to coolant flow velocity in the core. Therefore, temperature noise could provide a valuable diagnostic tool for the detection of coolant blockages, boiling, and sensor malfunction under both normal and accident conditions in a PWR

  18. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  19. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    Science.gov (United States)

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-07-13

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  20. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Sven Poeggel

    2015-07-01

    Full Text Available This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS. The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI with integrated fibre Bragg grating (FBG for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF acid and femtosecond (FS laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of \\(s_p\\ = 2–10 \\(\\frac{\\text{nm}}{\\text{kPa}}\\ and a resolution of better than \\(\\Delta P\\ = 10 Pa protect (0.1 cm H\\(_2\\O. A static pressure test in 38 cmH\\(_2\\O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H\\(_2\\O in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by \\(k=10.7\\ \\(\\frac{\\text{pm}}{\\text{K}}\\, which results in a temperature resolution of better than \\(\\Delta T\\ = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  1. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  2. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    Directory of Open Access Journals (Sweden)

    Farve Daneshvar Fard

    2014-08-01

    Full Text Available Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on a 40×50 cm2 sheet. Pressure and temperature data and the corresponding maps were displayed on a computer in real-time. Risk assessment could be performed by monitoring and recording absolute pressure and temperature values, as well as deviations over time. Furthermore, a posture detection procedure was proposed for sitting posture identification. Information about the patient’s movement history may help caregivers make informed decisions about the patient’s repositioning and ulcer prevention strategies. Results Steady temporal behaviour of the designed system and repeatability of the measurements were evaluated using several particular tests. The results illustrated that the system could be utilized for continuous monitoring of interface pressure and temperature for pressure ulcer prevention. Furthermore, the proposed method for detecting sitting posture was verified using a statistical analysis. Conclusion A continuous time pressure and temperature monitoring system was presented in this study. This system may be suited for pressure ulcer prevention given its feasibility for simultaneous monitoring of pressure and temperature and alarming options. Furthermore, a method for detecting different sitting postures was proposed and verified. Pressure ulcers in wheelchair-bound patients may be prevented using this sitting posture detection method.

  3. Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations

    Science.gov (United States)

    Stefanski, Philip L.

    2014-01-01

    A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.

  4. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  5. Significance of blood pressure variability in patients with sepsis.

    Science.gov (United States)

    Pandey, Nishant Raj; Bian, Yu-Yao; Shou, Song-Tao

    2014-01-01

    This study was undertaken to observe the characteristics of blood pressure variability (BPV) and sepsis and to investigate changes in blood pressure and its value on the severity of illness in patients with sepsis. Blood parameters, APACHE II score, and 24-hour ambulatory BP were analyzed in 89 patients with sepsis. In patients with APACHE II score>19, the values of systolic blood pressure (SBPV), diasystolic blood pressure (DBPV), non-dipper percentage, cortisol (COR), lactate (LAC), platelet count (PLT) and glucose (GLU) were significantly higher than in those with APACHE II score ≤19 (Pblood cell (WBC), creatinine (Cr), PaO2, C-reactive protein (CRP), adrenocorticotropic hormone (ACTH) and tumor necrosis factor α (TNF-α) were not statistically significant (P>0.05). Correlation analysis showed that APACHE II scores correlated significantly with SBPV and DBPV (P0.05). Logistic regression analysis of SBPV, DBPV, APACHE II score, and LAC was used to predict prognosis in terms of survival and non-survival rates. Receiver operating characteristics curve (ROC) showed that DBPV was a better predictor of survival rate with an AUC value of 0.890. However, AUC of SBPV, APACHE II score, and LAC was 0.746, 0.831 and 0.915, respectively. The values of SBPV, DBPV and non-dipper percentage are higher in patients with sepsis. DBPV and SBPV can be used to predict the survival rate of patients with sepsis.

  6. Alterations in MAST suit pressure with changes in ambient temperature.

    Science.gov (United States)

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  7. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  8. Extent of, and variables associated with, blood pressure variability among older subjects.

    Science.gov (United States)

    Morano, Arianna; Ravera, Agnese; Agosta, Luca; Sappa, Matteo; Falcone, Yolanda; Fonte, Gianfranco; Isaia, Gianluca; Isaia, Giovanni Carlo; Bo, Mario

    2018-02-23

    Blood pressure variability (BPV) may have prognostic implications for cardiovascular risk and cognitive decline; however, BPV has yet to be studied in old and very old people. Aim of the present study was to evaluate the extent of BPV and to identify variables associated with BPV among older subjects. A retrospective study of patients aged ≥ 65 years who underwent 24-h ambulatory blood pressure monitoring (ABPM) was carried out. Three different BPV indexes were calculated for systolic and diastolic blood pressure (SBP and DBP): standard deviation (SD), coefficient of variation (CV), and average real variability (ARV). Demographic variables and use of antihypertensive medications were considered. The study included 738 patients. Mean age was 74.8 ± 6.8 years. Mean SBP and DBP SD were 20.5 ± 4.4 and 14.6 ± 3.4 mmHg. Mean SBP and DBP CV were 16 ± 3 and 20 ± 5%. Mean SBP and DBP ARV were 15.7 ± 3.9 and 11.8 ± 3.6 mmHg. At multivariate analysis older age, female sex and uncontrolled mean blood pressure were associated with both systolic and diastolic BPV indexes. The use of calcium channel blockers and alpha-adrenergic antagonists was associated with lower systolic and diastolic BPV indexes, respectively. Among elderly subjects undergoing 24-h ABPM, we observed remarkably high indexes of BPV, which were associated with older age, female sex, and uncontrolled blood pressure values.

  9. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  10. Temporal and spatial variability in North Carolina piedmont stream temperature

    Science.gov (United States)

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  11. The Southern Oscillation and northern hemisphere temperature variability

    International Nuclear Information System (INIS)

    Ropelewski, C.F.; Halpert, M.S.

    1990-01-01

    The Southern Oscillation (SO) is the best defined and understood mode of interannual climate variability. The extreme phases of the SO have been identified with global-scale variations in the atmosphere/ocean circulation system and with the modulation of monsoon precipitation on the global scale. While SO-related precipitation has been the subject of several studies, the magnitude of the SO-related temperature variability on the global scale has not been well documented. In this paper the authors provide an estimate of the SO-related temperature variability in the context of monitoring global warming related to the increase in greenhouse gases. This analysis suggested that traditional time series of hemispheric and global temperature anomalies for the calendar year may confuse interannual temperature variability associated with the SO and perceived climate trend. Analyses based on calendar-year data are likely to split the effects of the SO-related temperature variability over two years. The Northern Hemisphere cold season (october through March) time series may be more appropriate to separate the SO-related effects on the hemispheric temperature from other modes of variability. mean interannual temperature anomaly differences associated with the extremes of the So are estimated to be 0.2 C for the October-to-March season in the Northern Hemisphere. In areas directly linked to the SO, the mean interannual differences amount to over 0.5 C. The So cannot account for all the variability in the hemispheric times series of surface temperature estimates, but the SO signal must be properly accounted for if these time series are to be understood

  12. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  13. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  14. Innovations in plantar pressure and foot temperature measurements in diabetes

    NARCIS (Netherlands)

    Bus, S. A.

    2016-01-01

    Plantar pressure and temperature measurements in the diabetic foot primarily contribute to identifying abnormal values that increase risk for foot ulceration, and they are becoming increasingly more integrated in clinical practice and daily life of the patient. While plantar pressure measurements

  15. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  16. Quantifying center of pressure variability in chondrodystrophoid dogs.

    Science.gov (United States)

    Blau, S R; Davis, L M; Gorney, A M; Dohse, C S; Williams, K D; Lim, J-H; Pfitzner, W G; Laber, E; Sawicki, G S; Olby, N J

    2017-08-01

    The center of pressure (COP) position reflects a combination of proprioceptive, motor and mechanical function. As such, it can be used to quantify and characterize neurologic dysfunction. The aim of this study was to describe and quantify the movement of COP and its variability in healthy chondrodystrophoid dogs while walking to provide a baseline for comparison to dogs with spinal cord injury due to acute intervertebral disc herniations. Fifteen healthy adult chondrodystrophoid dogs were walked on an instrumented treadmill that recorded the location of each dog's COP as it walked. Center of pressure (COP) was referenced from an anatomical marker on the dogs' back. The root mean squared (RMS) values of changes in COP location in the sagittal (y) and horizontal (x) directions were calculated to determine the range of COP variability. Three dogs would not walk on the treadmill. One dog was too small to collect interpretable data. From the remaining 11 dogs, 206 trials were analyzed. Mean RMS for change in COPx per trial was 0.0138 (standard deviation, SD 0.0047) and for COPy was 0.0185 (SD 0.0071). Walking speed but not limb length had a significant effect on COP RMS. Repeat measurements in six dogs had high test retest consistency in the x and fair consistency in the y direction. In conclusion, COP variability can be measured consistently in dogs, and a range of COP variability for normal chondrodystrophoid dogs has been determined to provide a baseline for future studies on dogs with spinal cord injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Temperature effect compensation for fast differential pressure decay testing

    International Nuclear Information System (INIS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-01-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min −1  can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant. (paper)

  18. Influence of temperature and pressure on the lethality of ultrasound

    International Nuclear Information System (INIS)

    Raso, J.; Pagan, R.; Condon, S.; Sala, F.J.

    1998-01-01

    A specially designed resistometer was constructed, and the lethal effect on Yersinia enterocolitica of ultrasonic waves (UW) at different static pressures (manosonication [MS]) and of combined heat-UW under pressure treatments (manothermosonication [MTS]) was investigated. During MS treatments at 30 degrees C and 200 kPa, the increase in the amplitude of UW of 20 kHz from 21 to 150 micrometers exponentially decreased decimal reduction time values (D(MS)) from 4 to 0.37 min. When pressure was increased from 0 to 600 kPa at a constant amplitude (150 micrometers) and temperature (30 degrees C), D(MS) values decreased from 1.52 to 0.20 min. The magnitude of this decrease in D(MS) declined progressively as pressure was increased. The influence of pressure on D(MS) values was greater with increased amplitude of UW. Pressure alone of as much as 600 kPa did not influence the heat resistance of Y. enterocolitica (D60 = 0.094; zeta = 5.65). At temperatures of as much as 58 degrees C, the lethality of UW under pressure was greater than that of heat treatment alone at the same temperature. At higher temperatures, this difference disappeared. Heat and UW under pressure seemed to act independently. The lethality of MTS treatments appeared to result from the added effects of UW under pressure and the lethal effect of heat. The individual contributions of heat and of UW under pressure to the total lethal effect of MTS depended on temperature. The inactivating effect of UW was not due to titanium particles eroded from the sonication horn. The addition to the MS media of cysteamine did not increase the resistance of Y. enterocolitica to MS treatment. MS treatment caused cell disruption

  19. Plastic Foam Withstands Greater Temperatures And Pressures

    Science.gov (United States)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  20. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  1. Core body temperature, skin temperature, and interface pressure. Relationship to skin integrity in nursing home residents.

    Science.gov (United States)

    Knox, D M

    1999-06-01

    To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.

  2. Temperature measurement in the liquid helium range at pressure

    International Nuclear Information System (INIS)

    Itskevich, E.S.; Krajdenov, V.F.

    1978-01-01

    The use of bronze and germanium resistance thermometers and the use of a (Au + 0.07 % Fe)-Cu thermocouple for temperature measurements from 1.5 to 4.2 K in the hydrostatic compression of up to 10 kbar are considered. To this aim, the thermometer resistance as a function of temperature and pressure is measured. It is revealed that pressure does not change the thermometric response of the bronze resistance thermometer but only shifts it to the region of lower temperatures. The identical investigations of the germanium resistance thermometer shows that strong temperature dependence and the shift of its thermometric response under the influence of pressure make the use of germanium resistance thermometers in high-pressure chambers very inconvenient. The results of the analysis of the (Au + 0.07 % Fe) - Cu thermocouple shows that with a 2 per cent accuracy the thermocouple Seebeck coefficient does not depend on pressure. It permits to use this thermocouple for temperature measurements at high pressures

  3. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  4. Variable intertidal temperature explains why disease endangers black abalone

    Science.gov (United States)

    Ben-Horin, Tal; Lenihan, Hunter S.; Lafferty, Kevin D.

    2013-01-01

    Epidemiological theory suggests that pathogens will not cause host extinctions because agents of disease should fade out when the host population is driven below a threshold density. Nevertheless, infectious diseases have threatened species with extinction on local scales by maintaining high incidence and the ability to spread efficiently even as host populations decline. Intertidal black abalone (Haliotis cracherodii), but not other abalone species, went extinct locally throughout much of southern California following the emergence of a Rickettsiales-like pathogen in the mid-1980s. The rickettsial disease, a condition known as withering syndrome (WS), and associated mortality occur at elevated water temperatures. We measured abalone body temperatures in the field and experimentally manipulated intertidal environmental conditions in the laboratory, testing the influence of mean temperature and daily temperature variability on key epizootiological processes of WS. Daily temperature variability increased the susceptibility of black abalone to infection, but disease expression occurred only at warm water temperatures and was independent of temperature variability. These results imply that high thermal variation of the marine intertidal zone allows the pathogen to readily infect black abalone, but infected individuals remain asymptomatic until water temperatures periodically exceed thresholds modulating WS. Mass mortalities can therefore occur before pathogen transmission is limited by density-dependent factors.

  5. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  6. THE INFLUENCE OF EUROPEAN CLIMATE VARIABILITY MECHANISM ON AIR TEMPERATURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    M. MATEI

    2013-03-01

    Full Text Available The main objective of the present paper is to analyze the temporal and spatial variability of air-temperature in Romania, by using mean air-temperature values provided by the ECA&D project (http://eca.knmi.nl/. These data sets will be filtered by means of the EOF (Empirical Orthogonal Function analysis, which describes various modes of space variability and time coefficient series (PC series. The EOF analysis will also be used to identify the main way of action of the European climate variability mechanism, by using multiple variables in grid points, provided by the National Centre of Atmospheric Research (NCAR, USA. The variables considered here are: sea level pressure (SLP, geopotential height at 500 mb (H500 and air temperature at 850 mb (T850, for the summer and winter seasons. The linear trends and shift points of considered variables are then assessed by means of the Mann-Kendall and Pettitt non-parametric tests. By interpreting the results, we can infer that there is causal relationship between the large-scale analyzed parameters and temperature variability in Romania. These results are consistent with those presented by Busuioc et al., 2010, where the main variation trends of the principal European variables are shown.

  7. Determination of temperature and pressure in the calcium reduction process

    International Nuclear Information System (INIS)

    Arceri, Mariana E.

    1997-01-01

    The calcium reduction process consists in the reduction of uranium tetrafluoride (UF 4 ) with calcium in a refractory material crucible, in order to obtain metallic uranium. The crucible is in turn contained in a steel reactor, heated by means of an induction coil to bring the reagents from the environmental temperature to the temperature necessary for the reaction starting. For the design of the reactor, mathematical expressions that allow to estimate the temperature and pressure of the system have been developed

  8. Properties of planetary fluids at high pressure and temperature

    International Nuclear Information System (INIS)

    Nellis, W.J.; Hamilton, D.C.; Holmes, N.C.; Radousky, H.B.; Ree, F.H.; Ross, M.; Young, D.A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N 2 and CH 4 . Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space

  9. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  10. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Science.gov (United States)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  11. Film bulk acoustic resonator pressure sensor with self temperature reference

    International Nuclear Information System (INIS)

    He, X L; Jin, P C; Zhou, J; Wang, W B; Dong, S R; Luo, J K; Garcia-Gancedo, L; Flewitt, A J; Milne, W I

    2012-01-01

    A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately −17.4 ppm kPa −1 , while that for the second peak is approximately −6.1 ppm kPa −1 , both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. (paper)

  12. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  13. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  15. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  16. Blood pressure variability in children with primary vs secondary hypertension.

    Science.gov (United States)

    Leisman, Daniel; Meyers, Melissa; Schnall, Jeremy; Chorny, Nataliya; Frank, Rachel; Infante, Lulette; Sethna, Christine B

    2014-06-01

    Increased blood pressure variability (BPV) is correlated with adverse cardiovascular (CV) events in adults. However, there has been limited research on its effect in the pediatric population. Additionally, BPV differences between primary and secondary hypertension (HTN) are not known. Children with primary and secondary HTN underwent 24-hour ambulatory blood pressure monitoring and echocardiography studies. BPV measures of standard deviation (SD), average real variability (ARV), and range were calculated for the 24-hour, daytime, and nighttime periods. Seventy-four patients (median age, 13.5 years; 74% boys) were examined, 40 of whom had primary HTN. Body mass index z score and age were independent predictors of systolic ARV (R(2) =0.14) and SD (R(2) =0.39). There were no statistically significant differences in overall or wake period BPV measures between secondary or primary HTN groups, but sleep period diastolic SD was significantly greater in the secondary HTN group (9.26±3.8 vs 7.1±2.8, P=.039). On multiple regression analysis, secondary HTN was associated with increased sleep period diastolic SD (P=.025). No metrics of BPV in the overall, wake, and sleep periods were found to be significantly associated with left ventricular hypertrophy (LVH). The results of this study do not show a strong relationship between overall or wake BPV with primary vs secondary HTN, but the association of secondary HTN with sleep period diastolic BPV deserves further exploration. Contrary to expectation, the findings of this study failed to indicate a relationship between BPV and LVH for all patients as well for primary hypertensive and secondary hypertensive patients. ©2014 Wiley Periodicals, Inc.

  17. Variability in Measured Space Temperatures in 60 Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.; Lay, K.

    2013-03-01

    This report discusses the observed variability in indoor space temperature in a set of 60 homes located in Florida, New York, Oregon, and Washington. Temperature data were collected at 15-minute intervals for an entire year, including living room, master bedroom, and outdoor air temperature (Arena, et. al). The data were examined to establish the average living room temperature for the set of homes for the heating and cooling seasons, the variability of living room temperature depending on climate, and the variability of indoor space temperature within the homes. The accuracy of software-based energy analysis depends on the accuracy of input values. Thermostat set point is one of the most influential inputs for building energy simulation. Several industry standards exist that recommend differing default thermostat settings for heating and cooling seasons. These standards were compared to the values calculated for this analysis. The data examined for this report show that there is a definite difference between the climates and that the data do not agree well with any particular standard.

  18. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  19. Measurement of rock properties at elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Pincus, H.J.; Hoskins, E.R.

    1985-01-01

    The papers in this volume were presented at an ASTM symposium held on 20 June 1983 in conjunction with the 24th Annual Rock Mechanics Symposium at Texas A and M University, College Station, TX. The purpose of these papers is to present recent developments in the measurement of rock properties at elevated pressures and temperatures, and to examine and interpret the data produced by such measurement. The need for measuring rock properties at elevated pressures and temperatures has become increasingly important in recent years. Location and design of nuclear waste repositories, development of geothermal energy sites, and design and construction of deep excavations for civil, military, and mining engineering require significantly improved capabilities for measuring rock properties under conditions substantially different from those prevailing in most laboratory and in situ work. The development of high-pressure, high-temperature capabilities is also significant for the analysis of tectonic processes

  20. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  1. Pressure and Temperature Sensors Using Two Spin Crossover Materials.

    Science.gov (United States)

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-02-02

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  2. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    Science.gov (United States)

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-01-01

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. PMID:26848663

  3. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    Directory of Open Access Journals (Sweden)

    Catalin-Maricel Jureschi

    2016-02-01

    Full Text Available The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  4. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  5. Pressure and temperature development in solar heating system during stagnation

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Chen, Ziqian

    2010-01-01

    of the pipes of the solar collector loop. During the investigation the pre-pressure of the expansion vessel and system filling pressure was changed. The investigations showed that a large pressurised expansion vessel will protect the collector loop from critically high temperatures as long as the solar......This paper presents an investigation of stagnation in solar collectors and the effects it will have on the collector loop. At a laboratory test stand at the Technical University of Denmark, a pressurized solar collector loop was designed to test different numbers of collectors and different designs...

  6. Stream temperature variability: why it matters to salmon

    Science.gov (United States)

    E. Ashley Steel; Brian Beckman; Marie Oliver

    2014-01-01

    Salmon evolved in natural river systems, where temperatures fluctuate daily, weekly, seasonally, and all along a stream’s path—from the mountains to the sea. Climate change and human activities alter this natural variability. Dams, for example, tend to reduce thermal fluctuations.Currently, scientists gauge habitat suitability for aquatic species by...

  7. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis africana and the copepod Acartia natalensis) and their temperate congenerics (M. wooldridgei and A. longipatella) was investigated over a 10-year period in the Mgazi Estuary, ...

  8. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature

    International Nuclear Information System (INIS)

    Lasebikan, B.A.; Akisanya, A.R.

    2014-01-01

    The burst pressure of super duplex stainless steel pipe is measured under combined internal pressure, external axial tension and elevated temperature up to 160 °C. The experimental results are compared with existing burst pressure prediction models. Existing models are found to provide reasonable estimate of the burst pressure at room temperature but significantly over estimate the burst pressure at elevated temperature. Increasing externally applied axial stress and elevated temperature reduces the pressure capacity. - Highlights: • The burst pressure of super duplex steel is measured under combined loading. • Effect of elevated temperature on burst pressure is determined. • Burst pressure decreases with increasing temperature. • Existing models are reliable at room temperature. • Burst strength at elevated temperature is lower than predictions

  9. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  10. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    Science.gov (United States)

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  11. Observed Decrease of North American Winter Temperature Variability

    Science.gov (United States)

    Rhines, A. N.; Tingley, M.; McKinnon, K. A.; Huybers, P. J.

    2015-12-01

    There is considerable interest in determining whether temperature variability has changed in recent decades. Model ensembles project that extratropical land temperature variance will detectably decrease by 2070. We use quantile regression of station observations to show that decreasing variability is already robustly detectable for North American winter during 1979--2014. Pointwise trends from GHCND stations are mapped into a continuous spatial field using thin-plate spline regression, resolving small-scales while providing uncertainties accounting for spatial covariance and varying station density. We find that variability of daily temperatures, as measured by the difference between the 95th and 5th percentiles, has decreased markedly in winter for both daily minima and maxima. Composites indicate that the reduced spread of winter temperatures primarily results from Arctic amplification decreasing the meridional temperature gradient. Greater observed warming in the 5th relative to the 95th percentile stems from asymmetric effects of advection during cold versus warm days; cold air advection is generally from northerly regions that have experienced greater warming than western or southwestern regions that are generally sourced during warm days.

  12. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  13. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  14. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  15. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  16. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    Science.gov (United States)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-01-01

    In a recent paper in "The Physics Teacher (TPT)", DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of…

  17. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  18. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.

    1997-01-01

    Thermal composition fluctuations in a homogeneous binary polymer blend and in a diblock copolymer were measured by small-angle neutron scattering as a function of temperature and pressure. The experimental data were analyzed with theoretical expressions, including the important effect of thermal...... fluctuations. Phase boundaries, the Flory-Huggins interaction parameter and the Ginzburg number were obtained. The packing of the molecules changes with pressure. Therefore, the degree of thermal fluctuation as a function of packing and temperature was studied. While in polymer blends packing leads, in some...... respects, to a universal behaviour, such behaviour is not found in diblock copolymers. It is shown that the Ginzburg number decreases with pressure sensitively in blends, while it is constant in diblock copolymers. The Ginzburg number is an estimation of the transition between the universality classes...

  19. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  20. Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1.

    Science.gov (United States)

    Somkuti, Judit; Bublin, Merima; Breiteneder, Heimo; Smeller, László

    2012-07-31

    Fish allergy is associated with IgE-mediated hypersensitivity reactions to parvalbumins, which are small calcium-binding muscle proteins and represent the major and sole allergens for 95% of fish-allergic patients. We performed Fourier transform infrared and tryptophan fluorescence spectroscopy to explore the pressure-temperature (p-T) phase diagram of cod parvalbumin (Gad m 1) and to elucidate possible new ways of pressure-temperature inactivation of this food allergen. Besides the secondary structure of the protein, the Ca(2+) binding to aspartic and glutamic acid residues was detected. The phase diagram was found to be quite complex, containing partially unfolded and molten globule states. The Ca(2+) ions were essential for the formation of the native structure. A molten globule conformation appears at 50 °C and atmospheric pressure, which converts into an unordered aggregated state at 75 °C. At >200 MPa, only heat unfolding, but no aggregation, was observed. A pressure of 500 MPa leads to a partially unfolded state at 27 °C. The complete pressure unfolding could only be reached at an elevated temperature (40 °C) and pressure (1.14 GPa). A strong correlation was found between Ca(2+) binding and the protein conformation. The partially unfolded state was reversibly refolded. The completely unfolded molecule, however, from which Ca(2+) was released, could not refold. The heat-unfolded protein was trapped either in the aggregated state or in the molten globule state without aggregation at elevated pressures. The heat-treated and the combined heat- and pressure-treated protein samples were tested with sera of allergic patients, but no change in allergenicity was found.

