WorldWideScience

Sample records for variables influencing radiative

  1. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    International Nuclear Information System (INIS)

    Nickoloff, Edward L.; Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-01-01

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV) -N ] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables

  2. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  3. Influence of variable tungsten valency on optical transmittance and radiation hardness of lead tungstate (PWO) scintillation crystals

    CERN Document Server

    Burachas, S; Makov, I; Saveliev, Yu; Ippolitov, M S; Man'ko, V; Nikulin, S P; Nyanin, A; Vasilev, A; Apanasenko, A; Tamulaitis, G

    2003-01-01

    A new approach to interpret the radiation hardness of PbWO//4 (PWO) scintillators is developed by revealing importance of the inclusions of tungsten oxides WO//3//-//x with variable valency. It is demonstrated that the influence of the ionizing radiation on PWO is, in many aspects, similar to the effect of the high-temperature annealing in oxygenless ambient. In both cases, a valency change of the tungsten oxides is initiated and results in induced absorption and, consequently, in crystal coloration. In the PWO crystals doped with L//2O//3 (L = Y, La, Gd), the radiation hardness and the optical properties are mainly affected by inclusions of W//1//-//yL//yO//3//- //x (0 less than x less than 0.3) instead of inclusions of WO//3//- //x prevailing in the undoped samples. It is demonstrated that the radiation-induced bleaching and the photochromic effect of PWO are caused by phase transitions in the inclusions of tungsten oxide. Thermodynamic conditions for the phase transitions are discussed and the optimal oxid...

  4. Hermite- Padé projection to thermal radiative and variable ...

    African Journals Online (AJOL)

    The combined effect of variable thermal conductivity and radiative heat transfer on steady flow of a conducting optically thin viscous fluid through a channel with sliding wall and non-uniform wall temperatures under the influence of an externally applied homogeneous magnetic field are analyzed in the present study.

  5. Variables influencing radiation exposure during extracorporeal shock wave lithotripsy. Review of 298 treatments

    International Nuclear Information System (INIS)

    Carter, H.B.; Naeslund, E.B.R.; Riehle, R.A. Jr.

    1987-01-01

    Retrospective review of 298 extracorporeal shock wave lithotripsy (ESWL) treatments was undertaken to determine the factors which influence radiation exposure during ESWL. Fluoroscopy time averaged 160 seconds (3-509), and the average number of spot films taken per patient was 26 (5-68). The average stone burden was 19.3 mm (3-64). Average calculated skin surface radiation exposure was 17.8 R per treatment. Radiation exposure increased with increasing stone burden and patient weight. Stones treated in the ureter resulted in a higher average patient radiation exposure than for renal stones (19 R vs 16 R), even though the average size of these ureteral stones (11.3 mm) was significantly less than the mean. However, type of anesthetic (general or regional) used was not a significant factor. Operator training, experience, and familiarity with radiation physics should significantly decrease the amount of imaging time and consequent patient radiation exposure during ESWL

  6. Variables influencing radiation exposure during extracorporeal shock wave lithotripsy. Review of 298 treatments

    Energy Technology Data Exchange (ETDEWEB)

    Carter, H.B.; Naeslund, E.B.R.; Riehle, R.A. Jr.

    1987-12-01

    Retrospective review of 298 extracorporeal shock wave lithotripsy (ESWL) treatments was undertaken to determine the factors which influence radiation exposure during ESWL. Fluoroscopy time averaged 160 seconds (3-509), and the average number of spot films taken per patient was 26 (5-68). The average stone burden was 19.3 mm (3-64). Average calculated skin surface radiation exposure was 17.8 R per treatment. Radiation exposure increased with increasing stone burden and patient weight. Stones treated in the ureter resulted in a higher average patient radiation exposure than for renal stones (19 R vs 16 R), even though the average size of these ureteral stones (11.3 mm) was significantly less than the mean. However, type of anesthetic (general or regional) used was not a significant factor. Operator training, experience, and familiarity with radiation physics should significantly decrease the amount of imaging time and consequent patient radiation exposure during ESWL.

  7. Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lynn D [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Flynn, Daniel F [Department of Radiation Oncology, Holy Family Hospital, Methuen, MA (United States); Haffty, Bruce G [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2005-06-01

    Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated and analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an

  8. Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004

    International Nuclear Information System (INIS)

    Wilson, Lynn D.; Flynn, Daniel F.; Haffty, Bruce G.

    2005-01-01

    Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated and analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an

  9. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  10. Cytogenetic variability in pinus sylvestris L. populations experiencing anthropogenic influence

    International Nuclear Information System (INIS)

    Oudalova, A.; Geras'kin, S.; Vasiliev, D.; Dikarev, V.

    2004-01-01

    Techno-genic pollution has become one of the most significant ecological factors determining biosphere existence and development. An analysis of genetic consequences of the radiation accidents in the South Urals and Chernobyl has shown that mutation and recombination processes are considerably accelerated in plant and animal's populations experiencing techno-genic influence. This implies that there are complicated adaptation processes leading to changes in genetic structure of populations and increasing genetic load. Pinus sylvestris L. populations growing at the territory of the 'radon' Leningrad regional radioactive waste reprocessing enterprise and Sosnovy Bor town were monitored 6 years (1997-2002) by a set of cyto-genetical and morphological tests. Cytogenetic damage levels within intercalary meristem of needle as well as in root meristem of seedlings were found to significantly exceed corresponding controls. A higher radioresistance of the Scots pine seeds analyzed was demonstrated with an acute γ-radiation that also revealed a selection process directed at an enhancement of repair efficiency and resulting in a shift of mean values of radioresistance in populations towards higher values. An enlargement of variance of studied cytogenetic parameters was found in the populations experiencing techno-genic influence. This indicates, with an account of phenomenon of the enhanced radioresistance, that there are processes of cyto-genetical adaptation in the investigated regions. An analysis of the structure of ecological-genetical variability was carried out with the purpose of separating two components in the inter-population variability - the first is engaged to the genetically determined variability of biological characteristics intrinsic for this species, and the second is responsible for the variability originating from anthropogenic contamination of the natural habitat. Changes of these two types of variability were studied in dependence on time and techno

  11. Cytogenetic variability in pinus sylvestris L. populations experiencing anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, A.; Geras' kin, S.; Vasiliev, D.; Dikarev, V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    Techno-genic pollution has become one of the most significant ecological factors determining biosphere existence and development. An analysis of genetic consequences of the radiation accidents in the South Urals and Chernobyl has shown that mutation and recombination processes are considerably accelerated in plant and animal's populations experiencing techno-genic influence. This implies that there are complicated adaptation processes leading to changes in genetic structure of populations and increasing genetic load. Pinus sylvestris L. populations growing at the territory of the 'radon' Leningrad regional radioactive waste reprocessing enterprise and Sosnovy Bor town were monitored 6 years (1997-2002) by a set of cyto-genetical and morphological tests. Cytogenetic damage levels within intercalary meristem of needle as well as in root meristem of seedlings were found to significantly exceed corresponding controls. A higher radioresistance of the Scots pine seeds analyzed was demonstrated with an acute {gamma}-radiation that also revealed a selection process directed at an enhancement of repair efficiency and resulting in a shift of mean values of radioresistance in populations towards higher values. An enlargement of variance of studied cytogenetic parameters was found in the populations experiencing techno-genic influence. This indicates, with an account of phenomenon of the enhanced radioresistance, that there are processes of cyto-genetical adaptation in the investigated regions. An analysis of the structure of ecological-genetical variability was carried out with the purpose of separating two components in the inter-population variability - the first is engaged to the genetically determined variability of biological characteristics intrinsic for this species, and the second is responsible for the variability originating from anthropogenic contamination of the natural habitat. Changes of these two types of variability were studied in dependence on

  12. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  13. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  14. Variable-Period Undulators For Synchrotron Radiation

    Science.gov (United States)

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  15. Variable-Period Undulators for Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  16. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    Directory of Open Access Journals (Sweden)

    C. Di Biagio

    2016-08-01

    Full Text Available Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between  ∼  160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84–0.98 at 370 nm and 0.70–0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84–0.70 between 370 and 950 nm are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41–1.77 and 0.002–0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE, i.e. the DRE per unit of optical depth, at the surface (−160/−235 W m−2 τ−1 at 60° solar zenith angle and at the Top-Of-Atmosphere (−137/−92

  17. About hidden influence of predictor variables: Suppressor and mediator variables

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2013-01-01

    Full Text Available In this paper procedure for researching hidden influence of predictor variables in regression models and depicting suppressor variables and mediator variables is shown. It is also shown that detection of suppressor variables and mediator variables could provide refined information about the research problem. As an example for applying this procedure, relation between Atlantic atmospheric centers and air temperature and precipitation amount in Serbia is chosen. [Projekat Ministarstva nauke Republike Srbije, br. 47007

  18. Variable discrete ordinates method for radiation transfer in plane-parallel semi-transparent media with variable refractive index

    Science.gov (United States)

    Sarvari, S. M. Hosseini

    2017-09-01

    The traditional form of discrete ordinates method is applied to solve the radiative transfer equation in plane-parallel semi-transparent media with variable refractive index through using the variable discrete ordinate directions and the concept of refracted radiative intensity. The refractive index are taken as constant in each control volume, such that the direction cosines of radiative rays remain non-variant through each control volume, and then, the directions of discrete ordinates are changed locally by passing each control volume, according to the Snell's law of refraction. The results are compared by the previous studies in this field. Despite simplicity, the results show that the variable discrete ordinate method has a good accuracy in solving the radiative transfer equation in the semi-transparent media with arbitrary distribution of refractive index.

  19. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    Science.gov (United States)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  20. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  1. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-03-01

    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  2. Spatiotemporal variability analysis of diffuse radiation in China during 1981-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.L.; Zhou, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Geographic Sciences and Natural Resources Research; University of Chinese Academy of Sciences, Beijing (China); He, H.L.; Zhang, L.; Yu, G.R.; Fan, J.W. [Chinese Academy of Sciences, Beijing (China). Inst. of Geographic Sciences and Natural Resources Research

    2013-03-01

    Solar radiation is the primary driver of terrestrial plant photosynthesis and the diffuse component can enhance canopy light use efficiency (LUE), which in turn influences the carbon balance of terrestrial ecosystems. In this study we calculated the spatial data of diffuse radiation in China from 1981 to 2010, using a radiation decomposition model and spatial interpolation method based on observational data. Furthermore, we explored the spatiotemporal characteristics of diffuse radiation using GIS and trend analysis techniques. The results show the following: (1) The spatial patterns of perennial average of annual diffuse radiation during 1981-2010 are complex and inhomogeneous in China, generally lower in the north and higher in the south and west. The perennial average ranges from 1730.20 to 3064.41 MJm{sup -2}yr{sup -1} across the whole country. (2) There is an increasing trend of annual diffuse radiation in China from 1981 to 2010 on the whole, with mean increasing amplitude of 7.03 MJm{sup -2}yr{sup -1} per decade. Whereas a significant downtrend was observed in the first 10 years, distinct anomalies in 1982, 1983, 1991 and 1992 occurred due to the eruptions of El Chinchon and Pinatubo. (3) The spatial distribution of the temporal variability of diffuse radiation showed significant regional heterogeneity in addition to the seasonal differences. Northwestern China has the most evident downtrend, with highest decreasing rate of 6% per decade, while the Tibetan Plateau has the most evident uptrend, with highest increasing rate of up to 9% per decade. Such quantitative spatiotemporal characteristics of diffuse radiation are essential in regional scale modeling of terrestrial carbon dynamics. (orig.)

  3. Fabrication and performance analysis of MEMS-based Variable Emissivity Radiator for Space Applications

    International Nuclear Information System (INIS)

    Lee, Changwook; Oh, Hyung-Ung; Kim, Taegyu

    2014-01-01

    All Louver was typically representative as the thermal control device. The louver was not suitable to be applied to small satellite, because it has the disadvantage of increase in weight and volume. So MEMS-based variable radiator was developed to support the disadvantage of the louver MEMS-based variable emissivity radiator was designed for satellite thermal control. Because of its immediate response and low power consumption. Also MEMS- based variable emissivity radiator has been made smaller by using MEMS process, it could be solved the problem of the increase in weight and volume, and it has a high reliability and immediate response by using electrical control. In this study, operation validation of the MEMS radiator had been carried out, resulting that emissivity could be controlled. Numerical model was also designed to predict the thermal control performance of MEMS-based variable emissivity radiator

  4. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    International Nuclear Information System (INIS)

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-01-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene

  5. Influence of radiation therapy on T-lymphocyte subpopulations

    International Nuclear Information System (INIS)

    Job, G.

    1984-01-01

    The author claims this to be the first time where monoclonal antibodies are used in a long-term study in order to determine the influence of radiation therapy on T-lymphozyte-subpopulations in patients suffering from malignant growths. The influence of radiation therapy on B-cells, T-cells and macrophages was also checked. Two groups of patients were given two different radiation doses, and examined separately in order to discover possible effects of the dosage. Radiation therapy reduced B- and T-lymphocytes to the same degree as the total lymphozyte population so that their shares in percent remained unchanged. The same was also found for macrophages. Determination of clones and suppressor T-lymphozytes before, during and after radiation showed T-lymphozytes to have a higher resistance against the influence of radiation than clones. Suppressor cells also regenerated more quickly than clones after the end of the therapy. While radiation therapy was applied the clone/suppressor cell ratio dropped to values lower than those of the healthy reference group. After the end of the therapy this quotient dropped even further in some cases while in others it began to rise slowly, but even 6 months after the end of the therapy it was still lower than normal. As a number of diseases show an increased 'immunoregulatory quotient' it would be conceivable to influence this quotient with radiation therapy in order to achieve a therapeutic effect. (orig./MG) [de

  6. The influence of solar wind variability on magnetospheric ULF wave power

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2015-06-01

    Full Text Available Magnetospheric ultra-low frequency (ULF oscillations in the Pc 4–5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind–IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996–2004 of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature, plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind–magnetosphere coupling.

  7. Some nonscientific influences on radiation protection standards and practice

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    The theme of this lecture is that we have sufficient knowledge about the biomedical effects of ionizing radiation for adequate radiation protection but the problem of controlling radiation uses is complicated by philosophical, sociological, political, economic and moral considerations. The scientific problem of 'thresholds' and some nonscientific factors which may influence protection practices and hence influence the setting of numerical protection standards are discussed. The influence of the media on public opinion and the need for public education is stressed. (U.K.)

  8. Variability of individual normal tissue radiation sensitivity. An international empirical evaluation of endogenous and exogenous

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Kumpf, L.; Kimmig, B.

    1998-01-01

    Background: The variability of normal-tissue response is of major concern for radiation therapy. Multiple endogenous and exogenous factors are qualitatively known to alter the acute and late tissue response. Which of them are regarded most important by the European radiation oncologists and what is, empirically, their quantitative influence on the acute or late tissue tolerance? Methods: In August 1997, we sent a questionnaire to 255 European radiation oncology departments. Among others, the questionnaire asked for endogenous and exogenous factors modifying the tissue response to radiation therapy and their quantitative influence on the acute and late radiation morbidity (TD5/5). Fifty-five questionnaires (21.5%) were answered. Results: Empirically, the most important endogenous factors to modify the acute tissue tolerance are (a) metabolic/other diseases with macro- or microangiopathia (17 answers [a]/32% mean decrease of tissue tolerance), (b) collagen diseases (9 a/37%) and (c) immune diseases (5 a/53%). As endogenous response modifiers for the TD5/5 are recognized (a) metabolic or other diseases leading to marcro- or microangiopathia (15 a/31%), (b) collagen diseases (11 a/38%) and (c) immune diseases (2 a/50%). Inflammations from any reason are assumed to alter the acute tissue tolerance by (6 a/26%) and the TD5/5 by (10 a/24%). Exogenous modifiers of the acute tissue response mentioned are (a) smoking (34 a/44%), (b) alcohol (23 a/45%), (c) nutrition/diets (16 a/45%), (d) hygiene (9 a/26%) and (e) medical therapies (10 a/37%). Exogenous factors assumed to influence the TD5/5 are (a) smoking (22 a/40%), (b) alcohol (15 a/38%), (c) nutrition/diets (9 a/48%), (d) hygiene (5 a/34%) and (e) medical therapies (10 a/30%). Conclusions: Exogenous factors are regarded more important by number and extent on the acute and late tissue response than endogenous modifiers. Both may have an important influence on the individual expression of normal tissue response. (orig

  9. Influence of topography on landscape radiation temperature distribution

    International Nuclear Information System (INIS)

    Florinsky, I.V.; Kulagina, T.B.; Meshalkina, J.L.

    1994-01-01

    The evaluation of the influence of topography on landscape radiation temperature distribution is carried out by statistical processing of digital models of elevation, gradient, aspect, horizontal, vertical and mean land surface curvatures and the infrared thermal scene generated by the Thermovision 880 system. Significant linear correlation coefficients between the landscape radiation temperature and elevation, slope, aspect, vertical and mean landsurface curvatures are determined, being —0-57, 0 38, 0-26, 015, 013, respectively. The equation of the topography influence on the distribution of the landscape radiation temperature is defined. (author)

  10. Influence of age, sex and life style factors (smoking habits) on the spontaneous and radiation induced micronuclei frequencies

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.; Heredia, M.L.

    1995-01-01

    Several endpoints have been used for monitoring human populations for environmental or occupational exposure to genotoxic agents, particularly ionizing radiation. The cytokinesis-block micronucleus (MN) assay in peripheral lymphocytes is a reliable method for assessing radiation induced chromosomal damage (DNA breaks and mitotic spindle disturbances) and thus, a suitable dosimeter for estimating in vivo whole body exposures. To further define the use of this assay in Biological Dosimetry, a study to determine the influence of age, sex and life style factors (smoking habit) on the spontaneous and radiation induced MN frequencies was performed. The estimation of MN frequencies was analyzed in lymphocytes cultures from 50 healthy donors aged between 4 and 62 years. On the basis of their smoking habit they were divided into 2 groups. A fraction of the sample was irradiated in vitro with γ rays in the range of 0.35 Gy to 4 Gy. A statistically significant influence on the spontaneous MN frequency was observed (R 2 = 0.59) when the variables age and smoking habit were analyzed and also a statistically significant influence on the radiation induced MN frequency was obtained (R 2 = 0.86) when dose, age and smoking habit were studied. Sex did not influence MN variability significantly but there was a greater dispersion in the results for females when compared to males, possibly due to the loss of X chromosomes. The comparison of the data from smoking donors to non smoking donors supports the convenience of taking into account the smoking habit for estimating in vivo whole body exposure to γ rays for doses below 2 Gy. (author). 8 refs., 3 figs., 1 tab

  11. Radiation. Basics, influences, contamination situation, and countermeasures

    International Nuclear Information System (INIS)

    Baba, Mamoru; Nomura, Kiyoshi

    2012-01-01

    Fukushima Daiichi Nuclear Accident resulted in the contamination of a large area, and by now the situation of contamination and exposure has gradually clarified, and a lot of information has been being accumulated. Toward reconstruction of Fukushima prefecture from the current circumstance that the residents still live under continuing fear, this article discusses how to clarify the current situation and deal with the contamination, which the residents are concerned about. First, radiation, basic properties of radiation, and so on are introduced. Regarding the influence on human bodies, the mechanism and the degree of influence by radiation, especially on children, women, and pregnant women are explained. Next, regarding the measurements of radiation and radioactivity, the properties of measurement methods and the detectors are explained. Regarding the current situation of contamination and exposure, mainly addressing the area around Koriyama city, various topics are covered including: (1) situation of contamination and radiation monitoring, (2) countermeasures for radioactivity contamination, (3) internal exposure dose, (4) exposed dose from water and food, as well as (5) safety standards. (S.K.)

  12. Influences of scattering radiation in a TLD irradiation room, 2

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Suwa, Shigeo

    1985-01-01

    The influence of scattering radiation (SR) on radiation dose rate (DR) in a TLD irradiation room was assessed. A single SD from a standard TLD apparatus, i.e., an acrylic or aluminum table, was examined. The maximum DR was attained at approximately 80 cm from the radiation source. Energy spectra of SR ranged up to the energy of direct radiation beam. Circular SD at one m from the radiation source, which contributed to DR to the direct radiation beam, was almost homogeneous. SD was large near the irradiation table, and the influence of SD on DR became smaller with SD being vertically farther from the apparatus. The influence of SD on RD to the direct radiation beam became less with an increase in gamma ray energy. At one m from the radiation source, 6 - 7 % of SD contributed to DR to the direct radiation beam for 0.662 MeV of gamma ray. This figure was one half of that with NaI (Tl) scintillation detector. (Namekawa, K.)

  13. Design and Modeling of a Variable Heat Rejection Radiator

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan

    2011-01-01

    Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads

  14. Radiation chemical oxidation of propen under the influence of UV- and gamma radiation

    International Nuclear Information System (INIS)

    Litschke, P.I.

    1978-01-01

    The oxidation of propen is studied in the liquid state under the influence of electromagnetic radiation using hydrogenperoxide, organic hydroperoxides and oxygen. In this investigation propen oxide is of main interest. The study of systems with oxygen is based on the concept that the formation of hydroperoxide from organic oxygen compounds is enhanced by irradiation, thus favouring an in situ method for expoxidation with hydroperoxides. The influence of UV-radiation from high and low pressure mercury discharge lamps and 60 Co gamma radiation has been studied as well as the effect of solvents and catalysers, which are resolved in the system. (orig./WBU) [de

  15. Age and smoking habit influence on the spontaneous and radiation induced frequencies of the micronucleus in human lymphocytes

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.; Heredia, M.L.

    1996-01-01

    Several endpoints have been used for monitoring human population that have been exposed at work or in the environment to genotoxic agents, particularly to ionizing radiation. The cytokinesis-block micronucleus (MN) assay in peripheral lymphocytes is a reliable method for evaluating radiation induced chromosomal damage (DNA breaks and mitotic spindle disturbances) and thus, a suitable dosimeter for estimating in vivo whole body exposures. A research to determine the influence of age, sex and life style factors (smoking habits) on the MN spontaneous and radiation induced frequencies was carried out in order to define the use of this assay in Biological Dosimetry. The estimation of MN frequencies was analyzed in lymphocytes cultures from 50 health donors aged between 4 and 60 years. Based on the smoking habits, they were divided into 2 groups. A fraction of the sample was irradiated in vitro with γ-rays in the range of 0.35 Gy to 4 Gy. A statistically significant influence on the spontaneous MN frequency was observed (R 2 = 0.59) when the variables age and smoking habit were analyzed, and a statistically significant influence on the radiation induced MN frequency was also obtained (R 2 = 0.86) when dose, age and smoking habit were studied. Sex did not influence significantly MN variability, but there was a greater dispersion in the results obtained from female donors, when compared to males, possibly due to the loss of X chromosomes. The comparison of the data from smoking donors to the data from non smoking donors supports the convenience of taking into account the smoking habit for estimating in vivo whole body exposure to γ-rays for doses below 2 Gy. (authors). 8 refs., 3 figs., 2 tabs

  16. Influence of biological variables on radiation carcinogenesis

    International Nuclear Information System (INIS)

    Sasaki, Shunsaku

    1989-01-01

    1. Age at exposure: Female B6C3F 1 mice were irradiated at day 17 of the prenatal age, or day 0, 7, 35, 105, 240 or 365 of the postnatal age with 1.9, 3.8 or 5.7 Gy of gamma-rays from 137 Cs. All mice were allowed to live through their entire lifespan under a specific pathogen free condition. It has become evident that mice of the late fetal period have susceptibility to induction of pituitary tumors, bone tumors, liver tumors, lung tumors, lymphocytic lymphomas and ovarian tumors. Neonatal mice were found to be more susceptible to induction of lymphocytic lymphomas, liver tumors and ovarian tumors than fetal mice. Irradiation of fetal or neonatal mice did not result in the excess development of myeloid leukemias and Harderian gland tumors, whereas these neoplasms were induced by irradiation at the adult period. 2. Combination effects of radiation and chemicals: Both sexes of B6WF 1 mice were exposed to X-rays at day 5 of postnatal age. After weaning, pellet diet containing 0.05 % phenobarbital was given until their natural death. It was rather surprising that life-shortening effect of X-irradiation was decreased by oral administration of phenobarbital. This effect seemed to be due to delayed development of neoplastic diseases. Administration of phenobarbital did not result in decrease in incidences of neoplasms. (author)

  17. Two factors influencing dose reconstruction in low dose range: the variability of BKG intensity on one individual and water content

    International Nuclear Information System (INIS)

    Zhang, Tengda; Zhang, Wenyi; Zhao, Zhixin; Zhang, Haiying; Ruan, Shuzhou; Jiao, Ling

    2016-01-01

    A fast and accurate retrospective dosimetry method for the triage is very important in radiation accidents. Electron paramagnetic resonance (EPR) fingernail dosimetry is a promising way to estimate radiation dose. This article presents two factors influencing dose reconstruction in low dose range: the variability of background signal (BKG) intensity on one individual and water content. Comparing the EPR spectrum of dried and humidified fingernail samples, it is necessary to add a procedure of dehydration before EPR measurements, so as to eliminate the deviation caused by water content. Besides, the BKGs of different fingers' nails are not the same as researchers thought previously, and the difference between maximum and minimum BKG intensities of one individual can reach 55.89 %. Meanwhile, the variability of the BKG intensity among individuals is large enough to impact precise dose reconstruction. Water within fingernails and instability of BKG are two reasons that cause the inaccuracy of radiation dose reconstruction in low-dosage level. (authors)

  18. Influence of soybean pubescence type on radiation balance

    International Nuclear Information System (INIS)

    Nielsen, D.C.; Blad, B.I.; Verma, S.B.; Rosenberg, N.J.; Specht, J.E.