  1. Temperature measurement in low pressure plasmas. Temperaturmessungen im Niederdruckplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbauer, K.A.; Wilting, H.; Schramm, G. (Duesseldorf Univ. (Germany, F.R.). Abt. fuer Histologie und Embryologie)

    1989-11-01

    The present work discusses the influence of various parameters on the substrate temperature in a low pressure plasma. The measurement method chosen utilized Signotherm (Merck) temperature sensors embedded in silicon between two glass substrates. All measurements were made in a 200 G Plasma Processor from Technics Plasma GmbH. The substrate temperature is dependent on the process time, the RF power, the process gas and the position in the chamber. The substrate temperature increases with increasing process time and increasing power. Due to the location of the microwave port from the magnetron to the chamber, the substrate temperature is highest in the center of the chamber. Measurements performed in an air plasma yielded higher results than in an oxygen plasma. (orig.).

  2. Influence of sleep apnea severity on blood pressure variability of patients with hypertension.

    Science.gov (United States)

    Steinhorst, Ana P; Gonçalves, Sandro C; Oliveira, Ana T; Massierer, Daniela; Gus, Miguel; Fuchs, Sandra C; Moreira, Leila B; Martinez, Denis; Fuchs, Flávio D

    2014-05-01

    Obstructive sleep apnea (OSA) is a risk factor for the development of hypertension and cardiovascular disease. Apnea overloads the autonomic cardiovascular control system and may influence blood pressure variability, a risk for vascular damage independent of blood pressure levels. This study investigates the hypothesis that blood pressure variability is associated with OSA. In a cross-sectional study, 107 patients with hypertension underwent 24-h ambulatory blood pressure monitoring and level III polysomnography to detect sleep apnea. Pressure variability was assessed by the first derivative of blood pressure over time, the time rate index, and by the standard deviation of blood pressure measurements. The association between the apnea-hypopnea index and blood pressure variability was tested by univariate and multivariate methods. The 57 patients with apnea were older, had higher blood pressure, and had longer duration of hypertension than the 50 patients without apnea. Patients with apnea-hypopnea index (AHI) ≥ 10 had higher blood pressure variability assessed by the standard deviation than patients with AHI variability assessed by the time rate index presented a trend for association during sleep (P = 0.07). Daytime blood pressure variability was not associated with the severity of sleep apnea. Sleep apnea increases nighttime blood pressure variability in patients with hypertension and may be another pathway linking sleep abnormalities to cardiovascular disease.

  3. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  4. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    Science.gov (United States)

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  5. Coral bleaching pathways under the control of regional temperature variability

    Science.gov (United States)

    Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.

    2017-11-01

    Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

  6. Multidisciplinary Treatment of the Metabolic Syndrome Lowers Blood Pressure Variability Independent of Blood Pressure Control.

    Science.gov (United States)

    Marcus, Yonit; Segev, Elad; Shefer, Gabi; Sack, Jessica; Tal, Brurya; Yaron, Marianna; Carmeli, Eli; Shefer, Lili; Margaliot, Miri; Limor, Rona; Gilad, Suzan; Sofer, Yael; Stern, Naftali

    2016-01-01

    Blood pressure (BP) variability (BPV) contributes to target organ damage independent of BP. The authors examined the effect of a 1-year multidisciplinary intervention on BPV in patients with the metabolic syndrome (MetS) as defined by criteria from the Third Report of the Adult Treatment Panel. Forty-four nondiabetic patients underwent clinical and biochemical profiling, 24-hour ambulatory BP monitoring (ABPM), body composition, carotid intima-media thickness, and carotid-femoral pulse wave velocity (PWV). The intervention targeted all MetS components. BPV was assessed by the standard deviation of daytime systolic BP derived from ABPM. Patients with low and high BPV (lower or higher than the median daytime standard deviation of 11.6 mm Hg) did not differ in regards to systolic and diastolic BP, age, fasting glucose, glycated hemoglobin, and body mass index, but the high-variability group had higher values of low-density lipoprotein and leg fat. The 1-year intervention resulted in weight reduction but not BP-lowering. BPV declined in the high-variability group in association with lowering of PWV, C-reactive protein, glycated hemoglobin, alanine aminotransferase, asymmetric dimethylarginine, and increased high-density lipoprotein cholesterol. A multidisciplinary intervention independent of BP-lowering normalized BPV, lowered PWV, and enhanced metabolic control. © 2015 Wiley Periodicals, Inc.

  7. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  8. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  9. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  10. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  11. Time-Dependent Drug Administration in Hypertension and its Effect on Blood Pressure Variability

    Directory of Open Access Journals (Sweden)

    Magdás Annamária

    2017-06-01

    Full Text Available Background: Optimizing blood pressure variability seems to represent a new therapeutic target in the management of hypertension. It is emphasized that scheduling at least one antihypertensive agent at bedtime, has the ability to reduce blood pressure.

  12. Time-Dependent Drug Administration in Hypertension and its Effect on Blood Pressure Variability

    OpenAIRE

    Magdás Annamária; Podoleanu Cristian; Tusa Anna-Boróka; Găburoi Adina; Incze Alexandru

    2017-01-01

    Background: Optimizing blood pressure variability seems to represent a new therapeutic target in the management of hypertension. It is emphasized that scheduling at least one antihypertensive agent at bedtime, has the ability to reduce blood pressure.

  13. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  14. An organic cosmo-barometer: Distinct pressure and temperature effects for methyl substituted polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Montgomery, Wren; Watson, Jonathan S.; Sephton, Mark A.

    2014-01-01

    There are a number of key structures that can be used to reveal the formation and modification history of organic matter in the cosmos. For instance, the susceptibility of organic matter to heat is well documented and the relative thermal stabilities of different isomers can be used as cosmothermometers. Yet despite being an important variable, no previously recognized organic marker of pressure exists. The absence of a pressure marker is unfortunate considering our ability to effectively recognize extraterrestrial organic structures both remotely and in the laboratory. There are a wide variety of pressures in cosmic settings that could potentially be reflected by organic structures. Therefore, to develop an organic cosmic pressure marker, we have used state-of-the-art diamond anvil cell (DAC) and synchrotron-source Fourier transform infrared (FTIR) spectroscopy to reveal the effects of pressure on the substitution patterns for representatives of the commonly encountered methyl substituted naphthalenes, specifically the dimethylnaphthalenes. Interestingly, although temperature and pressure effects are concordant for many isomers, pressure appears to have the opposite effect to heat on the final molecular architecture of the 1,5-dimethylnaphthalene isomer. Our data suggest the possibility of the first pressure parameter or 'cosmo-barometer' (1,5-dimethylnaphthalene/total dimethylnaphthalenes) that can distinguish pressure from thermal effects. Information can be obtained from the new pressure marker either remotely by instrumentation on landers or rovers or directly by laboratory measurement, and its use has relevance for all cases where organic matter, temperature, and pressure interplay in the cosmos.

  15. The Temperature and Salinity Variabilities at Cisadane Estuary

    Directory of Open Access Journals (Sweden)

    Hadikusumah

    2008-11-01

    Full Text Available The study was conducted at Cisadane Estuary at 18 oceanographic station in Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II from 2003 to 2005. The area of the study was located at the longitude of 106.58° - 106.70° E and the latitude of 5.96° - 6.02°S. The measurements of temperature, salinity, tubidity and light transmision used CTD (Conductivity, Temperature and Depth Model SBE-19. The result shows that the temperature and salinity vertical profil variabilities at Cisadane Estuary underwent a change in the influence of Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II, for example it was obtained the leg time of the maximum salinity of Transition Monsoon Season II as the same as that of East Monsoon Season. Based on the horizontal and vertical distribution pattern analysis of the interaction between low salinity fresh water of Cisadane River and high salinity sea water of Java Sea, it was also influenced by the season variability and tide. The surface layer was much more influenced by the low salinity and the heat of sunray (seasonal variability with the weaker intensity to the lower layer. The change of the heat energy by the increase of seasonal temperature occurred in September 2003 to May 2004 ((ΔE = 600.6 ⋅ 105 Joule, July to November 2005 (ΔE = 84.9 Joule. The decrease of the heat energy occurred in June to September 2003 ((-267.6 ⋅ 105, May ke October 2004 (ΔE = 189.3 ⋅ 105 Joule and October 2004 to July 2005 (ΔE = -215.4 ⋅ 105 Joule.

  16. Mesopause region temperature variability and its trend in southern Brazil

    Science.gov (United States)

    Venturini, Mateus S.; Bageston, José V.; Caetano, Nattan R.; Peres, Lucas V.; Bencherif, Hassan; Schuch, Nelson J.

    2018-03-01

    Nowadays, the study of the upper atmosphere is increasing, mostly because of the need to understand the patterns of Earth's atmosphere. Since studies on global warming have become very important for the development of new technologies, understanding all regions of the atmosphere becomes an unavoidable task. In this paper, we aim to analyze the temperature variability and its trend in the mesosphere and lower thermosphere (MLT) region during a period of 12 years (from 2003 to 2014). For this purpose, three different heights, i.e., 85, 90 and 95 km, were focused on in order to investigate the upper atmosphere, and a geographic region different to other studies was chosen, in the southern region of Brazil, centered in the city of Santa Maria, RS (29°41'02'' S; 53°48'25'' W). In order to reach the objectives of this work, temperature data from the SABER instrument (Sounding of the Atmosphere using Broadband Emission Radiometry), aboard NASA's Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, were used. Finally, two cases were studied related to distinct grids of latitude/longitude used to obtain the mean temperature profiles. The first case considered a grid of 20° × 20° lat/long, centered in Santa Maria, RS, Brazil. In the second case, the region was reduced to a size of 15° × 15° in order to compare the results and discuss the two cases in terms of differences or similarities in temperature trends. Observations show that the size of the geographical area used for the average temperature profiles can influence the results of variability and trend of the temperature. In addition, reducing the time duration of analyses from 24 to 12 h a day also influences the trend significantly. For the smaller geographical region (15° × 15°) and the 12 h daily time window (09:00-21:00 UT) it was found that the main contributions for the temperature variability at the three heights were the annual and semi-annual cycles and the solar flux influence

  17. Relationship of pressure to temperature rise in overfilled cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.

    1979-01-01

    Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)

  18. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  19. Intraseasonal sea surface temperature variability in Indonesian seas

    Science.gov (United States)

    Napitu, A. M.; Gordon, A. L.; Yuan, X.

    2012-12-01

    The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an average SST standard deviation (STD) between 0.4-0.5°C, with strongest signature during boreal winter. What physical processes force the SST ISV variability within the Indonesian seas? Ocean process, sea-air interaction, or both? To help identify the main forcing, the satellite derived outgoing longwave radiation (OLR) and wind stress data in the region are examined. The OLR shows robust intraseasonal variations and is significantly correlated with the SST, particularly for variability with periods of 30-60 days, with OLR accounting for ~60-70% of the SST variance. The OLR is also maximum during boreal winter. Conversely, the surface wind may play insignificant role in perturbing the SST at intraseasonal timescales as shown by weak correlation between wind stress and SST. We thus suspect that the surface solar flux (suggested by the OLR) is likely more dominant than the surface turbulent heat flux (indicated by the surface wind) as the main source for the ISV in the SST in Indonesian seas. Furthermore the maximum OLR phase, coupled with a period of minimum mixed layer depth, may explain the strong SST variation during boreal winter in Indonesian seas. The influence of the Madden-Julian Oscillation (MJO) on the OLR and SST variability is currently being evaluated.

  20. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  1. Pressurized-helium breakdown at very low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Metas, R J

    1972-06-01

    An investigation of the electrical-breakdown behavior of helium at very low temperatures has been carried out to assist the design and development of superconducting power cables. At very high densities, both liquid and gaseous helium showed an enhancement in electric strength when pressurized to a few atmospheres; conditioned values of breakdown fields then varied between 30 and 45 MV/m. Breakdown processes occurring over a wide range of helium densities are discussed. 24 references.

  2. Pipe connection for high pressure and temperature loads

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Paetz, E.; Stach, H.

    1976-01-01

    The patent proposes an inprovement of the clamping device for a pipe joint connecting pipelines which are subject to high pressure and temperature loads, e.g. in a nuclear power plant. This clamping device may be tightened and loosened by remote control. The proposed clamping ring consists of several segments connected with each other by hinge-type guide pins and fishplates. (UWI) [de

  3. Volatility of coal liquids at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G M; Johnston, R H; Hwang, S C; Tsonopoulos, C

    1981-01-01

    The volatility of coal liquids has been experimentally determined at 700-880 F and about 2000 psia. These measurements were made in a flow apparatus to minimize thermal decomposition effects at high temperatures. Three coal liquids in mixture with Hat2, methane, and Hat2S were investigated. Measurements were also made up to 900 F on the vapor pressure of pure compounds found in coal liquids and on the equilibrium pressure of narrow coal liquid cuts. These data were used to develop a new method for the prediction of the critical point and the superatmospheric vapour pressures of aromatic fractions that is superior to the Maxwell-Bonnell correlation. The VLE data on coal liquids and some recent high-temperature VLE data on binaries of aromatics with Hat2 or methane were analyzed with a modified Chao-Seader correlation and a modified Redlich-Kwong equation of state. Both VLE correlations are shown to be equivalent in the prediction of the volatility of coal liquids, when the new vapour pressure procedure is used.

  4. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  5. Temperature and Pressure Effects on Drilling Fluid Rheology and ECD in Very Deep Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, R.; Bjoerkvoll, K.S.

    1997-12-31

    The rheological properties of drilling fluids are usually approximated to be independent of pressure and temperature. In many cases this is a good approximation. However, for wells with small margins between pore and fracture pressure, careful evaluations and analysis of the effects of temperature and pressure on well bore hydraulics and kick probability are needed. In this publication the effects of pressure and temperature are discussed and described for typical HPHT (High Pressure High Temperature) wells. Laboratory measurements show that rheology is very pressure and temperature dependent. The practical implications of these observations are illustrated through a series of calculations with an advanced pressure and temperature simulator. 10 refs., 15 figs.

  6. New type of Piezoresistive Pressure Sensors for Environments with Rapidly Changing Temperature

    Directory of Open Access Journals (Sweden)

    Tykhan Myroslav

    2017-03-01

    Full Text Available The theoretical aspects of a new type of piezo-resistive pressure sensors for environments with rapidly changing temperatures are presented. The idea is that the sensor has two identical diaphragms which have different coefficients of linear thermal expansion. Therefore, when measuring pressure in environments with variable temperature, the diaphragms will have different deflection. This difference can be used to make appropriate correction of the sensor output signal and, thus, to increase accuracy of measurement. Since physical principles of sensors operation enable fast correction of the output signal, the sensor can be used in environments with rapidly changing temperature, which is its essential advantage. The paper presents practical implementation of the proposed theoretical aspects and the results of testing the developed sensor.

  7. Patterns of blood pressure variability in normotensive and hypertensive rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; He, J; Wagner, A J

    1995-01-01

    We sought patterns in mean arterial pressure of normotensive rats and alterations in chronic hypertension. Pressure was recorded for 4-6 days by telemetry from conscious, unrestrained rats and sampled digitally at 3 Hz, using normotensive Sprague-Dawley rats, spontaneously hypertensive rats (SHR)...... the day; less pronounced in 2K,1C; and not detectable in SHR. There are regular patterns of blood pressure fluctuations and specific modifications to the patterns by different forms of hypertension.......We sought patterns in mean arterial pressure of normotensive rats and alterations in chronic hypertension. Pressure was recorded for 4-6 days by telemetry from conscious, unrestrained rats and sampled digitally at 3 Hz, using normotensive Sprague-Dawley rats, spontaneously hypertensive rats (SHR...

  8. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  9. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  10. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  11. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  12. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  13. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    Science.gov (United States)

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  14. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  15. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  16. New pressure and temperature effects on bacterial spores

    International Nuclear Information System (INIS)

    Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  17. Complexation of Plutonium (IV) With Sulfate At Variable Temperatures

    International Nuclear Information System (INIS)

    Y. Xia; J.I. Friese; D.A. Moore; P.P. Bachelor; L. Rao

    2006-01-01

    The complexation of plutonium(IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO 3 solution was used as holding oxidant to maintain the plutonium(IV) oxidation state throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-HSO 4 - complexes, dominant in the aqueous phase, were calculated from the effect of [HSO 4 - ] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van't Hoff equation

  18. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  19. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  20. The effect of temperature and pressure on the crystal structure of piperidine.

    Science.gov (United States)

    Budd, Laura E; Ibberson, Richard M; Marshall, William G; Parsons, Simon

    2015-01-01

    The response of molecular crystal structures to changes in externally applied conditions such as temperature and pressure are the result of a complex balance between strong intramolecular bonding, medium strength intermolecular interactions such as hydrogen bonds, and weaker intermolecular van der Waals contacts. At high pressure the additional thermodynamic requirement to fill space efficiently becomes increasingly important. The crystal structure of piperidine-d11 has been determined at 2 K and at room temperature at pressures between 0.22 and 1.09 GPa. Unit cell dimensions have been determined between 2 and 255 K, and at pressures up to 2.77 GPa at room temperature. All measurements were made using neutron powder diffraction. The crystal structure features chains of molecules formed by NH…N H-bonds with van der Waals interactions between the chains. Although the H-bonds are the strongest intermolecular contacts, the majority of the sublimation enthalpy may be ascribed to weaker but more numerous van der Waals interactions. Analysis of the thermal expansion data in the light of phonon frequencies determined in periodic DFT calculations indicates that the expansion at very low temperature is governed by external lattice modes, but above 100 K the influence of intramolecular ring-flexing modes also becomes significant. The principal directions of thermal expansion are determined by the sensitivity of different van der Waals interactions to changes in distance. The principal values of the strain developed on application of pressure are similarly oriented to those determined in the variable-temperature study, but more isotropic because of the need to minimise volume by filling interstitial voids at elevated pressure. Graphical AbstractThough H-bonds are important interactions in the crystal structure of piperidine, the response to externally-applied conditions are determined by van der Waals interactions.

  1. Fuel assembly for pressure loss variable PWR type reactor

    International Nuclear Information System (INIS)

    Yoshikuni, Masaaki.

    1993-01-01

    In a PWR type reactor, a pressure loss control plate is attached detachably to a securing screw holes on the lower surface of a lower nozzle to reduce a water channel cross section and increase a pressure loss. If a fuel assembly attached with the pressure loss control plate is disposed at a periphery of the reactor core where the power is low and heat removal causes no significant problem, a flowrate at the periphery of the reactor core is reduced. Since this flowrate is utilized for removal of heat from fuel assemblies of high powder at the center of the reactor core where a pressure loss control plate is not attached, a thermal limit margin of the whole reactor core is increased. Thus, a limit of power peaking can be moderated, to obtain a fuel loading pattern improved with neutron economy. (N.H.)

  2. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Thermoelasticity at High Temperatures and Pressures for Ta

    International Nuclear Information System (INIS)

    Orlikowski, D; Soderlind, P; Moriarty, J A

    2004-01-01

    A new methodology for calculating high temperature and pressure elastic moduli in metals has been developed accounting for both the electron-thermal and ion-thermal contributions. Anharmonic and quasi-harmonic thermoelasticity for bcc tantalum have thereby been calculated and compared as a function of temperature (<12,000 K) and pressure (<10 Mbar). In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is closely coupled with ion-thermal contributions obtained via multi-ion, quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT). For the later contributions two separate approaches are used. In one approach, the quasi-harmonic ion-thermal contribution is obtained through a Brillouin zone sum of the strain derivatives of the phonons, and in the other the anharmonic ion-thermal contribution is obtained directly through Monte Carlo (MC) canonical distribution averages of strain derivatives on the multi-ion potentials themselves. The resulting elastic moduli compare well in each method and to available ultrasonic measurements and diamond-anvil-cell compression experiments indicating minimal anharmonic effects in bcc tantalum over the considered pressure range

  4. Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2013-10-01

    Full Text Available Precise understanding of Greenland temperature variability is important in two ways. First, Greenland ice sheet melting associated with rising temperature is a major global sea level forcing, potentially affecting large populations in coming centuries. Second, Greenland temperatures are highly affected by North Atlantic Oscillation/Arctic Oscillation (NAO/AO and Atlantic multidecadal oscillation (AMO. In our earlier study, we found that Greenland temperature deviated negatively (positively from northern hemispheric (NH temperature trend during stronger (weaker solar activity owing to changes in atmospheric/oceanic changes (e.g. NAO/AO over the past 800 yr (Kobashi et al., 2013. Therefore, a precise Greenland temperature record can provide important constraints on the past atmospheric/oceanic circulation in the region and beyond. Here, we investigated Greenland temperature variability over the past 4000 yr reconstructed from argon and nitrogen isotopes from trapped air in a GISP2 ice core, using a one-dimensional energy balance model with orbital, solar, volcanic, greenhouse gas, and aerosol forcings. The modelled northern Northern Hemisphere (NH temperature exhibits a cooling trend over the past 4000 yr as observed for the reconstructed Greenland temperature through decreasing annual average insolation. With consideration of the negative influence of solar variability, the modelled and observed Greenland temperatures agree with correlation coefficients of r = 0.34–0.36 (p = 0.1–0.04 in 21 yr running means (RMs and r = 0.38–0.45 (p = 0.1–0.05 on a centennial timescale (101 yr RMs. Thus, the model can explain 14 to 20% of variance of the observed Greenland temperature in multidecadal to centennial timescales with a 90–96% confidence interval, suggesting that a weak but persistent negative solar influence on Greenland temperature continued over the past 4000 yr. Then, we estimated the distribution of multidecadal NH and northern high

  5. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  6. Variables predicting elevated portal pressure in alcoholic liver disease. Results of a multivariate analysis

    DEFF Research Database (Denmark)

    Krogsgaard, K; Christensen, E; Gluud, C

    1987-01-01

    In 46 alcoholic patients the association of wedged-to-free hepatic-vein pressure with other variables (clinical, histologic, hemodynamic, and liver function data) was studied by means of multiple regression analysis, taking the wedged-to-free hepatic-vein pressure as the dependent variable. Four ...

  7. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  8. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  9. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  10. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    Science.gov (United States)

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  11. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    Science.gov (United States)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  12. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  13. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  14. New Challenges for the Pressure Evolution of the Glass Temperature

    Directory of Open Access Journals (Sweden)

    Sylwester J. Rzoska

    2017-11-01

    Full Text Available The ways of portrayal of the pressure evolution of the glass temperature (Tg beyond the dominated Simon–Glatzel-like pattern are discussed. This includes the possible common description of Tg(P dependences in systems described by dTg/dP > 0 and dTg/dP < 0. The latter can be associated with the maximum of Tg(P curve hidden in the negative pressures domain. The issue of volume and density changes along the vitrification curve is also discussed. Finally, the universal pattern of vitrification associated with the crossover from the low density (isotropic stretching to the high density (isotropic compression systems is proposed. Hypothetically, it may obey any glass former, from molecular liquids to colloids.

  15. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  16. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  17. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  18. CONTEMPT, LWR Containment Pressure and Temperature Distribution in LOCA

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Cheng, Teh-Chin; Wheat, L.L.; Mings, W.J.

    1991-01-01

    1 - Description of problem or function: CONTEMPT-LT was developed to predict the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. CONTEMPT-LT calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided for fan cooler and cooling spray engineered safety systems. One to four compartments can be modeled, and any compartment except the reactor system may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. The user determines the compartments to be used, specifies input mass and energy additions, defines heat structure and leakage systems, and prescribes the time advancement and output control. CONTEMPT-LT/28-H (NESC0433/08) includes also models for hydrogen combustion. 2 - Method of solution: The initial conditions of the containment atmosphere are calculated from input values, and the initial temperature distributions through the containment structures are determined from the steady-state solution of the heat conduction equations. A time advancement proceeds as follows. The input water and energy rates are evaluated at the midpoint of a time interval and added to the containment system. Pressure suppression, spray system effects, and fan cooler effects are calculated using conditions at the beginning of a time-step. Leakage and heat losses or gains, extrapolated from the last time-step, are added to the containment system. Containment volume pressure and temperature are estimated by solving the mass, volume, and energy balance equations. Using these results as boundary conditions, the heat conduction equations

  19. MEDEA, Steady-State Pressure and Temperature Distribution in He H2O Steam Generator

    International Nuclear Information System (INIS)

    Hansen, Ulf

    1976-01-01

    1 - Nature of physical problem solved: MEDEA calculates the time-independent pressure and temperature distribution in a helium-water steam generator. The changing material properties of the fluids with pressure and temperature are treated exactly. The steam generator may consist of economizer, evaporator, superheater and reheater in variable flow patterns. In case of reheating the high-pressure turbine is taken into account. The main control circuits influencing the behaviour of the system are simulated. These are water spraying of the hot steam, load-dependent control of steam pressure at the HP-turbine inlet and valves before the LP-turbine to ensure constant pressure in the reheater section. Investigations of hydrodynamic flow stability in single tubes can be performed. 2 - Method of solution: The steam generator is calculated as a 1-dimensional model, (i.e. all parallel tubes working under equal conditions) and is divided into small heat exchanger elements with helium and water in ideal parallel or counter flow. The material and thermodynamic properties are kept constant within one element. The calculations start at the cold end of the steam generator and proceed stepwise along the water flow pattern to produce pressure and temperature distributions of helium and water. The gas outlet temperature is changed until convergence is reached with a continuous temperature profile on the gas side. MEDEA chooses the iteration scheme according to flow pattern and other special arrangements in the steam generator. The hydrodynamic stability is calculated for a single tube assuming that all tubes are exposed to the same gas temperature profile and changing the water flow in a single tube will not influence the conditions on the gas side. Varying the water flow by keeping gas temperature constant and repeating the steam generator calculations yield pressure drop and steam temperature as a function of flow rate. 3 - Restrictions on the complexity of the problem: Maximum

  20. Temperature and pressure instrumentation in WWERs and their testing

    International Nuclear Information System (INIS)

    Por, G.