    1984-01-01

    Increasing the density of pubescence on the leaves and stems of soybeans (Glycine max L.) should influence the radiation balance of the soybean canopy and affect the evapotranspiration and photosynthetic rates. This study was undertaken to evaluate the influence of increased pubescence density on various components of the radiation balance. Near-isogenic lines of two soybean cultivars (Clark and Harosoy) were grown in four adjacent small plots (18 m · 18 m) during the 1980, 1981, and 1982 growing seasons near Mead, Nebr. The soil at this site is classified as a Typic Argiudoll. The isolines of each cultivar varied only in the amount of pubescence (dense vs. normal pubescence). Measurements of albedo, reflected photosynthetically active radiation (PAR), emitted longwave radiation, and net radiation were made over the crop surfaces with instruments mounted on a rotating boom located at the intersection of the four plots. Radiative canopy temperatures were measured with a handheld infrared thermometer (IRT). Results show that dense pubescence increased reflection of shortwave radiation and PAR by 3 to 5% and 8 to 11%, respectively. Emitted longwave radiation and radiative canopy temperature were not significantly affected by increased pubescence, although there was a slight tendency for the dense pubescent canopy to be cooler. Increased pubescence decreased net radiation over the canopy by 0.5 to 1.5%. These results suggest that soybeans with dense pubescence may be slightly better adapted to the high radiation, high temperature, and limited moisture conditions of the eastern Great Plains than are those with normal pubescence

  19. On the variably-charged black holes in general relativity: Hawking's radiation and naked singularities

    International Nuclear Information System (INIS)

    Ibohal, Ng

    2002-01-01

    In this paper variably-charged non-rotating Reissner-Nordstrom and rotating Kerr-Newman black holes are discussed. Such a variable charge e with respect to the polar coordinate r in the field equations is referred to as an electrical radiation of the black hole. It is shown that every electrical radiation e(r) of the non-rotating black hole leads to a reduction in its mass M by some quantity. If one considers such electrical radiation taking place continuously for a long time, then a continuous reduction of the mass may take place in the black-hole body and the original mass of the black hole may be evaporated completely. At that stage, the gravity of the object may depend only on the electromagnetic field, not on the mass. Immediately after the complete evaporation of the mass, if the next radiation continues, there may be creation of a new mass leading to the formation of a negative mass naked singularity. It appears that this new mass of the naked singularity would never decrease, but might increase gradually as the radiation continues forever. A similar investigation is also discussed in the case of a variably-charged rotating Kerr-Newman black hole. Thus, it has been shown by incorporating Hawking's evaporation of radiating black holes in the form of spacetime metrics, every electrical radiation of variably-charged rotating and non-rotating black holes may produce a change in the mass of the body without affecting the Maxwell scalar

  20. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  1. The influence of UV radiation on protistan evolution

    Science.gov (United States)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  2. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  3. Influence of chemoreflexes on respiratory variability in healthy subjects

    NARCIS (Netherlands)

    van den Aardweg, Joost G.; Karemaker, John M.

    2002-01-01

    The background of this study was the hypothesis that respiratory variability is influenced by chemoreflex regulation, In search for periodicities in the variability due to instability of the respiratory control system, spectral analysis was applied to breath-to-breath variables in 19 healthy

  4. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  5. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  6. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  7. Naturally occurring and radiation-induced tumors in SPF mice, and genetic influence in radiation leukemogenesis

    International Nuclear Information System (INIS)

    Kasuga, T.

    1979-01-01

    The data obtained so far in this study point to a strong genetic influence not only on the types and incidence of naturally occurring and radiation-induced tumors but also on radiation leukemogenesis. (Auth.)

  8. Confronting actual influence of radiation on human bodies and biological defense mechanism

    International Nuclear Information System (INIS)

    Matsubara, Junko

    2012-01-01

    After the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, social, economical, psychological pressures on local residents and fears of radiation among the general public have not been resolved. Based on the assumption that the negligence of specialists to clearly explain the influence of radiation on human bodies to the general public is the factor for above mentioned pressures and fears, the influence of radiation from a realistic view was discussed. The topics covered are: (1) understanding the meaning of radiation regulation, (2) radiation and threshold values, (3) actual influence of low-dose radiation, (4) chemical and biological defense in defense mechanism against radiation, (5) problems raised by Fukushima Daiichi nuclear accident. Furthermore, the article explains the principles and the applications of biological defense function activation, and suggested that self-help efforts to fight against stress are from now on. (S.K.)

  9. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  10. Electromagnetic radiation reaction force and radiation potential in general five-dimensional relativity

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1989-01-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics to account for the radiation reaction force. A conjecture that the radiation reaction force and the Lorentz force should be distinct, but in unified forms, results in a five-dimensional unified theory of five variables. It is found that a semicylindrical condition can reconcile the apparent differences between a five-dimensional physical space and our four-dimensional perceptions. Analysis of the geodesic equations results in the notion of gauge dynamics which manifests the influence of the unrestricted fifth variable. The element g 55 of the five-dimensional metric is identified as the radiation potential, which can directly determine the radiation reaction force. This gives a distinct physical origin for the radiation process in classical theory. The potential suggests that the electron can have excited states in quantum electrodynamics. This theory is supported with calculations which demonstrate that the motion of the fifth variable directly causes physical changes in the four-dimensional subspace

  11. A new influence model of low intensive ionizing radiation on organism

    International Nuclear Information System (INIS)

    Bulanova, K.Ya.; Lobanok, L.M.; Berdnikov, M.V.; Ignatenko, A.O.; Konoplya, E.F.

    2006-01-01

    The data and facts about the influence of ionizing radiation in small doses and low intensity on cardiovascular system and blood sells of experimental animals are given in the article. The ideas about its signal perception are used to illustrate and explain the mechanisms of low intensive physical nature factors influencing on organism. The leading role of quantitative information change in the process of forming physiological and pathologic influence of radiation on organism is supposed. The influence of X-ray small doses emission on human organism was analyzed on the basis of entropy calculation with the help of mathematical conversion characteristic of finger-tips luminosity. This method helped us to understand that the amount of information in the system was changed during post-radiation period. (authors)

  12. Variables that influence junior secondary school students‟ attitude ...

    African Journals Online (AJOL)

    The positive relationship between the rate of learning, attitude to and achievement in science has been documented in literature. It is therefore pertinent to assess the variables that tend to influence students' attitude to Agricultural Science. The study assessed the influence of gender, location of school and sex composition ...

  13. Influence of radiation on the developing brain

    International Nuclear Information System (INIS)

    Gao Weimin; Zhou Xiangyan

    1997-01-01

    An outline of current status in study on the influence of radiation on the developing brain was given based on data from both human and animals. Analysis was made in 5 aspects, such as the behaviour of nervous, changes on cellular and molecular levels, apoptosis of cells, and the adaptive reaction, which could be helpful for further understanding the influences of prenatal exposure on the developing brain

  14. Influence of atmospheric rainfall to γ radiation Kerma rate in surface air

    International Nuclear Information System (INIS)

    Xu Zhe; Wan Jun; Yu Rongsheng

    2009-01-01

    Objective: To investigate the influence rule of the atmospheric Rainfall to the γ radiation Kerma rate in surface air in order to revise the result of its measurement during rainfall. Methods: The influence factors of rainfall to the measurement of the γ radiation Kerma rate in air were analyzed and then the differential equation of the correlation factors was established theoretically, and by resolving the equation, the mathematical model Was obtained. The model was discussed through several practical examples. Results: The mathematical model was coincided with the tendency of curve about the measured data on the influence rule of rainfall to the γ radiation Kerma rate in surface air. Conclusion: By using the theoretical formula in this article which is established to explain the relationship between the rainfall and the γ radiation Kerma rate in surface air, the influence of rainfall to the γ radiation Kerma rate in surface air could be correctly revised. (authors)

  15. Preliminary radiation-oxidizing treatment influence on radiation-catalytic activity of zirconium during water decomposition process

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The study of physical-chemical processes proceeding in contact of metal constructional materials nuclear reactors with water at simultaneous influence of temperature and radiation represents the large interest at the decision of problems material authority and safety of work of nuclear -power installations [1-2]. One of the widely widespread materials of active zone nuclear reactors is metal zirconium and its alloys. The influence of preliminary radiation processing on radiation, radiation -thermal and thermal processes of accumulation of molecular hydrogen and oxidation zirconium in contact with water is investigated at T=673 K and ρ=5mg/sm 3 [3-4]. Initial samples zirconium previously has been exposed by an irradiation in medium H 2 O 2 at D=20-410 kGy. The contribution of radiation processes in these contacts in process thermo-radiation decomposition of water and oxidation of materials of zirconium is revealed. It is established that the interaction of Zr metal, preliminary treated by radiation, with water at radiation -heterogeneous processes leads to passivity of a surface. The rate meanings of thermal, radiation -thermal processes and radiation-chemical yields of hydrogen are determined. It is revealed, that at radiation-heterogeneous processes in system Zr +H 2 O (ρ =5mg/sm 3 T=673 K) the increase of the absorbed doze up to 123 kGy results to reduction of a radiation -chemical yield of molecular hydrogen. The further increase of the absorbed doze results to increase of a radiation -chemical yield of hydrogen. The observable effect at the preliminary radiation of zirconium is connected to formation of oxide phase on a surface. The mechanism of radiation -heterogeneous processes proceeding in system Zr+H 2 O is suggested. (author)

  16. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    Science.gov (United States)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  17. Interplanner variability in carrying out three-dimensional conformal radiation therapy for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Fimmell, N.; Laferlita, C.; Everitt, S.; Schneider-Kolsky, M.; Budd, R.; Kron, T.; Reynolds, J.; Ball, D.; Mac Manus, M.

    2008-01-01

    This study evaluated the variability among six radiation therapy planners in planning radiation treatment for four patients with lung cancer using two treatment protocols. The interplanner variability for target conformity and homogeneity was smaller than the variability among the patients and planning approaches. The same was found for the dose volume indices achieved for most critical structures, indicating that interplanner variability is not likely to be an important source of variation in radiotherapy studies if concise treatment protocols are followed.

  18. The solar forcing on the ground 7 Be concentration variability

    International Nuclear Information System (INIS)

    Talpos, S.; Borsan, D.H.

    2002-01-01

    7 Be, natural radionuclide, is produced by the interaction of cosmic radiation with oxygen and nitrogen molecules. 7 Be production in atmosphere depends on the intensity of cosmic radiation which is influenced by the Earth's magnetosphere. The magnetosphere shape depends on solar activity. This paper presents the influence of sunspots number (11 years period) on the ground 7 Be concentration variability. (authors)

  19. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  20. Influence of ionizing radiation on the plasma membrane proteins

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1992-01-01

    The effect of ionizing radiation on the meat cattle thymocytes plasma membranes was studied. Using fluorescence quenching technique the effect of irradiation of proteins conformation was investigated. The influence of ionizing radiation on the plasma membranes was shown to be followed by changes of the protein structure-dynamic organization

  1. Influence of the ionizing radiation on bituminous oil

    International Nuclear Information System (INIS)

    Aliyeva-Chichek, S.N; Guliyeva, S.; Aliyev, S.; Ahmedbekova, N. Ibadov.

    2012-01-01

    Full text : Bituminous oil is suitable for the production of road bitumen, lubricant oils, and energy fuel. In their structure, there is found an increased concentration of valuable metals (vanadium, nickel, etc.). The radiation-chemical transformations of bituminous oil, as well as the influence of an ionizing radiation on radiating stability of oil were investigated. Investigated oil was taken from Binagadi deposits from a depth in excess of 100 m.The source of ionizing radiation was used the isotope γ radiation 20 60 Ca MRX - γ 30 . The dose rate of the source of radiation is 0, 49 Gy/s, at the absorbed doses of 34,5-216 kGy. Methods of IR-Spectroscopy with an application of Spectrometer M-80 were used in the determination of the structural-group componential composition. Gas products were analyzed with the method of gas chromatography. Liquid products were identified by mass-spectrometer methods. The kinetics of the formations of gases was investigated by the radiolysis of oil as one of the parameters of the radiating stability of the bituminous oil. Samples of oil were irradiated in a vacuum and air conditions. It was established that presence of oxygen in the system does not significantly influence the radiation-chemical yields of the gases. Because at the room temperature, radiation-chemical disintegration proceeds without the introduction of oxygen into the reaction. This means that the rate of regrouping and splitting in the polycondensed systems is greater than the rate of interaction of the active radiolysis particles with oxygen. The influence of γ - irradiation on the structural-group composition of bituminous oil was investigated. It is visible from the comparison of IR-spectra of initial and irradiated samples of oil in the presence of air and in a vacuum, that there is a decrease in the optical density as a result of irradiation both in the aliphatic groups -CH 2 , -CH 3 , and in the double chemical bonds C=C. This shows that formation of

  2. Influence of planning time and treatment complexity on radiation therapy errors.

    Science.gov (United States)

    Gensheimer, Michael F; Zeng, Jing; Carlson, Joshua; Spady, Phil; Jordan, Loucille; Kane, Gabrielle; Ford, Eric C

    2016-01-01

    Radiation treatment planning is a complex process with potential for error. We hypothesized that shorter time from simulation to treatment would result in rushed work and higher incidence of errors. We examined treatment planning factors predictive for near-miss events. Treatments delivered from March 2012 through October 2014 were analyzed. Near-miss events were prospectively recorded and coded for severity on a 0 to 4 scale; only grade 3-4 (potentially severe/critical) events were studied in this report. For 4 treatment types (3-dimensional conformal, intensity modulated radiation therapy, stereotactic body radiation therapy [SBRT], neutron), logistic regression was performed to test influence of treatment planning time and clinical variables on near-miss events. There were 2257 treatment courses during the study period, with 322 grade 3-4 near-miss events. SBRT treatments had more frequent events than the other 3 treatment types (18% vs 11%, P = .04). For the 3-dimensional conformal group (1354 treatments), univariate analysis showed several factors predictive of near-miss events: longer time from simulation to first treatment (P = .01), treatment of primary site versus metastasis (P < .001), longer treatment course (P < .001), and pediatric versus adult patient (P = .002). However, on multivariate regression only pediatric versus adult patient remained predictive of events (P = 0.02). For the intensity modulated radiation therapy, SBRT, and neutron groups, time between simulation and first treatment was not found to be predictive of near-miss events on univariate or multivariate regression. When controlling for treatment technique and other clinical factors, there was no relationship between time spent in radiation treatment planning and near-miss events. SBRT and pediatric treatments were more error-prone, indicating that clinical and technical complexity of treatments should be taken into account when targeting safety interventions. Copyright © 2015 American

  3. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  4. Influence of radiation heat transfer during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.

    2016-09-01

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  5. [The study of transpiration influence on plant infrared radiation character].

    Science.gov (United States)

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui

    2012-07-01

    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  6. The influence of climate variables on dengue in Singapore.

    Science.gov (United States)

    Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo

    2011-12-01

    In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.

  7. O(α2L2) radiative corrections to deep inelastic ep scattering for different kinematical variables

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1994-03-01

    The QED radiative corrections are calculated in the leading log approximation up to O(α 2 ) for different definitions of the kinematical variables using jet measurement, the 'mixed' variables, the double angle method, and a measurement based on θ e and y JB . Higher order contributions due to exponentiation of soft radiation are included. (orig.)

  8. The influence of radiation therapy on cardiac pacemakers

    International Nuclear Information System (INIS)

    Coles, J.R.; Ciddor, G.S.

    1980-01-01

    The results of an investigation to determine the influence on pacemaking of ionizing radiation and electromagnetic radiation from a number of radiotherapy machines are reported. In vitro tests were carried out on unipolar cardiac pacemakers of the ventricular inhibited type. The pacemakers were largely unaffected by the environment of clinical radiotherapy machines. Ionizing radiation had no detrimental effect on the pacemakers and electromagnetic interference caused only temporary single-beat inhibition at most. With the betatron used, malfunction of the pacemakers regularly occurred whilst in their inhibited made of operation. The demand function became disabled allowing competitive asynchronous pulses to be produced

  9. The impact of selected organizational variables and managerial leadership on radiation therapists' organizational commitment

    International Nuclear Information System (INIS)

    Akroyd, Duane; Legg, Jeff; Jackowski, Melissa B.; Adams, Robert D.

    2009-01-01

    The purpose of this study was to examine the impact of selected organizational factors and the leadership behavior of supervisors on radiation therapists' commitment to their organizations. The population for this study consists of all full time clinical radiation therapists registered by the American Registry of Radiologic Technologists (ARRT) in the United States. A random sample of 800 radiation therapists was obtained from the ARRT for this study. Questionnaires were mailed to all participants and measured organizational variables; managerial leadership variable and three components of organizational commitment (affective, continuance and normative). It was determined that organizational support, and leadership behavior of supervisors each had a significant and positive affect on normative and affective commitment of radiation therapists and each of the models predicted over 40% of the variance in radiation therapists organizational commitment. This study examined radiation therapists' commitment to their organizations and found that affective (emotional attachment to the organization) and normative (feelings of obligation to the organization) commitments were more important than continuance commitment (awareness of the costs of leaving the organization). This study can help radiation oncology administrators and physicians to understand the values their radiation therapy employees hold that are predictive of their commitment to the organization. A crucial result of the study is the importance of the perceived support of the organization and the leadership skills of managers/supervisors on radiation therapists' commitment to the organization.

  10. Moessbauer radiation dynamical diffraction in crystals being subjected to the action of external variable fields

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Skadorov, V.V.

    1986-01-01

    A dynamical theory is developed of the Moessbauer radiation diffraction by crystals being subjected to an variable external field action. Equations describing the dynamical diffraction by nonstationary crystals are obtained. It is shown that the resonant interaction between Moessbauer radiation and shift field induced in the crystal by a variable external field giving rise to an effective conversion of the incident wave into a wave with changed frequency. (author)

  11. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation.

    Science.gov (United States)

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-21

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  12. Genetical variability of Gladioli as the result of gamma-radiation

    International Nuclear Information System (INIS)

    Jakota, L.I.; Murin, A.V.

    1994-01-01

    In the starting material of Gladioli, got in the result of Y-radiation, the forms with white spots on the petals were observed. The Gladioli form 165-81 is distinguished by low growth and middle early flowering. The flower form is triangular. Basic pigmentation is red. White spots of different size on the petals were observed. The investigation was made in 1992 in the field of genetical variability of Gladioli. The Gladioli form 165-81 was irradiated with gamma-radiation dose 30 Gr. As a result the depression of biometric indicators was observed. Consequently, 30 Gr is a mutant dose for Gladioli

  13. Influences of variables on ship collision probability in a Bayesian belief network model

    International Nuclear Information System (INIS)

    Hänninen, Maria; Kujala, Pentti

    2012-01-01

    The influences of the variables in a Bayesian belief network model for estimating the role of human factors on ship collision probability in the Gulf of Finland are studied for discovering the variables with the largest influences and for examining the validity of the network. The change in the so-called causation probability is examined while observing each state of the network variables and by utilizing sensitivity and mutual information analyses. Changing course in an encounter situation is the most influential variable in the model, followed by variables such as the Officer of the Watch's action, situation assessment, danger detection, personal condition and incapacitation. The least influential variables are the other distractions on bridge, the bridge view, maintenance routines and the officer's fatigue. In general, the methods are found to agree on the order of the model variables although some disagreements arise due to slightly dissimilar approaches to the concept of variable influence. The relative values and the ranking of variables based on the values are discovered to be more valuable than the actual numerical values themselves. Although the most influential variables seem to be plausible, there are some discrepancies between the indicated influences in the model and literature. Thus, improvements are suggested to the network.

  14. Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.

    Science.gov (United States)

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.

  15. Influence of preliminary radiation-oxidizing treatment on the corrosion resistance of zirconium in conditions of action of ionizing radiation

    International Nuclear Information System (INIS)

    Garibov, A. A.; Aliyev, A. G.; Agayev, T. N.; Velibekova, G. Z.

    2004-01-01

    Today mainly water-cooled nuclear reactors predominate in atomic energetics. For safe work of nuclear reactors detection of accumulation process of explosives, formed during radiation and temperature influence on heat-carriers in contact with materials of nuclear reactors in normal and emergency regimes of work is of great importance. The main sources of molecular hydrogen formation in normal and emergency regimes are the processes of liquid and vaporous water in vapo metallic reaction [1-5]. At the result of these processes molecular hydrogen concentration in heat-carrier composition always exceeds theoretically expected concentration. One of the main ways to solve the problem of water-cooled reactors safety is detection of possibilities to raise material resistance of fuel elements and heat carrier to joint action of ionizing radiation and temperature. The second way is inhibition of radiation-catalytic activity of construction materials' surface during the process of water decomposition. It's been established, that one of the ways to raise resistance of zirconium materials to the influence of ionizing radiation is formation of thin oxide film on the surface of metals. In the given work the influence of preliminary oxidizing treatment of zirconium surface on its radiation-catalytic activity during the process of water decomposition. With this aim zirconium is exposed to preliminary influence of gamma-quantum in contact with hydrogen peroxide at different meanings of absorbed radiation dose

  16. The influence of continuum radiation fields on hydrogen radio recombination lines

    Science.gov (United States)

    Prozesky, Andri; Smits, Derck P.

    2018-05-01

    Calculations of hydrogen departure coefficients using a model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. New numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. Our results differ from previous results by up to 20 per cent. A direct solver with a similar accuracy but more efficient than the iterative method is used to evaluate the influence of continuum radiation on the hydrogen population structure. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Tables of emission and absorption coefficients for interpreting observed radio recombination lines are provided.

  17. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Science.gov (United States)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  18. A Study on the Influence of Electromagnetic Radiation on Nervous System

    Directory of Open Access Journals (Sweden)

    Dong Xinlin

    2015-01-01

    Full Text Available Being applied widely, electromagnetic wave is closely related with our life. But this material has brought pollutions to the environment as well as influences on functions of organisms. In order to explore the influence of electromagnetic radiation on nervous system, this paper takes adult mice on 35th day as research objects, designs a water maze experiment and explores features of escaping latency of mice in the control group and in the group with radiation. In this research, methods of building a GHz TEM cell and a simulation model of mouse head with AutoCAD 2010 and XFDTD are provided, verifying that the simulation model meets the needs of the experiment. It concludes that the electromagnetic radiation causes memory deterioration of mice, and exerts its certain influence on nervous system.

  19. Influence of external action and structural factors on radiation blistering

    International Nuclear Information System (INIS)

    Kalin, B.A.; Chernov, I.I.; Fomina, E.P.; Korshunov, S.H.; Polsky, V.I.; Skorov, D.M.; Yakushin, V.L.

    1985-01-01

    A survey of experimental results is presented, pertaining to radiation blistering of a considerable number of materials (stainless steels, alloys with high nickel content, alloys of refractory metals) under helium ion irradiation with energies of 20-100 keV under conditions corresponding to the plasma-wall interaction: bombardment at various angles of incidence and cyclic irradiation in a wide spectrum of ion incidence angles; influence of external action, including thermocyclic; influence of preceding neutron and proton irradiation. It has been shown that external factors have a complex influence on blister parameters and erosion coefficients of materials. A study has been carried out on the influence of aluminium coatings, alloying additions, phase state of material and microstructure on the nature and degree of surface erosion. Complex influence of element and phase composition, as well as microstructural changes during heat treatment and welding on radiation erosion have been established. (orig.)

  20. Influence of beta radiation from tritium and gamma radiation from 60Co on the biological half-times of organically bound tritium

    International Nuclear Information System (INIS)

    Radwan, I.

    1981-01-01

    The influence of beta radiation from tritium on the biological half-times of organically bound tritium in particular tissues of the rat is compred with the influence of fractionated gamma radiation from 60 Co. (M.F.W.)

  1. Crossing safety barriers: influence of children's morphological and functional variables.

    Science.gov (United States)

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Gamma radiation influence on technological characteristics of wheat flour

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L.d.

    2012-01-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it. - Highlights: ► We study the influence of gamma radiation on wheat flour and properties of breads. ► Falling number decreased with radiation remaining almost constant up to one month. ► Ionizing radiation may confer an increase in texture parameters, weight and height on the bread.

  3. Effect of variable doses of ultraviolet radiation (253.7 nm) on thermoluminescence NaCl:Ca(T) material

    International Nuclear Information System (INIS)

    Nehate, A.K.; Joshi, T.R.; Kathuria, S.P.; Joshi, R.V.

    1986-01-01

    This paper studies the thermoluminescence (TL) glow curves of NaCl:Ca(T) phosphors to various doses of 253.7-nm ultraviolet (UV) radiation at room temperature. TLD grade NaCl:Ca(T) material was obtained by crystallization from solution and was subsequently annealed at 750 degrees C for 2 h, followed by sudden quenching. We undertook measurement of the effect of variable UV radiation doses (10(2) to 10(6) J m-2) on the TL behaviour of NaCl:Ca(T) phosphors. It was observed that the phosphor exhibits a dominant peak around 167 degrees C along with a weak peak at lower temperature. The high-temperature peak (Peak II) is found to grow linearly with the increase in UV dose in the range of 10(2) to 10(6) J m-2. Since the nature of the glow curves under the influence of different doses remains more or less identical, it is believed that the phosphor does not undergo radiation damage and displays high intrinsic TL around Peak II. Examination of the system for fundamental dosimetry requirements shows that it can be used in dosimetry work at 253.7 nm

  4. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  5. Basic design of radiation-resistant LVDTs: Linear Variable Differential Transformer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Park, S. J.; Kang, Y. H. (and others)

    2008-02-15

    A LVDT(Linear Variable Differential Transformer) for measuring the pressure level was used to measure the pressure of a nuclear fuel rod during the neutron irradiation test in a research reactor. A LVDT for measuring the elongation was also used to measure the elongation of nuclear fuels, and the creep and fatigue of materials during a neutron irradiation test in a research reactor. In this report, the basic design of two radiation-resistant LVDTs for measuring the pressure level and elongation are described. These LVDTs are used a under radiation environment such as a research reactor. In the basic design step, we analyzed the domestic and foreign technical status for radiation-resistant LVDTs, made part and assembly drawings and established simple procedures for their assembling. Only a few companies in the world can produce radiation-resistant LVDTs. Not only these are extremely expensive, but the prices are continuously rising. Also, it takes a long time to procure a LVDT, as it can only be bought about by an order-production. The localization of radiation-resistant LVDTs is necessary in order to provide them quickly and at a low cost. These radiation-resistant LVDTs will be used at neutron irradiation devices such as instrumented fuel capsules, special purpose capsules and a fuel test loop in research reactors. We expect that the use of neutron irradiation tests will be revitalized by the localization of radiation-resistant LVDTs.

  6. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  7. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  8. Influence of genetic immune disorders and anemia in radiation leukemogenesis

    International Nuclear Information System (INIS)

    Wilson, F.D.; Cain, G.; Graham, R.; Fox, L.; Klein, A.K.; Stitzel, K.; Dyck, J.; Shimizu, J.

    1980-01-01

    Genetic and disease related conditions (anemia and immunoblastic lymphadenopathy) were studied in mice to determine if these variables influenced cellular damage from continuous low-level irradiation. Strain differences were observed in pre-irradiation profiles for cardiac blood and lymphohematopoietic progenitor cell parameters. Major differences with respect to genetic and disease variables were seen in response to continuous irradiation. Presence of a stem cell defect in the W/W/sup ν/ strain with resulting pre-irradiation anemia had profound effects on the ability of these mice to maintain erythrogenesis during continuous irradiation. Likewise, granulocyte-monocyte precursors were markedly depressed in the WW/sup ν/ strain during the irradiation period. The immunologically abnormal stran, BXSB, which suffers from a lymphoproliferative processes, showed marked sensitivity in WBC to the effects of continuous irradiation. WBC values precipitously dropped during the first week of exposure then rapidly compensated to values 264% of unirradiated controls. The hyperplastic B cells in this strain also show marked radiation sensitivity and ability to repair to above normal levels. Lymphohematopoietic malignancy has been recognized in two individuals to date - both cases were in diseased irradiated mice: (1) disseminated lymphosarcoma in one W/W/sup ν/ mouse; and (2) acute lymphocytic leukemia in one BXSB mouse

  9. Influence of radiation on structure of Venom Vipera Lebetina Obtusa

    International Nuclear Information System (INIS)

    Topchiyeva, Sh.A; Abiyev, H.A; Magerramov, A.

    2006-01-01

    Full text: Snake venoms are unique biologically active polymers of an animal origin. Though in the global literature the data are resulted on researching of zoo toxins, however many questions still remain not mentioned and need deep analysis and studying. Many questions on influence of small dozes gamma-radiation and other kinds ionization radiations on an alive organism remain open. These questions are important for technology of radiating sterilization of medical products, finding-out of the mechanism of additively and synergism, estimations of radio-ecological risk at influences of small dozes gamma-radiation on structure and dynamics of development of various biological and organic systems. In connection with special biochemical and preparations of venoms vipers and for an estimation of ecological factors (in particular, biotic, an electromagnetic field, gamma-radiation, solar radiation) on its properties we investigated influence gamma-radiation 6 0Co on structure at low temperatures. At low temperatures researches and at revealing prostrations effects in organic and biological systems of an organism from effective methods is radiotermoluminence.The method of radiotermoluminence will allow to receive data on structural properties of system, on the centers of stabilization of charges of initial products radials venom, about ways of migration of energy absorbed at an irradiation and so on. Samples on venom were irradiated in special a ditch with scales-beams at 77K up to dozes of %5 kGr. Before an irradiation samples were cleared of traces of oxygen. The irradiation was spent on air and in vacuum. Curves lighting registered with a speed gamma 50/1.min. It is shown, that in an interval of temperatures 77-330K the curve lighting radiotermoluminendce venom of vipers irradiated at 77K up to dozes 3 kGr is characterized not by a symmetric maximum at temperature 172K. Warming up to temperatures 320K results in monotonous decrease of intensity of a luminescence. It is

  10. Disentangling the effects of genetic, prenatal and parenting influences on children's cortisol variability.

    Science.gov (United States)

    Marceau, Kristine; Ram, Nilam; Neiderhiser, Jenae M; Laurent, Heidemarie K; Shaw, Daniel S; Fisher, Phil; Natsuaki, Misaki N; Leve, Leslie D

    2013-11-01

    Developmental plasticity models hypothesize the role of genetic and prenatal environmental influences on the development of the hypothalamic-pituitary-adrenal (HPA) axis and highlight that genes and the prenatal environment may moderate early postnatal environmental influences on HPA functioning. This article examines the interplay of genetic, prenatal and parenting influences across the first 4.5 years of life on a novel index of children's cortisol variability. Repeated measures data were obtained from 134 adoption-linked families, adopted children and both their adoptive parents and birth mothers, who participated in a longitudinal, prospective US domestic adoption study. Genetic and prenatal influences moderated associations between inconsistency in overreactive parenting from child age 9 months to 4.5 years and children's cortisol variability at 4.5 years differently for mothers and fathers. Among children whose birth mothers had high morning cortisol, adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children with low birth mother morning cortisol adoptive fathers' inconsistent overreactive parenting predicted lower cortisol variability. Among children who experienced high levels of prenatal risk, adoptive mothers' inconsistent overreactive parenting predicted lower cortisol variability and adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children who experienced low levels of prenatal risk there were no associations between inconsistent overreactive parenting and children's cortisol variability. Findings supported developmental plasticity models and uncovered novel developmental, gene × environment and prenatal × environment influences on children's cortisol functioning.

  11. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  12. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  13. Influence of radiation damage on internal friction background

    International Nuclear Information System (INIS)

    Burbelo, R.M.; Grinik, Eh.U.; Paliokha, M.I.; Orlinskij, A.B.

    1984-01-01

    Influence of radiation damage on internal friction background in samples of polycrystalline nickel and iron irradiated by a fast neutron flux approximately 10 14 neutr/(cm 2 xs) at 350 deg C has been studied using the low-frequency unit of the reverse torsion pendulum type. It has been established experimentally that a high-temperature background of internal friction of iron and nickel samples decreases as accumulating radiation defects occurring under neutron irradiation. Assumptions on a possible mechanism of the effect have been proposed. Simple expression for the background magnitude evaluation has been suggested

  14. The impact of selected organizational variables and managerial leadership on radiation therapists' organizational commitment

    Energy Technology Data Exchange (ETDEWEB)

    Akroyd, Duane [Department of Adult and Community College Education, College of Education, Campus Box 7801, North Carolina State University, Raleigh, NC 27695 (United States)], E-mail: duane_akroyd@ncsu.edu; Legg, Jeff [Department of Radiologic Sciences, Virginia Commonwealth University, Richmond, VA 23284 (United States); Jackowski, Melissa B. [Division of Radiologic Sciences, University of North Carolina School of Medicine 27599 (United States); Adams, Robert D. [Department of Radiation Oncology, University of North Carolina School of Medicine 27599 (United States)

    2009-05-15

    The purpose of this study was to examine the impact of selected organizational factors and the leadership behavior of supervisors on radiation therapists' commitment to their organizations. The population for this study consists of all full time clinical radiation therapists registered by the American Registry of Radiologic Technologists (ARRT) in the United States. A random sample of 800 radiation therapists was obtained from the ARRT for this study. Questionnaires were mailed to all participants and measured organizational variables; managerial leadership variable and three components of organizational commitment (affective, continuance and normative). It was determined that organizational support, and leadership behavior of supervisors each had a significant and positive affect on normative and affective commitment of radiation therapists and each of the models predicted over 40% of the variance in radiation therapists organizational commitment. This study examined radiation therapists' commitment to their organizations and found that affective (emotional attachment to the organization) and normative (feelings of obligation to the organization) commitments were more important than continuance commitment (awareness of the costs of leaving the organization). This study can help radiation oncology administrators and physicians to understand the values their radiation therapy employees hold that are predictive of their commitment to the organization. A crucial result of the study is the importance of the perceived support of the organization and the leadership skills of managers/supervisors on radiation therapists' commitment to the organization.

  15. Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    International Nuclear Information System (INIS)

    Vicente-Retortillo, A.; Lemmon, M.T.; Martinez, G.; Valero, F.; Vazquez, L.; Martin, M.L.

    2016-01-01

    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. (Author)

  16. Solar Radiation Forecasting, Accounting for Daily Variability

    Directory of Open Access Journals (Sweden)

    Roberto Langella

    2016-03-01

    Full Text Available Radiation forecast accounting for daily and instantaneous variability was pursued by means of a new bi-parametric statistical model that builds on a model previously proposed by the same authors. The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical expression but is not bound by a specific clear sky model; it accounts separately for the mean daily variability and for the variation of solar irradiance during the day by means of two corrective parameters. This new proposal allows for a better understanding of the physical phenomena and improves the effectiveness of statistical characterization and subsequent simulation of the introduced parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the experimental distributions of the two parameters’ data was developed, obtaining opportune fittings by means of parametric analytical distributions or mixtures of more than one distribution. Finally, the model was further improved toward the inclusion of weather prediction information in the solar irradiance forecasting stage, from the perspective of overcoming the limitations of purely statistical approaches and implementing a new tool in the frame of solar irradiance prediction accounting for weather predictions over different time horizons.

  17. Influence of radiation on structure of venom vipera lebetina obtusa

    International Nuclear Information System (INIS)

    Topchiyeva, Sh.A.; Abiyev, H.A.; Magerramov, A.

    2006-01-01

    Full text: Snake venoms are unique biologically active polymers of an animal origin. Though in the global literature the data are resulted on researching of zootoxins, however many questions still remain not mentioned and need deep analysis and studying. Many questions on influence of small dozes - radiation and other kinds ionization radiations on an alive organism remain open. These questions are important for technology of radiating sterilization of medical products, finding-out of the mechanism of additivity and sinergizm, estimations of radio-ecological risk at influences of small dozes - radiation on structure and dynamics of development of various biological and organic systems. In connection with special biochemical and preparations properties of venoms viperas and for an estimation of ecological factors (in particular, abiotics, an electromagnetic field, -radiation, solar radiation) on its properties we investigate influence - radiation n-tildei-circumflex 60 on structure at low temperatures. At low temperatures researches and at revealing postrations' effects in organic and biological systems of an organism from effective methods is radiotermoluminence. The method of radiotermoluminence will allow to receive data on structural properties of system, on the centers of stabilization of charges of initial products radiolis venom, about ways of migration of energy absorbed at an irradiation and so on. Samples of venom were irradiated in special a ditch with scales - beams at 77 E-tilde up to dozes of percent 5 e-tildeGr. Before an irradiation samples were cleared of traces of oxygen. The irradiation was spent on air and in vacuum. Curves lighting registered with a speed ∼ 50/l.min. It is shown, that in an interval of temperatures 77-330 E-tilde the curve lighting radiotermoluminence venom of viperas irradiated at 77 E-tilde up to dozes 3 ?Gr is characterized not by a symmetric maximum at temperature 172 E-tilde. Warming up up to temperatures 320E

  18. [The influence of physical exercise on heart rate variability].

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Negrusz-Kawecka, Marta; Halawa, Bogumił

    2003-03-01

    Heart rate variability is controlled by the influence of autonomic nervous system, whereas one part of the system modulates the activity of the other. There is evidence of increased sympathetic activity in patients (pts) with essential hypertension. The aim of the study was to assess the persisting influence of increased sympathetic activity 30 min after moderate physical exercise on heart rate variability in patients with arterial hypertension. The study was performed in 19 patients (10 women, mean age 52.7 +/- 9.5 years and 9 men, mean age 37.7 +/- 8.8 years) with stage I (6 pts) and stage II (13 pts) arterial hypertension. All studied pts had sinus rhythm, were free of diabetes, coronary heart disease and congestive heart failure. 24-hour Holter monitoring was performed and for 30 min before the exercise test the pts stayed in supine rest. The exercise tests were performed between 10 and 11 a.m. Immediately after the exercise all pts stayed in supine position for 30 min. The heart rate variability parameters were studied using Holter monitoring system Medilog Optima Jet and were then analysed statistically. The mean energy expenditure during the exercise was 5.8 +/- 1.1 METs and the maximal heart rate was 148.1 +/- 20.3 bpm. All studied HRV parameters were significantly different in the assessed time period compared to the baseline values (p < 0.001). Significant correlation was found between the age of the studied patients and the mean RR interval, what can be considered as a hyperkinetic (hyperadrenergic) circulatory status and shorter RR interval in younger pts. Significant negative correlation between the age and SDNN parameter (r = -0.65, p < 0.001), 30 min after the exercise mirrors the prolonged adrenergic influence in older pts. The present study shows that the influence of moderate physical exercise on heart rate variability in pts with essential hypertension is extended over 30 min period after exercise and is more pronounced in older pts. The studies

  19. Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Obryk, Maciej; Fountain, Andrew G.; Doran, Peter; Lyons, Berry; Eastman, Ryan

    2018-01-01

    Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m−2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77–78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.

  20. Influence of radiation dose on positive surgical margins in women undergoing breast conservation therapy

    International Nuclear Information System (INIS)

    DiBiase, Steven J.; Komarnicky, Lydia T.; Heron, Dwight E.; Schwartz, Gordon F.; Mansfield, Carl M.

    2002-01-01

    Purpose: Positive surgical margins adversely influence local tumor control in breast conservation therapy (BCT). However, reports have conflicted regarding whether an increased radiation dose can overcome this poor prognostic factor. In this study, we evaluated the influence of an increased radiation dose on tumor control in women with positive surgical margins undergoing BCT. Methods and Materials: Between 1978 and 1994, 733 women with pathologic Stage I-II breast cancer and known surgical margin status were treated at Thomas Jefferson University Hospital with BCT. Of these 733 patients, 641 women had a minimal tumor bed dose of 60 Gy and had documentation of their margin status; 509 had negative surgical margins, and 132 had positive surgical margins before definitive radiotherapy. Complete gross excision of the tumor and axillary lymph node sampling was obtained in all patients. The median radiation dose to the primary site was 65.0 Gy (range 60-76). Of the women with positive margins (n=132), the influence of higher doses of radiotherapy was evaluated. The median follow-up time was 52 months. Results: The local tumor control rate for patients with negative margins at 5 and 10 years was 94% and 88%, respectively, compared with 85% and 67%, respectively, for those women with positive margins (p=0.001). The disease-free survival rate for the negative margin group at 5 and 10 years was 91% and 82%, respectively, compared with 76% and 71%, respectively, for the positive margin group (p = 0.001). The overall survival rate of women with negative margins at 5 and 10 years was 95% and 90%, respectively. By comparison, for women with positive surgical margins, the overall survival rate at 5 and 10 years was 86% and 79%, respectively (p=0.008). A comparison of the positive and negative margin groups revealed that an increased radiation dose (whether entered as a dichotomous or a continuous variable) >65.0 Gy did not improve local tumor control (p=0.776). On Cox

  1. Parametric influence of powerful radiation on plasma surface

    International Nuclear Information System (INIS)

    Kuklin, V.M.; Panchenko, I.P.; Chernousenko, V.M.

    1989-01-01

    A self-consistent set of equations that describes one-dimensional dynamics to develop the instability of long-wave intensive Langmuir wave is obtained and solved. The parametric instability influence on the character of absorption of the incident radiation energy is elucidated primarily. 40 refs.; 8 figs

  2. The influence of socio-economic variables on adoption behaviour ...

    African Journals Online (AJOL)

    The influence of socio-economic variables on adoption behaviour towards Tadco improved rice parboiling technique among rice parboilers in Kura processing Areas ... Age and educational level were found to be associated with non adoption ...

  3. Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    Energy Technology Data Exchange (ETDEWEB)

    Vicente-Retortillo, A.; Lemmon, M.T.; Martinez, G.; Valero, F.; Vazquez, L.; Martin, M.L.

    2016-07-01

    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. (Author)

  4. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  5. Atmospheric radiative feedbacks associated with transient climate change and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Colman, Robert A.; Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne, VIC (Australia)

    2010-06-15

    This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO{sub 2} increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO{sub 2}. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback - in contrast to the dominant negative low

  6. Numerical simulation of variance of solar radiation and its influence on wheat growth

    Science.gov (United States)

    Zhang, Xuefen; Wang, Chunyi; Du, Zixuan; Zhai, Wei

    2007-09-01

    The growth of crops is directly related to solar radiation whose variances influence the photosynthesis of crops and the growth momentum thereof. This dissertation has Zhengzhou, which located in the Huanghuai Farmland Ecological System of China, as an example to analyze the rules of variances of total solar radiation, direct radiation and diffusive radiation. With the help of linear trend fitting, it is identified that total radiation (TR) drops as a whole at a rate of 1.6482J/m2. Such drop has been particularly apparent in recent years with a period of 7 to 16 years; diffusive radiation (DF) tends to increase at a rate of 15.149 J/m2 with a period of 20 years; direct radiation (DR) tends to drop at a rate of 15.843 J/m2 without apparent period. The total radiation has been on the decrease ever since 1980 during the growth period of wheat. Having modified relevant Parameter in the Carbon and Nitrogen Biogeochemistry in Agroecosystems Model (DNDC) model and simulated the influence of solar radiation variances on the development phase, leaf area index (LAI), grain weight, etc during the growth period of wheat, it is found that solar radiation is in positive proportion to LAI and grain weight (GRNWT) but not apparently related to development phase (DP). The change of total radiation delays the maximization of wheat LAI, reduces wheat LAI before winter but has no apparent effect in winter and decreases wheat LAI from jointing period to filling period; it has no apparent influence on grain formation at the early stage of grain formation, slows down the weight increase of grains during the filling period and accelerates the weight increase of grains at the end of filling period. Variance of radiations does not affect the DP of wheat much.

  7. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    Science.gov (United States)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  8. Relative Influence Of Sociodemographic Variables On Oral Health ...

    African Journals Online (AJOL)

    This paper reports the results of a study to investigate the relative influence of some sociodemographic variables on oral hygiene and health of primary school children in Ibadan, Nigeria. The pupils were from two different socioeconomic strata of the society and their ages ranged between 7 and 16 years. They were ...

  9. Influence of γ ionizing radiation on anti-oxidative effect of vegetables polyphenolic parts

    International Nuclear Information System (INIS)

    Stuyck, S.; Connaulte, J.; Lesgards, G.; Prost, M.; Raffi, J.

    1998-01-01

    Ionizing radiation of vegetables is a cleaning up and preservation physical treatment which consists in submitting them to γ radiation, X radiation or electrons beam. This study deals with the influence of γ radiation on anti-oxidative effect of vegetables polyphenolic parts. In that purpose, we use a simple biological test based on erythrocytes hemolysis. (authors)

  10. Influence of Cognitive Variables in the Iowa Gambling Task

    Directory of Open Access Journals (Sweden)

    Marino D., Julián C.

    2010-07-01

    Full Text Available The objective of this work was to analyze the influence of cognitive and personality variables in the Decision Making (DM construct, evaluated by the Iowa Gambling Task (IGT. For this propose, a battery of neuropsychological tests was applied to 116 individuals of both genders between 18 and 35 years olds. The results showed that the IGT performance was not associated to the cognitive variables evaluated, only it has been found moderated relationship between working memory and DM. These outcomes suggest that DM seems to be an independent construct of the “cool” cognitive functions and could be influenced for the emotional or motivational aspects related to “hot” cognitive process. Finally, the DM process seems to be more associated to the ability to avoid punishment than the capacity of evaluate long term benefits.

  11. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  12. The influence of x-rays radiation on the kinetic electrocrystallization of nickel and cobalt alloys

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Val'ko, N.G.; Moroz, N.I.; Vorontsov, A.S.; Vojna, V.V.