    1998-01-01

    A description of WWER model V-213 reactors of second generation is presented and compared to analogous NPPs including description of temperature and pressure instrumentation which was tested at Paks NPP. From the experimental results it was concluded that measured response of in core neutron detector to bubbles strongly depends on the relative position of detector and point bubble injection. Neutron noise spectra show characteristic sink when the origin of bubbles is close to the detectors. Dependence of phase behaviour on the boiling conditions is included as well

  1. Static pressure and temperature coefficients of laboratory standard microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1996-01-01

    of the microphone. The static pressure and temperature coefficients were determined experimentally for about twenty samples of type BK 4160 and BK 4180 microphones. The results agree almost perfectly with the predictions for BK 4160, while some modifications of the lumped parameter values are called for to make......-order approximation of resonances in the back cavity. It was found that each of the coefficients, for a given type of microphone, can be expressed by a single function when the coefficients are normalized by their low-frequency value and the frequency axis normalized by the individual resonance frequency...

  2. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  3. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  4. Investigation on the Permeability Evolution of Gypsum Interlayer Under High Temperature and Triaxial Pressure

    Science.gov (United States)

    Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu

    2017-08-01

    The permeability of the surrounding rock is a critical parameter for the designing and assessment of radioactive waste disposal repositories in the rock salt. Generally, in the locations that are chosen for radioactive waste storage, the bedded rock salt is a sedimentary rock that contains NaCl and Na2SO4. Most likely, there are also layers of gypsum ( {CaSO}_{ 4} \\cdot 2 {H}_{ 2} {O)} present in the salt deposit. Radioactive wastes emit a large amount of heat and hydrogen during the process of disposal, which may result in thermal damage of the surrounding rocks and cause a great change in their permeability and tightness. Therefore, it is necessary to investigate the permeability evolution of the gypsum interlayer under high temperature and high pressure in order to evaluate the tightness and security of the nuclear waste repositories in bedded rock salt. In this study, a self-designed rock triaxial testing system by which high temperature and pressure can be applied is used; the μCT225kVFCB micro-CT system is also employed to investigate the permeability and microstructure of gypsum specimens under a constant hydrostatic pressure of 25 MPa, an increasing temperature (ranging from 20 to 650 °C), and a variable inlet gas pressure (1, 2, 4, 6 MPa). The experimental results show: (a) the maximum permeability measured during the whole experiment is less than 10-17 m2, which indicates that the gypsum interlayer has low permeability under high temperature and pressure that meet the requirements for radioactive waste repository. (b) Under the same temperature, the permeability of the gypsum specimen decreases at the beginning and then increases as the pore pressure elevates. When the inlet gas pressure is between 0 and 2 MPa, the Klinkenberg effect is very pronounced. Then, as the pore pressure increases, the movement behavior of gas molecules gradually changes from free motion to forced directional motion. So the role of free movement of gas molecules gradually

  5. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  6. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    Science.gov (United States)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  7. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  8. Variable high pressure processing sensitivities for GII human noroviruses

    Science.gov (United States)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is one of the most promising non-thermal technologies for decontamination of viral pathogens in foods. However, the survival of HuNoVs by HPP is poorly understood because these viruses cann...

  9. Liquefaction of Warukin Formation Coal, Barito Basin, South Kalimantan on Low Pressure and Low Temperature

    Directory of Open Access Journals (Sweden)

    Edy Nursanto

    2013-06-01

    Full Text Available Research focusing on the quality of coal in Warukin Formation has been conducted in coal outcrops located on Tabalong area, particularly in 3 coal seams, namely Wara 120 which consists of low rank coal (lignite. Meanwhile, coals in seam Tutupan 210 and Paringin 712 are medium rank coal (sub-bituminous. Coal liquefaction is conducted in an autoclave on low pressure and temperature. Pressure during the process is 14 psi and temperature is 120oC. Catalyst used are alumina, hydrogen donor NaOH and water solvent. Liquefaction is conducted in three times variables of 30 minutes, 60 minutes and 90 minutes. This process shows following yield : Wara seam 120: 25.37% - 51.27%; Tutupan seam 210: 3.02%-15.45% and seam Paringin 712:1.99%-11.95%. The average result of yield shows that coals in seam Wara has higher yield conversion than coals in seam Tutupan and Paringin.

  10. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  11. Self-contained high-pressure chambers for study on the Moessbauer effect at low temperatures

    International Nuclear Information System (INIS)

    Stepanov, G.N.

    1980-01-01

    Designs of two high-pressure chambers intended for studying the Moessbauer effect at low temperatures are described. The high-pressure chamber of the Bridgman anvil type is made of non magnetic materials and intended for operation at helium temperatures. The chamber employs a superconducting pressure gage. A sample and superconducting pressure gage are surrounded with a liquid medium of a high pressure at a room temperature. Measurements of the pressure were taken during heating the chamber in the vapours of liquid helium according to the known dependence of the lead superconducting transition temperature on pressure. The other high-pressure chamber of the piston-to-cylinder type can be used to study the Moessbauer effect at temperatures ranging from 4 to 300 K. Pressure in the chamber is measured by means of the superconducting pressure gage. The maximum pressure obtained in the chamber constitutes 25 kbar

  12. [The association between blood pressure variability and sleep stability in essential hypertensive patients with sleep disorder].

    Science.gov (United States)

    Zhu, Y Q; Long, Q; Xiao, Q F; Zhang, M; Wei, Y L; Jiang, H; Tang, B

    2018-03-13

    Objective: To investigate the association of blood pressure variability and sleep stability in essential hypertensive patients with sleep disorder by cardiopulmonary coupling. Methods: Performed according to strict inclusion and exclusion criteria, 88 new cases of essential hypertension who came from the international department and the cardiology department of china-japan friendship hospital were enrolled. Sleep stability and 24 h ambulatory blood pressure data were collected by the portable sleep monitor based on cardiopulmonary coupling technique and 24 h ambulatory blood pressure monitor. Analysis the correlation of blood pressure variability and sleep stability. Results: In the nighttime, systolic blood pressure standard deviation, systolic blood pressure variation coefficient, the ratio of the systolic blood pressure minimum to the maximum, diastolic blood pressure standard deviation, diastolic blood pressure variation coefficient were positively correlated with unstable sleep duration ( r =0.185, 0.24, 0.237, 0.43, 0.276, P Blood pressure variability is associated with sleep stability, especially at night, the longer the unstable sleep duration, the greater the variability in night blood pressure.

  13. High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm.

    Science.gov (United States)

    Olbers, Joakim; Gille, Adam; Ljungman, Petter; Rosenqvist, Mårten; Östergren, Jan; Witt, Nils

    2018-02-07

    Atrial fibrillation (AF) is associated with an increased risk for cardiovascular morbidity and mortality, not entirely explained by thromboembolism. The underlying mechanisms for this association are largely unknown. Similarly, high blood pressure (BP) increases the risk for cardiovascular events. Despite this the interplay between AF and BP is insufficiently studied. The purpose of this study was to examine and quantify the beat-to-beat blood pressure variability in patients with AF in comparison to a control group of patients with sinus rhythm. We studied 33 patients - 21 in atrial fibrillation and 12 in sinus rhythm - undergoing routine coronary angiography. Invasive blood pressure was recorded at three locations: radial artery, brachial artery and ascending aorta. Blood pressure variability, defined as average beat-to-beat blood pressure difference, was calculated for systolic and diastolic blood pressure at each site. We observed a significant difference (p blood pressure variability between the atrial fibrillation and sinus rhythm groups at all locations. Systolic blood pressure variability roughly doubled in the atrial fibrillation group compared to the sinus rhythm group (4.9 and 2.4 mmHg respectively). Diastolic beat-to-beat blood pressure variability was approximately 6 times as high in the atrial fibrillation group compared to the sinus rhythm group (7.5 and 1.2 mmHg respectively). No significant difference in blood pressure variability was seen between measurement locations. Beat-to-beat blood pressure variability in patients with atrial fibrillation was substantially higher than in patients with sinus rhythm. Hemodynamic effects of this beat-to-beat variation in blood pressure may negatively affect vascular structure and function, which may contribute to the increased cardiovascular morbidity and mortality seen in patients with atrial fibrillation.

  14. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  15. Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature

    International Nuclear Information System (INIS)

    Bremer, K; Moss, B; Leen, G; Mueller, I; Lewis, E; Lochmann, S

    2009-01-01

    This paper presents a novel concept of simultaneously measuring pressure and temperature using a silica optical fibre extrinsic Fabry-Perot interferometric (EFPI) pressure sensor incorporating a fibre Bragg grating (FBG), which is constructed entirely from fused-silica. The novel device is used to simultaneously provide accurate pressure and temperature readings at the point of measurement. Furthermore, the FBG temperature measurement is used to eliminate the temperature cross-sensitivity of the EFPI pressure sensor.

  16. Internally generated natural variability of global-mean temperatures

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Raper, S.C.B.

    1990-01-01

    Quantitative frequency-domain and time-domain estimates are made of an important aspect of natural variability of global-mean temperatures, namely, passive internal variability resulting from the modulation of atmospheric variability by the ocean. The results are derived using an upwelling-diffusion, energy-balance climate model. In the frequency domain, analytical spectral results show a transition from a high-frequency region in which the response is determined by the mixed-layer heat capacity and is independent of the climate sensitivity (time scales less than around 10 years), to a low-frequency region in which the response depends only on the climate sensitivity. In the former region the spectral power is proportional to f -2 , where f is the frequency, while in the latter the power is independent of frequency. The range of validity of these results depends on the components of the climate system that are included in the model. In this case these restrict the low-frequency results to time scales less than about 1,000 years. A qualitative extrapolation is presented in an attempt to explain the observed low-frequency power spectra from deep-sea-core δ 18 O time series. The spectral results are also used to estimate the effective heat capacity of the ocean as a function of frequency. At low frequencies, this can range up to 50 times greater than the heat capacity of the mixed layer. Results in the time domain are obtained by solving the model equations numerically

  17. Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology

    Science.gov (United States)

    Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng

    2018-03-01

    The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P plant species in other climates and environments using similar methods to our study.

  18. High Pressure and High Temperature State of Oxygen Enriched Ice

    Science.gov (United States)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  19. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  20. Variable reluctance displacement transducer temperature compensated to 6500F

    International Nuclear Information System (INIS)

    1975-01-01

    In pressurized water reactor tests, compact instruments for accurate measurement of small displacements in a 650 0 F environment are often required. In the case of blowdown tests such as the Loss of Fluid Test (LOFT) or Semiscale computer code development tests, not only is the initial environment water at 650 0 F and 2200 psi but it undergoes a severe transient due to depressurization. Since the LOFT and Semiscale tests are run just for the purpose of obtaining data during the depressurization, instruments used to obtain the data must not give false outputs induced by the change in environment. A LOFT rho v 2 probe and a Semiscale drag disk are described. Each utilizes a variable reluctance transducer (VRT) for indication of the drag-disk location and a torsion bar for drag-disk restoring force. The VRT, in addition to being thermally gain and null offset stable, is fabricated from materials known to be resistant to large nuclear radiation levels and has successfully passed a fast neutron radiation test of 2.7 x 10 17 nvt without failure

  1. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  2. Reproducibility of heart rate variability, blood pressure variability and baroreceptor sensitivity during rest and head-up tilt

    DEFF Research Database (Denmark)

    Højgaard, Michael V; Agner, Erik; Kanters, Jørgen K

    2005-01-01

    OBJECTIVE: Previous studies have indicated moderate-to-poor reproducibility of heart rate variability (HRV) but the reproducibility of blood pressure variability (BPV) and spectral measures of baroreceptor sensitivity (BRS) are not well established. METHODS: We measured normal-to-normal heart beat...... pressures were extracted for the assessment of day-to-day and short-term reproducibility. Power spectrum analysis (Fourier) and transfer function analysis was performed. Reproducibility was assessed using the coefficient of variation (CV). The reproducibility of the mean RR interval, mean systolic......, diastolic and mean blood pressure was good (CVspectral parameters of HRV (CV range 18-36%) and BPV (16-44%) and moderate reproducibility of BRS (14-20%). CONCLUSION: Spectral estimates of BRS had only moderate reproducibility although...

  3. Constant pressure and temperature discrete-time Langevin molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  4. Pressure Resistance Welding of High Temperature Metallic Materials

    International Nuclear Information System (INIS)

    Jerred, N.; Zirker, L.; Charit, I.; Cole, J.; Frary, M.; Butt, D.; Meyer, M.; Murty, K.L.

    2010-01-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400 C has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  5. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature

    Science.gov (United States)

    Graybiel, A.; Lackner, J. R.

    1980-01-01

    This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.

  6. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon

    2015-11-02

    Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions. An attempt to scale the effect of pressure on total ignition delay was undertaken and the equivalence ratio exponent and activation energy in the Arrhenius expression of total ignition delay were determined. Ignition delay results indicated that there were strong correlations of pressure, temperature, and equivalence ratio under most conditions studied except at relatively low pressures. Diesel (DCN 52.5) and n-heptane (DCN 54) fuels exhibited reasonably similar ignition delay characteristics, while iso-octane showed a distinct behavior under low temperature regime having a two-stage ignition, which substantiate the adoption of the gradient method in determining ignition delay.

  7. The high temperature out-of-pile test of LVDT for internal pressure measurement of nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Kim, D. S.; Yoon, K. B.; Sin, Y. T.; Park, S. J.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT(Linear Variable Differential Transformer). As the results of out-of-pile test at room temperature, it was concluded that the well qualified out-of-pile tests were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for pressure measurement was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C increasing the pressure from 0 bar to 30 bar. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT at high temperature was introduced. It is known that the results will be used to predict accurately the internal pressure of fuel rod during irradiation test.

  8. Variable prognostic value of blood pressure response to exercise.

    Science.gov (United States)

    Kato, Yuko; Suzuki, Shinya; Uejima, Tokuhisa; Semba, Hiroaki; Yamashita, Takeshi

    2018-01-01

    The aim of this study was to evaluate the impact of patient background including exercise capacity on the relationship between the blood pressure (BP) response to exercise and prognosis in patients visiting a cardiovascular hospital. A total of 2134 patients who were referred to our hospital underwent symptom-limited maximal cardiopulmonary exercise testing, and were followed through medical records and mail. The BP response to exercise was defined as the difference between peak and rest systolic BP. The end point was set as cardiovascular events including cardiovascular death, acute coronary syndrome, hospitalization for heart failure, and cerebral infarction. During a median follow-up period of 3 years, 179 (8%) patients reached the end point (2.5%/year). Multivariate analysis showed that BP response was independently and negatively associated with the occurrence of the end point. This prognostic significance of BP response was consistent regardless of left ventricular ejection fraction, renal function, presence of heart failure symptoms, the presence of organic heart disease, and hypertension. However, peak VO 2 showed a significant interaction with the effects of BP response on the end point, suggesting that the prognostic value of BP response was limited in patients with preserved exercise capacity. The role of BP response to exercise as the predictor depends on exercise capacity of each patient. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  9. Clinical Operations Variables are Associated With Blood Pressure Outcomes.

    Science.gov (United States)

    Kressin, Nancy R; Lasser, Karen E; Paasche-Orlow, Michael; Allison, Jeroan; Ash, Arlene S; Adams, William G; Shanahan, Christopher W; Legler, Aaron; Pizer, Steven D

    2015-06-01

    Uncontrolled blood pressure (BP), among patients diagnosed and treated for the condition, remains an important clinical challenge; aspects of clinical operations could potentially be adjusted if they were associated with better outcomes. To assess clinical operations factors' effects on normalization of uncontrolled BP. Observational cohort study. Patients diagnosed with hypertension from a large urban clinical practice (2005-2009). We obtained clinical data on BP, organized by person-month, and administrative data on primary care provider (PCP) staffing. We assessed the resolution of an episode of uncontrolled BP as a function of time-varying covariates including practice-level appointment volume, individual clinicians' appointment volume, overall practice-level PCP staffing, and number of unique PCPs. Among the 7409 unique patients representing 50,403 person-months, normalization was less likely for the patients in whom the episode starts during months when the number of unique PCPs were high [the top quintile of unique PCPs was associated with a 9 percentage point lower probability of normalization (Ppercentage point reduction in the probability of normalization (P=0.01)]. Neither clinician appointment volume nor practice clinician staffing levels were significantly associated with the probability of normalization. Findings suggest that clinical operations factors can affect clinical outcomes like BP normalization, and point to the importance of considering outcome effects when organizing clinical care.

  10. Studies on synthesis of diamond at high pressure and temperature

    Science.gov (United States)

    Kailath, Ansu J.

    Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first

  11. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  12. Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube

    Science.gov (United States)

    Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2017-03-01

    The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.

  13. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  14. Nocturnal Blood Pressure Variability in Patients with Obstructive Sleep Apnea Syndrome.

    Science.gov (United States)

    Martynowicz, H; Porębska, I; Poręba, R; Mazur, G; Brzecka, A

    2016-01-01

    Obstructive sleep apnea (OSA) is a common respiratory disorder associated with hypertension and cardiovascular complications. Blood pressure variability may be a sign of risk of cardiovascular events. The aim of this study was to investigate the hypothesis that severe OSA syndrome is associated with increased blood pressure variability. Based on respiratory polygraphy, 58 patients were categorized into two groups: severe OSA with apnea/hypopnea index (AHI) greater than 29 episodes per hour (mean 52.2 ± 19.0/h) and mild-to-moderate OSA with AHI between 5 and 30 episodes per hour (mean 20.2 ± 7.8/h). A 24-h noninvasive blood pressure monitoring was performed. The standard deviation of mean blood pressure was used as the indicator of blood pressure variability. In patients with severe, compared with mild-to-moderate OSA, a higher mean nocturnal systolic blood pressure (133.2 ± 17.4 mmHg vs. 117.7 ± 31.2 mmHg, p variability (12.1 ± 6.0 vs. 7.6 ± 4.3, p variability (10.5 ± 6.1 vs. 7.3 ± 4.0 p variability (9.1 ± 4.9 mmHg vs. 6.8 ± 3.5 mmHg) were detected. The findings of the study point to increased nocturnal systolic and diastolic arterial blood pressure and blood pressure variability as risk factors of cardiovascular complications in patients with severe OSA.

  15. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  16. An analysis of system pressure and temperature distribution in self-pressurizer of SMART considering thermal stratification at intermediate cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    Because the pressurizer is in reactor vessel, the heat transfer from primary water would increase the temperatures of fluids in pressurizer to same temperature of hotleg, if no cooling equipment were supplied. Thus, heat exchanger and thermal insulator are needed to minimize heat transferred from primary water and to remove heat in pressurizer. The temperatures in cavities of pressurizer for normal operation are 70 deg C and 74 deg C for intermediate and end cavity, respectively, which considers the solubility of nitrogen gas in water. Natural convection is the mechanism of heat balance in pressurizer of SMART. In SMART, the heat exchanger in pressurizer is placed in lower part of intermediate cavity, so the heat in upper part of intermediate cavity can't be removed adequately and it can cause thermal stratification. If thermal stratification occurred, it increases heat transfers to nitrogen gas and system pressure increases as the result. Thus, proper evaluation of those effects on system pressure and ways to mitigate thermal stratification should be established. This report estimates the system pressure and temperatures in cavities of pressurizer with considering thermal stratification in intermediate cavity. The system pressure and temperatures for each cavities considered size of wet thermal insulator, temperature of upper plate of reactor vessel, parameters of heat exchanger in intermediate cavity such as flow rate and temperature of cooling water, heat transfer area, effective tube height, and location of cooling tube. In addition to the consideration of thermal stratification thermal mixing of all water in intermediate cavity also considered and compared in this report. (author). 6 refs., 60 figs., 2 tabs.

  17. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    Science.gov (United States)

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  18. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea

    2014-10-31

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  19. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea; Guermond, Jean-Luc; Lee, Sanghyun

    2014-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  20. High pressure apparatus for hydrogen isotopes to pressures of 345 MPa (50,000 psi) and temperatures of 12000C

    International Nuclear Information System (INIS)

    Lakner, J.F.

    1977-01-01

    A functional new high pressure, high temperature apparatus for hydrogen isotopes uses an internally heated pressure vessel within a larger pressure vessel. The pressure capability is 345 MPa (50 K psi) at 1200 0 C. The gas pressure inside the internal vessel is balanced with gas pressure in the external vessel. The internal vessel is attached to a closure and is also the sample container. Our design allows thin-walled internal vessel construction and keeps the sample from ''seeing'' the furnace or other extraneous environment. The sample container together with the closure can easily be removed and loaded under argon using standard glove-box procedures. The small volume of the inner vessel permits small volumes of gas to be used, thus increasing the sensitivity during pressure-volume-temperature (PVT) work

  1. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    International Nuclear Information System (INIS)

    Li Chen; Tan Qiu-Lin; Xue Chen-Yang; Zhang Wen-Dong; Li Yun-Zhi; Xiong Ji-Jun

    2015-01-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. (paper)

  2. The equilibrium hydrogen pressure-temperature diagram for the liquid sodium-hydrogen-oxygen system

    International Nuclear Information System (INIS)

    Knights, C.F.; Whittingham, A.C.

    1982-01-01

    The underlying equilibria in the sodium-hydrogen-oxygen system are presented in the form of a completmentary hydrogen equilibrium pressure-temperature diagram, constructed by using published data and supplemented by experimental measurements of hydrogen equilibrium pressures over condensed phases in the system. Possible applications of the equilibrium pressure-temperature phase diagram limitations regarding its use are outlined

  3. Associations of blood pressure variability and retinal arteriolar diameter in participants with type 2 diabetes.

    Science.gov (United States)

    Veloudi, Panagiota; Blizzard, Leigh; Srikanth, Velandai K; McCartney, Paul; Lukoshkova, Elena V; Hughes, Alun D; Head, Geoffrey A; Sharman, James E

    2016-07-01

    Blood pressure variability is associated with macrovascular complications and stroke, but its association with the microcirculation in type II diabetes has not been assessed. This study aimed to determine the relationship between blood pressure variability indices and retinal arteriolar diameter in non-diabetic and type II diabetes participants. Digitized retinal images were analysed to quantify arteriolar diameters in 35 non-diabetic (aged 52 ± 11 years; 49% male) and 28 type II diabetes (aged 61 ± 9 years; 50% male) participants. Blood pressure variability was derived from 24-h ambulatory blood pressure. Arteriolar diameter was positively associated with daytime rate of systolic blood pressure variation (p = 0.04) among type II diabetes participants and negatively among non-diabetics (p = 0.008; interaction p = 0.001). This finding was maintained after adjusting for age, sex, body mass index and mean daytime systolic blood pressure. These findings suggest that the blood pressure variability-related mechanisms underlying retinal vascular disease may differ between people with and without type II diabetes. © The Author(s) 2016.

  4. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    Science.gov (United States)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  5. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    Science.gov (United States)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  6. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  7. Atmospheric temperature and pressure influence the onset of spontaneous pneumothorax.

    Science.gov (United States)

    Motono, Nozomu; Maeda, Sumiko; Honda, Ryumon; Tanaka, Makoto; Machida, Yuichiro; Usuda, Katsuo; Sagawa, Motoyasu; Uramoto, Hidetaka

    2018-02-01

    The aim of the study was to examine the influence of the changes in the atmospheric temperature (ATemp) and the atmospheric pressure (APres) on the occurrence of a spontaneous pneumothorax (SP). From January 2000 to March 2014, 192 consecutive SP events were examined. The ATemp and APres data at the onset of SP, as well as those data at 12, 24, 36, 48, 60, and 72 h prior to the onset time, were analyzed. The frequencies of SP occurrence were not statistically different according to the months or seasons, but were statistically different according to the time period (P < .01) and SP events occurred most frequently from 12:00 to 18:00. SP events frequently occurred at an ATemp of 25 degrees Celsius or higher. There was a significantly negative correlation between the APres and the ATemp at the SP onset time. The values of change in the APres from 36 to 24 h prior to SP onset were significantly lower than the preceding values. In this study, we observed that a SP event was likely to occur in the time period from 12:00 to 18:00, at an ATemp of 25 degrees Celsius or higher, and at 24-36 h after a drop of APres. © 2016 John Wiley & Sons Ltd.

  8. Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure

    DEFF Research Database (Denmark)

    Stummann, M.Z.; Høj, M.; Schandel, C. B.