    2009-01-01

    In the work research kinetic electrocrystallization of nickel and cobalt coatings of coverings from sulfate electrolyte under the influence of x-ray radiation. It has been revealed that under the influence of radiation the thickness coatings alloy and the alloy exit on a current increases in comparison with control samples. It is caused by increase in streams diffusion ions of restored metal to cathodes and formation intermediate Co xN i 1-1 in irradiated electrolytes. Thus, on the above stated processes essential influence is rendered by length of a wave of operating radiation. (authors)

  13. Environmental Literacy in Madeira Island (Portugal): The Influence of Demographic Variables

    Science.gov (United States)

    Spinola, Hélder

    2016-01-01

    Demographic factors are among those that influence environmental literacy and, particularly, environmentally responsible behaviours, either directly or due to an aggregation effect dependent on other types of variables. Present study evaluates a set of demographic variables as predictors for environmental literacy among 9th grade students from…

  14. Gamma radiation induced and natural variability for nodulation in legumes

    Energy Technology Data Exchange (ETDEWEB)

    Maherchandani, N; Rana, O P.S. [Haryana Agricultural Univ., Hissar (India). Dept. of Genetics

    1977-09-01

    Gamma radiation induced variability for nodulation was studied in 112 M4 mutant lines of cowpea variety C-15-2. Ten lines superior in nodulation to the original variety have been identified. Natural variability for nodulation and plant growth was investigated in 75 genotypes of chickpea. A number of genotype were found to be superior to cultivated variety C-235 for nodulation characters. Nodule characters were found to be related to dry matter accumulation but not to grain yield. Another experiment on 10 varieties of chick pea conducted under aseptic conditions revealed that host genotypes showed specificity for Rhizobial strains and different Rhizobial strains differed in their effectiveness on different host genotypes. H 551 and H 355 were the most responsive varieties.

  15. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    Science.gov (United States)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  16. Resonant influence of a longitudinal hypersonic field on the radiation from channeled electrons

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.R.; Mkrtchyan, A.H.; Khachatryan, H.F.; Prade, H.; Wagner, W.; Piestrup, M.A.

    2001-01-01

    The wave function of a planar/axially channeled electron with energy 10 MeV≤E<<1 GeV under the influence of a longitudinal hypersonic wave excited in a single crystal is calculated. Conditions for the resonant influence of the hypersonic wave on the quantum state of the channeled electron are deduced. Expressions for the wave function that are applicable in the case of resonance are obtained. Angular and spectral distributions of the radiation intensity from the planar/axially channeled electron are also calculated. The possibility of significant amplification of channeling radiation by a hypersonic wave is substantiated. It is found that the hypersound can excite inverse radiative transitions through which the transversal energy of the channeled electron is increased. These transitions have a resonant nature and can lead to a considerable intensification of the electron channeling radiation. In the case of axial channeling, the resonance radiation is sustained also by direct radiative transitions of the electron

  17. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  18. Variability Among Breast Radiation Oncologists in Delineation of the Postsurgical Lumpectomy Cavity

    International Nuclear Information System (INIS)

    Landis, Daniel M.; Luo Weixiu; Song Jun; Bellon, Jennifer R.; Punglia, Rinaa S.; Wong, Julia S.; Killoran, Joseph H.; Gelman, Rebecca; Harris, Jay R.

    2007-01-01

    Purpose: Partial breast irradiation (PBI) is becoming more widely used. Accurate determination of the surgical lumpectomy cavity volume is more critical with PBI than with whole breast radiation therapy. We examined the interobserver variability in delineation of the lumpectomy cavity among four academic radiation oncologists who specialize in the treatment of breast cancer. Methods and Materials: Thirty-four lumpectomy cavities in 33 consecutive patients were evaluated. Each physician contoured the cavity and a 1.5-cm margin was added to define the planning target volume (PTV). A cavity visualization score (CVS) was assigned (1-5). To eliminate bias, the physician of record was eliminated from the analysis in all cases. Three measures of variability of the PTV were developed: average shift of the center of mass (COM), average percent overlap between the PTV of two physicians (PVO), and standard deviation of the PTV. Results: Of variables examined, pathologic resection volume was significantly correlated with CVS, with larger volumes more easily visualized. Shift of the COM decreased and PVO increased significantly as CVS increased. For CVS 4 and 5 cases, the average COM shift was 3 mm and 2 mm, respectively, and PVO was 77% and 87%, respectively. In multiple linear regression, pathologic diameter >4 cm and CVS ≥3 were significantly associated with smaller COM shift. When CVS was omitted from analysis, PVO was significantly larger with pathologic diameter ≥5 cm, days to planning <36, and older age. Conclusions: Even among radiation oncologists who specialize in breast radiotherapy, there can be substantial differences in delineation of the postsurgical radiotherapy target volume. Large treatment margins may be prudent if the cavity is not clearly defined

  19. Influence of radiation effects on man during breakdowns at nuclear power plants

    International Nuclear Information System (INIS)

    Chernyak, S.I.; Zhilyaev, E.G.; Alferov, A.P.

    1992-01-01

    One of the most essential radiation factors during accidents at NPPs is gamma-radiation from radioactive clouds and radiation-contaminated land (RCL) what is demonstrated by the Chernobyl NPP accident. Beta-radiation from contaminated medium objects is of essential importance during some months after the accident. Internal irradiation is linked with prolonged retention of radionuclides in the body. Evaluation of the situation caused by the NPP accident is based on the analysis of affecting radiation factors and it makes it possible to plan necessary measures for limiting after effects of such influence

  20. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  1. The Influence of Independent and Intervening Variables on Adoption ...

    African Journals Online (AJOL)

    that each investigated intervening variable has influence on adoption of ... testing of the model in different social cultural settings and crops to see its ...... Mexico. Crook, T. R., Tood, S.Y., Combs, J. G., Woehr,. D. J. and Ketchen, D. J. (2011).

  2. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available of stratospheric ozone, greenhouse gasses, aerosols and sulphur dioxide, can improve the model's skill to simulate inter-annual variability over southern Africa. The paper secondly explores the role of different radiative forcings of future climate change over...

  3. Temporal variability of fish larvae assemblages: influence of natural and anthropogenic disturbances

    Directory of Open Access Journals (Sweden)

    David A. Reynalte-Tataje

    Full Text Available Natural and induced disturbances greatly influence the temporal distribution of ichthyoplankton abundance. This study assesses and compares the temporal variability of fish larvae assemblages in controlled and free environments to determine the influence of environment variables on the main taxa in these systems. The study was conducted at the Chapecó (without dam impact and Ligeiro (with dam impact river mouths, which are located in the upper Uruguay River. Samples were made between October 2001 and March 2004 during three reproductive periods. The larvae assemblages were composed of small and medium-sized Characiformes and Siluriformes. The variation in the distribution of larvae was mainly temporal (>85%. When the three reproductive periods were compared, it was observed in the second period, characterized by a larger water flow and a lower temperature, that there was a reduction in abundance, a lower number of taxa, an absence of stages in post-flexion and a high dissimilarity in larvae assemblage structure. In general, the environmental variables of water flow and temperature most influenced the distribution of egg and larvae abundance. In the studied area, a smaller temporal variability was observed in the structure of larvae assemblages at the sampling sites in the Chapecó River mouth than in in the Ligeiro River mouth under the influence of dams.

  4. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  5. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang (Division of Urology, Dept. of Surgery, National Yang-Ming Medical College and Veterans General Hospital-Taipei, Taiwan (China))

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au).

  6. Factors influencing radiation exposure during the extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Wei Chuan Chen; Ying Huei Lee; Ming Tsun Chen; Jong Khing Huang; Luke S Chang

    1991-01-01

    A prospective evaluation of 89 consecutive sessions of extracorporeal shock wave lithotripsy (ESWL) was undertaken to try and find the best way of minimising the amount of exposure to radiation. Forty-two patients were randomly allocated to undergo ESWL treatment by experienced surgeons (group A), and 47 to undergo the treatment by inexperienced surgeons (group B). The mean calculated entrance radiation exposure was 3.01 rads (group A: 2.64 (0.97) rads, range 1.00-4.48, group B: 3.38 (0.86) rads, range 1.11-5.75). Among factors that influenced radiation exposure, the tissue: air ratio should be borne in mind and the level of skill in controlling movement of gantry was the most important in reducing the exposure to radiation. (au)

  7. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  8. Medical and biological aspects of ionizing radiation influence in consequence with accident at ChNPP

    International Nuclear Information System (INIS)

    Shidlovs'ka, T.A.

    2011-01-01

    This monograph presents the issues on systematic influence of ionizing radiation on the biological systems. The results of personal complex studies because of influence of ionizing radiation in consequence with accident at ChNPP on auditory analyzer, creating voice, cardiovascular system and central nervous system are submitted.

  9. Contribution of solar radiation to decadal temperature variability over land.

    Science.gov (United States)

    Wang, Kaicun; Dickinson, Robert E

    2013-09-10

    Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

  10. Interanual variability os solar radiation in Peninsula Iberica; Variabilidad interanual de la radiacion solar en la Peninsula Iberica

    Energy Technology Data Exchange (ETDEWEB)

    Pozo-Vazquez, D.; Tovar-Pescador, J.; Gamiz-Fortis, S.; Esteban-Parra, M.; Castro-Diez, Y.

    2004-07-01

    The NAO climatic phenomenon is the main responsible for the interanual cloud cover variability in Europe. We explore the relationship between the NAO and the solar radiation spatio-temporal variability in Europe during winter. Measured monthly sums of sunshine duration and short-wave downward solar flux reanalysis data have been used. Correlation analysis between the NAO index and the measured sunshine duration shows a maximum positive value (+0.75) over the Iberian Peninsula. Accordingly, solar radiation in this area undergoes an interanual variability that can reach up to 30%, with the derived consequences for a reliable solar energy resources evaluation. (Author)

  11. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    Science.gov (United States)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  12. Discrete curved ray-tracing method for radiative transfer in an absorbing-emitting semitransparent slab with variable spatial refractive index

    International Nuclear Information System (INIS)

    Liu, L.H.

    2004-01-01

    A discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index. The curved ray trajectory is locally treated as straight line and the complicated and time-consuming computation of ray trajectory is cut down. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index

  13. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis africana and the copepod Acartia natalensis) and their temperate congenerics (M. wooldridgei and A. longipatella) was investigated over a 10-year period in the Mgazi Estuary, ...

  14. Instrumented Impact Testing: Influence of Machine Variables and Specimen Position

    International Nuclear Information System (INIS)

    Lucon, E.; McCowan, C. N.; Santoyo, R. A.

    2008-01-01

    An investigation has been conducted on the influence of impact machine variables and specimen positioning on characteristic forces and absorbed energies from instrumented Charpy tests. Brittle and ductile fracture behavior has been investigated by testing NIST reference samples of low, high and super-high energy levels. Test machine variables included tightness of foundation, anvil and striker bolts, and the position of the center of percussion with respect to the center of strike. For specimen positioning, we tested samples which had been moved away or sideways with respect to the anvils. In order to assess the influence of the various factors, we compared mean values in the reference (unaltered) and altered conditions; for machine variables, t-test analyses were also performed in order to evaluate the statistical significance of the observed differences. Our results indicate that the only circumstance which resulted in variations larger than 5 percent for both brittle and ductile specimens is when the sample is not in contact with the anvils. These findings should be taken into account in future revisions of instrumented Charpy test standards.

  15. Instrumented Impact Testing: Influence of Machine Variables and Specimen Position

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; McCowan, C. N.; Santoyo, R. A.

    2008-09-15

    An investigation has been conducted on the influence of impact machine variables and specimen positioning on characteristic forces and absorbed energies from instrumented Charpy tests. Brittle and ductile fracture behavior has been investigated by testing NIST reference samples of low, high and super-high energy levels. Test machine variables included tightness of foundation, anvil and striker bolts, and the position of the center of percussion with respect to the center of strike. For specimen positioning, we tested samples which had been moved away or sideways with respect to the anvils. In order to assess the influence of the various factors, we compared mean values in the reference (unaltered) and altered conditions; for machine variables, t-test analyses were also performed in order to evaluate the statistical significance of the observed differences. Our results indicate that the only circumstance which resulted in variations larger than 5 percent for both brittle and ductile specimens is when the sample is not in contact with the anvils. These findings should be taken into account in future revisions of instrumented Charpy test standards.

  16. Topographic variability influences the carbon sequestration potential of arable soils

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Elsgaard, Lars; Thomsen, Ingrid Kaag

    2012-01-01

    There is presently limited knowledge on the influence of field spatial variability on the carbon (C) sink-source relationships in arable landscapes. This is accompanied by the fact that our understanding of soil profile C dynamics is also limited. This study aimed at investigating how spatial...... results indicated that variability across arable landscapes makes footslope soils both a larger sink of buried soil C and a bigger potential CO2 source than upslope soils....

  17. A Survey of U.S. Atlanta and Nagano Olympians: Variables Perceived to Influence Performance.

    Science.gov (United States)

    Gould, Daniel; Greenleaf, Christy; Chung, Yongchul; Guinan, Diane

    2002-01-01

    Examined the frequency and magnitude of specific variables perceived to have affected U.S. Olympic athletes' performance. Respondents perceived that performance was influenced by: performance variables (e.g., preparation for distraction); team variables (e.g., strong cohesion); coaching variables (e.g., coaching expectations); family-friend…

  18. Factors influencing radiation-induced impairment of rat liver mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Alexander, K.C.; Aiyar, A.S.; Sreenivasan, A.

    1975-01-01

    The influence of some experimental conditions on the radiation-induced impairment of oxidative phosphorylation in rat liver mitochondria has been studied. Shielding of the liver during whole body irradiation of the animal does not significantly alter the decreased efficiency of phosphorylation. There exists a great disparity in the in vivo and in vitro radiation doses required for the manifestation of damage to liver mitochondria. While these observations point to the abscopal nature of the radiation effects, direct involvement of the adrenals has been ruled out by studies with adrenalectomised rats. Prior administration of the well known radio-protective agents, serotonin or 2-aminoethyl isothiouronium bromide hydrobromide, is effective in preventing the derangement of mitochondrial function following radioexposure. The hypocholesterolemic drug ethyl-α-p-chlorophenoxy isobutyrate, which is known to influence hepatic mitochondrial turnover, does not afford any significant protection against either mitochondrial damage or the mortality of the animals due to whole body irradiation. (author)

  19. Influence of ionizing radiation and 12-crown-4 on coagulation system components of rat blood

    International Nuclear Information System (INIS)

    Kratenko, R.Yi.

    2006-01-01

    The influence of 12-crown-4 and ionizing radiation on some components of blood coagulation system: Ca 2+ contents and prostaglandin concentrations in the blood serum, and erythrocyte contents in the blood plasma are studied. The influence of 12-crown-4 and ionizing radiation increases the coagulational properties of erythrocytes. The synergism of ionizing irradiation and 12-crown-4 influence blood coagulation process points out at the occurrence of radiomimetic properties of the latter

  20. Influence of UV-radiation on granulocytic phagocytosis in vitro

    International Nuclear Information System (INIS)

    Walther, T.; Rytter, M.; Gast, W.; Haustein, U.F.

    1987-01-01

    The influence of UV radiation on the vitality, the performance of phagocytosis and the ability to reduce nitro-blue tetrazolium test (NBT) by human granulocytes was investigated in vitro. Already by low doses of UVA (8% UVB) the percentage of phagocytizing granulocytes was decreased more distinctly than their cell vitality. The number of ingested Candida albicans particles was 4.5 particles per granulocyte in the controls. It was reduced to about 1.4 particles per cell by UV radiation independent of the dosis applied. On the other hand the ability of granulocytes to reduce NBT intracellularly remained completely unchanged. (author)

  1. Influence of thermal fluctuations on Cherenkov radiation from fluxons in dissipative Josephson systems

    DEFF Research Database (Denmark)

    Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.

    2000-01-01

    The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...

  2. Variables influencing medical student learning in the operating room.

    Science.gov (United States)

    Schwind, Cathy J; Boehler, Margaret L; Rogers, David A; Williams, Reed G; Dunnington, Gary; Folse, Roland; Markwell, Stephen J

    2004-02-01

    The operating room (OR) is an important venue where surgeons do much of medical student teaching and yet there has been little work evaluating variables that influence learning in this unique environment. We designed this study to identify variables that affected medical student learning in the OR. We developed a questionnaire based on surgery faculty observations of learning in the OR. The medical students completed the questionnaire on 114 learning episodes in the OR. Pearson correlation coefficient was used to establish the strength of association between various variables and the student's overall perception of learning. The students evaluated 27 variables that might impact their learning in the OR. Strong correlations were identified between the attending physician's attitude, interactions and teaching ability in the OR and the environment being conducive to learning. Surgical faculty behavior is a powerful determinant of student perceptions of what provides for a favorable learning environment in the OR.

  3. Analysis of solar radiation and other variables for the evaluation of locations of thermo solar power stations; Analisis de radiacion solar y otras vairables para la evaluacion de emplazamientos de centrales termosolares

    Energy Technology Data Exchange (ETDEWEB)

    Montero, I.; Miranda, M. T.; Rojas, S.; Bolinaga, B.; Tierra, C.; Pico, J. del

    2008-07-01

    This paper presents the characteristics of various measuring weather stations located in future CCP thermal plants, showing the different systems they are equipped with, among others, pyrheliometer, pyrano meter, anemometers, thermo-hygrometer and data transmission system. Some results of solar radiation and other climate variables obtained in these stations are presented and analyzed in relation to existing data in the area, taking into account different external parameters that can influence the direct radiation obtained and, therefore, the future operation of the thermal plant. (Author)

  4. Does altered fractionation influence the risk of radiation-induced optic neuropathy?

    International Nuclear Information System (INIS)

    Bhandare, Niranjan; Monroe, Alan T.; Morris, Christopher G.; Bhatti, M. Tariq; Mendenhall, William M.

    2005-01-01

    Purpose: To analyze the parameters that influence the risk of radiation-induced optic neuropathy (RION) after radiotherapy for head-and-neck tumors. Methods and Materials: Between 1964 and 2000, 273 patients with tumors of the nasopharynx, paranasal sinuses, nasal cavity, and hard palate adenoid cystic carcinomas were treated with curative intent and had radiation fields that included the optic nerves and/or chiasm. Patients were followed for at least 1 year after radiotherapy. Results: Radiation-induced optic neuropathy developed in 32 eyes of 24 patients (9%). The 5-year rates of freedom from RION according to the total dose and once- vs. twice-daily fractionation were as follows: ≤63 Gy once daily, 95%; ≤63 Gy twice daily, 98%; >63 Gy once daily, 78%; and >63 Gy twice daily, 91%. Multivariate analysis revealed that the total dose affected the risk of RION (p = 0.0047), with patient age (p = 0.0909), once-daily vs. twice-daily fractionation (p = 0.0684), and overall treatment time (p = 0.0972) were marginally significant. The use of adjuvant chemotherapy did not significantly influence the likelihood of developing RION. Conclusion: The likelihood of developing RION is primarily influenced by the total dose. Hyperfractionation may reduce the risk of experiencing this complication

  5. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  6. Influence of climate variability on large rivers runoff

    Directory of Open Access Journals (Sweden)

    B. Nurtaev

    2015-06-01

    Full Text Available In accordance with IPCC Report the influence of climate change on the water cycle will increase hydrologic variability by means of changing of precipitation patterns, melting of ice and change of runoff. Precipitation has increased in high northern latitudes and decreased in southern latitudes. This study presents an analysis of river runoffs trends in different climatic zones of the world in condition of climate change.

  7. An examination of the variables influencing the fuel retail industry

    Directory of Open Access Journals (Sweden)

    K. Sartorius

    2007-12-01

    Full Text Available Purpose/objectives: The objective of the study is to contribute to a better understanding of the key variables that influence the profitability of this sector, as well as to develop a reliable model to predict retail fuel sales volumes in an urban setting. Problem investigated: South African fuel retail outlets are confronted by a wide range of variables that constrain profit and a significant number of outlets are not profitable. In the event of further deregulation, it is conceivable that many fuel stations will go out of business. Methodology: A combination of a quantitative and a case study methodology, in conjunction with a literature review, was used to test the principal research questions. Findings/implications: The results suggest that location significantly influences urban retail fuel sales volumes whilst fuel station size and the fuel price play a lesser role. Other significant factors, however, also influence fuel station profitability. The demand for petrol appears to be relatively inelastic in the short term and more elastic over the long term. Conversely, the demand for diesel appears to be completely inelastic. Value: The article promotes a better understanding of the cost dynamics of the fuel industry. In this regard, the model constructed to predict urban fuel station turnover indicated high levels of reliability. Furthermore, few comparable studies have been published in accounting journals. Conclusion: The study concludes that urban petrol stations selling more than 370 000 liters of fuel per month are likely to be profitable and that location is a key variable influencing sales. In the event of deregulation, many operators are likely to be eliminated because of high levels of competition and low profit margins. An even greater number of fuel stations, therefore, will be reliant on non forecourt activities to survive.

  8. Influence of economical variables on a supercritical biodiesel production process

    International Nuclear Information System (INIS)

    Marchetti, J.M.

    2013-01-01

    Highlights: • Biodiesel production from supercritical process. • Economical analysis. • Influence of market variables. - Abstract: Biodiesel has becoming more and more relevant in today’s society and economy due to its environmental advantages such as biodegradability, lower CO and CO 2 emissions as well as less particulate pollutants. In this work the study of market and economic variables is presented and their effects compared when biodiesel is being produced using a supercritical technology. The production process is based on a supercritical technology with no catalyst and no co-solvent. Price for the raw materials, such as price for the alcohol as well as the oil has been studied. Also, selling price for biodiesel as well as glycerin has been analyzed and compared with prices from other biodiesel production technologies. Economic decisions such as percentage of failure in the production process, investment in research and development, and advertisement have been evaluated; also it has been considered the influence of the tax incentives on the global economy of the production process. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases

  9. Influence of environmental factors on birth weight variability of ...

    African Journals Online (AJOL)

    The present investigation was carried out to study the influence of environmental factors on the birth weight variability of two breeds of sheep. Animals used in this research were taken from the Pirot and Svrljig indigenous sheep breeds. The data were collected from 1999 to 2009 and were analyzed to determine the effect of ...

  10. Influence of radiational oxidation on the kinetics of electrization of polypropylene by electron irradiation

    International Nuclear Information System (INIS)

    Rozno, A.G.; Romanov, A.V.; Sukhov, N.L.; Gromov, V.V.; Ershov, B.G.

    1992-01-01

    Kinetics of volumetric electric charge and accumulation of paramagnetic centres (PMC) in polypropylene (PP) of two crystal modifications, subjected to radiational oxidation were studied. A correlation between volumetric charge and PMC in radiationally oxidation PP was detected. Considerable influence of crystal phase on the processes of charging and radiational oxidation was revealed

  11. The influence of radiation on bacterial cells and their proteolytic properties

    International Nuclear Information System (INIS)

    Szulc, M.; Stefaniakowa, A.; Stanczak, B.; Peconek, J.

    1980-01-01

    The suspension of bacterial cells and their spores were exposed to X rays in the environment with and without protein. The doses of radiation ranged from 1 to 100 Gy and in case of spores of B. subtilis from 50 to 1000 Gy. It was found that irradiation to Proteus vulgaris, Pseudomonas fluorescens and Ps. aeruginosa caused an inconsiderable decrease of proteolytic properties of the generation originated from irradiated bacteria. Irradiation of B. subtilis spores did not influence the proteolytic activity of bacterial cells derived from the exposed spores. The degree of wasting away of bacteria exposed to the same radiation was higher than the rate of proteolytic properties decrease. The presence of protein in the surroundings had no influence on proteolytic characteristics of new generations. (author)

  12. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland.

    Science.gov (United States)

    Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris

    2016-01-01

    Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m -2 ) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ , but both functional groups ( Nitrosomona and Nitrospira ) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic

  13. Logistic analysis on influencing factors of radiation workers' anxiety and depression in some city

    International Nuclear Information System (INIS)

    Kong Xueyuan; Liu Yulong; Zhang Bingjie; Li Yuan; Chen Xiyun; Qiu Mengyue; Bian Huahui; Chen Weibo; Wang Youyou

    2014-01-01

    Objective: To provide theoretical basis for making the psychological support scheme and to explore the radiation workers' anxiety and depression status in some communities of a city and the influence factors. Methods: A total of 424 workers from 32 units of the city were sampled and required to provide the general demographic data for self-evaluation of anxiety scale (SAS) and depression self rating scale (SDS). Personal dose data was collected. The influence factors were analyzed by use of binary logistic regression procedure. Results: The radiation workers in this city had obvious anxiety and depression mood. Both SAS and SDS scores were significantly higher compared with Chinese norm (t = 10.55, 20.17, P < 0.05). Multiple factors logistic regression showed that their gender, personal dose and training situation were the factors influencing anxiety mood(χ"2 = 47.21, P < 0.05), while their educational background, personal dose and training situation had influence on depression mood(χ"2 = 329.83, P < 0.05). Conclusions: The anxiety and depression mood of radiation workers are obviously high in comparison with the Chinese norm, and are influenced by gender and personal dose. (authors)

  14. Variable transformation of calibration equations for radiation dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi

    2005-01-01

    For radiation dosimetry, dosimetric equipment must be calibrated by using known doses. The calibration is done to determine an equation that relates the absorbed dose to a physically measurable quantity. Since the calibration equation is accompanied by unavoidable uncertainties, the doses estimated with such equations suffer from inherent uncertainties. We presented mathematical formulation of the calibration when the calibration relation is either linear or nonlinear. We also derived equations for the uncertainty of the estimated dose as a function of the uncertainties of the parameters in the equations and the measured physical quantity. We showed that a dosimeter with a linear calibration equation with zero dose-offset enables us to perform relative dosimetry without calibration data. Furthermore, a linear equation justifies useful data manipulations such as rescaling the dose and changing the dose-offset for comparing dose distributions. Considering that some dosimeters exhibit linear response with a large dose-offset or often nonlinear response, we proposed variable transformations of the measured physical quantity, namely, linear- and log-transformation methods. The proposed methods were tested with Kodak X-Omat V radiographic film and BANG (registered) polymer gel dosimeter. We demonstrated that the variable transformation methods could lead to linear equations with zero dose-offset and could reduce the uncertainty of the estimated dose

  15. Some non-scientific influences on radiation protection standards and practice

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    The influence of philosophy, politics, the media, morality, laws and economics on standards of radiation protection are discussed. While it is known that the dose-effect relationship for low-LET radiations is not linear over the whole dose range, it has been assumed to be linear in the interest of caution. This assumption has resulted in widespread controversy concerning radioprotection standards. Possible corrective actions include better communication within the scientific community and with the general public and much broader education of and dissemination of information to the public. (H.K.)

  16. Caffeine ameliorates radiation-induced skin reactions in mice but does not influence tumour radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Hebbar, S.A.; Mitra, A.K.; George, K.C.; Verma, N.C. [Radiation Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)]. E-mail: ncverma@apsara.barc.ernet.in

    2002-03-01

    Intramuscular administration of caffeine at a dose of 80 mg kg{sup -1} body weight to the gastrocnemius muscles of Swiss mice 5 min prior to local irradiation (35 Gy) of the leg delayed the progression of radiation-induced skin reactions in such animals. While 90% epilation with reddening of the skin was noted in animals treated with radiation alone, animals pretreated with caffeine suffered only partial hair loss with slight reddening of the skin on the 16th and 20th days post-irradiation. Beyond the 28th day, damage scores in irradiated feet for both the groups were similar (score 3) and remained unchanged until the 32nd day and then decreased and disappeared completely in both treatment groups by the 40th day after irradiation. In addition, the effect of caffeine on the radiation response of a mouse fibrosarcoma was investigated. Results showed that intratumoral administration of caffeine at a dose of 80 mg kg{sup -1} body weight 5 min prior to local exposure of tumours to 10 Gy of {sup 60}Co {gamma}-rays did not influence the response of tumours to radiation. The present study thus showed that although caffeine ameliorated radiation-induced skin reactions in the mouse leg, it did not affect the tumour radiation response, indicating its potential application in cancer radiotherapy. (author)

  17. Long-term variability and impact on human health of biologically active UV radiation in Moscow

    Science.gov (United States)

    Zhdanova, Ekaterina; Chubarova, Natalia

    2014-05-01

    Measurements of erythemally weighted UV irradiance (Qer) have been performed at the Meteorological Observatory of Moscow State University since 1999 with the UVB-1 YES pyranometers. These types of devices are broadband with a spectral sensitivity curve close to the action spectrum of erythema. Main uncertainties of UVB-1 YES measurements include the difference in spectral curves of the instrument and the action spectrum of erythema, as well as the deviation from the cosine law. These uncertainties were taken into account in the database of Qer measurements (Chubarova, 2008. Additional corrections of UVB-1 measurements at low ambient temperatures have been made. We analyze interannual, seasonal and diurnal Qer changes over the time period 1999-2012. In addition, the comparisons with the results of UV reconstruction model (Chubarova, 2008) are made. This model allows us to evaluate relative changes in Qer due to variations in total ozone, effective cloud amount transmission, aerosol and cloud optical thickness since 1968. It is important to note that the main reason for UV irradiance monitoring development is the strong influence of UV irradiance on the biosphere and especially on human health mainly on human skin (CIE, 1993, CIE, 2006) and eyes (Oriowo, M. et al., 2001). Based on the detailed studies we have shown the possibility of utilizing UVB-1 pyranometers for measuring the eye-damage UV radiation. Parallel measurements by the Bentham DTM-300 spectrometer and the UVB-1 YES pyranometer at the Innsbruck Medical University (Austria) have provided us the calibration factor in eye-damage units for this broadband instrument. Influence of main geophysical factors on different types of UV irradiance is estimated by means the RAF ideology (Booth, Madronich, 1994). We discuss the responses of different types of biologically active UV radiation to the impact of various atmospheric factors. The UV conditions (deficiency, optimum, excess for human) are analyzed according to

  18. Radiation and global environment. Consideration for the influence on ecosystems

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Doi, Masahiro; Yoshida, Satoshi

    2003-09-01

    This book is based on presentations at the National Institute of Radiological Sciences (NIRS) symposium of the same title held by the NIRS Research Center for Radiation Safety in December, 2002, is edited with somehow enlightening intention as well, and is composed from 6 parts of; 1. Reasons for concern for influence on ecosystems, 2. Behavior of substances in ecosystems, 3. Changes of global environments and life, 4. Various environmental stresses and living/eco-systems, 5. New development of evaluation studies on radiation effects, and 6. For the radiation protection of environments. The 1st part involves 3 chapters concerning studies on effects on ecosystems and radiation protection of environments; 2nd part, 4 chapters concerning behavior of radioactive and/or stable cesium and iodine in forest and environmental microorganisms, and behavior and effects of acidic substances; 3rd part, 2 chapters concerning terrestrial history and evolution/adaptation of livings; 4th part, 5 chapters concerning radiation stress, active oxygen, radiodurance/radio-resistant microorganisms, ultraviolet, and environmental hormones; 5th part, 6 chapters concerning effects on cells of environmental toxic substance and radiation, environmental stress evaluation by DNA micro-array, effects on taxis, use of microcosm, simulation of computational model ecosystem, and aquatic ecosystems; 6th part, 5 chapters concerning environmental radioecology, safety measures in high-level radioactive waste disposal under the ground, radiation protection of environments from radiation biology aspect, effects of chemicals, and aspect and strategy for radiation effects on environments. (N.I.)

  19. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  20. Playing up and playing down cultural identity: Introducing cultural influence and cultural variability.

    Science.gov (United States)

    Ferguson, Gail M; Nguyen, Jacqueline; Iturbide, Maria I

    2017-01-01

    Cultural variability (CV) is introduced as an overlooked dimension of cultural identity development pertaining to emphasizing and de-emphasizing the influence of a single cultural identity (i.e., cultural influence [CI]) on daily interactions and behaviors. The Cultural IDentity Influence Measure (CIDIM) is introduced as a novel measure of CI and CV, and hypothesis-driven validation is conducted in two samples along with exploration of associations between CV and well-being. A multicultural sample of 242 emerging adults participated in a daily diary study (Mage = 19.95 years, SDage = 1.40) by completing up to eight daily online surveys containing the CIDIM, criterion measures (ethnic identity, other group orientation, ethnic identity salience and daily variability in salience, social desirability), and measures of personal and interpersonal well-being. A second validation sample (n = 245) completed a 1-time survey with the CIDIM and a subset of criterion measures. Results using both samples show evidence of CI and CV and demonstrate the validity, reliability, and domain-sensitivity of the CIDIM. Further, CV made unique and positive contributions to predicting interaction quality after accounting for ethnic salience and variability in ethnic salience. An analytic approach utilizing standard deviations produced near-identical results to multilevel modeling and is recommended for parsimony. Ethnic minority and majority individuals make daily adjustments to play up and play down the influence of cultural identity on their social interactions and behaviors, and these adjustments predict interpersonal well-being. Cultural influence and cultural variability contribute to our emerging understanding of cultural identity as dynamic and agentic. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    Science.gov (United States)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  2. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain)

    International Nuclear Information System (INIS)

    Pablo-Davila, F. de; Labajo, J.L.; Tomas-Sanchez, C.

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  3. Radiation influence on heterogenous processes in stainless steel contact with sea-water

    International Nuclear Information System (INIS)

    Agayev, T.N.; Garibov, A.A.; Velibekova, G.Z.; Aliyev, A.Q.; Aliyev, S.M.

    2005-01-01

    Full text: Austenitic stainless steel (s.s.) with Cr content 16 %, Ni - 15 % is widely used in nuclear reactors as construction material, for fuel cladding production and also is used in oil and gas production and transportation. They possess comparatively large section of slow neutron capture and as a result high corrosion resistance. In real exploitation condition of nuclear reactors s.s. are exposed to ionizing radiation influence in contact of different media. That's why during their corrosion and destruction processes the surface defect formation processes and further heterogenous processes with their participation are of great importance. The research results of mechanism during radiation-heterogenous processes in nuclear reactor stainless steel contact with sea-water under the influence of γ-radiation in temperature interval 300-1074 K are represented in the given work. Radiolytic processes in water are comprehensively studied and therefore it was taken as model system for dating the surface defects and secondary electrons emitted from metal. The same model system was applied also in sea-water radiolysis processes. It's been established that radiation processes in s.s. lead to molecular hydrogen yield increase and at T=300 K up to 6.5 molec./100 eV. With the temperature increase molecular hydrogen yield increase up to 25.3 molec./100 eV at T≤773 K. During the further temperature increase up to 1073 K radiation constituent of radiation-thermal process in comparison with thermal becomes unnoticeable and W T (H 2 )≅W p (H 2 ). The kinetics of oxide phase formation of investigated sample surface in the result of thermal and radiation-thermal processes in their contact with sea-water has been studied. At that it's been shown that radiation leads to protective oxidation process rate increase and promotes the beginning of stainless steel destruction oxidation in contact with sea-water. At T≥573 K insoluble oxide phase is formed on metal surface that promotes

  4. The influence of lower leg configurations on muscle force variability.

    Science.gov (United States)

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  6. Radiation effects on flow past an impulsively started vertical plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2005-01-01

    Full Text Available An analysis is performed to study the thermal radiation effects on unsteady free convective flow over a moving vertical plate in the presence of variable temperature and uniform mass flux. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The temperature is raised linearly with time and the concentration level near the plate are raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity and skinfriction are studied for different parameters like the radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing radiation parameter.

  7. Developments in assessing carcinogenic risks from radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1984-01-01

    The papers in this volume have ranged widely over theoretical, experimental, and epidemiologic topics relating to radiation carcinogenesis. The multistage character of carcinogenesis, emphasis on the ease with which the initial event occurs in contrast to the infrequency of carcinogenic expression, the role of cell repair, and factors that may influence expression were major themes of the theoretical and experimental papers. The elegance of the cell transformation tool was illustrated in reviews of experimental work dealing with the exposure and environmental variables that influence radiation-induced transformation, among them the intracellular environment. Arguments were advanced for the view that more than one cell must be affected by radiation if a critical event is to occur. The relative congruence of carcinogens and clastogens was noted, and the suggestion made that the rules governing the induction of chromosomal aberrations by ionizing may apply to radiation carcinogenesis as well

  8. Factors influencing radiation therapy student clinical placement satisfaction

    Science.gov (United States)

    Bridge, Pete; Carmichael, Mary-Ann

    2014-01-01

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning. PMID:26229635

  9. Factors influencing radiation therapy student clinical placement satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane (Australia)

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  10. Factors influencing radiation therapy student clinical placement satisfaction

    International Nuclear Information System (INIS)

    Bridge, Pete; Carmichael, Mary-Ann

    2014-01-01

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning

  11. Influence of radiation defects on tritium release parameters from Li2O

    International Nuclear Information System (INIS)

    Grishmanov, V.; Tanaka, S.; Yoneoka, T.

    1998-01-01

    The study of the influence of radiation defects on tritium release behavior from polycrystalline Li 2 O was performed by simultaneous measurements of the luminescence emission and tritium release. It was found that the radiation defects in Li 2 O introduced by electron irradiation cause the retention of tritium. It is thought that the tritium recovery is affected by the formation of a Li-T bond, which is tolerant of high temperatures. The retardation of tritium decreases with increasing absorbed dose in the dose range from 50 to 140 MGy. The aggregation of radiation defects at high irradiation doses is considered to be responsible for the decrease of the interaction of tritium with radiation defects. The mechanism of the interaction of radiation defects with tritium is discussed. (orig.)

  12. Influence of emulsion nature on radiation response of β-carotene in an aqueous medium

    International Nuclear Information System (INIS)

    Bhushan, B.; Tobback, P.; Snauwaert, F.; Maes, E.

    1978-01-01

    The radiation response of β-carotene was followed in lipid solvents and in aqueous preparations. The nature of the solvent was found to have a marked influence on the response of β-carotene to γ-radiation. In aqueous emulsions radiation destruction of β-carotene was far less than that observed in solutions. Oil in water (O/W) emulsions of petroleum ether offered maximum protection to β-carotene against radiation damage. This observation was attributed to the multiphase nature of the emulsion since a transparent aqueous preparation was observed to offer no protection upon irradiation. Solubility of crystalline β-carotene in water was found to increase with the emulsifier concentration. Irradiation revealed that the extent of β-carotene destruction was dose dependent and increased with the solubility of β-carotene in water. In the presence of a free radical scavenger DPPH β-carotene exhibited varied radiation response depending upon the nature of solvents used. Thus, in transparent aqueous preparations the protection afforded by added DPPH to β-carotene was almost complete, while its influence was insignificant in O/W emulsions. The significance of these observations in radiation processing of foods is discussed. (author)

  13. Influence of radiative processes on the ignition of deuterium–tritium plasma containing inactive impurities

    Energy Technology Data Exchange (ETDEWEB)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Sherman, V. E. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)

    2016-08-15

    The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

  14. Influence of attrition variables on iron ore flotation

    Directory of Open Access Journals (Sweden)

    Fabiana Fonseca Fortes

    Full Text Available Abstract The presence of slimes is harmful to the flotation process: the performance and consumption of reagents are negatively affected. Traditionally, the desliming stage has been responsible for removing slimes. However, depending on the porosity of the mineral particles, desliming may not be sufficient to maximize the concentration results. An attrition process before the desliming operation can improve the removal of slime, especially when slimes cover the surface and/or are confined to the cavities/pores of the mineral particles. Attrition is present in the flowcharts of the beneficiation process of phosphate and industrial sand (silica sand. Research has been undertaken for its application to produce pre-concentrates of zircon and iron ore. However, there is still little knowledge of the influence of the attrition variables on the beneficiation process of iron ore. This study presents a factorial design and analysis of the effects of these variables on the reverse flotation of iron ore. The standard of the experimental procedures for all tests included the attrition of pulp, under the conditions of dispersion, desliming and flotation. The parameter analysed (variable response was the metallurgical recovery in reverse flotation tests. The planning and analysis of the full factorial experiment indicated that with 95% reliability, the rotation speed of the attrition cell impeller was the main variable in the attrition process of the iron ore. The percentage of solid variables in the pulp and the time of the attrition, as well as their interactions, were not indicated to be significant.

  15. Student understanding of control of variables: Deciding whether or not a variable influences the behavior of a system

    Science.gov (United States)

    Boudreaux, Andrew; Shaffer, Peter S.; Heron, Paula R. L.; McDermott, Lillian C.

    2008-02-01

    The ability of adult students to reason on the basis of the control of variables was the subject of an extended investigation. This paper describes the part of the study that focused on the reasoning required to decide whether or not a given variable influences the behavior of a system. The participants were undergraduates taking introductory Physics and K-8 teachers studying physics and physical science in inservice institutes and workshops. Although most of the students recognized the need to control variables, many had significant difficulty with the underlying reasoning. The results indicate serious shortcomings in the preparation of future scientists and in the education of a scientifically literate citizenry. There are also strong implications for the professional development of teachers, many of whom are expected to teach control of variables to young students.

  16. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  17. Exact solution of thermal radiation on vertical oscillating plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available Thermal radiation effects on unsteady flow past an infinite vertical oscillating plate in the presence of variable temperature and uniform mass flux is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with time and the mass is diffused from the plate to the fluid at an uniform rate. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, concentration and temperature are studied for different physical parameters like the phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing phase angle ωt.

  18. Influence of radiation treatment on pharmaceuticals. A study of the relevant literature

    International Nuclear Information System (INIS)

    Dahlhelm, H.; Boess, C.

    2002-01-01

    The present communication provides a quick overview of the behaviour of individual substances when treated with ionizing radiation while making reference to the respective original literature. The choosen form of an encyclopaedia enables the user to find information at a glance. It is based on parts I - XII of our review of literature on the influence of radiation treatment on pharmaceutical products and adjuvants/excipients we started in 1978. (orig.)

  19. INTERACTION OF LASER RADIATION WITH MATTER: Influence of surface breakdown on the process of drilling metals with pulsed CO2 laser radiation

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bobkov, I. V.; Bol'shov, Leonid A.; Dolgov, V. A.; Kanevskiĭ, M. F.; Malyuta, D. D.; Mezhevov, V. S.

    1988-03-01

    A report is given of the influence of low-threshold surface optical breakdown, occurring under the action of short (~ 5-μs) radiation pulses from a CO2 laser, on the process of the laser drilling of metals. Data are given on the difference between the interaction of radiation pulses having the same duration but differing in shape. A study was made of the influence of the pressure of the atmosphere surrounding a target on the results of laser drilling of metals. A theoretical explanation is given of the experimental results.

  20. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  1. Influence of tube voltage on CT attenuation, radiation dose, and image quality: phantom study

    International Nuclear Information System (INIS)

    Li Fengtan; Li Dong; Zhang Yunting

    2013-01-01

    Objective: To assess the influence of tube current and tube voltage on the CT attenuation, radiation dose, and image quality. Methods: A total of 113 saline solutions with decreasing dilution of contrast medium (370 mg I/ml) was produced. MDCT scan was performed with 15 series of different settings of tube current and tube voltage. CT attenuations with 15 series of different settings were all measured, and influence of tube current and tube voltage on CT attenuations was analyzed. CT dose index (CTDIvol) was recorded. The CT attenuations with different tube voltage and current were compared with one-way ANOVA and Kruskal-Wallis rank sum test. The correlation of CT attenuation with different tube voltage and the influence of tube voltage and current on radiation dose and image quality were tested by correlation analysis. Results: Tube current (250, 200, 150, 100, and 50 mA) had no significant effect on CT attenuation (F = 0.001, 0.008, 0.075, P > 0.05), while tube voltage (120, 100, and 80 kV) had significant effect (H = 17.906, 17.906, 13.527, 20.124, 23.563, P < 0.05). The correlation between CT attenuation and tube voltage was determined with equation: CT attenuatio N_1_0_0 _k_V = 1.561 × CT attenuatio N_1_2_0 _k_v + 4.0818, CT attenuatio N_8_0 _k_v = 1.2131 × CT attenuatio N_1_2_0 _k_v + 0.9283. The influence of tube voltage on radiation dose and image quality was also analyzed, and equations were also obtained: N_1_2_0 -k_v = -5.9771 Ln (D_1_2_0 kv) + 25.412, N_1_0_0 _k_v = -10.544 Ln (D_1_0_0 _k_v) + 36.262, N_8_0 _k_v = -25.326 Ln (D_8_0 _k_v) + 62.816. According to the results of relationship among CT attenuation, radiation dose, and image quality, lower tube voltage with higher tube current can reduce the radiation dose. Conclusions: Lower tube voltage can reduce the radiation dose. However, CT attenuation was influenced, and correction should be done with the equations. (authors)

  2. Influence of flexibility and variability of working hours on health and well-being.

    Science.gov (United States)

    Costa, Giovanni; Sartori, Samantha; Akerstedt, Torbjorn

    2006-01-01

    Flexible working hours can have several meanings and can be arranged in a number of ways to suit the worker and/or employer. Two aspects of "flexible" arrangement of working hours were considered: one more subjected to company control and decision (variability) and one more connected to individual discretion and autonomy (flexibility). The aim of the study was to analyze these two dimensions in relation to health and well-being, taking into consideration the interaction with some relevant background variables related to demographics plus working and social conditions. The dataset of the Third European Survey on working conditions, conducted in 2000 and involving 21,505 workers, was used. Nineteen health disorders and four psycho-social conditions were tested by means of multiple logistic regression analysis, in which mutually adjusted odds ratios were calculated for age, gender, marital status, number of children, occupation, mode of employment, shift work, night work, time pressure, mental and physical workload, job satisfaction, and participation in work organization. The flexibility and variability of working hours appeared inversely related to health and psycho-social well-being: the most favorable effects were associated with higher flexibility and lower variability. The analysis of the interactions with the twelve intervening variables showed that physical work, age, and flexibility are the three most important factors affecting health and well-being. Flexibility resulted as the most important factor to influence work satisfaction; the second to affect family and social commitment and the ability to do the same job when 60 years old, as well as trauma, overall fatigue, irritability, and headache; and the third to influence heart disease, stomachache, anxiety, injury, and the feeling that health being at risk because of work. Variability was the third most important factor influencing family and social commitments. Moreover, shift and night work confirmed to

  3. A knowledge on environmental radiation monitoring about the influence from Fukushima Dai-ichi Nuclear Power accident

    International Nuclear Information System (INIS)

    Yoshioka, Mitsuo; Terakawa, Kazuyoshi; Kasai, Toshihiro

    2012-01-01

    A large amount of radioactive substances were released in the atmosphere and contaminated a large area across Japan due to the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company triggered by Great East Japan Earthquake and tsunami on May 11th 2011. At Fukui University of Technology, monitoring of air radiation (gamma ray) and radiation in environmental samples in Fukui prefecture and some areas of Fukushima prefecture were conducted in order to study the influence of radiation and radioactivity on the citizens as well as the perception of this study results by the citizens. Also, in order to study the dependency of the radiation influence on the distance from the accident location, radiation monitoring of fallouts (air-borne dust, rainwater, sediment mud, and so on) was conducted. In this article, the knowledge obtained on environmental radiation monitoring was summarized and reported. Especially, slightly modified dose-level evaluation for internal exposure was reported. (S.K.)

  4. Numerical study on the influence of aluminum on infrared radiation signature of exhaust plume

    Science.gov (United States)

    Zhang, Wei; Ye, Qing-qing; Li, Shi-peng; Wang, Ning-fei

    2013-09-01

    The infrared radiation signature of exhaust plume from solid propellant rockets has been widely mentioned for its important realistic meaning. The content of aluminum powder in the propellants is a key factor that affects the infrared radiation signature of the plume. The related studies are mostly on the conical nozzles. In this paper, the influence of aluminum on the flow field of plume, temperature distribution, and the infrared radiation characteristics were numerically studied with an object of 3D quadrate nozzle. Firstly, the gas phase flow field and gas-solid multi phase flow filed of the exhaust plume were calculated using CFD method. The result indicates that the Al203 particles have significant effect on the flow field of plume. Secondly, the radiation transfer equation was solved by using a discrete coordinate method. The spectral radiation intensity from 1000-2400 cm-1 was obtained. To study the infrared radiation characteristics of exhaust plume, an exceptional quadrate nozzle was employed and much attention was paid to the influences of Al203 particles in solid propellants. The results could dedicate the design of the divert control motor in such hypervelocity interceptors or missiles, or be of certain meaning to the improvement of ingredients of solid propellants.