    2018-01-01

    fraction of 17 and 22% daf, corresponding to an energy recovery of between 40 and 53% in the organic product. The yield of the non-condensable gases varied between a mass fraction of 24 and 32% daf and the char yield varied between 9.6 and 18% daf. The condensed organics contained a mass fraction of 42....... The effect of varying the temperature (365–511 °C) and hydrogen pressure (1.6–3.6 MPa) on the product yield and organic composition was studied. The mass balance closed by a mass fraction between 90 and 101% dry ash free basis (daf). The yield of the combined condensed organics and C4+ varied between a mass......–75% aromatics, based on GC × GC-FID chromatographic peak area, and the remainder was primarily naphthenes with minor amounts of paraffins. The condensed organics were essentially oxygen free (mass fraction below 0.001%) when both reactors were used. Bypassing the HDO reactor increased the oxygen concentration...

  9. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  10. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure

    Science.gov (United States)

    Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2013-10-01

    In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

  11. Shell colour, temperature, (micro)habitat structure and predator pressure affect the behaviour of Cepaea nemoralis

    Science.gov (United States)

    Rosin, Zuzanna M.; Kwieciński, Zbigniew; Lesicki, Andrzej; Skórka, Piotr; Kobak, Jarosław; Szymańska, Anna; Osiejuk, Tomasz S.; Kałuski, Tomasz; Jaskulska, Monika; Tryjanowski, Piotr

    2018-06-01

    Although shell colour polymorphism of the land snail Cepaea nemoralis is a well-known phenomenon, proximate and ultimate factors driving its evolution remain uncertain. Polymorphic species show variation in behavioural responses to selective forces. Therefore, we estimated effects of various environmental factors (temperature, humidity, food availability, (micro)habitat structure and predatory pressure) on behavioural response (frequency of locomotion, climbing and hiding) of C. nemoralis morphs, in experimental and natural conditions. In the experimental part of study, the frequency of locomotion was negatively affected by temperature and the presence of food and positively influenced by the presence of light. Morphs significantly differed in behavioural responses to environmental variability. Pink mid-banded and yellow five-banded morphs climbed less often and hide in shelter more often than yellow and pink unbanded individuals when temperature was low and food was absent. Snails fed most often at moderate temperature compared to low and high temperatures. Field investigations partially confirmed differences among morphs in frequency of climbing, but not in terms of probability of hiding in sheltered sites. In natural colonies, temperature and (micro)habitat structure significantly affected frequency of climbing as well as hiding in shelter. Snails more often hid in sheltered sites where thrushes preyed on Cepaea. Tendency of unbanded morphs to climb trees may have evolved under avian predatory pressure as thrushes forage on a ground. Tendency of banded morphs to hide in sheltered sites may reflect prey preferences for cryptic background. The results implicate that differential behaviour of C. nemoralis morphs compensate for their morphological and physiological limitations of adaptation to habitat.

  12. High Accuracy, Miniature Pressure Sensor for Very High Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  13. Interannual variability of sea surface temperature and circulation in ...

    African Journals Online (AJOL)

    Local surface heat flux exchanges driven by the anomalous shortwave radiation dominated the interannual SST variability in the Tanzanian shelf region, with some contribution by the advection of heat anomalies from the North-East Madagascar Current. Farther offshore, the interannual variability of the SST was dominated ...

  14. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  15. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension.

    Science.gov (United States)

    Rothwell, Peter M

    2010-03-13

    Although hypertension is the most prevalent treatable vascular risk factor, how it causes end-organ damage and vascular events is poorly understood. Yet, a widespread belief exists that underlying usual blood pressure can alone account for all blood-pressure-related risk of vascular events and for the benefits of antihypertensive drugs, and this notion has come to underpin all major clinical guidelines on diagnosis and treatment of hypertension. Other potentially informative measures, such as variability in clinic blood pressure or maximum blood pressure reached, have been neglected, and effects of antihypertensive drugs on such measures are largely unknown. Clinical guidelines recommend that episodic hypertension is not treated, and the potential risks of residual variability in blood pressure in treated hypertensive patients have been ignored. This Review discusses shortcomings of the usual blood-pressure hypothesis, provides background to accompanying reports on the importance of blood-pressure variability in prediction of risk of vascular events and in accounting for benefits of antihypertensive drugs, and draws attention to clinical implications and directions for future research. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Measurement of Engine... temperature-equilibrated and temperature-monitored calibration salt solutions in containers that seal...

  17. Non stoichiometry in U3O(8±x), its temperature and oxygen pressure dependence

    International Nuclear Information System (INIS)

    Rodriguez De Sastre, M.S.; Philippot, J.; Moreau, C.

    1967-01-01

    The deviation from stoichiometry in uranium oxide U 3 O 8 obtained by oxidation of UO 2 , has been studied with respect to its dependence on temperature and oxygen pressure. It is shown that the ratio r = O/U increases with oxygen pressure up to 200 mm Hg at any temperature. At higher pressures, this ratio tends toward a limit which decreases with increasing temperatures. The curve r = f(P) suggest a chemisorption phenomenon as the reaction limiting mechanism. (authors) [fr

  18. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  19. Pressure-temperature response of a full-pressure PWR containment to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Misak, J.

    1976-01-01

    A mathematical model and computer code TRACO III for pressure-temperature transients in the full-pressure containment of PWR during LOCA is described. Main attention is devoted to the analysis of parametric calculations with respect to the estimation of effect of various factors on the transient process and to the comparison of the theoretical and the experimental results on CVTR. (author)

  20. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  1. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  2. Effects of ambient temperature, humidity, and other meteorological variables on hospital admissions for angina pectoris.

    Science.gov (United States)

    Abrignani, Maurizio G; Corrao, Salvatore; Biondo, Giovan B; Lombardo, Renzo M; Di Girolamo, Paola; Braschi, Annabella; Di Girolamo, Alberto; Novo, Salvatore

    2012-06-01

    Seasonal peaks in cardiovascular disease incidence have been widely reported, suggesting weather has a role. The aim of our study was to determine the influence of climatic variables on angina pectoris hospital admissions. We correlated the daily number of angina cases admitted to a western Sicilian hospital over a period of 12 years and local weather conditions (temperature, humidity, wind force and direction, precipitation, sunny hours and atmospheric pressure) on a day-to-day basis. A total of 2459 consecutive patients were admitted over the period 1987-1998 (1562 men, 867 women; M/F - 1:8). A seasonal variation was found with a noticeable winter peak. The results of Multivariate Poisson analysis showed a significant association between the daily number of angina hospital admission, temperature, and humidity. Significant incidence relative ratios (95% confidence intervals/measure unit) were, in males, 0.988 (0.980-0.996) (p = 0.004) for minimal temperature, 0.990 (0.984-0.996) (p = 0.001) for maximal humidity, and 1.002 (1.000-1.004) (p = 0.045) for minimal humidity. The corresponding values in females were 0.973 (0.951-0.995) (p < 0.017) for maximal temperature and 1.024 (1.001-1.048) (p = 0.037) for minimal temperature. Environmental temperature and humidity may play an important role in the pathogenesis of angina, although it seems different according to the gender. These data may help to understand the mechanisms that trigger ischemic events and to better organize hospital assistance throughout the year.

  3. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy

    Directory of Open Access Journals (Sweden)

    Augusto C. M. Souza

    2018-04-01

    Full Text Available While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae, at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  4. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.

    Science.gov (United States)

    Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A

    2018-04-24

    While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  5. Seasonal variability in Arctic temperatures during the early Eocene

    Science.gov (United States)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  6. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand, F.; Naik, Shweta

    study, we use an eddy-permitting 0.25 degrees regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from...

  7. Measuring Zonal Transport Variability of the Antarctic Circumpolar Current Using GRACE Ocean Bottom Pressure

    Science.gov (United States)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2012-12-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.

  8. FRAP-T, Temperature and Pressure in Oxide Fuel During LWR LOCA

    International Nuclear Information System (INIS)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1984-01-01

    1 - Description of problem or function: FRAP-T6 is the most recent in the FRAP-T (Fuel Rod Analysis Program - Transient) series of programs for calculating the transient behavior of light water reactor fuel rods during reactor transients and hypothetical accidents, such as loss-of-coolant and reactivity-initiated accidents. The program calculates the temperature and deformation histories of fuel rods as functions of time-dependent fuel rod power and coolant boundary conditions. FRAP-T6 can be used as a 'stand-alone' code or, using steady state fuel rod conditions supplied by FRAPCON2 (NESC NO. 694), can perform a transient analysis. In either case, the phenomena modeled by FRAP-T6 include: heat conduction, heat transfer from cladding to coolant, elastic- plastic fuel and cladding deformation, cladding oxidation, fission gas release, fuel rod gas pressure, and pellet cladding mechanical interaction. Licensing audit models have been added, also. The program includes a user's option that automatically provides a detailed uncertainty analysis of the calculated fuel rod variables due to uncertainties in fuel rod fabrication, material properties, power and cooling. 2 - Method of solution: The models in FRAP-T6 use finite difference techniques to calculate the variables which influence fuel rod performance. The variables are calculated at user-specified slices of the fuel rod. Each slice is at a different elevation and is defined to be an axial node. At each axial node, the variables are calculated at user-specified locations. Each location is at a different radius and is defined to be a radial node. The variables at any given axial node are assumed to be independent of the variables at all other axial nodes. The solution for the fuel rod variables begins with the calculation of the fuel and cladding temperatures. Then, the temperature of the gases in the plenum of the fuel rod is calculated. Next, the stresses and strains in the fuel and cladding and the pressure of the

  9. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Directory of Open Access Journals (Sweden)

    Chin-Ming Huang

    2011-01-01

    Full Text Available This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP and heart rate variability (HRV. The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25±4 yr; 29 men and 31 women were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF and high-frequency (HF components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr (P<.05, but the cold stress significantly increased AIr (P<.01. The spectral energy of RPP did not show any statistical difference in 0∼10 Hz region under both conditions, but in the region of 10∼50 Hz, there was a significant increase (P<.01 in the heat test and a significant decrease in the cold test (P<.01. The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10∼50 Hz (SE10−50 Hz but not in the region of 0∼10 Hz (SE0−10 Hz. The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses.

  10. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Science.gov (United States)

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  11. TRLFS Study of U(VI) at Variable Temperatures

    International Nuclear Information System (INIS)

    Lee, J. Y.; Yun, J. I.

    2010-01-01

    Uranium is one of the most important radionuclides in a nuclear waste repository. Transport phenomena for radioactive elements are of crucial importance for a safe geological disposal of nuclear waste. Chemical speciation and solubility are used for understanding and predicting radionuclides migration in aquifer system. Decay heat released from high level waste and geothermal temperature gradient cause higher temperature above room temperature in deep geologic formation. However, most chemical thermodynamic data are obtained at room temperature until recently. There are few studies at temperatures above 25 .deg. C. Therefore, a better understanding of thermodynamic properties at high temperatures is necessary for reliable safety assessment of high level waste repositories. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) has been applied as a sensitive and selective method for chemical speciation. The fluorescence spectrum is unique for each chemical species. The duration time of fluorescence emission is used as another indicator for decomposition of overlapped fluorescence spectrum. The objective of this study is to investigate fluorescence properties of uranium hydrolysis species at elevated temperature using TRLFS

  12. The river temperature changes follows the climate variability

    International Nuclear Information System (INIS)

    Gergov, G.; Karagiozova, Tz.

    2004-01-01

    The temperature of the river water is a dynamical characteristic affected by the geophysical processes- and climate characteristics of the catchment area, as well as the hydrological processes of the runoff formation and movement. The knowledge about the river water is very important when the water losses for transpiration are concerned. One should add that the river pollution problems, the self purification, the potable water supply require this information also. We consider the temperature of the river water as a very important parameter for diversity of ecological studies and research. It is a general practice to accept that the river water temperature is rather homogeneous across any profile because of the turbulent mass exchange. The temperature stratification is a matter of concern in limnology and oceanology studies mainly. We have shown several basic regularities about the cyclic feature of the daily and seasonal changes or about the river water temperature and both the altitude of the catchment area (gradient 1 o C per a 100 m) and so on. After the mean water temperatures on any hydro metric gauge stations are being determined the area patterns with equal temperatures are identified, thus drawing a map. It is a presumption that the river water temperatures inside a specific area are equal on any place, meaning that the temperature field is rather homogeneous. The mapping allowed to distinguish the river reaches, subjected to the anthropogenic impact. The study and the map have been developed on the basis of the new hydro metric information data bank, composed recently by the authors.(Author)

  13. The volume of the carotid bodies and blood pressure variability and pulse pressure in patients with essential hypertension

    International Nuclear Information System (INIS)

    Jaźwiec, P.; Gać, P.; Poręba, M.; Sobieszczańska, M.; Mazur, G.; Poręba, R.

    2016-01-01

    Aim: To assess the relationship between the volume of the carotid bodies (V rCB+lCB ) examined by means of computed tomography angiography (CTA) and blood pressure variability and pulse pressure (PP) in 24-hour ambulatory blood pressure monitoring (ABPM) in patients with essential hypertension. Materials and methods: A group of 52 patients with essential hypertension was examined (mean age: 68.32±12.31 years), the sizes of carotid bodies were measured by means of carotid artery CTA, and 24-hour ABPM was carried out. The 24-hour ABPM established systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), PP, SBP variability (SBPV), and DBP variability (DBPV). Results: SBP, MAP, and SBPV were significantly higher in the group of hypertension patients with V rCB+lCB equal to or above the median than in the group of hypertension patients with V rCB+lCB less than the median, as well as in the group of hypertension patients with oversized carotid bodies, than in the group of hypertension patients with normal V rCB+lCB . Moreover, the PP was statistically significantly higher in the group of hypertension patients with V rCB+lCB equal to or above the median than in the group of hypertension patients with V rCB+lCB less than the median. The existence of statistically significant positive linear relationships was revealed between V rCB+lCB and SBP, PP, and SBPV. A higher body mass index, older age, smoking, and higher V rCB+lCB are independent risk factors increasing SBPV in the research group. Conclusion: A positive relationship between the size of the carotid bodies and variability of the SBP and PP is observed in patients with essential hypertension. - Highlights: • Purpose. Determination of the relationships: V rCB+lCB vs. BPV and V rCB+lCB vs. PP. • Positive linear correlations were documented between V rCB+lCB and SBP, PP and SBPV. • Higher BMI, age, V rCB+lCB and smoking are independent risk factor of increased SBPV.

  14. Variable temperature investigation of the atomic structure of gold nanoparticles

    International Nuclear Information System (INIS)

    Young, N P; Kirkland, A I; Huis, M A van; Zandbergen, H W; Xu, H

    2010-01-01

    The characterisation of nanoparticle structures is the first step towards understanding and optimising their utility in important technological applications such as catalysis. Using newly developed in-situ transmission electron microscopy (TEM) specimen holders, the temperature dependent atomic structure of gold nanoparticles in the size range 5-12 nm has been investigated. In this size interval, the decahedral morphology has been identified as the most favourable structure at or above room temperature, while particle surface roughening becomes evident above 600 0 C. An icosahedral transition has also been identified at low temperature in particles under 9 nm in diameter. These experimental results are consistent with recently published temperature dependent equilibrium phase maps for gold nanoparticles.

  15. Variable temperature investigation of the atomic structure of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Young, N P; Kirkland, A I [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Huis, M A van; Zandbergen, H W [Kavli Insitute of Nanoscience, Delft University of Technolgy, Lorentzweg 1, NL-2628CJ, Delft (Netherlands); Xu, H, E-mail: neil.young@materials.ox.ac.u [Department of Geology and Geophysics, and Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2010-07-01

    The characterisation of nanoparticle structures is the first step towards understanding and optimising their utility in important technological applications such as catalysis. Using newly developed in-situ transmission electron microscopy (TEM) specimen holders, the temperature dependent atomic structure of gold nanoparticles in the size range 5-12 nm has been investigated. In this size interval, the decahedral morphology has been identified as the most favourable structure at or above room temperature, while particle surface roughening becomes evident above 600{sup 0}C. An icosahedral transition has also been identified at low temperature in particles under 9 nm in diameter. These experimental results are consistent with recently published temperature dependent equilibrium phase maps for gold nanoparticles.

  16. Phase stability of TiH{sub 2} under high pressure and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R.; Durygin, A.; Saxena, S.K. [Center for Study of Matter at Extreme Conditions (CeSMEC), Florida International University, VH-150, University Park, Miami, FL 33199 (United States); Merlini, Marco [European Synchrotron Radiation Facility (ESRF), Grenoble 38043 (France); Wang, Zhongwu [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2008-11-15

    Phase stability of titanium hydride (TiH{sub 2}) was studied at high pressure-high temperature conditions using synchrotron radiation under non-hydrostatic conditions. Resistive heating method was used to heat the sample to a maximum temperature of 873 K in a diamond anvil cell (DAC) under pressure up to 12 GPa. Pressure-temperature behavior was studied by varying the temperature upto 823 K in steps of 50 K with pressure variations within 3 GPa. Structural phase transformation from tetragonal (I4/mmm) to cubic (Fm-3 m) was observed with increase in temperature. Tetragonal phase was found to be stabilized when the sample was subjected to pressure and temperature cycle. (author)

  17. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions - Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability.

    Science.gov (United States)

    Stergiou, George S; Parati, Gianfranco; Vlachopoulos, Charalambos; Achimastos, Apostolos; Andreadis, Emanouel; Asmar, Roland; Avolio, Alberto; Benetos, Athanase; Bilo, Grzegorz; Boubouchairopoulou, Nadia; Boutouyrie, Pierre; Castiglioni, Paolo; de la Sierra, Alejandro; Dolan, Eamon; Head, Geoffrey; Imai, Yutaka; Kario, Kazuomi; Kollias, Anastasios; Kotsis, Vasilis; Manios, Efstathios; McManus, Richard; Mengden, Thomas; Mihailidou, Anastasia; Myers, Martin; Niiranen, Teemu; Ochoa, Juan Eugenio; Ohkubo, Takayoshi; Omboni, Stefano; Padfield, Paul; Palatini, Paolo; Papaioannou, Theodore; Protogerou, Athanasios; Redon, Josep; Verdecchia, Paolo; Wang, Jiguang; Zanchetti, Alberto; Mancia, Giuseppe; O'Brien, Eoin

    2016-09-01

    Office blood pressure measurement has been the basis for hypertension evaluation for almost a century. However, the evaluation of blood pressure out of the office using ambulatory or self-home monitoring is now strongly recommended for the accurate diagnosis in many, if not all, cases with suspected hypertension. Moreover, there is evidence that the variability of blood pressure might offer prognostic information that is independent of the average blood pressure level. Recently, advancement in technology has provided noninvasive evaluation of central (aortic) blood pressure, which might have attributes that are additive to the conventional brachial blood pressure measurement. This position statement, developed by international experts, deals with key research and practical issues in regard to peripheral blood pressure measurement (office, home, and ambulatory), blood pressure variability, and central blood pressure measurement. The objective is to present current achievements, identify gaps in knowledge and issues concerning clinical application, and present relevant research questions and directions to investigators and manufacturers for future research and development (primary goal).

  18. Can Ambulatory Blood Pressure Variability Contribute to Individual Cardiovascular Risk Stratification?

    Directory of Open Access Journals (Sweden)

    Annamária Magdás

    2016-01-01

    Full Text Available Objective. The aim of this study is to define the normal range for average real variability (ARV and to establish whether it can be considered as an additional cardiovascular risk factor. Methods. In this observational study, 110 treated hypertensive patients were included and admitted for antihypertensive treatment adjustment. Circadian blood pressure was recorded with validated devices. Blood pressure variability (BPV was assessed according to the ARV definition. Based on their variability, patients were classified into low, medium, and high variability groups using the fuzzy c-means algorithm. To assess cardiovascular risk, blood samples were collected. Characteristics of the groups were compared by ANOVA tests. Results. Low variability was defined as ARV below 9.8 mmHg (32 patients, medium as 9.8–12.8 mmHg (48 patients, and high variability above 12.8 mmHg (30 patients. Mean systolic blood pressure was 131.2 ± 16.7, 135.0 ± 12.1, and 141.5 ± 11.4 mmHg in the low, medium, and high variability groups, respectively (p=0.0113. Glomerular filtration rate was 78.6 ± 29.3, 74.8 ± 26.4, and 62.7±23.2 mL/min/1.73 m2 in the low, medium, and high variability groups, respectively (p=0.0261. Conclusion. Increased values of average real variability represent an additional cardiovascular risk factor. Therefore, reducing BP variability might be as important as achieving optimal BP levels, but there is need for further studies to define a widely acceptable threshold value.

  19. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  20. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  1. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans

    Science.gov (United States)

    Zhang, Rong; Iwasaki, Kenichi; Zuckerman, Julie H.; Behbehani, Khosrow; Crandall, Craig G.; Levine, Benjamin D.; Blomqvist, C. G. (Principal Investigator)

    2002-01-01

    Spontaneous blood pressure (BP) and R-R variability are used frequently as 'windows' into cardiovascular control mechanisms. However, the origin of these rhythmic fluctuations is not completely understood. In this study, with ganglion blockade, we evaluated the role of autonomic neural activity versus other 'non-neural' factors in the origin of BP and R-R variability in humans. Beat-to-beat BP, R-R interval and respiratory excursions were recorded in ten healthy subjects (aged 30 +/- 6 years) before and after ganglion blockade with trimethaphan. The spectral power of these variables was calculated in the very low (0.0078-0.05 Hz), low (0.05-0.15 Hz) and high (0.15-0.35 Hz) frequency ranges. The relationship between systolic BP and R-R variability was examined by cross-spectral analysis. After blockade, R-R variability was virtually abolished at all frequencies; however, respiration and high frequency BP variability remained unchanged. Very low and low frequency BP variability was reduced substantially by 84 and 69 %, respectively, but still persisted. Transfer function gain between systolic BP and R-R interval variability decreased by 92 and 88 % at low and high frequencies, respectively, while the phase changed from negative to positive values at the high frequencies. These data suggest that under supine resting conditions with spontaneous breathing: (1) R-R variability at all measured frequencies is predominantly controlled by autonomic neural activity; (2) BP variability at high frequencies (> 0.15 Hz) is mediated largely, if not exclusively, by mechanical effects of respiration on intrathoracic pressure and/or cardiac filling; (3) BP variability at very low and low frequencies (rhythmicity; and (4) the dynamic relationship between BP and R-R variability as quantified by transfer function analysis is determined predominantly by autonomic neural activity rather than other, non-neural factors.

  2. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  3. Seasonal temperature variability and emergency hospital admissions for respiratory diseases: a population-based cohort study.

    Science.gov (United States)

    Sun, Shengzhi; Laden, Francine; Hart, Jaime E; Qiu, Hong; Wang, Yan; Wong, Chit Ming; Lee, Ruby Siu-Yin; Tian, Linwei

    2018-04-05

    Climate change increases global mean temperature and changes short-term (eg, diurnal) and long-term (eg, intraseasonal) temperature variability. Numerous studies have shown that mean temperature and short-term temperature variability are both associated with increased respiratory morbidity or mortality. However, data on the impact of long-term temperature variability are sparse. We aimed to assess the association of intraseasonal temperature variability with respiratory disease hospitalisations among elders. We ascertained the first occurrence of emergency hospital admissions for respiratory diseases in a prospective Chinese elderly cohort of 66 820 older people (≥65 years) with 10-13 years of follow-up. We used an ordinary kriging method based on 22 weather monitoring stations in Hong Kong to spatially interpolate daily ambient temperature for each participant's residential address. Seasonal temperature variability was defined as the SD of daily mean summer (June-August) or winter (December-February) temperatures. We applied Cox proportional hazards regression with time-varying exposure of seasonal temperature variability to respiratory admissions. During the follow-up time, we ascertained 12 689 cases of incident respiratory diseases, of which 6672 were pneumonia and 3075 were COPD. The HRs per 1°C increase in wintertime temperature variability were 1.20 (95% CI 1.08 to 1.32), 1.15 (1.01 to 1.31) and 1.41 (1.15 to 1.71) for total respiratory diseases, pneumonia and COPD, respectively. The associations were not statistically significant for summertime temperature variability. Wintertime temperature variability was associated with higher risk of incident respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Variable capacity utilization, ambient temperature shocks and generation asset valuation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chung-Li; Dmitriev, Alexandre [Australian School of Business, University of New South Wales, Sydney NSW 2052 (Australia); Zhu, Wei [Optim Energy, 225 E. John Carpenter Freeway, Irving, TX 75062 (United States)

    2009-11-15

    This paper discusses generation asset valuation in a framework where capital utilization decisions are endogenous. We use real options approach for valuation of natural gas fueled turbines. Capital utilization choices that we explore include turning on/off the unit, operating the unit at increased firing temperatures (overfiring), and conducting preventive maintenance. Overfiring provides capacity enhancement which comes at the expense of reduced maintenance interval and increased costs of part replacement. We consider the costs and benefits of overfiring in attempt to maximize the asset value by optimally exercising the overfire option. In addition to stochastic processes governing prices, we incorporate an exogenous productivity shock: ambient temperature. We consider how variation in ambient temperature affects the asset value through its effect on gas turbine's productivity. (author)

  5. The Influence Of Temperature And Pressure On AP600 Pressure Vessel Analysis By Two Dimensional Finite Element Method

    International Nuclear Information System (INIS)

    Utaya

    1996-01-01

    Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )

  6. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  7. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Science.gov (United States)

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  8. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  9. QUALITY OF Pinus elliottii PARTICLE BOARDS BONDED WITH POLYURETHANE ADHESIVE UNDER VARIOUS COMBINATIONS OF TEMPERATURE AND PRESSURE

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2011-09-01

    Full Text Available This work aimed to produce homogeneous layer particle boards with residues of Pinus elliottii wood adhered with polyurethane adhesive to castor oil plant base and to evaluate the effect of the combination of pressure and temperature in the quality of the particle boards produced. To do so, 12 particle boards were manufactured, subdivided into four treatments in function of the pressure (2.0; 3.0; 3.5; and 3.5 MPa and temperature (90; 90; 50; and 60 ºC. The particleboards were sectioned in test samples, and accomplished by physical-mechanical tests for the determination of density, swelling and absorption of water (0-2h; 2-24h; e 0-24h; rupture module and elasticity module in static bending, internal ligation and screw withdrawal. The particle boards pressed with pressure of 3.0 MPa and temperature of 90 ºC and that with pressure of 3.5 MPa and temperature of 60 ºC presented the best  results. The higher temperature of pressing was the predominant variable in the quality of those particle boards manufactured.