  5. Potential solar radiation and land cover contributions to digital climate surface modeling

    Science.gov (United States)

    Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel

    2016-04-01

    Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land

  6. Environmental Variables That Influence Patient Satisfaction: A Review of the Literature.

    Science.gov (United States)

    MacAllister, Lorissa; Zimring, Craig; Ryherd, Erica

    2016-10-01

    Patient's perception of care-referred to as patient satisfaction-is of great interest in the healthcare industry, as it becomes more directly tied to the revenue of the health system providers. The perception of care has now become important in addition to the actual health outcome of the patient. The known influencers for the patient perception of care are the patient's own characteristics as well as the quality of service received. In patient surveys, the physical environment is noted as important for being clean and quiet but is not considered a critical part of patient satisfaction or other health outcomes. Patient perception of care is currently measured as patient satisfaction, a systematic collection of perceptions of social interactions from an individual person as well as their interaction with the environment. This exploration of the literature intends to explore the rigorous, statistically tested research conducted that has a spatial predictor variable and a health or behavior outcome, with the intent to begin to further test the relationships of these variables in the future studies. This literature review uses the patient satisfaction framework of components of influence and identifies at least 10 known spatial environmental variables that have been shown to have a direct connection to the health and behavior outcome of a patient. The results show that there are certain features of the spatial layout and environmental design in hospital or work settings that influence outcomes and should be noted in the future research. © The Author(s) 2016.

  7. ABOUT INFLUENCE OF DIFFERENT SCHEMES IMPACT RADIATION ENVIRONMENTS AND LOADS ON REINFORCED LAMELLAR STRUCTURAL MEMBERS

    Directory of Open Access Journals (Sweden)

    Rafail B. Garibov

    2017-12-01

    Full Text Available The article discusses the model of deformation of fiber-reinforced concrete rectangular plate under the influence of radiation environments. In the calculation of the plate was considered different schemes impact of the applied external loads and radiation environments.

  8. Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model

    Energy Technology Data Exchange (ETDEWEB)

    Msadek, Rym; Frankignoul, Claude [Universite Pierre et Marie Curie, Paris 6, LOCEAN/IPSL, Paris (France)

    2009-07-15

    The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic-European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC. (orig.)

  9. Influence of solar radiation absorbed by phytoplankton on the thermal structure and circulation of the tropical Atlantic Ocean

    Science.gov (United States)

    Frouin, Robert; Ueyoshi, Kyozo; Kampel, Milton

    2007-09-01

    Numerical experiments conducted with an ocean general ocean circulation model reveal the potential influence of solar radiation absorbed by phytoplankton on the thermal structure and currents of the Tropical Atlantic Ocean. In the model, solar radiation penetration is parameterized explicitly as a function of chlorophyll-a concentration, the major variable affecting water turbidity in the open ocean. Two types of runs are performed, a clear water (control) run with a constant minimum chlorophyll-a concentration of 0.02 mgm -3, and a turbid water (chlorophyll) run with space- and time-varying chlorophyll-a concentration from satellite data. The difference between results from the two runs yields the biological effects. In the chlorophyll run, nutrients and biology production are implicitly taken into account, even though biogeochemical processes are not explicitly included, since phytoplankton distribution, prescribed from observations, is the result of those processes. Due to phytoplankton-radiation forcing, the surface temperature is higher by 1-2 K on average annually in the region of the North Equatorial current, the Northern part of the South Equatorial current, and the Caribbean system, and by 3-4 K in the region of the Guinea current. In this region, upwelling is reduced, and heat trapped in the surface layers by phytoplankton is not easily removed. The surface temperature is lower by 1 K in the Northern region of the Benguela current, due to increased upwelling. At depth, the equatorial Atlantic is generally cooler, as well as the eastern part of the tropical basin (excluding the region of the sub-tropical gyres). The North and South equatorial currents, as well as the Equatorial undercurrent, are enhanced by as much as 3-4 cms -1, and the circulation of the subtropical gyres is increased. Pole-ward heat transport is slightly reduced North of 35°N, suggesting that phytoplankton, by increasing the horizontal return flow in the subtropical region, may exert a

  10. Variability in urban soils influences the health and growth of native tree seedlings

    Science.gov (United States)

    Clara C. Pregitzer; Nancy F. Sonti; Richard A. Hallett

    2016-01-01

    Reforesting degraded urban landscapes is important due to the many benefits urban forests provide. Urban soils are highly variable, yet little is known about how this variability in urban soils influences tree seedling performance and survival. We conducted a greenhouse study to assess health, growth, and survival of four native tree species growing in native glacial...

  11. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    Science.gov (United States)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  12. Radiation dosimetry and its influencing factors for the multi-detector/slice spiral CT

    International Nuclear Information System (INIS)

    Bai Mei; Zheng Junzheng

    2008-01-01

    The Multi-Detector/Slice Spiral Computed Tomography (MDCT/MSCT)reflects the new progress in equipment and technology for radiology. Its popularized application demonstrates its advantages for clinical diagnosis. With the continuous development and growing uses of the MDCT/MSCT, the medical exposure of the patients and public has also been increasing. Therefore, assessment of the radiation dose and radiation risk from X-CT has become an increasingly important concern that should be addressed. Thus, this paper summarizes the main characteristics of the MDCT/MSCT emphasizing particularly on the radiation dosimetry, and reviews the expressions and measures of radiation dose in the MDCT/MSCT. In addition, main factors that influence radiation dose from the MDCT/MSCT are also discussed. A proper grasp of its radiation dosimetry and assessment method can significantly help radiologists, health physicists, medical physicists, X-CT engineers and manufacturers improve the management of radiation dose while optimizing the image quality in the MDCT/MSCT. (authors)

  13. Environmental variables influencing the expression of morphological characteristics in clones of the forage cactus

    Directory of Open Access Journals (Sweden)

    Marcela Lúcia Barbosa

    Full Text Available ABSTRACT The environmental factors that affect the morphological characteristics of different genera of cacti are little known. The aim of this study therefore was to analyse the contribution of environmental variables to growth in cladodes and plant of forage cactus clones of the genera Nopalea and Opuntia. The data used in this study were obtained from an experiment conducted in Serra Talhada, Pernambuco, Brazil, between 2012 and 2013, where the clones 'IPA Sertânia' (Nopalea, 'Miúda' (Nopalea and 'Orelha de Elefante Mexicana' (Opuntia were submitted to different irrigation depths (2.5, 5.0 and 7.5 mm and fixed irrigation intervals (7, 14 and 28 days. Morphological characteristics of the cladodes and plants and weather variables were obtained over time. Pearson's correlation, followed by multicollinearity, canonical and path analysis were applied. The minimum temperature, maximum and minimum relative humidity, wind speed and solar radiation were the variables that most affected growth in the cactus. The genus Opuntia showed less sensitivity to variations in air temperature compared to the genus Nopalea. The higher intensities of global solar radiation affected clones of the genus Nopalea more than the genus Opuntia. It can be concluded that there are different environmental requirements between forage cacti of the genera Nopalea and Opuntia.

  14. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    Science.gov (United States)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  15. Study of the influence of ionizing radiation on biometrical parameters of eggplantand tomato at different doses

    International Nuclear Information System (INIS)

    Guliyeva, L.M.; Eminova, N.M.; Jafarov, E.S.; Babayev, G.G.

    2014-01-01

    Full text : The problem of influence of low-dose of ionizing radiation on plants for a long time attracted attention of researchers. Increasing interest in this issue is caused by many circumstances, especially by global radiation contamination of environment. By this time in radiobiology it has been gained great data about the negative effects of ionizing radiation on plants. It is well known that at the time of germination seed is very susceptible to a variety of physical and chemical agents which are capable of impacting their development. It is appropriate to conduct studies reflecting changes in biometrical parameters of agricultural plants importance for Azerbaijan. It was seen that radiation influence increases the productivity of the plants, the size of the stems, fruits, and the color more saturated

  16. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  17. Influence of radiation on tar fraction of the bituminous oil

    International Nuclear Information System (INIS)

    Mustafayev, I.I.; Guliyeva, N.G.; Ibadov, N.E.; Melikova, S.Z.

    2014-01-01

    Full text : The chromato-masspectrometric and IR-spectrometric copic studies of bituminous oil samples irradiated in air and in vacuum are conducted. In the IR spectra of the gamma-irradiated samples, the optical density of some groups has been determined. It can be assumed that as a result of irradiation of the samples both in air and in vacuum, occurs a decrease of optical density both in aliphatic groups and the double bonds. The 27 individual components of initial and irradiated bituminous oil samples identified by mass-spectrometry. The high radiation stability of bituminous oils allows the use of it as a raw material for water proofing material, applied in terms of radiation influence

  18. Possibility of use of plant test systems for estimation of degree risk at radiation influence

    International Nuclear Information System (INIS)

    Gogebashvili, M.E; Ivanishvili, N.I.

    2011-01-01

    Full tex:Now one of the major problems of radiobiology is studying of degree risks at influence of small doses of an ionizing radiation. It is known, that not tumoral forms of the remote pathology are not stochastic, threshold, reactions of an organism to beam influence, frequency and weight depend on a dose, while carcinogenic and genetic effects (stochastic reactions) - frequency raises with dose increase. Last years the general hypothesis for definition of the raised risk in the irradiated populations, based on the theoretical analysis of extensive researches of various biological objects and epidemiological data, assumes existence of difficult parities between a dose of an irradiation and frequency of investigated effect. In this aspect the special importance is got by biological models with which help reception of quantitative parameters of influence of modifying factors for creation of more exact systems of monitoring of the remote radiobiological effects is possible.One of such systems is reciprocal grows reaction of stamen threads of plant tradescantia. At the heart of action of the given biomodel that growth tradescantia threads occurs from one initial cell is, and level of its radiating damage is shown in number of the subsequent cellular generation during the postradiating period. For an estimation of adequacy of the given model we had been chose two kinds tradescantia - Tradescantia virginiana L. and Tradescantia rosea Vent.In work two basic criteria of an estimation of radiating damage - quantity of viable pollen threads and quantity of viable cells in each of threads have been used. The received results have shown strict correlation of reciprocal postradiating effects between used variants.It is known, that at studying of influence of damaging factors of environment, including radiating, on live organisms the concept r iskcharacterizes degree of danger of influence expressed in quantity indicators. Thus, in most general case this includes probability

  19. Radiative mixed convection over an isothermal cone embedded in a porous medium with variable permeability

    KAUST Repository

    El-Amin, Mohamed; Ebrahiem, N.A.; Salama, Amgad; Sun, S.

    2011-01-01

    The interaction of mixed convection with thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approximation incorporating the variation of permeability and thermal conductivity is numerically investigated. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter , the cone angle parameter ?, the radiation-conduction parameter R d, and the surface temperature parameter H. Copyright 2011 M. F. El-Amin et al.

  20. Influence of MR imaging in radiation therapy of chest lymphoma

    International Nuclear Information System (INIS)

    Carlsen, S.E.; Hoppe, R.; Bergin, C.J.

    1991-01-01

    This paper evaluates the influence of MR detection of additional sites of chest lymphoma on radiation therapy. Chest MR images and CT scans of 56 patients with new or recurrent mediastinal lymphoma obtained within 1 month of each other were retrospectively reviewed. MR images included T1- and T2-weighted SE and STIR sequences. Images were assessed for pleural and extrapleural disease. Radiation portals of patients with pleural or chest wall disease were reevaluated and compared with portals originally designed with CT. MR imaging demonstrated chest wall disease in 15 patients (21 sites). Ten patients also had pleural disease (13 sites). CT identified chest wall disease in four of these patients (five sites) and pleural disease in three patients (five sites). Seven of the 15 patients with chest wall disease were treated with radiation therapy alone. Two of the seven patients had significant modification of radiation portals based on MR findings. Retrospectively, therapy would have been altered in an additional two patients in whom pleural disease was identified at MR. The increased sensitivity of MR in detecting chest wall or pleural disease has important implications for treatment planning in chest wall lymphoma

  1. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N Y [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N A [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I V; Bushnev, S V; Kondranin, T V [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V U [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1996-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  2. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  3. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Science.gov (United States)

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  4. Variables Influencing Stimulus Overselectivity and "Tunnel Vision" in Developmentally Delayed Children.

    Science.gov (United States)

    Rincover, Arnold; Ducharme, Joseph M.

    1987-01-01

    Three variables (diagnosis, location of cues, and mental age of learners) influencing stimulus control and stimulus overselectivity were assessed with eight autistic children (mean age 12 years) and eight average children matched for mean age. Among results were that autistic subjects tended to respond overselectively only in the extra-stimulus…

  5. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  6. Radiation-induced life shortening. Annex K

    International Nuclear Information System (INIS)

    1982-01-01

    The purpose of this Annex is to review the cumulative evidence in the field of non-neoplastic long-term effects of whole-body irradiation. In particular, the existence and extent of life-span shortening in irradiated animals and man, and the relationships of life shortening to the physical and biological variables which may influence this effect of radiation are examined.

  7. Gamma radiation influence on technological characteristics of wheat flour

    Science.gov (United States)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  8. The influence of talker and foreign-accent variability on spoken word identification.

    Science.gov (United States)

    Bent, Tessa; Holt, Rachael Frush

    2013-03-01

    In spoken word identification and memory tasks, stimulus variability from numerous sources impairs performance. In the current study, the influence of foreign-accent variability on spoken word identification was evaluated in two experiments. Experiment 1 used a between-subjects design to test word identification in noise in single-talker and two multiple-talker conditions: multiple talkers with the same accent and multiple talkers with different accents. Identification performance was highest in the single-talker condition, but there was no difference between the single-accent and multiple-accent conditions. Experiment 2 further explored word recognition for multiple talkers in single-accent versus multiple-accent conditions using a mixed design. A detriment to word recognition was observed in the multiple-accent condition compared to the single-accent condition, but the effect differed across the language backgrounds tested. These results demonstrate that the processing of foreign-accent variation may influence word recognition in ways similar to other sources of variability (e.g., speaking rate or style) in that the inclusion of multiple foreign accents can result in a small but significant performance decrement beyond the multiple-talker effect.

  9. PHYSICAL DESIGN OF CHANGE OF POWER INFLUENCE IS ON WORKPLACES TAKING INTO ACCOUNT HIGH TEMPERATURE RADIATION

    Directory of Open Access Journals (Sweden)

    BELIKOV A. S.

    2017-04-01

    Full Text Available Purpose. Development of the degree of control methods for hazard exposure of workers to special divisions of large-scale emergencies and industrial accidents under the influence of excess heat radiation. The operational security solutions vital activity of special divisions of workers in extreme situations with high thermal radiation. Method. Construction of thermal fields and the establishment of dependencies change of infrared radiation on the location of jobs, the type of radiation source and the spectrum of the radiation sources. Results. In order to solve the problems of thermal protection of work places, actual data of measurement of thermal radiation at all workplaces is required. Such studies, for example, at an open window of a thermal furnace at a distance of 1.5-2 m are obviously dangerous and, most importantly, the reliability of the data is reduced because of the decrease in the productivity of measurements in extreme conditions of work. In order to determine the intensity of irradiation of the heat flow, it is necessary to perform a significant number of intermediate calculations or use several graphs or nomograms, which makes these calculations labor-intensive and not convenient for practical use. An attempt was made to summarize the results of research carried out in this direction, to improve working conditions, to significantly reduce the number of variables and to use existing instruments more efficiently during measurements. Based on the theoretical studies of thermal radiation at workplaces, it was established that with great accuracy it is possible to determine the distance to the source of thermal radiation from the point of measurement, the angle at which the source of thermal radiation is visible; in this case, the measurement point may be located at a distance safe for the researcher as we put the basis for the development of an experimental installation for the study of thermal radiation at workplaces. Scientific

  10. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  11. Influence of γ-ray radiation on the electrical properties of CuGaSe2

    International Nuclear Information System (INIS)

    Gasimov, I.K.; Kerimova, T.G.; Mamedova, I.A.

    2002-01-01

    The ternary A 1 B 3 C 3 6 compounds are perspective materials for creation on their base the high effective transformers of solar energy, photodetectors with the high efficiency. In this paper the results of the investigation of the short-circuit current dependence on the wavelength and influence of the γ-ray radiation on the electrical properties of the p-type CuGaSe 2 crystals have been reported. The (Co 60 ) with the quantum energy of 1.25 MeV was used as a g amma - ray source. The CnGaSe 2 crystals were obtained by the chemical transport reactions. Iodine crystalline was used as a transporter. The lattice parameters were determined by the X-ray method as a=5.607 Angstroms, c=10.99 Angstroms, c/a=l.96. The In-Ga eutectic contacts were put on the nature surfaces of the films for the earring out the measurements. The films with the ρ=10 2 -10 7 Ω·cm resistivity were investigated. The films one can divide into two group: low resistance ρ=10 2 -10 3 Ω·cm and high resistance ρ=10 5 -10 7 Ω·cm films. The inverse of the current is observed in the I ns ∼f(λ) short-circuit current dependence with the wavelength in the low resistance films. The inverse is not observed in the high resistance ones. The measurement of the resistivity of the CuGaSe 2 films radiated by γ-ray radiation were carried out at 77 K. The resistivity of the low-resistance films under the radiation up to 50 p/s changes slowly, then increases sharply and achieves the value ρ=10 6 Ω·cm. Beginning from 300 p/s the resistivity decreases. Further increasing of the power doesn't influence on the resistivity. The resistivity of the high resistance films decreases up to 10 6 Ω·cm at 100 p/s with the increasing of the dose of γ-ray radiation and then doesn't change with the radiation dose. The investigation of the temperature dependence of the resistivity in the low resistance films previously radiated under the γ-ray radiation showed that increasing of the γ-ray radiation doesn't almost

  12. Quantitative analysis of composition, structure and features of hemoglobin under the influence of radiation in vivo

    International Nuclear Information System (INIS)

    Kurbanov, F.F.; Mamedov, T.G.; Abdullaev, Kh.D.; Akhmedov, N.A.; Manojlov, S.K.

    1995-01-01

    The literature data on the changes in composition, structure and properties of hemoglobin under the influence of ionizing radiation in vivo are reviewed. The algorithm of calculation of damaged hemoglobin molecule percentage is proposed. Four main realizations of radiation-chemical damage are considered. By the algorithm the estimation of the damaged molecules percentage resulted from the exposure to 10 Gy is given. Hemoglobin radiation damage is considered as one of the most important mechanisms triggering radiation sickness. 11 refs

  13. Studies of the Solar Radiations' Influence About Geomembranes Used in Ecological Landfill

    Science.gov (United States)

    Vasiluta, Petre; Cofaru, Ileana Ioana; Cofaru, Nicolae Florin; Popa, Dragos Laurentiu

    2017-12-01

    The study shown in this paper presents the behavior of geomembranes used at the ecological landfills. The influences of the solar radiations has a great importance regarding the correct mounting of the geomembranes. The mathematical model developed for the determination anytime and anywhere in the world for the next values and parameters: apparent solar time, solar declination, solar altitude, solar azimuth and incidence angle, zone angle, angle of sun elevation, solar declination, solar constant, solar flux density, diffuse solar radiation, global radiation, soil albedo, total radiant flux density and relational links of these values. The results of this model was used for creations an AutoCAD subroutines useful for choosing the correct time for correct mounting anywhere of the geomembranes

  14. On the influence of ultraviolet radiation on spontaneous tumors in NMRI mice

    International Nuclear Information System (INIS)

    Koenigsmann, G.; Kinkel, H.J.; Bocionek, P.; Wolff, F.

    1981-01-01

    During a period of 12 and 15 months respectively, female NMRI mice were irradiated twelve hours per day with specific parts of the ultraviolet spectrum (three groups, each comprising 100 animals: non-irradiated control group, animals irradiated with B units, animals irradiated with A/B units). No considerable influence of the chronic exposure to ultraviolet radiation could be demonstrated with regard to the development of the body weight and the hematologic condition. Group B had the same rate of spontaneous tumors of the respiratory tract as the control group; this rate was higher in group A/B. As to the development of spontaneous tumors in the lymphatic tissues, there seems to be a dependence on radiation: the animals of group B presented a slightly higher, those of group A/B a higher development than the animals of the nonirradiated control group. It cannot be definitely clarified yet to what extent this increased tumor rate was additionally induced by the higher environmental temperature or other influences involved by experiment. Harding-Passey melanomas were inoculated in NMRI mice and, 48 hours later, they were exposed to defined emission spectra within the natural ultraviolet spectrum. The exposed animals showed a slower growth of the transplanted tumors than the non-exposed animals, and especially the animals exposed to UVB radiation had a longer survival time. This chronic irradiation test was carried out in order to examine the influence of defined emission spectra on autochthonous tumors in NMRI mice and on their spontaneous tumor rate and blood count. (orig.) [de

  15. Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes

    Science.gov (United States)

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2014-01-01

    We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.

  16. Factors influencing perception of radiation risk in people around Chernobyl. Survey in Ukraine

    International Nuclear Information System (INIS)

    Shibata, Yoshisada

    2010-01-01

    To elucidate the factors influencing perception of radiation risk in people around Chernobyl, we conducted a survey in Ukraine using self-administered questionnaire consisting of 37 questions including 5 questions about radiation contamination of their living places and foodstuffs, and 9 questions about radiation and risk. The subjects were high school or university students and their parents living in Zhytomyr, Rivne, Kirovograd and Odesa regions, and Slavutych city. In each of these 5 survey areas, we distributed 330 questionnaires to students and their parents, respectively. A total of 1,536 students (93%) responded to the questionnaire, while in parents only 861 (52%) responded. In students, a significant difference by place of residence was observed in the frequency of those regarding radiation accident or radon in dwellings being highly dangerous. (author)

  17. Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5

    Energy Technology Data Exchange (ETDEWEB)

    Kooperman, G. J.; Pritchard, M. S.; Ghan, Steven J.; Wang, Minghuai; Somerville, Richard C.; Russell, Lynn

    2012-12-11

    Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e. multi-scale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.54 ± 0.02 W/m2 and -1.63 ± 0.17 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world’s area in which a statistically significant aerosol indirect effect can be detected (68% and 25% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean aerosol indirect radiative forcing estimates of -0.80 W/m2 and -0.56 W/m2, respectively. The one-year nudged results compare well with previous estimates from three-year free-running simulations (-0.77 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional parameterizations.

  18. Chironomus in the investigation of the genetic influence of radiation

    International Nuclear Information System (INIS)

    Tarasyuk, A.N.; Kovalevich, N.F.

    2000-01-01

    The influence of γ-radiation in different doses on the structure and functional activity of polytene chromosomes of chironomus has been explored. There have been shown the increase of frequency and change of spectrum of chromosome aberrations, the induction of puffs formation. The description of the revealed chromosome aberrations is given. Possible reasons and mechanisms of the observable effects and the further research program are being discussed. (authors)

  19. Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket

    Science.gov (United States)

    Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.

    2012-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.

  20. Plasma radiation dynamics with the upgraded Absolute Extreme Ultraviolet tomographical system in the Tokamak à Configuration Variable

    Energy Technology Data Exchange (ETDEWEB)

    Tal, B.; Nagy, D.; Veres, G. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Association EURATOM, P. O. Box 49, H-1525 Budapest (Hungary); Labit, B.; Chavan, R.; Duval, B. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, EPFL SB CRPP, Station 13, CH-1015 Lausanne (Switzerland)

    2013-12-15

    We introduce an upgraded version of a tomographical system which is built up from Absolute Extreme Ultraviolet-type (AXUV) detectors and has been installed on the Tokamak à Configuration Variable (TCV). The system is suitable for the investigation of fast radiative processes usually observed in magnetically confined high-temperature plasmas. The upgrade consists in the detector protection by movable shutters, some modifications to correct original design errors and the improvement in the data evaluation techniques. The short-term sensitivity degradation of the detectors, which is caused by the plasma radiation itself, has been monitored and found to be severe. The results provided by the system are consistent with the measurements obtained with the usual plasma radiation diagnostics installed on TCV. Additionally, the coupling between core plasma radiation and plasma-wall interaction is revealed. This was impossible with other available diagnostics on TCV.

  1. 18-year variability of ultraviolet radiation penetration in the mid-latitude coastal waters of the western boundary Pacific

    Science.gov (United States)

    Kuwahara, Victor S.; Nozaki, Sena; Nakano, Junji; Toda, Tatsuki; Kikuchi, Tomohiko; Taguchi, Satoru

    2015-07-01

    The 18-year time-series shows in situ ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) diffuse attenuation coefficient Kd(λ) have recurrent seasonal variability of high/low attenuation during summer/winter months, respectively, dependent on variability in water column stratification and concentrations of bio-optical properties. The mid-latitude coastal survey station displayed significant seasonality of the mixed layer depth (MLD) between 12 and 82 m which modified the distribution of chlorophyll a (4.6-24.9 mg m-2) and absorption of colored dissolved organic matter [aCDOM(320 nm) 0.043-1.34 m-1]. The median Kd(320 nm) displayed significant seasonality at 0.19-0.74 m-1 (C.V. = 44.1%) and seasonal variability within the euphotic layer [Z10%(320 nm) = 7-20%]. High attenuation of UVR with relatively moderate attenuation of PAR was consistently observed during the summer months when increased concentrations of terrestrially derived CDOM coupled with a shallow MLD were present. The winter season showed the opposite of low UVR and PAR attenuation due to a relatively deeper MLD coupled with low concentrations of bio-optical properties. Although the long term Kd(λ) did not vary significantly during the time-series, analysis of the interannual variability suggests there are positive and negative phases following the Pacific Decadal Oscillation (PDO) vis-a-vis variability in bio-optical properties (p < 0.001).

  2. The influence of Seychelles Dome on the large scale Tropical Variability

    Science.gov (United States)

    Manola, Iris; Selten, Frank; Hazeleger, Wilco

    2013-04-01

    The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A

  3. How radiation influences atherosclerotic plaque development. A biophysical approach in ApoE{sup -/-} mice

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Astrid; Dillen, Teun van; Dekkers, Fieke [National Institute for Public Health and the Environment (RIVM), Centre for Environmental Safety and Security, Bilthoven (Netherlands); Bijwaard, Harmen [National Institute for Public Health and the Environment (RIVM), Centre for Environmental Safety and Security, Bilthoven (Netherlands); Inholland University of Applied Sciences, Medical Technology Research Group, Haarlem (Netherlands); Heeneman, Sylvia [Maastricht University Medical Center, Experimental Vascular Pathology group, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Hoving, Saske; Stewart, Fiona A. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Biological Stress Response (H3), Amsterdam (Netherlands)

    2017-11-15

    Atherosclerosis is the development of lipid-laden plaques in arteries and is nowadays considered as an inflammatory disease. It has been shown that high doses of ionizing radiation, as used in radiotherapy, can increase the risk of development or progression of atherosclerosis. To elucidate the effects of radiation on atherosclerosis, we propose a mathematical model to describe radiation-promoted plaque development. This model distinguishes itself from other models by combining plaque initiation and plaque growth, and by incorporating information from biological experiments. It is based on two consecutive processes: a probabilistic dose-dependent plaque initiation process, followed by deterministic plaque growth. As a proof of principle, experimental plaque size data from carotid arteries from irradiated ApoE{sup -/-} mice was used to illustrate how this model can provide insight into the underlying biological processes. This analysis supports the promoting role for radiation in plaque initiation, but the model can easily be extended to include dose-related effects on plaque growth if available experimental data would point in that direction. Moreover, the model could assist in designing future biological experiments on this research topic. Additional biological data such as plaque size data from chronically-irradiated mice or experimental data sets with a larger variety in biological parameters can help to further unravel the influence of radiation on plaque development. To the authors' knowledge, this is the first biophysical model that combines probabilistic and mechanistic modeling which uses experimental data to investigate the influence of radiation on plaque development. (orig.)

  4. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.

    Science.gov (United States)

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.

  5. The influence of optic radiation on the state of the system of homeostasis in patients with breast cancer during radiation therapy

    International Nuclear Information System (INIS)

    Syimonova, L.Yi.; Byilogurova, L.V.; Gertman, V.Z.; Kulyinyich, G.V.; Pushkar, S.M.

    2011-01-01

    The influence of phototherapy with red and blue light as well as their combination on the state of homeostasis in patients with breast cancer was investigated during the course of postoperative radiation therapy. It was established that phototherapy possessed multisystemic effect and positively influenced the state of homeostasis system with all schemes of optic treatment. The most pronounced was the effect of blue light as well as its combination with red.

  6. Estimating risks of radiotherapy complications as part of informed consent: the high degree of variability between radiation oncologists may be related to experience

    International Nuclear Information System (INIS)

    Shakespeare, Thomas Philip; Dwyer, Mary; Mukherjee, Rahul; Yeghiaian-Alvandi, Roland; Gebski, Val

    2002-01-01

    Purpose: Estimating the risks of radiotherapy (RT) toxicity is important for informed consent; however, the consistency in estimates has not been studied. This study aimed to explore the variability and factors affecting risk estimates (REs). Methods and Materials: A survey was mailed to Australian radiation oncologists, who were asked to estimate risks of RT complications given 49 clinical scenarios. The REs were assessed for association with oncologist experience, subspecialization, and private practice. Results: The REs were extremely variable, with a 50-fold median variability. The least variability (sevenfold) was for estimates of late, small intestinal perforation/obstruction after a one-third volume received 50 Gy with concurrent 5-fluorouracil (RE range 5-35%). The variation between the smallest and largest REs in 17 scenarios was ≥100-fold. The years of experience was significantly associated with REs of soft/connective-tissue toxicity (p=0.01) but inversely associated with estimates of neurologic/central nervous system toxicity (p=0.08). Ninety-six percent of respondents believed REs were important to RT practice; only 24% rated evidence to support their estimates as good. Sixty-seven percent believed national/international groups should pursue the issue further. Conclusion: Enormous variability exists in REs for normal tissue complications due to RT that is influenced by the years of experience. Risk estimation is perceived as an important issue without a good evidence base. Additional studies are strongly recommended

  7. Interannual Variability in Dust Deposition, Radiative Forcing, and Snowmelt Rates in the Colorado River Basin

    Science.gov (United States)

    Skiles, M.; Painter, T. H.; Deems, J. S.; Barrett, A. P.

    2011-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. Here we present the impacts of dust deposition onto alpine snow cover using a 7-year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. We assess the radiative and hydrologic impacts with a two-layer point snow energy balance snowmelt model that calculates snowmelt and predicts point runoff using measured inputs of energy exchanges and snow properties. By removing the radiative forcing due to dust, we can determine snowmelt under observed dusty and modeled clean conditions. Additionally, we model the relative response of melt rates to simulated increases in air temperature. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. The greatest dust radiative impact occurred in 2009, when the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover and snow cover duration was shortened by 50 days. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature in terms of acceleration of snowmelt. We have completed the same analysis over a 2-year energy balance record at the Grand Mesa Study plot (GMSP) in west central Colorado, 150 km north of SBBSA. This new location allows us to assess site variability. For example, at SBBSA 2010 and 2011 were the second and third highest dust deposition years, respectively, but 2010 was a larger year with 3

  8. Variables Influencing Credit Card Balances of Students at a Midwestern University

    Science.gov (United States)

    Mattson, Lucretia; Sahlhoff, Kathleen; Blackstone, Judith; Peden, Blaine; Nahm, Abraham Y.

    2004-01-01

    This research used a Web-based survey of students at a Midwest regional university to measure the extent of credit card use by first-year students and seniors. The results indicate that the variables influencing credit card use and the carrying of a balance from one month to the next include the number of cards held by the student, the student's…

  9. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  10. Variability of the ocean heat content during the last millennium – an assessment with the ECHO-g Model

    Directory of Open Access Journals (Sweden)

    P. Ortega

    2013-03-01

    Full Text Available Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e.g. North Atlantic Oscillation. The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC that can later impact low frequency SST (sea surface temperature variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G atmosphere–ocean general circulation model (AOGCM. When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Niño Southern Oscillation variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO and the Atlantic Multidecadal Oscillation (AMO modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on

  11. INFLUENCE OF THE ORTHOGONALLY POLARIZED BACK REFLECTIONS ON THE POWER AND RADIATION SPECTRUM OF SUPERLUMINESCENT DIODES

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-01-01

    Full Text Available We have investigated the back reflections influence on the spectrum for optical radiation source of superluminescent diode type and have provided optimal operating conditions of the radiation source. The feature of the research method is the usage of a fiber polarization controller and an optical mirror coated on the end of an optical fiber. The studies were conducted with two sources of optical radiation: ThorLabs superluminescent diode series S5FC1005SXL and LED module ELED-1550-1-E-9-SM1-FA-CW. It was revealed that at the value of back reflections equal to -13 dB relative to the output power source, a negative impact on power and spectral characteristics of the source with an optical power of 2.3 µW is beginning to appear. It was also confirmed that at the increase of the radiation power by increasing the source pumping current, back reflection influence is exhibiting at a lower level of back reflections. The results obtained need to be considered when designing fiber optic sensors in order to eliminate the effect of back reflections on the sources of optical radiation having been studied in this paper.

  12. How gender, age, and geography influence the utilization of radiation therapy in the management of malignant melanoma

    International Nuclear Information System (INIS)

    French, John; McGahan, Colleen; Duncan, Graeme; Lengoc, Sonca; Soo, Jenny; Cannon, Jerry

    2006-01-01

    Purpose: Comparing radiation therapy utilization rates (RTUR) to those predicted by best evidence is a useful measure of the equity and accessibility of service delivery. In this study the RTUR for melanoma was established for British Columbia, Canada, and compared with the rate suggested by the evidence. Demographic variables, specifically age, gender, and geography that influenced the RTUR were examined with a view to identifying methods of improving underutilization. Methods and Materials: The RTUR in the management of malignant melanoma was taken from British Columbia Cancer registry data for 1986 to 1998. Variations in utilization based on age, gender, health authority, stage of disease, and referral patterns were analyzed. Results: An RTUR of 11% was identified. This was consistent over time. Referral rates decreased between 1986 and 1998. RT is used mostly for later stage disease. Males were more likely to receive RT than females, related to later stage of disease in men. Referral rates decreased, but RTUR for referred cases increased, in health authorities that did not have a cancer center. Conclusions: Use of RT is influenced by age and by stage of disease. Overall RTUR in British Columbia is lower than suggested by best evidence. Referral patterns are influenced by geography. RTUR was higher in males, consistent with a different pattern of disease in males compared with females

  13. Corn seed response to gamma radiation as a function of water content

    International Nuclear Information System (INIS)

    Viccini, Lyderson Facio; Saraiva, Luiz Sergio; Cruz, Cosme Damiao

    1997-01-01

    The study of the factors that affect the radiation efficiency is important, because it makes easier to get mutants that may be used as source of variability on improvement programs or as structural chromosomic aberrations for cytogenetics studies. The main of this research was to investigate the influence of corn seed water content on gamma radiation response. As a rule, the damage caused by irradiation was more evident on seeds with higher water content. Also, increased damages were observed with higher radiation doses. (author)

  14. Influence of variable oxygen concentration on the response of cells to heat or x irradiation

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Richards, B.; Jennings, M.

    1981-01-01

    The influence of oxygen concentration on the lethal response of cells exposed to 43 0 C hyperthermia was determined and compared to the response of cells exposed to radiation under equivalent culturing and environmental conditions. Chinese hamster ovary (CHO) cells were heated or irradiated 0.5 h after induction of hypoxia and then reoxygenated following treatment. The oxygen enhancement ratio (OER) for heat or radiation was determined at the 1% survival level from least-squares fit of survival curves. A maximum OER of 3.1 +- 0.2 was observed in the 20 to 95% oxygen concentration range. The OER for heat, however, was 1.0 +- 0.1 irrespective of the gas-phase oxygen concentration. These results show that the lethal effects of heat are not influenced by the oxygen concentration at the time of treatment in CHO cells exposed to 43 0 C hyperthermia

  15. Influence of variables on the consolidation and unconfined compressive strength of crushed salt: Technical report

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Senseny, P.E.; Mellegard, K.D.

    1987-01-01

    Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 25 0 C and 100 0 C; time, 3.5 x 10 3 s and 950 x 10 3 s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85% relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1 x 10 -5 s -1 . Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength. 7 refs., 7 figs., 11 tabs

  16. INFLUENCE OF ULTRAVIOLET RADIATION ON MICROBIOLOGICAL AND SENSORY CHARACTERISTICS OF CERTAIN CATEGORIES OF VEGETABLES PRODUCTS AND THEIR PRESERVATION LIFE

    Directory of Open Access Journals (Sweden)

    Danilevici Constantin

    2010-01-01

    Full Text Available Research paper aims to highlight the scientific correlation between the influence of ultraviolet radiation (UV onsensory and microbiological characteristics of plant products in the category of leaves (lettuce and other types ofvegetables or fruit (bananas and their preservation’s duration, through their UV irradiation under certain conditions.The literature indicates a germicidal action of UV (medium UV on micro-organisms, optimal for λ = 254 nm. Theeffectiveness of radiation is influenced by duration of irradiation, the distance between the radiation source and thesample product and radiant power source.The action of microbial cell inactivation or destruction can be explained by changes in cellular structure andpermeability with changes at the level of mitochondria and the genetic material as a result of photochemical effects ofUV products. Research highlights the preservative effect of UV radiation (with λ = 254 nm and also their influence onsensory properties and positive to negative for leafy vegetables and fruits (bananas in our case.

  17. Spatiotemporal Variability of Earth's Radiation Balance Components from Russian Radiometer IKOR-M

    Science.gov (United States)

    Cherviakov, M.

    2016-12-01

    The radiometer IKOR-M was created in National Research Saratov State University for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurement in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. The scale relationship of the IKOR-M radiometers on "Meteor - M" No 1 and No 2 satellites found by comparing of the global distribution maps for monthly averaged albedo values. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and the absorbed solar radiation over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. The reported study was funded by

  18. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    International Nuclear Information System (INIS)

    Rocke, David

    2016-01-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  19. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rocke, David [Univ. of California, Davis, CA (United States)

    2016-08-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  20. Changes in the concentration of sulfhydryl groups in tissues of rats under the influence of gamma-radiation and adeturon

    International Nuclear Information System (INIS)

    Pantev, T.; Bychvarova, K.

    1984-01-01

    The concentration of SH-groups in the spleen, liver and bone marrow in rats was determined using the method of Sedlak and Lindsey. The changes in thiol level have been traced under the single influence of Adeturon and combined influence of radiation with 7,5 Gy and of Adeturon introduced 15 min before radiation. The animals were killed on 30th, 45th and 90th minute after the exerted influence. The control animals had physiological solution introduced. under the single influence of Adeturon there was increase in SH-groups mainly in the bone marrow in later terms after the exerted influence (the 90th minute), while P-SH in the spleen and liver decrease within the same term. The changes of NP-SH in the spleen and liver are opposite in nature. Under the influence of radiation P-SH in the liver and the spleen slightly decrease, while those in the bone marrow considerably increase on the 60th minute. NP-SH abruptly decrease on the 45th minute in the liver, while those in the spleen and bone marrow slightly differentiate from the control values. In animals protected by Adeturon P-SH in the bone marrow increase on the 30th and 45th minute, while those in the spleen decrease on the 90th minute. NP-SH decrease in the liver. The results obtained show that under the influence of Adeturon some changes occur in the level of thiols in tissues of both nonradiated and radiated animals

  1. Influence of vitamins on cytostatic drugs: radiation-chemical and radiation-biological investigations in vitro

    International Nuclear Information System (INIS)

    Heinrich, E.

    2002-03-01

    Many environmental burdens (air pollution, formation of ozone etc.), humans nowadays are exposed to, in connection with unhealthy way of living promote the formation of free radicals e.g. OH and peroxylradicals in the organism. Those show an enormous cell-damaging effect, and can weaken the immune system or cause cancer diseases. The number of humans suffering from different forms of cancer is rising world-wide. Therefore it is necessary to find new and better therapy forms for this illness. The organism has its own protective system, which is able to capture free radicals and make them innocuous to a large extent. Apart from various enzyme systems the antioxidizing vitamins C (ascorbic acid), E (α-tocopherol) and β-carotin play an important role in this process. Now it was of interest whether vitamin B1 (thiamine) also possesses the ability to work as a radiation protector or to influence the effect of different cytostatic drugs. In the context of this thesis the radiation-chemical and radiation-biological behaviour of vitamin B1 was examined under different conditions (in presence and absence of oxygen as well as in media saturated with N 2 O). HPLC analysis were performed to establish radiolysis products. Furthermore the synergistic effect of vitamin B1 on cytostatic drugs (sanazole, mitomycin C) was studied alone or in combination with other vitamins (C, E and β-carotin) by using two different E. coli bacteria strains as a model for living systems. (author)

  2. The influence of microwave radiation on the failure of rocks

    Directory of Open Access Journals (Sweden)

    Lovás Michal

    2000-09-01

    Full Text Available The heating and processing of materials using microwaves becomes increasingly popular for industrial applications. Compared to conventional heating, microwave processing can provide a rapid, the production of materials with unique properties, and reductions in manufacturing costs and processing times.The positive influence of the microwave radiation on the faulting of the individual rocks is described. At the heating of the heterogeneous ores, the microwaves have an selective effect for individual mineral components. Owing to the different degree of to heating and thermal dilatation the stress and destructive attendants arise, which increase the faulting of rocks. The rate of the faulting has been investigated on the basis of measurement of the elastic waves motion velocity by the impulse-dynamic method.On the basis of the measured values of elastic wave motion in the observed rocks before and after their microwave heating the coefficient of faulting was computed according to the relation (1. Subsequently, from these coefficients the rate of faulting was determined for individual rocks according to Jaeger (Table 1.Various rate of rocks faulting caused by the radiation depend on their ability to absorb microwave power. High rate of faulting was observed in rocks with strong absorption of microwave power unlike from substances which weakly absorb the radiation. Particularly, a high rate of faulting after microwave heating was observed at samples of limestone (Rožòava-Jovice and magnesite (Haèava. Low rate of faulting was obtained in the case of granodiorite (Podhradová, granite (Hnilec, sandstone (Horelica, marble (Koelga and andesite (Hubošovce.The influence of microwave energy on the rate of rocks faulting was confirmed. The new knowledge can be applied for the intensification of the rock disintegration processes.

  3. Comparative influence of dose rate and radiation nature, on lethality after big mammals irradiation

    International Nuclear Information System (INIS)

    Destombe, C.; Le Fleche, Ph.; Grasseau, A.; Reynal, A.

    1997-01-01

    For the same dose and the 30 days lethality as biological criterion, the dose rate influence is more important than the radiation nature on the results of an big mammals total body irradiation. (authors)

  4. Combined influence of radiation absorption and Hall current effects on MHD double-diffusive free convective flow past a stretching sheet

    Directory of Open Access Journals (Sweden)

    G. Sreedevi

    2016-03-01

    Full Text Available An analysis has been carried out on the influence of radiation absorption, variable viscosity, Hall current of a magnetohydrodynamic free-convective flow and heat and mass transfer over a stretching sheet in the presence of heat generation/absorption. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The boundary-layer equations governing the fluid flow, heat and mass transfer under consideration have been reduced to a system of nonlinear ordinary differential equations by employing a similarity transformation. Using the finite difference scheme, numerical solutions to the transform ordinary differential equations have been obtained and the results are presented graphically. The numerical results obtained are in good agreement with the existing scientific literature.

  5. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Science.gov (United States)

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  6. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Directory of Open Access Journals (Sweden)

    Gaëtan Gruel

    Full Text Available Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This

  7. Influence of radiation treatment on pharmaceuticals and adjuvants: A literature study. Pt. 9. Supplement

    International Nuclear Information System (INIS)

    Lindemann, L.; Schuettler, C.; Boegl, K.W.

    1993-01-01

    Sterilization of medical aid articles (e.g. catheters, one-way syringes) with ionizing radiation is a successful practice in many countries. During recent years, the results from numerous experiments of radiosterillization of pharmaceuticals and adjuvants have likewise been published. Experience has shown that radiation treatment, in many cases, is leading to transformations of the irradiated substances. In the present part IX of the bibliographic study on the influence of radiation treatment on pharmaceuticals and adjuvants the results of experiments on ca. 80 substances from 36 different sources have been evaluated. In all parts of the study results of about 560 experiments on 360 substances from 176 different sources are present. (orig.)

  8. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    Science.gov (United States)

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method

    Science.gov (United States)

    Osetrin, Evgeny; Osetrin, Konstantin

    2017-11-01

    We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.

  10. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    Science.gov (United States)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  11. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  12. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    Directory of Open Access Journals (Sweden)

    B. S. Grandey

    2016-11-01

    Full Text Available Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5. Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m−2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m−2. Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m−2, while over Boreal Asia the overestimation is +43 % (−1.9 W m−2. The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.

  13. Inverse radiation problem of temperature distribution in one-dimensional isotropically scattering participating slab with variable refractive index

    International Nuclear Information System (INIS)

    Namjoo, A.; Sarvari, S.M. Hosseini; Behzadmehr, A.; Mansouri, S.H.

    2009-01-01

    In this paper, an inverse analysis is performed for estimation of source term distribution from the measured exit radiation intensities at the boundary surfaces in a one-dimensional absorbing, emitting and isotropically scattering medium between two parallel plates with variable refractive index. The variation of refractive index is assumed to be linear. The radiative transfer equation is solved by the constant quadrature discrete ordinate method. The inverse problem is formulated as an optimization problem for minimizing an objective function which is expressed as the sum of square deviations between measured and estimated exit radiation intensities at boundary surfaces. The conjugate gradient method is used to solve the inverse problem through an iterative procedure. The effects of various variables on source estimation are investigated such as type of source function, errors in the measured data and system parameters, gradient of refractive index across the medium, optical thickness, single scattering albedo and boundary emissivities. The results show that in the case of noisy input data, variation of system parameters may affect the inverse solution, especially at high error values in the measured data. The error in measured data plays more important role than the error in radiative system parameters except the refractive index distribution; however the accuracy of source estimation is very sensitive toward error in refractive index distribution. Therefore, refractive index distribution and measured exit intensities should be measured accurately with a limited error bound, in order to have an accurate estimation of source term in a graded index medium.

  14. Interference effects in angular and spectral distributions of X-ray Transition Radiation from Relativistic Heavy Ions crossing a radiator: Influence of absorption and slowing-down

    Energy Technology Data Exchange (ETDEWEB)

    Fiks, E.I.; Pivovarov, Yu.L.

    2015-07-15

    Theoretical analysis and representative calculations of angular and spectral distributions of X-ray Transition Radiation (XTR) by Relativistic Heavy Ions (RHI) crossing a radiator are presented taking into account both XTR absorption and RHI slowing-down. The calculations are performed for RHI energies of GSI, FAIR, CERN SPS and LHC and demonstrate the influence of XTR photon absorption as well as RHI slowing-down in a radiator on the appearance/disappearance of interference effects in both angular and spectral distributions of XTR.

  15. Analysis on Corporate Governance Influences toward Banking Efficiency with Bank Category as Moderator Variable

    Directory of Open Access Journals (Sweden)

    Lidiyawati Lidiyawati

    2015-05-01

    Full Text Available Corporate governance system of Sharia financial institution that based on Islamic law may result more  variables principles then conventional owns. The restriction of usury are highly speculative transaction, embedded prohibited matter are main features in Sharia business institution. Sharia Supervisory Board, as board that supervises banking practices conforms to Sharia stipulations, hold strong important role within Islamic banking. Both important points above had direct effects on efficiency which attained by Islamic banking compared with conventional banking. This study examines the influence of corporate governance implementation toward efficiency banking sector with bank category as moderator variable. This study hypothesize that corporate governance has significant influences toward bank’s efficiencies, the influence of corporate governance toward Islamic bank efficiencies is higher than conventional bank, and level of Islamicbank efficiencies is higher than conventional bank. Measurement of efficiencies is using Stochastic Frontier Approach program, and then using SPSS in procces hypothetical model. The results of the study do not support the hypothesis. Examined result shows that statically corporate governance is not influenced by bank efficiency achievement. Corporate governance influences over Islamic bank has not show higher significance than conventional and Islamic bank efficiencies remain steady. Data limitations, complexity of the efficiency measures and the complexity of the operation of Islamic banks may explain the finding.