  10. Pressure dependence of the superconducting transition temperature of Rb3C60 up to 20 kbar

    International Nuclear Information System (INIS)

    Bud'ko, S.L.; Meng, R.L.; Chu, C.W.; Hor, P.H.

    1991-01-01

    AC susceptibility measurements of Rb 3 C 60 under hydrostatic pressure up to 20 kbar are reported. The superconducting transition temperature (T c ) decreases linearly under pressure with the pressure derivative dT c /dP = -0.78 K degrees/kbar

  11. Diurnal variability of upper ocean temperature and heat budget in ...

    Indian Academy of Sciences (India)

    Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7° N, 10° N, and 13° N locations along 87° E during October - November, 1998 ...

  12. Temporal changes and variability in temperature series over Peninsular Malaysia

    Science.gov (United States)

    Suhaila, Jamaludin

    2015-02-01

    With the current concern over climate change, the descriptions on how temperature series changed over time are very useful. Annual mean temperature has been analyzed for several stations over Peninsular Malaysia. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for assessing the significance and detection of trends, while a nonparametric Pettitt's test and sequential Mann-Kendall test are adopted to detect any abrupt climate change. Statistically significance increasing trends for annual mean temperature are detected for almost all studied stations with the magnitude of significant trend varied from 0.02°C to 0.05°C per year. The results shows that climate over Peninsular Malaysia is getting warmer than before. In addition, the results of the abrupt changes in temperature using Pettitt's and sequential Mann-Kendall test reveal the beginning of trends which can be related to El Nino episodes that occur in Malaysia. In general, the analysis results can help local stakeholders and water managers to understand the risks and vulnerabilities related to climate change in terms of mean events in the region.

  13. Lithology and temperature: How key mantle variables control rift volcanism

    Science.gov (United States)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  14. Comparison of ASME pressure–temperature limits on the fracture probability for a pressurized water reactor pressure vessel

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2017-01-01

    Highlights: • P-T limits based on ASME K_I_a curve, K_I_C curve and RI method are presented. • Probabilistic and deterministic methods are used to evaluate P-T limits on RPV. • The feasibility of substituting P-T curves with more operational is demonstrated. • Warm-prestressing effect is critical in determining the fracture probability. - Abstract: The ASME Code Section XI-Appendix G defines the normal reactor startup (heat-up) and shut-down (cool-down) operation limits according to the fracture toughness requirement of reactor pressure vessel (RPV) materials. This paper investigates the effects of different pressure-temperature limit operations on structural integrity of a Taiwan domestic pressurized water reactor (PWR) pressure vessel. Three kinds of pressure-temperature limits based on different fracture toughness requirements – the K_I_a fracture toughness curve of ASME Section XI-Appendix G before 1998 editions, the K_I_C fracture toughness curve of ASME Section XI-Appendix G after 2001 editions, and the risk-informed revision method supplemented in ASME Section XI-Appendix G after 2013 editions, respectively, are established as the loading conditions. A series of probabilistic fracture mechanics analyses for the RPV are conducted employing ORNL’s FAVOR code considering various radiation embrittlement levels under these pressure-temperature limit conditions. It is found that the pressure-temperature operation limits which provide more operational flexibility may lead to higher fracture risks to the RPV. The cladding-induced shallow surface breaking flaws are the most critical and dominate the fracture probability of the RPV under pressure-temperature limit transients. Present study provides a risk-informed reference for the operation safety and regulation viewpoint of PWRs in Taiwan.

  15. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  16. Relationship among vaginal palpation, vaginal squeeze pressure, electromyographic and ultrasonographic variables of female pelvic floor muscles

    Directory of Open Access Journals (Sweden)

    Vanessa S. Pereira

    2014-10-01

    Full Text Available Background: The proper evaluation of the pelvic floor muscles (PFM is essential for choosing the correct treatment. Currently, there is no gold standard for the assessment of female PFM function. Objective: To determine the correlation between vaginal palpation, vaginal squeeze pressure, and electromyographic and ultrasonographic variables of the female PFM. Method: This cross-sectional study evaluated 80 women between 18 and 35 years of age who were nulliparous and had no pelvic floor dysfunction. PFM function was assessed based on digital palpation, vaginal squeeze pressure, electromyographic activity, bilateral diameter of the bulbocavernosus muscles and the amount of bladder neck movement during voluntary PFM contraction using transperineal bi-dimensional ultrasound. The Pearson correlation was used for statistical analysis (p<0.05. Results: There was a strong positive correlation between PFM function and PFM contraction pressure (0.90. In addition, there was a moderate positive correlation between these two variables and PFM electromyographic activity (0.59 and 0.63, respectively and movement of the bladder neck in relation to the pubic symphysis (0.51 and 0.60, respectively. Conclusions: This study showed that there was a correlation between vaginal palpation, vaginal squeeze pressure, and electromyographic and ultrasonographic variables of the PFM in nulliparous women. The strong correlation between digital palpation and PFM contraction pressure indicated that perineometry could easily be replaced by PFM digital palpation in the absence of equipment.

  17. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  18. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  19. Tropical sea surface temperature variability near the Oligocene - Miocene boundary

    Science.gov (United States)

    Zhang, Y.; Pagani, M.

    2010-12-01

    The Oligocene/Miocene (O-M) boundary is characterized by a period of rapid and intense glaciation labeled Mi-1 at ~ 23.1 Ma. An abrupt 1.5‰ increase in the benthic foraminifera oxygen isotope composition that characterizes Mi-1 may indicate a (1) significant deep-water temperature decrease; (2) major ice-sheet expansion, or the combination of both. Current coarse Mg/Ca-based temperature estimations for the early Miocene suggests that deep-ocean temperatures were ~2°C warmer than Today [1, 2]. However, Mg/Ca based temperatures can also be influenced by changes in the carbonate ion concentration, vital effects, and diagenesis. In particular, recent evidence from mid-ocean ridge flank carbonate veins shows dramatic seawater Mg/Ca ratio changes during the Neogene (Mg/Ca from ~2.2 to 5.3, [3]), which further challenges the application of Mg/Ca thermometry. Owing to poor temperature constraints, current ice volume estimations for the late Oligocene/early Miocene range from 125% of the present-day East Antarctic Ice Sheet (EAIS) to a nearly complete collapse of the Antarctic glaciers [4]. Here we present tropical sea surface temperatures (SSTs) records based on TEX86 and alkenone UK37 near the O-M boundary. Sediment samples from Ocean Drilling Program (ODP) Site 926 in the Ceara Rise (tropical Atlantic) and Site 1148 in the South China Sea (tropical Pacific) were subject to lipid extraction, separation, gas chromatography, and liquid chromatography-mass spectrometry analysis. TEX86-based SST indicates that the tropics were ~3-4°C warmer than today and relatively stable during Mi-1. This suggests that ice-sheet dynamics, rather than temperature, might be responsible for the observed oxygen isotope changes during the O-M boundary. Further, O-M boundary averaged temperatures recorded at site 926 is ~ 0.5°C higher relative to the late Eocene from site 925 (a nearby site [5]). Given late Oligocene benthic δ18O that suggests at least 1‰ enrichment relative to the late

  20. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    Science.gov (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  1. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)

    2009-09-15

    Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)

  2. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  3. Variability and repeatability analysis of plantar pressure during gait in older people.

    Science.gov (United States)

    Franco, Pedro S; Silva, Caio Borella P da; Rocha, Emmanuel S da; Carpes, Felipe P

    2015-01-01

    Repeatability and variability of the plantar pressure during walking are important components in the clinical assessment of the elderly. However, there is a lack of information on the uniformity of plantar pressure patterns in the elderly. To analyze the repeatability and variability in plantar pressure considering mean, peak and asymmetries during aged gait. Plantar pressure was monitored in four different days for ten elderly subjects (5 female), with mean±standard-deviation age of 73±6 years, walking barefoot at preferred speed. Data were compared between steps for each day and between different days. Mean and peak plantar pressure values were similar between the different days of evaluation. Asymmetry indexes were similar between the different days evaluated. Plantar pressure presented a consistent pattern in the elderly. However, the asymmetry indexes observed suggest that the elderly are exposed to repetitive asymmetric loading during locomotion. Such result requires further investigation, especially concerning the role of these asymmetries for development of articular injuries. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  4. Variable-temperature NMR and conformational analysis of Oenothein B

    International Nuclear Information System (INIS)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de

    2014-01-01

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  5. Variable-temperature NMR and conformational analysis of Oenothein B

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de, [Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Instituto de Quimica

    2014-02-15

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  6. Variable temperature effects on release rates of readily soluble nuclides

    International Nuclear Information System (INIS)

    Kim, C.-L.; Light, W.B.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H.

    1988-09-01

    In this paper we study the effect of temperature on the release rate of readily soluble nuclides, as affected by a time-temperature dependent diffusion coefficient. In this analysis ground water fills the voids in the waste package at t = 0 and one percent of the inventories of cesium and iodine are immediately dissolved into the void water. Mass transfer resistance of partly failed container and cladding is conservatively neglected. The nuclides move through the void space into the surrounding rock under a concentration gradient. We use an analytic solution to compute the nuclide concentration in the gap or void, and the mass flux rate into the porous rock. 8 refs., 4 figs

  7. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  8. Interannual variability of Central European mean temperature in January / February and its relation to the large-scale circulation

    International Nuclear Information System (INIS)

    Werner, P.C.; Storch, H. von

    1993-01-01

    The Central European temperature distribution field, as given by 11 stations (Fanoe, Hamburg, Potsdam, Jena, Frankfurt, Uccle, Hohenpeissenberg, Praha, Wien, Zuerich and Geneve), is analysed with respect to its year-to-year variability. January-February (JF) average temperatures are considered for the interval 1901-80. An Orthogonal Function (EOF) analysis reveals that the JF temperature variability is almost entirely controlled by one EOF with uniform sign. The second EOF represents only 7% of the total variance and describes a north-south gradient. The time coefficient of the first EOF is almost stationary whereas the second pattern describes a slight downward trend at the northern stations and a slight upward trend at the southern stations. The relationship of the temperature field to the large-scale circulation, represented by the North Atlantic/European sea-level pressure (SLP) field, is investigated by means of a Canonical Correlation (CCA) Analysis. Two CCA pairs are identified which account for most of the temperature year-to-year variance and which suggest plausible mechanisms. The CCA pairs fail, however, to consistently link the long-term temperature trends to changes in the large-scale circulation. In the output of a 100-year run with a coupled atmosphere-ocean model (ECHAM1/LSG), the same CCA pairs are found but the strength of the link between Central European temperature and North Atlantic SLP is markedly weaker than in the observed data. (orig.)

  9. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  10. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    International Nuclear Information System (INIS)

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  11. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    Science.gov (United States)

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Asphaltene laboratory assessment of a heavy onshore reservoir during pressure, temperature and composition variations to predict asphaltene onset pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Peyman; Ahmadi, Yaser [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kharrat, Riyaz [Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Mahdavi, Sedigheh; James, Lesley [Memorial University of Newfoundland, Saint John' s (Canada)

    2015-02-15

    An Iranian heavy oil reservoir recently encountered challenges in oil production rate, and further investigation has proven that asphaltene precipitation was the root cause of this problem. In addition, CO{sub 2} gas injection could be an appropriate remedy to enhance the production of heavy crudes. In this study, high pressure-high temperature asphaltene precipitation experiments were performed at different temperatures and pressures to investigate the asphaltene phase behavior during the natural depletion process and CO{sub 2} gas injection. Compositional modeling of experimental data predicted onset points at different temperatures which determine the zone of maximum probability of asphaltene precipitation for the studied heavy oil reservoir. Also, the effect of CO{sub 2} gas injection was investigated as a function of CO{sub 2} concentration and pressure. It was found that a CO{sub 2}-oil ratio of 40% is the optimum for limiting precipitation to have the least formation damage and surface instrument contamination.

  13. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  14. Chamber for uniaxial pressure application at low temperatures

    International Nuclear Information System (INIS)

    Grillo, M.L.N.; Carmo, L.C.S. do; Picon, A.P.

    1984-08-01

    A chamber for alignment of low temperature ferroelastic domains in crystals by the use of uniaxial stress was built. The system allows the use of EPR and optical techniques, as well as X-ray irradiation at temperatures as low as 77K. (Author) [pt

  15. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    International Nuclear Information System (INIS)

    Meissner, Thomas

    2013-01-01

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa 2 Cu 4 O 8 at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T 1 at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T 1 are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional quadrupolar broadening which is

  17. Ambulatory blood pressure monitoring-derived short-term blood pressure variability is increased in Cushing's syndrome.

    Science.gov (United States)

    Rebellato, Andrea; Grillo, Andrea; Dassie, Francesca; Sonino, Nicoletta; Maffei, Pietro; Martini, Chiara; Paoletta, Agostino; Fabris, Bruno; Carretta, Renzo; Fallo, Francesco

    2014-11-01

    Cushing's syndrome is associated with high cardiovascular morbility and mortality. Blood pressure (BP) variability within a 24-h period is increasingly recognized as an independent predictor of cardiovascular risk. The aim of our study was to investigate the short-term BP variability indices in Cushing's syndrome. Twenty-five patients with Cushing's syndrome (mean age 49 ± 13 years, 4 males; 21 Cushing's disease and 4 adrenal adenoma patients) underwent 24-h ambulatory BP monitoring (ABPM) and evaluation of cardiovascular risk factors. Cushing patients were divided into 8 normotensive (NOR-CUSH) and 17 hypertensive (HYP-CUSH) patients and were compared with 20 normotensive (NOR-CTR) and 20 hypertensive (HYP-CTR) age-, sex-, and BMI-matched control subjects. Short-term BP variability was derived from ABPM and calculated as the following: (1) standard deviation (SD) of 24-h, daytime, and nighttime BP; (2) 24-h weighted SD of BP; and (3) average real variability (ARV), i.e., the average of the absolute differences between consecutive BP measurements over 24 h. In comparison with controls, patients with Cushing's syndrome, either normotensive or hypertensive, had higher 24-h and daytime SD of BP, as well as higher 24-h weighted SD and ARV of BP (P = 0.03 to P CUSH or between HYP-CTR and HYP-CUSH subgroups. ABPM-derived short-term BP variability is increased in Cushing's syndrome, independent of BP elevation. It may represent an additional cardiovascular risk factor in this disease. The role of excess cortisol in BP variability has to be further clarified.

  18. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  19. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Science.gov (United States)

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  20. Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography.

    Science.gov (United States)

    Fekete, Szabolcs; Horváth, Krisztián; Guillarme, Davy

    2013-10-11

    In this study, pressure induced changes in retention were measured for model peptides possessing molecular weights between ∼1 and ∼4kDa. The goal of the present work was to evaluate if such changes were only attributed to the variation of molar volume and if they could be estimated prior to the experiments, using theoretical models. Restrictor tubing was employed to generate pressures up to 1000bar and experiments were conducted for mobile phase temperatures comprised between 30 and 80°C. As expected, the retention increases significantly with pressure, up to 200% for glucagon at around 1000bar compared to ∼100bar. The obtained data were fitted with a theoretical model and the determination coefficients were excellent (r(2)>0.9992) for the peptides at various temperatures. On the other hand, the pressure induced change in retention was found to be temperature dependent and was more pronounced at 30°C vs. 60 or 80°C. Finally, using the proposed model, it was possible to easily estimate the pressure induced increase in retention for any peptide and mobile phase temperature. This allows to easily estimating the expected change in retention, when increasing the column length under UHPLC conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Variability in Glycemic Control with Temperature Transitions during Therapeutic Hypothermia

    Directory of Open Access Journals (Sweden)

    Krystal K. Haase

    2017-01-01

    Full Text Available Purpose. Patients treated with therapeutic hypothermia (TH and continuous insulin may be at increased risk of hyperglycemia or hypoglycemia, particularly during temperature transitions. This study aimed to evaluate frequency of glucose excursions during each phase of TH and to characterize glycemic control patterns in relation to survival. Methods. Patients admitted to a tertiary care hospital for circulatory arrest and treated with both therapeutic hypothermia and protocol-based continuous insulin between January 2010 and June 2013 were included. Glucose measures, insulin, and temperatures were collected through 24 hours after rewarming. Results. 24 of 26 patients experienced glycemic excursions. Hyperglycemic excursions were more frequent during initiation versus remaining phases (36.3%, 4.3%, 2.5%, and 4.0%, p=0.002. Hypoglycemia occurred most often during rewarming (0%, 7.7%, 23.1%, and 3.8%, p=0.02. Patients who experienced hypoglycemia had higher insulin doses prior to rewarming (16.2 versus 2.1 units/hr, p=0.03. Glucose variation was highest during hypothermia and trended higher in nonsurvivors compared to survivors (13.38 versus 9.16, p=0.09. Frequency of excursions was also higher in nonsurvivors (32.3% versus 19.8%, p=0.045. Conclusions. Glycemic excursions are common and occur more often in nonsurvivors. Excursions differ by phase but risk of hypoglycemia is increased during rewarming.

  2. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    Science.gov (United States)

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-12-01

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  3. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  4. Impact of antihypertensive combination and monotreatments on blood pressure variability: assessment by old and new indices. Data from a large ambulatory blood pressure monitoring database.

    LENUS (Irish Health Repository)

    Parati, Gianfranco

    2014-06-01

    High 24-h ambulatory blood pressure (ABP) variability is associated with poor cardiovascular outcomes. We analysed a large ABP monitoring database containing data from hypertensive patients treated with telmisartan\\/amlodipine combination or various monotherapies with the aim of quantifying the 24-h distribution of blood pressure (BP) reduction by treatment through the smoothness index and of developing and testing a new treatment-on-variability index (TOVI) to quantify the effects of treatment on both mean BP and BP variability.

  5. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    Science.gov (United States)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  6. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  7. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    Science.gov (United States)

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH 4 /air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  8. Tack Measurements of Prepreg Tape at Variable Temperature and Humidity

    Science.gov (United States)

    Wohl, Christopher; Palmieri, Frank L.; Forghani, Alireza; Hickmott, Curtis; Bedayat, Houman; Coxon, Brian; Poursartip, Anoush; Grimsley, Brian

    2017-01-01

    NASA’s Advanced Composites Project has established the goal of achieving a 30 percent reduction in the timeline for certification of primary composite structures for application on commercial aircraft. Prepreg tack is one of several critical parameters affecting composite manufacturing by automated fiber placement (AFP). Tack plays a central role in the prevention of wrinkles and puckers that can occur during AFP, thus knowledge of tack variation arising from a myriad of manufacturing and environmental conditions is imperative for the prediction of defects during AFP. A full design of experiments was performed to experimentally characterize tack on 0.25-inch slit-tape tow IM7/8552-1 prepreg using probe tack testing. Several process parameters (contact force, contact time, retraction speed, and probe diameter) as well as environmental parameters (temperature and humidity) were varied such that the entire parameter space could be efficiently evaluated. Mid-point experimental conditions (i.e., parameters not at either extrema) were included to enable prediction of curvature in relationships and repeat measurements were performed to characterize experimental error. Collectively, these experiments enable determination of primary dependencies as well as multi-parameter relationships. Slit-tape tow samples were mounted to the bottom plate of a rheometer parallel plate fixture using a jig to prevent modification of the active area to be interrogated with the top plate, a polished stainless steel probe, during tack testing. The probe surface was slowly brought into contact with the pre-preg surface until a pre-determined normal force was achieved (2-30 newtons). After a specified dwell time (0.02-10 seconds), during which the probe substrate interaction was maintained under displacement control, the probe was retracted from the surface (0.1-50 millimeters per second). Initial results indicated a clear dependence of tack strength on several parameters, with a particularly

  9. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    Science.gov (United States)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  10. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  11. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  12. The effect of pressure on the Curie temperature in Fe-Ni Invar mechanical alloys

    CERN Document Server

    Wei, S; Zach, R; Matsushita, M; Takahashi, A; Inoue, H; Ono, F; Maeta, H; Iwase, A; Endo, S

    2002-01-01

    Measurements of the temperature dependence of the AC susceptibility were made for Fe-Ni Invar mechanical alloys under hydrostatic pressures up to 1.5 GPa. The Curie temperatures decreased linearly with pressure. The rate of decrease became larger for specimens annealed at higher temperatures. The temperature of annealing after ball milling has been directly related to the extent of the chemical concentration fluctuation, and the extent becomes smaller for specimens annealed at higher temperature. This tendency can be explained by assuming a Gaussian distribution function.

  13. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  14. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    and between particles. The technique of high-pressure high-temperature sintering has worked on all types of thermoset materials. Typical mechanical properties for sintered SBR powder rubber are as follows: 1.3 MPa 100% Modulus, 12.0 MPa Tensile Strength and 300% Elongation at Break. The goal of this research is two-fold. First, to gain an understanding of the variables that control the process of high-pressure high-temperature sintering. Second, to study the factors governing the mechanism of fusion with the hope of controlling and exploiting this process so that tires can be recycled to produce high quality and high-value added products.

  15. Equilibrium triple point pressure and pressure-temperature phase diagram of polyethylene

    NARCIS (Netherlands)

    Hikosaka, M.; Tsukijima, K.; Rastogi, S.; Keller, A.

    1992-01-01

    The equil. triple point and pressure and temp. phase diagrams of polyethylene were obtained by in situ optical microscopic and x-ray observations of the melting temp. of hexagonal and orthorhombic isolated extended-chain single crystals at high pressure. The melting temps. of extended-chain crystals

  16. Amplification and dampening of soil respiration by changes in temperature variability

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2011-04-01

    Full Text Available Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature. Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long-term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen the release of carbon through soil respiration as climate regimes change. These effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  17. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  18. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  19. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  20. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.

    Directory of Open Access Journals (Sweden)

    Maximilian B Maier

    Full Text Available The effect of high pressure thermal (HPT processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa, which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

  1. Excess Weight, Anthropometric Variables and Blood Pressure in Schoolchildren aged 10 to 18 years

    International Nuclear Information System (INIS)

    Schommer, Vânia Ames; Barbiero, Sandra Mari; Cesa, Cláudia Ciceri; Oliveira, Rosemary; Silva, Anelise Damiani; Pellanda, Lucia Campos

    2014-01-01

    The prevalence of hypertension among children and adolescents is estimated to range between 1% and 13%. Excess weight and central obesity are related to blood pressure levels in adults, and may be important in the early pathogenesis of SH when present in childhood. To study the association between anthropometric variables and blood pressure levels in schoolchildren from the 5 th and 8 th grades, and to identify which parameter was more strongly correlated with blood pressure levels. Contemporary cross-sectional study with probabilistic population-based cluster sampling of schoolchildren enrolled from the 5 th to the 8 th grades in public elementary schools of Porto Alegre. Data on familial risk factors and anthropometry were collected. Statistical analysis included correlations and cluster-adjusted confidence intervals. The mean age of participants was 12.57 (± 1.64) years, and 55.2% of them were females. Abnormal blood pressure levels were found in 11.3% of the sample and borderline values, in 16.2%. Among the anthropometric variables analyzed, hip circumference was the one with the strongest correlation with increased blood pressure (r = 0.462, p < 0.001), followed by waist circumference (r = 0.404, p < 0.001) and abdominal skinfold (r = 0.291, p < 0.001). We observed an association of waist circumference and skinfolds with increased blood pressure levels in the schoolchildren of the sample. Therefore, it is of the utmost importance that early measurements of blood pressure, and waist and hip circumferences become a routine in health services in order to prevent this condition

  2. Effect of variable body mass on plantar foot pressure and off-loading device efficacy.

    Science.gov (United States)

    Pirozzi, Kelly; McGuire, James; Meyr, Andrew J

    2014-01-01

    An increasing body of evidence has implicated obesity as having a negative effect on the development, treatment, and outcome of lower extremity pathologic entities, including diabetic foot disease. The objective of the present study was to increase the body of knowledge with respect to the effects of obesity on foot function. Specifically, we attempted to (1) describe the relationship between an increasing body mass index (BMI) on plantar foot pressures during gait, and (2) evaluate the efficacy of commonly prescribed off-loading devices with an increasing BMI. A repeated measures design was used to compare the peak plantar foot pressures under multiple test conditions, with the volunteers acting as their own controls. The primary outcome measure was the mean peak plantar pressure in the heel, midfoot, forefoot, and first metatarsal, and the 2 variables were modification of patient weight (from "normal" BMI to "overweight," "obese," and "morbidly obese") and footwear (from an athletic sneaker to a surgical shoe, controlled ankle motion walker, and total contact cast). Statistically significant increases in the peak plantar pressures were observed with increasing volunteer BMI weight class, regardless of the off-loading device used. The present investigation has provided unique and specific data with respect to the changes that occur in the peak plantar pressures with variable BMIs across different anatomic levels and with commonly used off-loading devices. From our results, we have concluded that although the plantar pressures increase with increasing weight, it appears that at least some reduction in pressure can be achieved with an off-loading device, most effectively with the total contact cast, regardless of the patient's BMI. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Excess Weight, Anthropometric Variables and Blood Pressure in Schoolchildren aged 10 to 18 years

    Energy Technology Data Exchange (ETDEWEB)

    Schommer, Vânia Ames [Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS (Brazil); Barbiero, Sandra Mari; Cesa, Cláudia Ciceri; Oliveira, Rosemary [Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, RS (Brazil); Silva, Anelise Damiani [Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS (Brazil); Pellanda, Lucia Campos, E-mail: luciapell.pesquisa@cardiologia.org.br [Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS (Brazil)

    2014-04-15

    The prevalence of hypertension among children and adolescents is estimated to range between 1% and 13%. Excess weight and central obesity are related to blood pressure levels in adults, and may be important in the early pathogenesis of SH when present in childhood. To study the association between anthropometric variables and blood pressure levels in schoolchildren from the 5{sup th} and 8{sup th} grades, and to identify which parameter was more strongly correlated with blood pressure levels. Contemporary cross-sectional study with probabilistic population-based cluster sampling of schoolchildren enrolled from the 5{sup th} to the 8{sup th} grades in public elementary schools of Porto Alegre. Data on familial risk factors and anthropometry were collected. Statistical analysis included correlations and cluster-adjusted confidence intervals. The mean age of participants was 12.57 (± 1.64) years, and 55.2% of them were females. Abnormal blood pressure levels were found in 11.3% of the sample and borderline values, in 16.2%. Among the anthropometric variables analyzed, hip circumference was the one with the strongest correlation with increased blood pressure (r = 0.462, p < 0.001), followed by waist circumference (r = 0.404, p < 0.001) and abdominal skinfold (r = 0.291, p < 0.001). We observed an association of waist circumference and skinfolds with increased blood pressure levels in the schoolchildren of the sample. Therefore, it is of the utmost importance that early measurements of blood pressure, and waist and hip circumferences become a routine in health services in order to prevent this condition.

  4. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  5. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  6. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    Science.gov (United States)

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Conductivity determination of electrolytes at high pressure and temperature

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Gutierrez, Norberto; Petragalli, I.P

    1981-01-01

    An experimental layout is designed that would allow operation up to 350 deg C and 10 8 Pascal, thus facilitating measurements of conductivity in electrolytes with an accuracy of 0.1%. The unit was tested with ClK solutions at 25 deg C and pressures up to 6 x 10 7 Pascal, showing that under these conditions it yields results in good agreement with the electric conductivity data found in the bibliography. (M.E.L.) [es

  8. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  9. Design and evaluation of a pressure sensor for high temperature nuclear application

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1981-11-01

    The goal of this technical development task was the development of a small eddy-current pressure sensor for use within a high temperature nuclear environment. The sensor is designed for use at pressures and temperatures of up to 17.23 MPa and 650 0 F. The design of the sensor incorporated features to minimize possible errors due to temperature transients present in nuclear applications. This report describes a prototype pressure sensor that was designed, the associated 100 kHz signal conditioning electronics, and the evaluation tests which were conducted

  10. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  11. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  12. Hafnium(IV) complexation with oxalate at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Friend, Mitchell T.; Wall, Nathalie A. [Washington State Univ., Pullmanm, WA (United States). Dept. of Chemistry

    2017-08-01

    Appropriate management of fission products in the reprocessing of spent nuclear fuel (SNF) is crucial in developing advanced reprocessing schemes. The addition of aqueous phase complexing agents can prevent the co-extraction of these fission products. A solvent extraction technique was used to study the complexation of Hf(IV) - an analog to fission product Zr(IV) - with oxalate at 15, 25, and 35 C in 1 M HClO{sub 4} utilizing a {sup 175+181}Hf radiotracer. The mechanism of the solvent extraction system of 10{sup -5} M Hf(IV) in 1 M HClO{sub 4} to thenoyltrifluoroacetone (TTA) in toluene demonstrated a 4{sup th}-power dependence in both TTA and H{sup +}, with Hf(TTA){sub 4} the only extractable species. The equilibrium constant for the extraction of Hf(TTA){sub 4} was determined to be log K{sub ex}=7.67±0.07 (25±1 C, 1 M HClO{sub 4}). The addition of oxalate to the aqueous phase decreased the distribution ratio, indicating aqueous Hf(IV)-oxalate complex formation. Polynomial fits to the distribution data identified the formation of Hf(ox){sup 2+} and Hf(ox){sub 2(aq)} and their stability constants were measured at 15, 25, and 35 C in 1 M HClO{sub 4}. van't Hoff analysis was used to calculate Δ{sub r}G, Δ{sub r}H, and Δ{sub r}S for these species. Stability constants were observed to increase at higher temperature, an indication that Hf(IV)-oxalate complexation is endothermic and driven by entropy.

  13. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  14. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-06-01

    Full Text Available This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts, the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  15. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    Science.gov (United States)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  16. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  17. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  18. Blood pressure regulation III: what happens when one system must serve two masters: temperature and pressure regulation?

    Science.gov (United States)

    Kenney, W Larry; Stanhewicz, Anna E; Bruning, Rebecca S; Alexander, Lacy M

    2014-03-01

    When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat, nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors--e.g., dehydration or simulated hemorrhage--upon heat stress to substantially impact blood pressure regulation.

  19. Fuel temperature prediction using a variable bypass gap size in the prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min Hwan

    2016-01-01

    Highlights: • The bypass flow of the prismatic very high temperature reactor is analyzed. • The bypass gap sizes are calculated considering the effect of the neutron fluences and thermal expansion. • The fuel hot spot temperature and temperature profiles are calculated using the variable gap size. • The BOC, MOC and EOC condition at the cycle 07 and 14 are applied. - Abstract: The temperature gradient and hot spot temperatures were calculated in the prismatic very high temperature reactor as a function of the variable bypass gap size. Many previous studies have predicted the temperature of the reactor core based on a fixed bypass gap size. The graphite matrix of the assemblies in the reactor core undergoes a dimensional change during the operation due to thermal expansion and neutron fluence. The expansion and shrinkage of the bypass gaps change the coolant flow fractions into the coolant channels, the control rod holes, and the bypass gaps. Therefore, the temperature of the assemblies may differ compared to those for the fixed bypass gap case. The temperature gradient and the hot spot temperatures are important for the design of reactor structures to ensure their safety and efficiency. In the present study, the temperature variation of the PMR200 is studied at the beginning (BOC), middle (MOC), and end (EOC) of cycles 07 and 14. CORONA code which has been developed in KAERI is applied to solve the thermal-hydraulics of the reactor core of the PMR200. CORONA solves a fluid region using a one-dimensional formulation and a solid region using a three-dimensional formulation to enhance the computational speed and still obtain a reasonable accuracy. The maximum temperatures in the fuel assemblies using the variable bypass gaps did not differ much from the corresponding temperatures using the fixed bypass gaps. However, the maximum temperatures in the reflector assemblies using the variable bypass gaps differ significantly from the corresponding temperatures

  20. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.

    1976-01-01

    temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...

  1. Effect of working pressure and annealing temperature on ...

    Indian Academy of Sciences (India)

    roughness was found at higher temperatures as a result of a more heterogeneous growth and less tensions. Keywords. Barium strontium titanate; thin film; pulsed laser deposition; ferroelectric. 1. Introduction. Perovskite barium strontium titanate (BST) thin films are promising candidates for dynamic random access memory.

  2. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  3. The effects of sustained manual pressure stimulation according to Vojta Therapy on heart rate variability.

    Science.gov (United States)

    Opavsky, Jaroslav; Slachtova, Martina; Kutin, Miroslav; Hok, Pavel; Uhlir, Petr; Opavska, Hana; Hlustik, Petr

    2018-05-23

    The physiotherapeutic technique of Vojta reflex locomotion is often accompanied by various autonomic activity changes and unpleasant sensations. It is unknown whether these effects are specific to Vojta Therapy. Therefore, the aim of this study was to compare changes in cardiac autonomic control after Vojta reflex locomotion stimulation and after an appropriate sham stimulation. A total of 28 young healthy adults (20.4 - 25.7 years) were enrolled in this single-blind randomized cross-over study. Participants underwent two modes of 20-minute sustained manual pressure stimulation on the surface of the foot on two separate visits. One mode used manual pressure on the lateral heel, i.e., in a zone employed in the Vojta Therapy (active stimulation). The other mode used pressure on the lateral ankle (control), in an area not included among the active zones used by Vojta Therapy and whose activation does not evoke manifestations of reflex locomotion. Autonomic nervous system activity was evaluated using spectral analysis of heart rate variability before and after the intervention. The active stimulation was perceived as more unpleasant than the control stimulation. Heart rate variability parameters demonstrated almost identical autonomic responses after both stimulation types, showing either modest increase in parasympathetic activity, or increased heart rate variability with similar contribution of parasympathetic and sympathetic activity. The results demonstrate changes of cardiac autonomic control in both active and control stimulation, without evidence for a significant difference between the two.

  4. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  5. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  6. 24-hour aortic blood pressure variability showed a stronger association with carotid damage than 24-hour brachial blood pressure variability: The SAFAR study.

    Science.gov (United States)

    Yu, Shikai; Chi, Chen; Protogerou, Athanase D; Safar, Michel E; Blacher, Jacques; Argyris, Antonis A; Nasothimiou, Efthimia G; Sfikakis, Petros P; Papaioannou, Theodore G; Xu, Henry; Zhang, Yi; Xu, Yawei

    2018-03-01

    We aim to compare 24-hour aortic blood pressure variability (BPV) with brachial BPV in relation to carotid damage as estimated by carotid intima-media thickness (CIMT) and cross-sectional area (CCSA). Four hundred and forty five individuals received brachial and aortic 24-hour ambulatory BP monitoring with a validated device (Mobil-O-Graph). Systolic BPV was estimated by average real variability (ARV) and time-weighted standard deviation (wSD). In multiple logistic regression analysis, CIMT > 900 μm was significantly and independently associated with aortic ARV (OR = 1.38; 95% CI: 1.04-1.84), aortic wSD (OR = 1.65; 95% CI: 1.19-2.29) and brachial ARV (OR = 1.53; 95% CI: 1.07-2.18), but not with brachial wSD. CCSA > 90th percentile was significantly and independently associated with aortic ARV (OR = 1.50; 95% CI: 1.07-2.10) and wSD (OR = 1.70; 95% CI: 1.12-2.56), but not with brachial BPVs. In receiver operator characteristics curve analysis, aortic wSD identified CCSA > 90th percentile better than brachial wSD (AUC: 0.73 vs 0.68, P < .01). In conclusion, aortic 24-hour systolic BPV showed a slightly stronger association with carotid damage than brachial BPV. ©2018 Wiley Periodicals, Inc.

  7. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Science.gov (United States)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  8. Resistor capacitor, primitive variable solution of buoyant fluid flow within an enclosure with highly temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.P. [Texas Univ., Austin, TX (United States); Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    A numerical solution for buoyant natural convection within a square enclosure containing a fluid with highly temperature dependent viscosity is presented. Although the fluid properties employed do not represent any real fluid, the large variation in the fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-viscosity concepts. Results are obtained using a primitive variable formulation and the resistor method. The results presented include velocity, temperature and pressure distributions within the enclosure as well as shear stress and heat flux distributions along the enclosure walls. Three mesh refinements were employed and uncertainty values are suggested for the final mesh refinement. These solutions are part of a contributed benchmark solution set for the subject problem.

  9. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  10. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  11. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  12. Experimental on moisture migration and pore pressure formation of concrete members subjected to high temperature

    International Nuclear Information System (INIS)

    Nagao, Kakuhiro; Nakane, Sunao

    1993-01-01

    The experimental studies concerning temperature, moisture migration, and pore pressure of mass concrete mock-up specimens heated up to high temperature at 110degC to 600degC, were performed, so as to correctly estimate the moisture migration behaviour of concrete members subjected to high temperature, which is considered significantly influenced on physical properties of concrete. As a results, it is confirmed that the moisture migration behavior of concrete members can be explained by temperature and pore pressure, and indicate the characteristics both sealed condition (dissipation of moisture is prevented) and unsealed condition (dissipation of moisture occur). (author)

  13. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  14. Temperature and atmospheric pressure may be considered as predictors for the occurrence of bacillary dysentery in Guangzhou, Southern China

    Directory of Open Access Journals (Sweden)

    Tiegang Li

    2014-06-01

    Full Text Available Introduction The control of bacillary dysentery (BD remains a big challenge for China. Methods Negative binomial multivariable regression was used to study relationships between meteorological variables and the occurrence of BD during the period of 2006-2012. Results Each 1°C rise of temperature corresponded to an increase of 3.60% (95%CI, 3.03% to 4.18% in the monthly number of BD cases, whereas a 1 hPa rise in atmospheric pressure corresponded to a decrease in the number of BD cases by 2.85% (95%CI = 3.34% to 2.37% decrease. Conclusions Temperature and atmospheric pressure may be considered as predictors for the occurrence of BD in Guangzhou.

  15. Pressure and temperature dependencies of o-Ps annihilation rates in ethane

    International Nuclear Information System (INIS)

    Sharma, S.C.; Juengerman, E.M.

    1985-01-01

    The authors report new results on the behavior of the sharp enhancement seen recently in the pickoff annihilation rates of orthopositronium atoms as functions of pressure and temperature of ethane gas

  16. The measurement for level of marine high-temperature and high-pressure vessels

    International Nuclear Information System (INIS)

    Lin Jie.

    1986-01-01

    The various error factors in measurement for level of marine high-temperature and high-pressure vessels are anslysed. The measuring method of error self compensation and its simplification for land use are shown

  17. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  18. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    filtration, belt filtering and flotation , among others (98, 103). The remaining material can undergo anaerobic digestion to produce methane, burned to...132–135). In that same 1933 patent, acrolein was produced from glycerin using a copper phosphate catalyst (132). Many studies have been published...carried out over a catalyst of copper and zinc oxide on an alumina support (198, 199). The high temperature F-T can accommodate some carbon dioxide

  19. Behavior of pressure rise and condensation caused by water evaporation under vacuum at high temperature

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Yamazaki, Seiichiro; Fujii, Sadao

    1998-01-01

    Pressure rise and condensation characteristics during the ingress-of-coolant event (ICE) in fusion reactors were investigated using the preliminary ICE apparatus with a vacuum vessel (VV), an additional tank (AT) and an isolation valve (IV). A surface of the AT was cooled by water at RT. The high temperature and pressure water was injected into the VV which was heated up to 250degC and pressure and temperature transients in the VV were measured. The pressure increased rapidly with an injection time of the water because of the water evaporation. After the IV was opened and the VV was connected with the AT, the pressure in the VV decreased suddenly. From a series of the experiments, it was confirmed that control factors on the pressure rise were the flushing evaporation and boiling heat transfer in the VV, and then, condensation of the vapor after was effective to the depressurization in the VV. (author)

  20. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    Science.gov (United States)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  1. Effect of lower limb preference on variability of centre of pressure movement during gait

    Directory of Open Access Journals (Sweden)

    Zdeněk Svoboda

    2015-12-01

    Full Text Available Background: Centre of pressure (COP movement variability, as an example of 'end-point' variability (stability, may be one of the indicators that can assess the functional gait asymmetry caused by foot preference in relation to fall risk. Objective: The aim of this study was to investigate the possible differences in COP movement variability during the stance phase of gait caused by both aging and lower limb preference. Methods: Two groups of females participated in this study: Younger (n = 25, age 22.2 ± 1.8 years and Middle-aged (n = 25, age 56.6 ± 4.9 years. COP movement and ground reaction forces during gait at self-selected speed were recorded using two force platforms. The standard deviations of the medial-lateral and anterior-posterior COP displacements in four subphases: loading response (LR, midstance (MSt, terminal stance (TSt and pre-swing (PSw were assessed. Results: The observed variables indicated significantly higher mean values in almost all cases in subphases LR and PSw in comparison with MSt and TSt. When comparing preferred and non-preferred limb, the preferred limb showed greater variability in medial-lateral direction during LR and less variability in anterior-posterior direction during PSw. In the Younger group, greater variability was found on preferred limb in anterior-posterior direction during LR. When assessing age-related differences all significant cases showed higher variability in the Middle-aged group. Conclusions: The results suggest that COP movement variability is less on the non-preferred limb during weight acceptance and on the preferred limb during propulsion.

  2. Bacterial and Archaeal Communities Variability Associated with Upwelling and Anthropogenic Pressures in the Protection Area of Arraial do Cabo (Cabo Frio region - RJ).

    Science.gov (United States)

    Coelho-Souza, Sergio A; Araújo, Fábio V; Cury, Juliano C; Jesus, Hugo E; Pereira, Gilberto C; Guimarães, Jean R D; Peixoto, Raquel S; Dávila, Alberto M R; Rosado, Alexandre S

    2015-09-01

    Upwelling systems contain a high diversity of pelagic microorganisms and their composition and activity are defined by factors like temperature and nutrient concentration. Denaturing gradient gel electrophoresis (DGGE) technique was used to verify the spatial and temporal genetic variability of Bacteria and Archaea in two stations of the Arraial do Cabo coastal region, one under upwelling pressure and another under anthropogenic pressure. In addition, biotic and abiotic variables were measured in surface and deep waters from three other stations between these stations. Six samplings were done during a year and adequately represented the degrees of upwelling and anthropogenic pressures to the system. Principal Component Analysis (PCA) showed negative correlations between the concentrations of ammonia and phosphorous with prokaryotic secondary production and the total heterotrophic bacteria. PCA also showed negative correlation between temperature and the abundance of prokaryotic cells. Bacterial and archaeal compositions were changeable as were the oceanographic conditions, and upwelling had a regional pressure while anthropogenic pressure was punctual. We suggest that the measurement of prokaryotic secondary production was associated with both Bacteria and Archaea activities, and that substrate availability and temperature determine nutrients cycling.

  3. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...... is estimated to be approximately 10%. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  4. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  5. Blood pressure variability predicts cardiovascular events independently of traditional cardiovascular risk factors and target organ damage

    DEFF Research Database (Denmark)

    Vishram, Julie K K; Dahlöf, Björn; Devereux, Richard B

    2015-01-01

    ). METHODS: In 8505 patients randomized to losartan vs. atenolol-based treatment in the LIFE study, we tested whether BP variability assessed as SD and range for BP6-24months measured at 6, 12, 18 and 24 months of treatment was associated with target organ damage (TOD) defined by LVH on ECG and urine albumin......BACKGROUND: Assessment of antihypertensive treatment is normally based on the mean value of a number of blood pressure (BP) measurements. However, it is uncertain whether high in-treatment visit-to-visit BP variability may be harmful in hypertensive patients with left ventricular hypertrophy (LVH.......05), but MI was not. CONCLUSION: In LIFE patients, higher in-treatment BP6-24months variability was independently of mean BP6-24months associated with later CEP and stroke, but not with MI or TOD after 24 months....

  6. Influence of climate on emergency department visits for syncope: role of air temperature variability.

    Directory of Open Access Journals (Sweden)

    Andrea Galli

    Full Text Available BACKGROUND: Syncope is a clinical event characterized by a transient loss of consciousness, estimated to affect 6.2/1000 person-years, resulting in remarkable health care and social costs. Human pathophysiology suggests that heat may promote syncope during standing. We tested the hypothesis that the increase of air temperatures from January to July would be accompanied by an increased rate of syncope resulting in a higher frequency of Emergency Department (ED visits. We also evaluated the role of maximal temperature variability in affecting ED visits for syncope. METHODOLOGY/PRINCIPAL FINDINGS: We included 770 of 2775 consecutive subjects who were seen for syncope at four EDs between January and July 2004. This period was subdivided into three epochs of similar length: 23 January-31 March, 1 April-31 May and 1 June-31 July. Spectral techniques were used to analyze oscillatory components of day by day maximal temperature and syncope variability and assess their linear relationship. There was no correlation between daily maximum temperatures and number of syncope. ED visits for syncope were lower in June and July when maximal temperature variability declined although the maximal temperatures themselves were higher. Frequency analysis of day by day maximal temperature variability showed a major non-random fluctuation characterized by a ∼23-day period and two minor oscillations with ∼3- and ∼7-day periods. This latter oscillation was correlated with a similar ∼7-day fluctuation in ED visits for syncope. CONCLUSIONS/SIGNIFICANCE: We conclude that ED visits for syncope were not predicted by daily maximal temperature but were associated with increased temperature variability. A ∼7-day rhythm characterized both maximal temperatures and ED visits for syncope variability suggesting that climate changes may have a significant effect on the mode of syncope occurrence.

  7. Influence of pH, Salt and Temperature on Pressure Inactivation of Hepatitis A virus

    Science.gov (United States)

    The effects of pH (3-7), NaCl (0-6%), and temperature on pressure inactivation of hepatitis A virus (HAV) were determined. The HAV samples were treated at 400 MPa for 1 min at 5, 20, and 50C. Decreasing solution pH enhanced pressure inactivation of HAV. This enhanced inactivation effect was most e...

  8. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  9. Patient and organisational variables associated with pressure ulcer prevalence in hospital settings: a multilevel analysis.

    Science.gov (United States)

    Bredesen, Ida Marie; Bjøro, Karen; Gunningberg, Lena; Hofoss, Dag

    2015-08-27

    To investigate the association of ward-level differences in the odds of hospital-acquired pressure ulcers (HAPUs) with selected ward organisational variables and patient risk factors. Multilevel approach to data from 2 cross-sectional studies. 4 hospitals in Norway were studied. 1056 patients at 84 somatic wards. HAPU. Significant variance in the odds of HAPUs was found across wards. A regression model using only organisational variables left a significant variance in the odds of HAPUs across wards but patient variables eliminated the across-ward variance. In the model including organisational and patient variables, significant ward-level HAPU variables were ward type (rehabilitation vs surgery/internal medicine: OR 0.17 (95% CI 0.04 to 0.66)), use of preventive measures (yes vs no: OR 2.02 (95% CI 1.12 to 3.64)) and ward patient safety culture (OR 0.97 (95% CI 0.96 to 0.99)). Significant patient-level predictors were age >70 vs organisation of care improvements, that is, by improving the patient safety culture and implementation of preventive measures. Some wards may prevent pressure ulcers better than other wards. The fact that ward-level variation was eliminated when patient-level HAPU variables were included in the model indicates that even wards with the best HAPU prevention will be challenged by an influx of high-risk patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Association between different measurements of blood pressure variability by ABP monitoring and ankle-brachial index.

    Science.gov (United States)

    Wittke, Estefânia; Fuchs, Sandra C; Fuchs, Flávio D; Moreira, Leila B; Ferlin, Elton; Cichelero, Fábio T; Moreira, Carolina M; Neyeloff, Jeruza; Moreira, Marina B; Gus, Miguel

    2010-11-05

    Blood pressure (BP) variability has been associated with cardiovascular outcomes, but there is no consensus about the more effective method to measure it by ambulatory blood pressure monitoring (ABPM). We evaluated the association between three different methods to estimate BP variability by ABPM and the ankle brachial index (ABI). In a cross-sectional study of patients with hypertension, BP variability was estimated by the time rate index (the first derivative of SBP over time), standard deviation (SD) of 24-hour SBP; and coefficient of variability of 24-hour SBP. ABI was measured with a doppler probe. The sample included 425 patients with a mean age of 57 ± 12 years, being 69.2% women, 26.1% current smokers and 22.1% diabetics. Abnormal ABI (≤ 0.90 or ≥ 1.40) was present in 58 patients. The time rate index was 0.516 ± 0.146 mmHg/min in patients with abnormal ABI versus 0.476 ± 0.124 mmHg/min in patients with normal ABI (P = 0.007). In a logistic regression model the time rate index was associated with ABI, regardless of age (OR = 6.9, 95% CI = 1.1- 42.1; P = 0.04). In a multiple linear regression model, adjusting for age, SBP and diabetes, the time rate index was strongly associated with ABI (P < 0.01). None of the other indexes of BP variability were associated with ABI in univariate and multivariate analyses. Time rate index is a sensible method to measure BP variability by ABPM. Its performance for risk stratification of patients with hypertension should be explored in longitudinal studies.

  11. Speed of sound as a function of temperature and pressure for propane derivatives

    International Nuclear Information System (INIS)

    Yebra, Francisco; Zemánková, Katerina; Troncoso, Jacobo

    2017-01-01

    Highlights: • New speed of sound data for six propane derivatives is reported. • Temperature and pressure ranges: (283.15–343.15) K and (0.1–95) MPa. • Data are compared with those available for other propane derivatives. • Temperature and pressure dependencies of sound speed are analyzed. - Abstract: The speed of sound in the temperature and pressure intervals (283.15–343.15) K and (0.1–95) MPa was measured for nitropropane, propionitrile, 1,2-dichloropropane, 1,3-dichloropropane, propylamine and propionic acid. An apparatus based on the acoustic wave time of flight determination, with a fully automatized temperature and pressure control, was used to this aim. The speed of sound derivatives against temperature and pressure, as well as the nonlinear acoustic coefficient was obtained from experimental values. The results are analyzed and compared with previously reported data for other propane derivatives: propane, 1-propanol, propanone, d-propanone, and several fluoropropanes. All obtained magnitudes are rationalized basing on the physicochemical properties of these fluids. Nearness to critical point and molar mass are revealed as key factors as regards the speed of sound behavior against temperature and pressure.

  12. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  13. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  14. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    International Nuclear Information System (INIS)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-01-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K

  15. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  16. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    Science.gov (United States)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  17. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    Science.gov (United States)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  18. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  19. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    C.A. Sierra; M.E. Harmon; E.A. Thomann; S.S. Perakis; H.W. Loescher

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic...

  20. Reciprocal Interaction of 24-Hour Blood Pressure Variability and Systolic Blood Pressure on Outcome in Stroke Thrombolysis.

    Science.gov (United States)

    Kellert, Lars; Hametner, Christian; Ahmed, Niaz; Rauch, Geraldine; MacLeod, Mary J; Perini, Francesco; Lees, Kennedy R; Ringleb, Peter A

    2017-07-01

    Significance and management of blood pressure (BP) changes in acute stroke care are unclear. Here, we aimed to investigate the impact of 24-hour BP variability (BPV) on outcome in patients with acute ischemic stroke treated with intravenous thrombolysis. From the Safe Implementation of Treatment in Stroke International Stroke Thrombolysis registry, 28 976 patients with documented pre-treatment systolic BP at 2 and 24 hours were analyzed. The primary measure of BP variability was successive variability. Data were preprocessed using coarsened exact matching. We assessed early neurological improvement, symptomatic intracerebral hemorrhage (SICH), and long-term functional outcome (modified Rankin Scale [mRS] at 90 days) by binary and ordinal regression analyses. Attempts to explain successive variation for analysis of BPV with patients characteristics at admission found systolic BP (5.5% variance) to be most influential, yet 92% of BPV variance remained unexplained. Independently from systolic BP, successive variation for analysis of BPV was associated with poor functional outcome mRS score of 0 to 2 (odds ratio [OR], 0.94; 95% confidence interval [CI], 0.90-0.98), disadvantage across the shift of mRS (OR, 1.04; 95% CI, 1.01-1.08), mortality (OR, 1.10; 95% CI, 1.01-1.08), SICH SITS (OR, 1.14; 95% CI, 1.06-1.23), and SICH ECASS (OR, 1.24; 95% CI, 1.10-1.40; ECASS [European Cooperative Acute Stroke Study 2]). Analyzing successive variation for analysis of BPV as a function of pre-treatment, systolic BP significantly improved the prediction of functional outcome (mRS score of 0-1, mRS score of 0-2, neurological improvement, mRS-shift: all P interaction accounting for pre-treatment BP and the acute BP course (ie, BPV) to achieve best possible outcome for the patient. © 2017 American Heart Association, Inc.

  1. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  2. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    Science.gov (United States)

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might

  3. Morning pressor surge, blood pressure variability, and arterial stiffness in essential hypertension.

    Science.gov (United States)

    Pucci, Giacomo; Battista, Francesca; Anastasio, Fabio; Schillaci, Giuseppe

    2017-02-01

    An excess morning blood pressure surge (MBPS) may portend an increased cardiovascular risk, but the mechanisms thereof have been little investigated. The link between MBPS, short-term blood pressure (BP) variability, and arterial stiffness has not been entirely defined. In 602 consecutive untreated hypertensive patients (48 ± 12 years, 61% men, office BP 149/93 ± 17/10 mmHg), we measured carotid-femoral pulse wave velocity (cf-PWV, SphygmoCor) and 24-h ambulatory BP. Using self-reported sleep and wake times, MBPS was defined as sleep-trough (ST-MBPS), prewaking, rising. Short-term BP variability was calculated as weighted 24-h SBP SD and average real variability of 24-h SBP (ARV), that is, average of absolute differences between consecutive SBP readings. ST-MBPS (r = 0.16, P < 0.001) and rising MBPS (r = 0.12, P = 0.003) showed a direct correlation with cf-PWV, whereas prewaking MBPS had no such relation (r = 0.06, P = 0.14). Only ST-MBPS was independently associated with cf-PWV (t = 1.96, P = 0.04) after adjustment for age, sex, height, office mean arterial pressure, heart rate, and renal function. This association was lost after further adjustment for weighted 24-h SBP SD (P = 0.13) or ARV (P = 0.24). ARV was a significant mediator of the relationship between ST-MBPS and cf-PWV (P = 0.003). In untreated hypertension, ST-MBPS has a direct relation with aortic stiffness, which is mediated by an increased ARV. The adverse effects of MBPS may be partly explained by its link with arterial stiffness, mediated by short-term SBP variability.

  4. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors.

    Science.gov (United States)

    Goodrich, L F; Cheggour, N; Stauffer, T C; Filla, B J; Lu, X F

    2013-01-01

    We review variable-temperature, transport critical-current (I c) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium ("liquid" or I c liq) at 5

  5. Desirability of oysters treated by high pressure processing at different temperatures and elevated pressures

    Science.gov (United States)

    Organoleptic changes in sterile triploid oysters (Crassostrea virginica) induced by high pressure processing (HPP) were investigated using a volunteer panel. Using a 1-7 hedonic scale, where seven is “like very much”, and one is “dislike very much”, oysters were evaluated organoleptically for flavo...

  6. Characterizing Uncertainty In Electrical Resistivity Tomography Images Due To Subzero Temperature Variability

    Science.gov (United States)

    Herring, T.; Cey, E. E.; Pidlisecky, A.

    2017-12-01

    Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.

  7. Pressure/temperature/salinity profiler measurements collected in the Sea of Japan, 2001-06 to July 2001, under the sponsorship of the Office of Naval Research (NODC Accession 0002416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure/temperature/salinty profiles collected in support of a study to investigate the shallow and deep current variability in the southwest Japan/East Sea....

  8. Method of nuclear reactor control using a variable temperature load dependent set point

    International Nuclear Information System (INIS)

    Kelly, J.J.; Rambo, G.E.

    1982-01-01

    A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow

  9. Variable-temperature sample system for ion implantation at -192 to +5000C

    International Nuclear Information System (INIS)

    Fuller, C.T.

    1978-04-01

    A variable-temperature sample system based on exchange-gas coupling was developed for ion-implantation use. The sample temperature can be controlled from -192 0 C to +500 0 C with rapid cooling. The system also has provisions for focusing and alignment of the ion beam, electron suppression, temperature monitoring, sample current measuring, and cryo-shielding. Design considerations and operating characteristics are discussed. 5 figures

  10. Heat transfer effects on flow past an exponentially accelerated vertical plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2008-01-01

    Full Text Available An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.

  11. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  12. Formation of ice XII at low temperatures and high pressures

    International Nuclear Information System (INIS)

    Schober, H.; Koza, M.; Toelle, A.; Fujara, F.

    1999-01-01

    Complete text of publication follows. Solid water features a large variety of crystalline as well as two amorphous phases. The versatility of water's behavior has been reinforced recently by the identification of still another form of crystalline ice [1]. Ice XII was obtained by cooling liquid water to 260 K at a pressure of 5.5 kbar. Ice XII could be produced in a completely different region of water's phase diagram [2]. Using a. piston-cylinder apparatus ice XII was formed during the production of high-density amorphous ice (HDA) at 77 K as described previously [3]. The amount of crystalline ice XII contamination within the HDA sample varies in a so far unpredictable way with both extremes, i.e. pure HDA as well as pure ice XII. realized. Our results indicate that water's phase diagram needs modification in the region assigned to HDA. Ice XII is characterized as well as its transition towards cubic ice by elastic and inelastic neutron scattering. (author)

  13. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-03-05

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy.

  14. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    International Nuclear Information System (INIS)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi; Liu Baoting

    2008-01-01

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy

  15. Neutron spin echo studies of the effects of temperature and pressure in a ternary microemulsion

    CERN Document Server

    Kawabata, Y; Seto, H; Takeda, T; Komura, S; Schwahn, D

    2002-01-01

    In order to clarify the self-assembling mechanisms in complex fluids involving amphiphiles, we have investigated dynamic features of amphiphilic membranes and droplets at high temperature and at high pressure in a ternary microemulsion, consisting of AOT, water, and n-decane. A high-pressure cell for neutron spin echo (NSE) experiments has been improved, and the static and dynamic features of droplets are observed in detail by means of small angle neutron scattering and NSE. It is found that the size fluctuation and the diffusion of droplets are enhanced by increasing temperature, while they are suppressed by increasing pressure. (orig.)

  16. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  17. Negative magnetoresistance of pitch-based carbon fibers Temperature and pressure dependence

    Science.gov (United States)

    Hambourger, P. D.

    1986-01-01

    The negative transverse magnetoresistance of high-modulus pitch-based carbon fibers has been measured over the temperature range 1.3-4.2 K at ambient pressure and at 4.2 K under hydrostatic pressure up to 16 kbar. At low fields (less than 0.5 torr) the magnitude of the magnetoresistance increases markedly as the temperature is lowered from 4.2 K to 1.3 K, in disagreement with Bright's theoretical model, and decreases with pressure at the rate -0.6 percent/kbar.

  18. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  19. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey; Cohen, Anne L.; Oppo, Delia W.; Halley, Robert B.; Carilli, Jessica E.

    2009-01-01

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  20. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey

    2009-06-21

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  1. Startup of a high-temperature reactor cooled and moderated by supercritical-pressure light water

    International Nuclear Information System (INIS)

    Yi, Tin Tin; Ishiwatari, Yuki; Koshizuka, Seiichi; Oka, Yoshiaki

    2003-01-01

    The startup schemes of high-temperature reactors cooled and moderated by supercritical pressure light water (SCLWR-H) with square lattice and descending flow type water rods are studied by thermal-hydraulic analysis. In this study, two kinds of startup systems are investigated. In the constant pressure startup system, the reactor starts at a supercritical pressure. A flash tank and pressure reducing valves are necessary. The flash tank is designed so that the moisture content in the steam is less than 0.1%. In sliding pressure startup system, the reactor starts at a subcritical pressure. A steam-water separator and a drain tank are required for two-phase flow at startup. The separator is designed by referring to the water separator used in supercritical fossil-fired power plants. The maximum cladding surface temperature during the power-raising phase of startup is restricted not to exceed the rated value of 620degC. The minimum feedwater flow rate is 25% for constant pressure startup and 35% for sliding pressure startup system. It is found that both constant pressure startup system and sliding pressure startup system are feasible in SCLWR-H from the thermal hydraulic point of view. The core outlet temperature as high as 500degC can be achieved in the present design of SCLWR-H. Since the feedwater flow rate of SCLWR-H (1190 kg/s) is lower than that of the previous SCR designs the weight of the component required for startup is reduced. The sliding pressure startup system is better than constant pressure startup system in order to reduce the required component weight (and hence material expenditure) and to simplify the startup plant system. (author)

  2. 24-Hour Blood Pressure Variability Assessed by Average Real Variability: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Mena, Luis J; Felix, Vanessa G; Melgarejo, Jesus D; Maestre, Gladys E

    2017-10-19

    Although 24-hour blood pressure (BP) variability (BPV) is predictive of cardiovascular outcomes independent of absolute BP levels, it is not regularly assessed in clinical practice. One possible limitation to routine BPV assessment is the lack of standardized methods for accurately estimating 24-hour BPV. We conducted a systematic review to assess the predictive power of reported BPV indexes to address appropriate quantification of 24-hour BPV, including the average real variability (ARV) index. Studies chosen for review were those that presented data for 24-hour BPV in adults from meta-analysis, longitudinal or cross-sectional design, and examined BPV in terms of the following issues: (1) methods used to calculate and evaluate ARV; (2) assessment of 24-hour BPV determined using noninvasive ambulatory BP monitoring; (3) multivariate analysis adjusted for covariates, including some measure of BP; (4) association of 24-hour BPV with subclinical organ damage; and (5) the predictive value of 24-hour BPV on target organ damage and rate of cardiovascular events. Of the 19 assessed studies, 17 reported significant associations between high ARV and the presence and progression of subclinical organ damage, as well as the incidence of hard end points, such as cardiovascular events. In all these cases, ARV remained a significant independent predictor ( P <0.05) after adjustment for BP and other clinical factors. In addition, increased ARV in systolic BP was associated with risk of all cardiovascular events (hazard ratio, 1.18; 95% confidence interval, 1.09-1.27). Only 2 cross-sectional studies did not find that high ARV was a significant risk factor. Current evidence suggests that ARV index adds significant prognostic information to 24-hour ambulatory BP monitoring and is a useful approach for studying the clinical value of BPV. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Effect of Contact Pressure on the Resistance Contact Value and Temperature Changes in Copper Busbar Connection

    Directory of Open Access Journals (Sweden)

    Agus Risdiyanto

    2012-12-01

    Full Text Available This paper discussed the influence of tightness or contacts pressure on copper busbar joints to determine changes in the value of the initial contact resistance and the maximum temperature at the joint due to high current load. The test sample was copper busbar 3 x 30 mm with configuration of bolted overlapping joint. Increasing contact pressure at the joint was measured to find out its effect on the value of contact resistance. The applied pressure was 6 to 36 MPa. Procedure of contact resistance measurement refer to the ASTM B539 standard using four-wire method. The sample subsequently loaded with the current of 350 A for 60 minutes and the maximum temperature at the joint was measured. The result showed that increasing contact pressure at the busbar joint will reduce the contact resistance and maximum temperature. The increase of contact pressure from 6 to 30 MPa causes decreasing contact resistance from 16 μΩ to 11 μΩ. Further increasing of contact pressure more than 30 MPa did not affect the contact resistance significantly. The lowest temperatur of busbar joint of 54°C was reached at a contact pressure of 36 Mpa.

  4. $\\mu$SR-Measurements under High Pressure and at Low Temperatures

    CERN Multimedia

    2002-01-01

    High pressure causes changes in the volume available to each atom in a solid and will therefore influence local properties like the electronic charge and spin densities and, in the case of magnetic materials, the spin ordering.\\\\ \\\\ The positive muon is known to be an interesting probe particle for the study of certain problems in magnetism. It has in fact been used for one high pressure experiment earlier in CERN, but the present experiments aim at more systematic studie For this purpose it is necessary to carry out pressure experiments at low temperatures. The new experiments use a helium gas pressure system, which covers the temperature range 10-300 K at pressures up to 14 Kbar.\\\\ \\\\ Experiments are in progress on \\item 1)~~~~Ferromagnetic metals like Fe, Co, Ni where the pressure dependence of the local magnetic field ~~~is studied at 77 K and at room temperature. \\item 2)~~~~Knight shifts in semimetals, where in the case of Sb strong variations with temperature and ~~~pressure are observed. \\end{enumerat...

  5. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    Science.gov (United States)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  6. Pressure and temperature data from bottom-mounted pressure recorders to assist in the definition of net circulation through the Florida Keys, 2001-2003 (NODC Accession 0000826)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using pressure gauge in the Northwest Atlantic Ocean and Florida Bay from 11 September 2001 to 23 April 2003....

  7. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  8. Association between different measurements of blood pressure variability by ABP monitoring and ankle-brachial index

    Directory of Open Access Journals (Sweden)

    Moreira Leila B

    2010-11-01

    Full Text Available Abstract Background Blood pressure (BP variability has been associated with cardiovascular outcomes, but there is no consensus about the more effective method to measure it by ambulatory blood pressure monitoring (ABPM. We evaluated the association between three different methods to estimate BP variability by ABPM and the ankle brachial index (ABI. Methods and Results In a cross-sectional study of patients with hypertension, BP variability was estimated by the time rate index (the first derivative of SBP over time, standard deviation (SD of 24-hour SBP; and coefficient of variability of 24-hour SBP. ABI was measured with a doppler probe. The sample included 425 patients with a mean age of 57 ± 12 years, being 69.2% women, 26.1% current smokers and 22.1% diabetics. Abnormal ABI (≤ 0.90 or ≥ 1.40 was present in 58 patients. The time rate index was 0.516 ± 0.146 mmHg/min in patients with abnormal ABI versus 0.476 ± 0.124 mmHg/min in patients with normal ABI (P = 0.007. In a logistic regression model the time rate index was associated with ABI, regardless of age (OR = 6.9, 95% CI = 1.1- 42.1; P = 0.04. In a multiple linear regression model, adjusting for age, SBP and diabetes, the time rate index was strongly associated with ABI (P Conclusion Time rate index is a sensible method to measure BP variability by ABPM. Its performance for risk stratification of patients with hypertension should be explored in longitudinal studies.

  9. Natural convection in vertical tubes with variable properties and prescribed pressure at the end of the tube

    International Nuclear Information System (INIS)

    Almeida Rego, O.A. de; Fernandes, E.C.

    1983-01-01

    The analysis of free convection flow development in a heated vertical open tube was established in the present work for the air, with Prandtl number equal to 0.7 and for water with Prandtl numbers equal to 1.0, 2.5 and 5.0 with variable properties and prescribed pressure conditions at the end of the tube. It is considered that the flow is incompressible, laminar and stable and can be described by the continuity, momentum and energy equations with the usual boundary-layer assumptions. The equations were solved by finite difference method and from the velocity and temperature distributions many quantities such as dimensioless flow and heat rates and Nusselt numbers can be determined. (Author) [pt

  10. Integrated pressure and temperature sensor with high immunity against external disturbance for flexible endoscope operation

    Science.gov (United States)

    Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni

    2017-04-01

    In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.

  11. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  12. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  13. Correlation between the season, temperature and atmospheric pressure with incidence and pathogenesis of acute appendicitis.

    Science.gov (United States)

    Karanikolić, Aleksandar; Karanikolić, Vesna; Djordjević, Lidija; Pešić, Ivan

    2016-01-01

    There is very little literature data on the correlation between the seasons, temperature and atmospheric pressure, and pathogenesis of acute appendicitis (AA). The aim of this research is to investigate the association between the seasons, changes in atmospheric temperature and pressure, and patients’ age and severity of the clinical form of AA in the city of Niš This study included 395 patients diagnosed with AA, who, during the two-year period, from July 1st 2011 to June 30th 2013, were hospitalized and operated on at the Department of General Surgery, Clinical Center in Niš, Serbia. The increased average daily values of barometric pressure by 1 millibar on the day when the event took place was associated (p atmospheric temperature and pressure.

  14. Elasticity of water-saturated rocks as a function of temperature and pressure.

    Science.gov (United States)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  15. Effects of pressure and temperature on thermal contact resistance between different materials

    Directory of Open Access Journals (Sweden)

    Zhao Zhe

    2015-01-01

    Full Text Available To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.

  16. Phenomenology of polymorphism: The topological pressure-temperature phase relationships of the dimorphism of finasteride

    Energy Technology Data Exchange (ETDEWEB)

    Gana, Ines [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France) and Etablissement pharmaceutique de l' Assistance Publique - Hopitaux de Paris, Agence Generale des Equipements et Produits de Sante, 7 Rue du Fer a moulin, 75005 Paris (France); Ceolin, Rene [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer The topological pressure-temperature phase diagram for the dimorphism of finasteride. Black-Right-Pointing-Pointer Pressure affects phase equilibria: an enantiotropic phase relationship turning monotropic at high pressure. Black-Right-Pointing-Pointer The influence of pressure on phase behavior inferred from data obtained under ordinary conditions. - Abstract: Knowledge of the phase behavior in the solid state of active pharmaceutical ingredients is important for the development of stable drug formulations. The topological method for the construction of pressure-temperature phase diagrams has been applied to study the phase behavior of finasteride. It is demonstrated that with basic calorimetric measurements and X-ray diffraction sufficient data can be obtained to construct a complete topological pressure-temperature phase diagram. The dimorphism observed for finasteride gives rise to a phase diagram similar to the paradigmatic diagram of sulfur. The solid-solid phase relationship is enantiotropic at ordinary pressure and becomes monotropic at elevated pressure, where solid I is the only stable phase.

  17. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-03-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  18. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  19. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  20. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications

    National Research Council Canada - National Science Library

    Fielder, Robert S; Palmer, Matthew E

    2003-01-01

    ..., and redesign compressor and turbine stages based on actual measurements. There currently exists no sensor technology capable of making pressure measurements in the critical hot regions of gas turbine engines...

  1. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W

    2002-01-01

    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  2. FLANGE-ORNL, Flanged Pipe Joint Stress Analysis, Internal Pressure, Moment Loads, Temperature

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1979-01-01

    1 - Description of problem or function: FLANGE-ORNL calculates appropriate loads, stresses, and displacements for the flanges, bolts, and gaskets that comprise a flanged piping joint for internal pressure or moment loading on the pipe, temperature difference between the flange hub and ring, and variations in bolt load that result from pressure, hub-ring temperature gradient and/or bolt-ring temperature differences. Flanges considered may be tapered-hub, straight or blind. 2 - Method of solution: The solution is based on discontinuity analysis and the theory of plates and shells

  3. Dependence of O{sub 2} diffusion dynamics on pressure and temperature in silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G., E-mail: giuseppe.iovino@unipa.it; Agnello, S., E-mail: simonpietro.agnello@unipa.it; Gelardi, F. M., E-mail: franco.gelardi@unipa.it [University of Palermo, Department of Physics and Chemistry (Italy)

    2013-10-15

    An experimental study of the molecular O{sub 2} diffusion process in high purity non-porous silica nanoparticles having 50 m{sup 2}/g BET specific surface and 20 nm average radius was carried out in the temperature range from 127 to 177 Degree-Sign C at O{sub 2} pressure in the range from 0.2 to 66 bar. The study was performed by measuring the volume average interstitial O{sub 2} concentration by a Raman and photoluminescence technique using a 1,064 nm excitation laser to detect the singlet to triplet emission at 1,272 nm of the molecular oxygen in silica. A dependence of the diffusion kinetics on the O{sub 2} absolute pressure, in addition to temperature dependence, was found. The kinetics can be fit by the solution of Fick's diffusion equation using an effective diffusion coefficient related to temperature and O{sub 2} external pressure. The fit results have evidenced that the temperature and pressure dependencies can be disentangled and that the pressure effects are more pronounced at lower temperatures. An Arrhenius temperature law is determined for the effective diffusion coefficient and the activation energy and pre-exponential factor are found in the explored experimental range. The reported findings have not been evidenced previously in the studies in bulk silica and could probably be originated by the reduced spatial extension of the considered system.

  4. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  5. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    Science.gov (United States)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  6. Interpolating a consumption variable for scaling and generalizing potential population pressure on urbanizing natural areas

    Science.gov (United States)

    Varanka, Dalia; Jiang, Bin; Yao, Xiaobai

    2010-01-01

    Measures of population pressure, referring in general to the stress upon the environment by human consumption of resources, are imperative for environmental sustainability studies and management. Development based on resource consumption is the predominant factor of population pressure. This paper presents a spatial model of population pressure by linking consumption associated with regional urbanism and ecosystem services. Maps representing relative geographic degree and extent of natural resource consumption and degree and extent of impacts on surrounding areas are new, and this research represents the theoretical research toward this goal. With development, such maps offer a visualization tool for planners of various services, amenities for people, and conservation planning for ecologist. Urbanization is commonly generalized by census numbers or impervious surface area. The potential geographical extent of urbanism encompasses the environmental resources of the surrounding region that sustain cities. This extent is interpolated using kriging of a variable based on population wealth data from the U.S. Census Bureau. When overlayed with land-use/land-cover data, the results indicate that the greatest estimates of population pressure fall within mixed forest areas. Mixed forest areas result from the spread of cedar woods in previously disturbed areas where further disturbance is then suppressed. Low density areas, such as suburbanization and abandoned farmland are characteristic of mixed forest areas.

  7. CONTEMPT-4MOD3, LWR Containment Long-Term Pressure Distribution and Temperature Distribution in LOCA

    International Nuclear Information System (INIS)

    Lin, C.C.; Economos, C.; Lehner, J.R.; Maise, G.; Ng, K.K.; Mirsky, S.M.

    2002-01-01

    1 - Description of problem or function: CONTEMPT-4/MOD5 describes the response of multi-compartment containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program can accommodate both pressurized water reactor (PWR) and boiling water reactor (BWR) containment systems. Also, both design basis accident (DBA) and degraded core type LOCA conditions can be analyzed. The program calculates the time variation of compartment pressures, temperatures, and mass and energy inventories due to inter-compartment mass and energy exchange taking into account user- supplied descriptions of compartments, inter-compartment junction flow areas, LOCA source terms, and user-selected problem features. Analytical models available to describe containment systems include models for containment fans and pumps, cooling sprays, heat conducting structures, sump drains, PWR ice condensers, and BWR pressure suppression systems. To accommodate degraded core type accidents, analytical models for hydrogen combustion within compartments and energy transfer due to gas radiation are also provided. CONTEMPT4/MOD6 is an update of previous CONTEMPT4 versions. Improvements in CONTEMPT4/MOD6 over CONTEMPT4/MOD3 include coding of a BWR pressure suppression system model, a hydrogen/carbon monoxide burn model, a gas radiation heat transfer model, a user specified variable junction (leakage) area as a function of pressure or time, additional heat transfer coefficient options for heat structures, generalized initial compartment conditions for inerted containment, an alternative containment spray model and spray carry-over capability. Also, the thermodynamic properties routines have been extended to accommodate the higher temperature and multicomponent gas mixtures associated with combustion. In addition, reduced running time is achieved by incorporation of an optional implicit numerical algorithm for junction flow. This makes economically feasible the analysis of very long

  8. Gas permeation measurement under defined humidity via constant volume/variable pressure method

    KAUST Repository

    Jan Roman, Pauls

    2012-02-01

    Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.

  9. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  10. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    Science.gov (United States)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  11. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  12. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  13. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  14. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium.

    Science.gov (United States)

    Paul, K. L.; Morita, R. Y.

    1971-01-01

    Studies of pressure and temperature effects on glutamic acid transport and utilization indicated that hydrostatic pressure and low temperature inhibit glutamate transport more than glutamate respiration. The effects of pressure on transport were reduced at temperatures near the optimum. Similar results were obtained for glycine, phenylalanine, and proline. Pressure effects on the transport systems of all four amino acids were reversible to some degree. Both proline and glutamic acid were able to protect their transport proteins against pressure damage. The data presented indicate that the uptake of amino acids by cells under pressure is inhibited, which is the cause of their inability to grow under pressure.

  15. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  16. Effects of renal sympathetic denervation on 24-hour blood pressure variability

    Directory of Open Access Journals (Sweden)

    Christine Stefanie Zuern

    2012-05-01

    Full Text Available Background: In patients with arterial hypertension, increased blood pressure (BP variability contributes to end organ damage independently from mean levels of arterial BP. Increased BP variability has been linked to alterations in autonomic function including sympathetic overdrive. We hypothesized that catheter-based renal sympathetic denervation (RDN confers beneficial effects on BPV. Methods and Results: Eleven consecutive patients with therapy-refractory arterial hypertension (age 68.9±7.0 years; baseline systolic BP 189±23mmHg despite medication with 5.6±2.1 antihypertensive drugs underwent bilateral RDN. Twenty-four hour ambulatory blood pressure monitoring (ABPM was performed before RDN and six months thereafter. BPV was primarily assessed by means of standard deviation of 24-hour systolic arterial blood pressures (SDsys. Secondary measures of BPV were maximum systolic blood pressure (MAXsys and maximum difference between two consecutive readings of systolic BP (deltamaxsys over 24 hours. Six months after RDN, SDsys, MAXsys and deltamaxsys were significantly reduced from 16.9±4.6mmHg to 13.5±2.5mmHg (p=0.003, from 190±22mmHg to 172±20mmHg (p<0.001 and from 40±15mmHg to 28±7mmHg (p=0.006, respectively, without changes in concomitant antihypertensive therapy. Reductions of SDsys, MAXsys and deltamaxsys were observed in 10/11 (90.9%, 11/11 (100% and 9/11 (81.8% patients, respectively. Although we noted a significant reduction of systolic office blood pressure by 30.4±27.7mmHg (p=0.007, there was only a trend in reduction of average systolic BP assessed from ABPM (149±19mmHg to 142±18mmHg; p=0.086.Conclusions: In patients with therapy-refractory arterial hypertension, RDN leads to significant reductions of BP variability. Effects of RDN on BPV over 24 hours were more pronounced than on average levels of BP.

  17. Comparison of valsartan and amlodipine on ambulatory blood pressure variability in hypertensive patients.

    Science.gov (United States)

    Eguchi, Kazuo; Imaizumi, Yuki; Kaihara, Toshiki; Hoshide, Satoshi; Kario, Kazuomi

    We tested the hypothesis that calcium channel blockers (CCBs: amlodipine group, n = 38)) are superior to angiotensin receptor blockers (ARBs: valsartan group, n = 38) against ambulatory blood pressure variability (BPV) in untreated Japanese hypertensive patients. Both drugs significantly reduced ambulatory systolic and diastolic BP values. With regard to BPV, standard deviation (SD) in SBP did not change with the administration of either drug, but the ARB significantly increased SD in awake DBP (12 ± 4-14 ± 4 mmHg). The ARB also significantly increased the coefficients of variation (CVs)in awake and 24-h SBP/DBP (all P valsartan, especially in reducing maximum BP levels.

  18. Technical specifications of variable speed motors for negative pressure control in hot cell area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Duk; Bang, H. S.; Cho, W. K

    2002-01-01

    Hot cells are the facilities for handling the high radioactive materials and various R and D activities are performed using hot cells. Therefore the control of air flow in hot cell area is very important technology and it is started with the variable speed motor(VSM) controlling the air handling system in that area. This report describes various technical aspects of VS motors and will be useful for understanding the practical technologies of VS motors and also for optimization of the negative pressure controls in hot cell area.

  19. Variability of hydrostatic hepatic vein and ascitic fluid pressure, and of plasma and ascitic fluid colloid osmotic pressure in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1980-01-01

    The variability of hydrostatic hepatic vein and ascitic fluid pressures and of plasma and ascitic fluid colloid osmotic (oncotic) pressures was assessed during hepatic venous catheterization by repeated measurements on different days and at different locations in patients with cirrhosis...... of the liver. Furthermore, calculation of oncotic pressure from protein determinations was compared to the directly measured value of plasma and ascitic fluid samples. Repeated measurements of hydrostatic pressure in the same hepatic vein within 15 min showed a standard deviation (SD) below 1 mm......Hg. The variation in hydrostatic hepatic vein pressures, pressure differences and ascitic fluid pressures (when measured at different locations within the liver and peritoneal space during a single examination) was 1.5, 1.0 and 1.0 mmHg (SD), respectively. When measured on different days, the variation...

  20. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    Science.gov (United States)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  1. Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V

    Science.gov (United States)

    Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack

    2017-12-01

    To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.

  2. Electrical behavior of Ca, Sr, Ba, and Eu at very high pressures and low temperatures

    International Nuclear Information System (INIS)

    Bundy, F.P.; Dunn, K.J.

    1981-01-01

    Compression of Ca and Sr initially causes an increase in resistivity, probably because of uncrossing of conduction and valence bands. Then at about 180 kbar for Ca and about 35 kbar for Sr the resistivity drops quite abruptly, following which the resistivity again increases with additional pressure, similar to the behavior of Ba starting at room pressure. The high pressure forms of Ba have already been reported to be superconducting, and the experiments confirm this. Superconductivity appears in Sr at about 350 kbar and develops strongly at higher pressures. In the 440 kbar experiment on Ca a resistance drop started at the lower threshold of the temperature capability, 2.1K, suggesting that Ca, too, becomes superconducting at sufficiently high pressures. The high pressure form of Eu above 125 kbar was tested for superconductivity down to 2.2K with negative results. (Auth.)

  3. Variable temperature 127I MAS NMR of β-AgI

    International Nuclear Information System (INIS)

    Wagner, G.W.

    1991-01-01

    Variable temperature 127 I MAS NMR of β-AgI powder, measured from 123 to 413 K is sensitive to Ag + diffusion through the iodine lattice. In low temperature spectra, the iodine ions appear to be in nearly static environments in agreement with the low temperature crystal structure. However, at higher temperatures, substantial broadening of the central transition linewidth is consistent with the presence of two types of Ag + diffusion with activation energies of 0.17 and 0.0080 eV. (author). 15 refs.; 5 figs.; 1 tab

  4. Evaluation of Oil Film Pressure and Temperature of an Elliptical Journal Bearing - An Experimental Study

    Directory of Open Access Journals (Sweden)

    A. Singla

    2016-03-01

    Full Text Available The present study is aimed at experimental evaluation of both oil film pressure and temperature at the central plane of finite elliptical journal bearing configuration. These parameters have been obtained by running the machine at various speeds under different applied loads ranging from 500 N to 2000 N using three different grades of oil (HYDROL 32, 68 and 150. The data has been obtained through a test rig which is capable of measuring both pressure and temperature at the same location on the elliptical bearing profile. An elliptical journal bearing with journal diameter=100 mm, L/D ratio=1.0, Ellipticity Ratio=1.0 and radial clearance=0.1 mm has been designed and tested to access the pressure and temperature rise of the oil film at the central plane of the bearing. Two different lobes of positive pressure have been obtained for elliptical bearing which results in smaller area for cavitation zone and accounts for better thermal stability. Also, with the increase in load both pressure and temperature of an oil film increases for all the three grades of oil. Experimentally, it has been established that the HYDROL 68 is suitable grade of lubricating oil which gives the optimum rise of pressure and temperate under all operating conditions among the lubricating oils under study.

  5. High temperature piezoresistive {beta}-SiC-on-SOI pressure sensor for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. von; Ziermann, R.; Reichert, W.; Obermeier, E. [Tech. Univ. Berlin (Germany). Microsensor and Actuator Technol. Center; Eickhoff, M.; Kroetz, G. [Daimler Benz AG, Munich (Germany); Thoma, U.; Boltshauser, T.; Cavalloni, C. [Kistler Instrumente AG, Winterthur (Switzerland); Nendza, J.P. [TRW Deutschland GmbH, Barsinghausen (Germany)

    1998-08-01

    For measuring the cylinder pressure in combustion engines of automobiles a high temperature pressure sensor has been developed. The sensor is made of a membrane based piezoresistive {beta}-SiC-on-SOI (SiCOI) sensor chip and a specially designed housing. The SiCOI sensor was characterized under static pressures of up to 200 bar in the temperature range between room temperature and 300 C. The sensitivity of the sensor at room temperature is approximately 0.19 mV/bar and decreases to about 0.12 mV/bar at 300 C. For monitoring the dynamic cylinder pressure the sensor was placed into the combustion chamber of a gasoline engine. The measurements were performed at 1500 rpm under different loads, and for comparison a quartz pressure transducer from Kistler AG was used as a reference. The maximum pressure at partial load operation amounts to about 15 bar. The difference between the calibrated SiCOI sensor and the reference sensor is significantly less than 1 bar during the whole operation. (orig.) 8 refs.

  6. Change features and regional distribution of temperature trend and variability joint mode in mainland China

    Science.gov (United States)

    Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye

    2018-05-01

    Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.

  7. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  8. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    Science.gov (United States)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  9. Autonomic control of body temperature and blood pressure: influences of female sex hormones.

    Science.gov (United States)

    Charkoudian, Nisha; Hart, Emma C J; Barnes, Jill N; Joyner, Michael J

    2017-06-01

    Female reproductive hormones exert important non-reproductive influences on autonomic regulation of body temperature and blood pressure. Estradiol and progesterone influence thermoregulation both centrally and peripherally, where estradiol tends to promote heat dissipation, and progesterone tends to promote heat conservation and higher body temperatures. Changes in thermoregulation over the course of the menstrual cycle and with hot flashes at menopause are mediated by hormonal influences on neural control of skin blood flow and sweating. The influence of estradiol is to promote vasodilation, which, in the skin, results in greater heat dissipation. In the context of blood pressure regulation, both central and peripheral hormonal influences are important as well. Peripherally, the vasodilator influence of estradiol contributes to the lower blood pressures and smaller risk of hypertension seen in young women compared to young men. This is in part due to a mechanism by which estradiol augments beta-adrenergic receptor mediated vasodilation, offsetting alpha-adrenergic vasoconstriction, and resulting in a weak relationship between muscle sympathetic nerve activity and total peripheral resistance, and between muscle sympathetic nerve activity and blood pressure. After menopause, with the loss of reproductive hormones, sympathetic nerve activity, peripheral resistance and blood pressure become more strongly related, and sympathetic nerve activity (which increases with age) becomes a more important contributor to the prevailing level of blood pressure. Continuing to increase our understanding of sex hormone influences on body temperature and blood pressure regulation will provide important insight for optimization of individualized health care for future generations of women.

  10. Environmental lead exposure is associated with visit-to-visit systolic blood pressure variability in the US adults.

    Science.gov (United States)

    Faramawi, Mohammed F; Delongchamp, Robert; Lin, Yu-Sheng; Liu, Youcheng; Abouelenien, Saly; Fischbach, Lori; Jadhav, Supriya

    2015-04-01

    The association between environmental lead exposure and blood pressure variability, an important risk factor for cardiovascular disease, is unexplored and unknown. The objective of the study was to test the hypothesis that lead exposure is associated with blood pressure variability. American participants 17 years of age or older from National Health and Nutrition Examination Survey III were included in the analysis. Participants' blood lead concentrations expressed as micrograms per deciliter were determined. The standard deviations of visit-to-visit systolic and diastolic blood pressure were calculated to determine blood pressure variability. Multivariable regression analyses adjusted for age, gender, race, smoking and socioeconomic status were employed. The participants' mean age and mean blood lead concentration were 42.72 years and 3.44 mcg/dl, respectively. Systolic blood pressure variability was significantly associated with environmental lead exposure after adjusting for the effect of the confounders. The unadjusted and adjusted means of visit-to-visit systolic blood pressure variability and the β coefficient of lead exposure were 3.44, 3.33 mcg/dl, β coefficient = 0.07, P variability. Screening adults with fluctuating blood pressure for lead exposure could be warranted.

  11. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    Kropelnicki, P; Mu, X J; Randles, A B; Cai, H; Ang, W C; Tsai, J M; Muckensturm, K-M; Vogt, H

    2013-01-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  12. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    Science.gov (United States)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  13. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  14. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  15. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  16. Heart Rate and Systolic Blood Pressure Variability on Recently Diagnosed Diabetics

    Directory of Open Access Journals (Sweden)

    Anaclara Michel-Chávez

    2015-01-01

    Full Text Available Background: Diabetes affects approximately 250 million people in the world. Cardiovascular autonomic neuropathy is a common complication of diabetes that leads to severe postural hypotension, exercise intolerance, and increased incidence of silent myocardial infarction. Objective: To determine the variability of heart rate (HR and systolic blood pressure (SBP in recently diagnosed diabetic patients. Methods: The study included 30 patients with a diagnosis of type 2 diabetes of less than 2 years and 30 healthy controls. We used a Finapres® device to measure during five minutes beat-to-beat HR and blood pressure in three experimental conditions: supine position, standing position, and rhythmic breathing at 0.1 Hz. The results were analyzed in the time and frequency domains. Results: In the HR analysis, statistically significant differences were found in the time domain, specifically on short-term values such as standard deviation of NN intervals (SDNN, root mean square of successive differences (RMSSD, and number of pairs of successive NNs that differ by more than 50 ms (pNN50. In the BP analysis, there were no significant differences, but there was a sympathetic dominance in all three conditions. The baroreflex sensitivity (BRS decreased in patients with early diabetes compared with healthy subjects during the standing maneuver. Conclusions: There is a decrease in HR variability in patients with early type 2 diabetes. No changes were observed in the BP analysis in the supine position, but there were changes in BRS with the standing maneuver, probably due to sympathetic hyperactivity.

  17. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures

    International Nuclear Information System (INIS)

    Ichikawa, Y.; England, G.L.

    2004-01-01

    Prediction of moisture migration and pore pressure build-up in non-uniformly heated concrete is important for safe operation of concrete containment vessels in nuclear power reactors and for assessing the behaviour of fire-exposed concrete structures. (1) Changes in moisture content distribution in a concrete containment vessel during long-term operation should be investigated, since the durability and radiation shielding ability of concrete are strongly influenced by its moisture content. (2) The pressure build-up in a concrete containment vessel in a postulated accident should be evaluated in order to determine whether a venting system is necessary between liner and concrete to relieve the pore pressure. (3) When concrete is subjected to rapid heating during a fire, the concrete can suffer from spalling due to pressure build-up in the concrete pores. This paper presents a mathematical and computational model for predicting changes in temperature, moisture content and pore pressure in concrete at elevated temperatures. A pair of differential equations for one-dimensional heat and moisture transfer in concrete are derived from the conservation of energy and mass, and take into account the temperature-dependent release of gel water and chemically bound water due to dehydration. These equations are numerically solved by the finite difference method. In the numerical analysis, the pressure, density and dynamic viscosity of water in the concrete pores are calculated explicitly from a set of formulated equations. The numerical analysis results are compared with two different sets of experimental data: (a) long-term (531 days) moisture migration test under a steady-state temperature of 200 deg. C, and (b) short-term (114 min) pressure build-up test under transient heating. These experiments were performed to investigate the moisture migration and pressure build-up in the concrete wall of a reactor containment vessel at high temperatures. The former experiment simulated

  18. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-04

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  19. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  20. Design and Fabrication of a Piezoresistive Pressure Sensor for Ultra High Temperature Environment

    International Nuclear Information System (INIS)

    Zhao, L B; Zhao, Y L; Jiang, Z D

    2006-01-01

    In order to solve the pressure measurement problem in the harsh environment, a piezoresistive pressure sensor has been developed, which can be used under high temperature above 200 deg. C and is able to endure instantaneous ultra high temperature (2000deg. C, duration≤2s) impact. Based on the MEMS (Micro Electro-Mechanical System) and integrated circuit technology, the piezoresistive pressure sensor's sensitive element was fabricated and constituted by silicon substrate, a thin buried silicon dioxide layer, four p-type resistors in the measuring circuit layer by boron ion implantation and photolithography, the top SiO2 layer by oxidation, stress matching Si3N4 layer, and a Ti-Pt-Au beam lead layer for connecting p-type resistors by sputtering. In order to decrease the leak-current influence to sensor in high temperature above 200deg. C, the buried SiO2 layer with the thickness 367 nm was fabricated by the SIMOX (Separation by Implantation of Oxygen) technology, which was instead of p-n junction to isolate the upper measuring circuit layer from Si substrate. In order to endure instantaneous ultra high temperature impact, the mechanical structure with cantilever and diaphragm and transmitting beam was designed. By laser welding and high temperature packaging technology, the high temperature piezoresistive pressure sensor was fabricated with range of 120MPa. After the thermal compensation, the sensor's thermal zero drift k 0 and thermal sensitivity drift k s were easy to be less than 3x10 -4 FS/deg. C. The experimental results show that the developed piezoresistive pressure sensor has good performances under high temperature and is able to endure instantaneous ultra high temperature impact, which meets the requirements of modern industry, such as aviation, oil, engine, etc

  1. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  2. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    Science.gov (United States)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  3. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  4. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    Science.gov (United States)

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  5. Diastolic blood pressure variability in 24 hour-ABPM and outcomes of chronic kidney disease
.

    Science.gov (United States)

    Sahutoglu, Tuncay; Sakaci, Tamer

    2018-04-10

    Blood pressure variability (BPV) has been associated with increased morbidity and mortality. There are a few studies that reported worse outcomes of chronic kidney disease (CKD) with greater visit-to-visit BPV (VVV), but data with ambulatory blood pressure monitoring (ABPM) is scarce. Ambulatory hypertensive CKD (stage 2 - 4) patients (> 18 years old) with complete 24 hours of ABPM study (SpaceLabs), who were followed up between January 2012 and December 2016, were retrospectively analyzed for the baseline characteristics and outcomes of CKD. Coefficient of variation (CV) in diastolic blood pressure (DBP) was used as an index of BPV. Data of 191 patients (mean age 59.7 ± 12.4 years, 54.9% males, 42.1% diabetic, mean eGFR-EPI (Chronic Kidney Disease Epidemiology Collaboration) 51.7 ± 22.0 mL/min/1.73m2, mean follow-up 26.2 ± 10.4 months) were available for the analysis. On multivariate linear regression analysis, greater DBP-CV was associated with slower decline in eGFR-EPI per year (B -0.648, p = 0.000). Likewise, the hazard ratio (HR) for dialysis inception (occurred in 9.4%) was found significantly lower with increasing DBP-CV in unadjusted and fully adjusted Cox models (HR 0.730, 95% CI 0.618 - 0.861, p = 0.000, and HR 0.678, 95% CI 0.526 - 0.874, p = 0.003, respectively). These findings suggest that DBP variability in 24-hour ABPM may be a good prognostic factor for the outcomes of CKD. Further studies are needed to determine the impact of 24-hour ABPM BPV on CKD progression and its differences from VVV.
.

  6. Productivity and fishing pressure drive variability in fish parasite assemblages of the Line Islands, equatorial Pacific.

    Science.gov (United States)

    Wood, Chelsea L; Baum, Julia K; Reddy, Sheila M W; Trebilco, Rowan; Sandin, Stuart A; Zgliczynski, Brian J; Briggs, Amy A; Micheli, Fiorenza

    2015-05-01

    Variability in primary productivity and fishing pressure can shape the abundance, species composition, and diversity of marine life. Though parasites comprise nearly half of marine species, their responses to these important forces remain little explored. We quantified parasite assemblages at two spatial scales, across a gradient in productivity and fishing pressure that spans six coral islands of the Line Islands archipelago and within the largest Line Island, Kiritimati, which experiences a west-to-east gradient in fishing pressure and upwelling-driven productivity. In the across-islands data set, we found that increasing productivity was correlated with increased parasite abundance overall, but that the effects of productivity differed among parasite groups. Trophically transmitted parasites increased in abundance with increasing productivity, but directly transmitted parasites did not exhibit significant changes. This probably arises because productivity has stronger effects on the abundance of the planktonic crustaceans and herbivorous snails that serve as the intermediate hosts of trophically transmitted parasites than on the higher-trophic level fishes that are the sole hosts of directly transmitted parasites. We also found that specialist parasites increased in response to increasing productivity, while generalists did not, possibly because specialist parasites tend to be more strongly limited by host availability than are generalist parasites. After the effect of productivity was controlled for, fishing was correlated with decreases in the abundance of trophically transmitted parasites, while directly transmitted parasites appeared to track host density; we observed increases in the abundance of parasites using hosts that experienced fishing-driven compensatory increases in abundance. The within-island data set confirmed these patterns for the combined effects of productivity and fishing on parasite abundance, suggesting that our conclusions are robust

  7. Exaggerated blood pressure variability is associated with memory impairment in very elderly patients.

    Science.gov (United States)

    Fujiwara, Takeshi; Hoshide, Satoshi; Kanegae, Hiroshi; Eguchi, Kazuo; Kario, Kazuomi

    2018-04-01

    We investigated the association between working memory (WM) impairment and blood pressure variability (BPV) in very elderly patients. Japanese outpatients ≥80 years who engaged in normal activities of daily living were the study cohort. WM function was evaluated by a simple visual WM test consisting of 3 figures. We considered the number of figures recalled by the patient his/her test score. We defined the patients with a score of 0 or 1 as those with WM impairment and those with scores of 2 or 3 as those without. To investigate the relative risk of WM impairment, we evaluated each patient's 24 hour ambulatory systolic blood pressure (SBP) and its weighted standard deviation (SD SBP ), office SBP, and the visit-to-visit SD SBP during the 1 year period from the patient's enrollment. A total of 66 patients (mean 84 ± 3.6 years) showed WM impairment, and 431 patients (mean 83 ± 3.1 years) showed no WM impairment. There were no significant differences in 24 hour ambulatory SBP or office SBP between these two groups. However, the WM impairment patients showed significantly higher weighted SD SBP and visit-to-visit SD SBP values compared to the no-impairment group even after adjusting for age. Among these ≥80-year-old patients, those with the highest quartile of both weighted SD SBP (≥21.4 mm Hg) and visit-to-visit SD SBP (≥14.5 mm Hg) showed the highest relative risk (odds ratio 3.52, 95% confidence interval 1.42-8.72) for WM impairment. Exaggerated blood pressure variability parameters were significantly associated with working memory impairment in very elderly individuals. ©2018 Wiley Periodicals, Inc.

  8. An improved fiber optic pressure and temperature sensor for downhole application

    International Nuclear Information System (INIS)

    Aref, S H; Zibaii, M I; Latifi, H

    2009-01-01

    We report on the fabrication of a high pressure extrinsic Fabry–Perot interferometric (EFPI) fiber optic sensor for downhole applications by using a mechanical transducer. The mechanical transducer has been used for increasing the pressure sensitivity and the possibility of installation of the sensor downhole. The pressure–temperature cross-sensitivity (PTCS) problem has been solved by replacing the reflecting fiber with a metal microwire in the EFPI sensor. In this way the PTCS coefficient of the sensor was decreased from 47.25 psi °C −1 to 7 psi °C −1 . By using a new EFPI design, a temperature sensor was fabricated. Further improvement in the pressure and temperature sensor has been done by developing fabrication technique and signal processing

  9. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  10. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    International Nuclear Information System (INIS)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul

    2013-01-01

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced

  11. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15