  16. Possibility of use of plat test systems for estimation of degree risk at radiation influence

    International Nuclear Information System (INIS)

    Gogebashvili, M.E.; Ivanishvili, N.I.

    2010-01-01

    Full text : Now one of the major problems of radiobiology is studying of degree risks at influence of small doses of an ionizing radiation. It is known, that not tumoral forms of the remote pathology are not stochastic, threshold, reactions of an organism to beam influence, frequency and weight depend on a dose, while carcinogenic and genetic effects (stochastic reactions) - frequency raises with dose increase. Last years the general hypothesis for definition of the raised risk in the irradiated populations, based on the theoretical analysis of extensive researches of various biological objects and epidemiological data, assumes existence of difficult parities between a dose of an irradiation and frequency of investigated effect. In this aspect the special importance is got by biological models with which help reception of quantitative parameters of influence of modifying factors for creation of more exact systems of monitoring of the remote radiobiological effects is possible. One of such systems is reciprocal grows reaction of stamen threads of plant tradescantia. At the heart of action of the given biomodel that growth tradescantia threads occurs from one initial cell is, and level of its radiating damage is shown in number of the subsequent cellular generation during the postradiating period. For an estimation of adequacy of the given model we had been chose two kinds tradescantia - Tradescantia virginiana L. and Tradescantia rosea Vent. It is notes, that at identical quantity of chromosomes their volume interface nucleus composable at Tradescantia virginiana L. 63.7 μ 3 , and at T.rosea Vent. - 38.5 μ 3 . Thus at interpretation of data it was possible to estimate them with the target theory. In work two basic criteria of an estimation of radiating damage - quantity of viable pollen threads and quantity of viable cells in each of threads have been used. The received results have shown strict correlation of reciprocal postradiating effects between used variants

  17. Influence of the radiation type on properties of silicon doped by erbium

    International Nuclear Information System (INIS)

    Nazyrov, D.E.

    2006-01-01

    Full text: It is known that on effectiveness of formation and kinetics of annealing of radiation damages presence causing, uncontrollable electrical of fissile or inactive impurities, the concentration and position in a lattice of the semiconductor strongly influence. From this point of view, the impurities of group of rare earths elements (REE) represent major interest, since interacting with primary radiation imperfections they create electrical passive complexes such as 'impurity + defect', thus raising radiation stability of silicon. The purpose of sectional operation was the investigations of influence such as radiation exposures: in γ-quanta 60 Co and high-velocity electrons with an energy 3,5 MeV on properties of silicon doped REE-erbium. The doping of silicon REE was carried out during cultivation. The concentration REE in silicon, on sectional of a neutron-activation analysis was equaled 10 14 10 18 cm -3 . As control is model the monocrystalline silicon such as KEP-15 50 was investigation. The experimental outcomes are obtained through methods DLTS, IRC, and also at examination of a Hall effect and conductance is model, measuring of concentration optically active of centers of oxygen and carbon. In samples irradiated in the γ-quanta 60 Co in an interval of doses 10 16 -5·10 18 cm -2 and high-velocity electrons from 5·10 13 up to 10 18 el.·cm -2 the formation various DL in a forbidden region is revealed, which parameters are well-known A- and, E-centres etc. Depending on a radiation dose in an energy distribution of radiation imperfections in Si of essential concentration modifications is not observed. The comparison doses of associations detected DL in irradiated n-Si with similar associations in control samples shows, that a velocity of introduction of radiation imperfections (A- and E-centres) and imperfection with a deep level Ec-0,32 eV) in samples containing REE much lower, than in control samples. The lifetime of non-equilibrium charge carriers

  18. Influence of 60Co gamma radiation on Zabrotes subfasciatus (Bohemann, 1833) (Coleoptera, Curculionidae) and beams Phaseolus vulgaris

    International Nuclear Information System (INIS)

    Moraes Rego, A.F. de; Rodrigues, Z.A.; Oliveira, M.L. de; Santana, M.D.

    1986-01-01

    Influence of gamma radiation on Zabrotes subfasciatus (Boh, 1833) (Coleoptera Bruchidae) and the beans Phaseolus vulgaris (L.). The effects of 60 CO gamma radiation, 50 Gy, on both Phaseolus vulgaris (L.) seedbeans and adults of Zabrotes subfasciatus were studied using the no free choise method. Radiation decreased insect fertility hence insect population and it damage loss of weight and germination of seedbeans. However, radiation resulted in abnamal seedlings, showing various degrees of morphological malformation, although there was no effect on germination rates or seedling vigor. (Author) [pt

  19. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2012-06-01

    Full Text Available We present and validate a set of minimal models of glacier mass balance variability. The most skillful model is then applied to reconstruct 7735 individual time series of mass balance variability for all glaciers in the European Alps and Scandinavia. Subsequently, we investigate the influence of atmospheric variability associated with the North Atlantic Oscillation (NAO on the glaciers' mass balances.

    We find a spatial coherence in the glaciers' sensitivity to NAO forcing which is caused by regionally similar mechanisms relating the NAO forcing to the mass balance: in southwestern Scandinavia, winter precipitation causes a correlation of mass balances with the NAO. In northern Scandinavia, temperature anomalies outside the core winter season cause an anti-correlation between NAO and mass balances. In the western Alps, both temperature and winter precipitation anomalies lead to a weak anti-correlation of mass balances with the NAO, while in the eastern Alps, the influences of winter precipitation and temperature anomalies tend to cancel each other, and only on the southern side a slight anti-correlation of mass balances with the NAO prevails.

  20. NUMERICAL SIMULATION OF Q-SWITCHED Nd: YAG LASER WITH UNSTABLE RESONATOR AND OUTPUT VARIABLE REFLECTIVITY MIRROR

    Directory of Open Access Journals (Sweden)

    I. N. Dubinkin

    2017-05-01

    Full Text Available The article deals with a method of numerical simulation of laser oscillation in the radially symmetric unstable resonator with an output variable reflectivity mirror (VRM. Research results of the VRM parameters influence on the spatial and energy properties of the laser radiation are obtained. Numerical simulation of laser oscillation in active and passive Q-switching and comparative analysis of the spatial and energy radiation characteristics is done for these modes.

  1. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    Science.gov (United States)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales

  2. Influence of Variable Acceleration on Parametric Roll Motion of a Container Ship

    Directory of Open Access Journals (Sweden)

    Emre PEŞMAN

    2016-09-01

    Full Text Available Ship operators increase or decrease thrust force of ships to avoid parametric roll motion. These operations cause varying acceleration values. In this study, influence of variable acceleration and deceleration of ships on roll motion is investigated in longitudinal waves. The method which is referred as simple model is utilized for analysis. Simple Model is one degree of freedom nonlinear parametric roll motion equation which contains changing velocity and restoring moment in waves with respect to time. Ship velocities in waves are predicted by XFlow software for various thrust forces. Results indicate that variable acceleration has significant effect on parametric roll phenomenon.

  3. Estimating Catchment-Scale Snowpack Variability in Complex Forested Terrain, Valles Caldera National Preserve, NM

    Science.gov (United States)

    Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.

    2011-12-01

    Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of

  4. The conversion of the conductivity type of CuGaSe2 monocrystals under the influence of γ-radiation

    International Nuclear Information System (INIS)

    Kasumov, I.G.; Kerimova, T.G.; Mamedova, I.A.

    2003-01-01

    The CuGaSe 2 is a perspective material for use as a solar elements. In the present work the results of investigation of the dependence of current of short circuit from wavelength of incident light in the fundamental absorption range of both initial and radiated p-CuGaSe 2 samples. The investigation were carried out on low resistance (ρ=10 2 Ω·cm) monocrystalline samples at 77 K, obtained by gas transport reactions. The eutectic In-Ga was use as a contacts. Co 60 with 1.25 MeV quantum energy was the source of radiation. The dependence of the short circuit current from wavelength of the non radiated sample has dome-like form with maxima of 730 nm. The dependence of the short circuit current with the wavelength was measured on this sample after continuous radiation by γ-quantum with capacity of 300 R/s within 20 hours. The saturation is observed with the increasing of wavelength from 400 nm to 690 nm, at the further increasing the current of short circuit takes negative magnitude with the minima of 730 nm and increases to 800 nm and further takes positive magnitude. Thus the inverse of the short circuit current is observed. The experiment was repeated. After the radiation the resistance of samples was increased by three order (from kΩ to MΩ). Such behavior of the dependence of the short circuit current with wavelength testifies, on seen, to change the conductivity, i.e. p-CuGaSe 2 samples are got n-type conductivity under the influence of γ-radiation. Under the influence of γ-radiation the the defects increases, which influences as the scattering electronic centers. The number of electronic centres increases with dose and intensity of γ-radiation which changes the conductivity type

  5. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability.

    Directory of Open Access Journals (Sweden)

    Sarah M Short

    2017-07-01

    Full Text Available The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81-92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field.

  6. The influence of the radiation pressure force on possible critical surfaces in binary systems

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1978-01-01

    Using a spherically symmetric approximation for the radiation pressure force to compute a possible critical surface for binary systems, previous authors found that the surface opens up at the far side of the companion. It is shown that this effect may be unreal, and could be a consequence of the simple approximation for the radiation pressure force, Due to the influence of the radiation force, mass will be lost over the whole surface of the star. In that way much mass could leave the system in massive binary systems. On the basis of evolutionary models, including mass loss by stellar wind, the results were applied on the X-ray binaries 3U 1700 - 37 and HD 77581. (Auth.)

  7. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts.

    Directory of Open Access Journals (Sweden)

    Nathan B Furey

    Full Text Available Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka and steelhead (Oncorhynchus mykiss smolts detected at an array in the Strait of Georgia in 2004-2008 and 2010-2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait. While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20-40% of sockeye and 30-50% of steelhead exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the

  8. Changing of Bacteria Catalase Activity Under the Influence of Electro-Magnetic Radiation on a Frequency of Nitric Oxide Absorption and Radiation Molecular Spectrum

    Directory of Open Access Journals (Sweden)

    G.M. Shub

    2009-09-01

    Full Text Available The dynamics of catalase activity degree changing in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is described under the influence of electro-magnetic radiation on a frequency of nitric oxide absorption and radiation molecular spectrum. The panoramic spectrometric measuring complex, developed in Central Scientific Research Institute of measuring equipment Public corporation, Saratov, was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the structure of nitric oxide absorption and radiation molecular spectrum. The growth of activity of the mentioned enzyme of the strains under research was detected. The most significant changes were observed under 60-minutes exposure.

  9. Influence of process variables on permeability and anisotropy of Biso-coated HTGR fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.; Thiele, B.A.

    1977-11-01

    The effect of several important process variables on the fraction of defective particles and anisotropy of the low-temperature isotropic (LTI) coating layer was determined for Biso-coated HTGR fuel particles. Process variables considered are deposition temperature, hydrocarbon type, diluent type, and percent diluent. The effect of several other variables such as coating rate and density that depend on the process variables were also considered in this analysis. The fraction of defective particles was controlled by the dependent variables coating rate and LTI density. Coating rate was also the variable controlling the anisotropy of the LTI layer. Diluent type and diluent concentration had only a small influence on the deposition rate of the LTI layer. High-quality particles in terms of anisotropy and permeability can be produced by use of a porous plate gas distributor if the coating rate is between 3 and 5 μm/min and the coating density is between about 1.75 and 1.95 g/cm 3

  10. Tracking the dose distribution in radiation therapy by accounting for variable anatomy

    International Nuclear Information System (INIS)

    Schaly, B; Kempe, J A; Bauman, G S; Battista, J J; Van Dyk, J

    2004-01-01

    The goal of this research is to calculate the daily and cumulative dose distribution received by the radiotherapy patient while accounting for variable anatomy, by tracking the dose distribution delivered to tissue elements (voxels) that move within the patient. Non-linear image registration techniques (i.e., thin-plate splines) are used along with a conventional treatment planning system to combine the dose distributions computed for each 3D computed tomography (CT) study taken during treatment. For a clinical prostate case, we demonstrate that there are significant localized dose differences due to systematic voxel motion in a single fraction as well as in 15 cumulative fractions. The largest positive dose differences in rectum, bladder and seminal vesicles were 29%, 2% and 24%, respectively, after the first fraction of radiation treatment compared to the planned dose. After 15 cumulative fractions, the largest positive dose differences in rectum, bladder and seminal vesicles were 23%, 32% and 18%, respectively, compared to the planned dose. A sensitivity analysis of control point placement is also presented. This method provides an important understanding of actual delivered doses and has the potential to provide quantitative information to use as a guide for adaptive radiation treatments

  11. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    International Nuclear Information System (INIS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-01-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450–500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation. - Highlights: • Interactions of ionizing radiation in BisGMA/TEGDMA experimental dental composites filled with sylanized silica.

  12. Dental radiography technique and equipment: How they influence the radiation dose received at the level of the thyroid gland

    Energy Technology Data Exchange (ETDEWEB)

    Rush, E.R. [School of Health Sciences, University of Ulster, Shore Road, Newtownabbey, Belfast BT37 0QB (United Kingdom)]. E-mail: emmaroserush@hotmail.com; Thompson, N.A. [School of Health Sciences, University of Ulster, Shore Road, Newtownabbey, Belfast BT37 0QB (United Kingdom)

    2007-08-15

    Purpose: The aim of this study was to investigate the influence that collimator and technique choice had on the radiation dose detected at the thyroid gland position, during intra-oral examinations of the upper and lower teeth. Radiation dose reduction from a different perspective, other than the application of lead-rubber shielding, was addressed. Methods: A study was performed at a regional dental school with the use of a phantom head/neck and a radiation dosemeter, to measure the radiation dose detected at the thyroid gland position. The radiation dose was assessed for two intra-oral techniques (paralleling and bisecting angle), and two collimators (rectangular and circular). The radiation dose was also assessed with and without the application of a thyroid shield. Standard descriptive statistics, followed by inferential statistics were applied to the data. Results: There was a significant reduction in the radiation dose detected at the thyroid gland position, when employing the paralleling technique (66.7%) and rectangular collimator (45.5%). Other factors, for example the tooth/teeth under examination, were also found to influence the radiation dose detected. Conclusion: Radiation dose reductions using the paralleling technique and rectangular collimator were outlined. The use of this low dose combination within dental practices remains limited, therefore, continued awareness and acceptance of radiation hazards need to be addressed.

  13. Dental radiography technique and equipment: How they influence the radiation dose received at the level of the thyroid gland

    International Nuclear Information System (INIS)

    Rush, E.R.; Thompson, N.A.

    2007-01-01

    Purpose: The aim of this study was to investigate the influence that collimator and technique choice had on the radiation dose detected at the thyroid gland position, during intra-oral examinations of the upper and lower teeth. Radiation dose reduction from a different perspective, other than the application of lead-rubber shielding, was addressed. Methods: A study was performed at a regional dental school with the use of a phantom head/neck and a radiation dosemeter, to measure the radiation dose detected at the thyroid gland position. The radiation dose was assessed for two intra-oral techniques (paralleling and bisecting angle), and two collimators (rectangular and circular). The radiation dose was also assessed with and without the application of a thyroid shield. Standard descriptive statistics, followed by inferential statistics were applied to the data. Results: There was a significant reduction in the radiation dose detected at the thyroid gland position, when employing the paralleling technique (66.7%) and rectangular collimator (45.5%). Other factors, for example the tooth/teeth under examination, were also found to influence the radiation dose detected. Conclusion: Radiation dose reductions using the paralleling technique and rectangular collimator were outlined. The use of this low dose combination within dental practices remains limited, therefore, continued awareness and acceptance of radiation hazards need to be addressed

  14. Influence of gamma radiation on microbiological parameters of the ethanolic fermentation of sugar-cane must

    International Nuclear Information System (INIS)

    Alcarde, A.R.; Walder, J.M.M.; Horii, J.

    2003-01-01

    The influence of gamma radiation on reducing the population of some bacteria Bacillus and Lactobacillus that usually contaminate the sugar-cane must and its effects on acidity of the medium and viability of the yeast during fermentation were evaluated. The treatment with gamma radiation reduced the bacterial load of the sugar-cane must. Consequently, the volatile acidity produced during the fermentation of the must decreased and the viability of the yeast afterwards added increased

  15. A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects

    Directory of Open Access Journals (Sweden)

    P. Trisolino

    2018-06-01

    to produce small radiative effects on PAR in summer. The cloud radiative effect has been deseasonalized to remove the influence of annual irradiance variations. The monthly mean normalized CRE for global PAR can be well represented by a multi-linear regression with respect to monthly cloud fraction, cloud top pressure, and cloud optical thickness, as determined from satellite MODIS observations. The behaviour of the normalized CRE for diffuse PAR can not be satisfactorily described by a simple multi-linear model with respect to the cloud properties, due to its non-linear dependency, in particular on the cloud optical depth. The analysis suggests that about 77 % of the global PAR interannual variability may be ascribed to cloud variability in winter.

  16. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  17. Influence of gamma radiation on secondary metabolism in lichens Cladonia substellata and Cladonia verticillaris

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Helena P.B.; Melo, Patryk; Primo, Dario; Vicalvi, Maria Claudia V. [Federal University of Pernambuco (CTG/DEN/UFPE), Recife, PE (Brazil). Graduate Program in Energy Technologies and Nuclear; Maciel, Leonardo N.Q. [First Space Seed, Recife, PE (Brazil); Pereira, Eugenia, E-mail: Eugenia.pereira@cnpq.pq.com.b [Federal University of Pernambuco (CFCH/UFPE), Recife, PE (Brazil). Dept. of Geographic Sciences; Silva, Nicacio [Federal University of Pernambuco (CCB/UFPE), Recife, PE (Brazil). Dept. of Biochemistry; Colaco, Waldeciro, E-mail: wcolaco@ufpe.com.b [Federal University of Pernambuco (CTG/DEN/UFPE), Recife, PE (Brazil). Dept. Nuclear Energy

    2011-07-01

    Lichens are organisms formed from a symbiotic relationship between a fungus and an alga. These when submitted to different doses and types of radiation are encouraged to produce their substances in quantities different from those that would produce without the intervention of radiation. The objective of this research was to determine the influence of gamma rays on the production of usnic acid from Cladonia substellata and on the production of fumarprocetraric acid from Cladonia verticillaris. Lichens samples were submitted to gamma irradiation Co-60 source, receiving different doses (0, 5, 10, 50 and 100 Gy) of gamma irradiator. After six months samples were collected and submitted to the extraction of its phenols. The extracts were subjected to thin-layer chromatography, and read from Biochrom Libra S22 spectrophotometer. The qualitative assessment of the chemical composition of lichens stalks irradiated or not, revealed by thin layer chromatography production of usnic acid and fumarprocetraric throughout the experiment. Regarding the quantification of fumarprocetraric acid was observed a production significantly higher in extracts obtained from irradiated lichens, the largest production obtained by the dose of 50 Gy. As for the production of usnic acid, the highlight was the dose of 10 Gy. Thus we can conclude that the lichens Cladonia verticillaris and Cladonia substellata when submitted to gamma radiation in the laboratory, produce fumarprocetraric acid and usnic acid , respectively, but the radiation dose influences the metabolism and its subsequent biosynthesis. (author)

  18. Influence of gamma radiation on secondary metabolism in lichens Cladonia substellata and Cladonia verticillaris

    International Nuclear Information System (INIS)

    Silva, Helena P.B.; Melo, Patryk; Primo, Dario; Vicalvi, Maria Claudia V.; Pereira, Eugenia; Silva, Nicacio; Colaco, Waldeciro

    2011-01-01

    Lichens are organisms formed from a symbiotic relationship between a fungus and an alga. These when submitted to different doses and types of radiation are encouraged to produce their substances in quantities different from those that would produce without the intervention of radiation. The objective of this research was to determine the influence of gamma rays on the production of usnic acid from Cladonia substellata and on the production of fumarprocetraric acid from Cladonia verticillaris. Lichens samples were submitted to gamma irradiation Co-60 source, receiving different doses (0, 5, 10, 50 and 100 Gy) of gamma irradiator. After six months samples were collected and submitted to the extraction of its phenols. The extracts were subjected to thin-layer chromatography, and read from Biochrom Libra S22 spectrophotometer. The qualitative assessment of the chemical composition of lichens stalks irradiated or not, revealed by thin layer chromatography production of usnic acid and fumarprocetraric throughout the experiment. Regarding the quantification of fumarprocetraric acid was observed a production significantly higher in extracts obtained from irradiated lichens, the largest production obtained by the dose of 50 Gy. As for the production of usnic acid, the highlight was the dose of 10 Gy. Thus we can conclude that the lichens Cladonia verticillaris and Cladonia substellata when submitted to gamma radiation in the laboratory, produce fumarprocetraric acid and usnic acid , respectively, but the radiation dose influences the metabolism and its subsequent biosynthesis. (author)

  19. Influence of sleep apnea severity on blood pressure variability of patients with hypertension.

    Science.gov (United States)

    Steinhorst, Ana P; Gonçalves, Sandro C; Oliveira, Ana T; Massierer, Daniela; Gus, Miguel; Fuchs, Sandra C; Moreira, Leila B; Martinez, Denis; Fuchs, Flávio D

    2014-05-01

    Obstructive sleep apnea (OSA) is a risk factor for the development of hypertension and cardiovascular disease. Apnea overloads the autonomic cardiovascular control system and may influence blood pressure variability, a risk for vascular damage independent of blood pressure levels. This study investigates the hypothesis that blood pressure variability is associated with OSA. In a cross-sectional study, 107 patients with hypertension underwent 24-h ambulatory blood pressure monitoring and level III polysomnography to detect sleep apnea. Pressure variability was assessed by the first derivative of blood pressure over time, the time rate index, and by the standard deviation of blood pressure measurements. The association between the apnea-hypopnea index and blood pressure variability was tested by univariate and multivariate methods. The 57 patients with apnea were older, had higher blood pressure, and had longer duration of hypertension than the 50 patients without apnea. Patients with apnea-hypopnea index (AHI) ≥ 10 had higher blood pressure variability assessed by the standard deviation than patients with AHI variability assessed by the time rate index presented a trend for association during sleep (P = 0.07). Daytime blood pressure variability was not associated with the severity of sleep apnea. Sleep apnea increases nighttime blood pressure variability in patients with hypertension and may be another pathway linking sleep abnormalities to cardiovascular disease.

  20. The Influence of Entrepreneurship Subject on Students’ Interest in Entrepreneurship by Hidden Curriculum as Intervening Variable

    Directory of Open Access Journals (Sweden)

    Amin Kuncoro

    2016-06-01

    Full Text Available This research aims to know the influence of entrepreneurship subject on students’ interest in entrepreneurship at Institute of Mathaliul Falah (IPMAFA in Pati by hidden curriculum as intervening variable. The research used WarpsPls analysis to test model directly and directly. Samples of the study were 30 Islamic banking students who got entrepreneurship subject and Islamic community development who did not get the entrepreneurship subject. Findings show that the entrepreneurship subject influences students’ interest in entrepreneurship and the second model test results showed that hidden curriculum is not able to become the intervening variable for students’ interest in entrepreneurship subject on students’ interest in entrepreneurship.

  1. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]). - Highlights: • Absolute determination of radiation burst. • Proportional counters space charge effect. • Radiation measurements on pulsed devices.

  2. When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space.

    Science.gov (United States)

    Tanentzap, Andrew J; Brandt, Angela J; Smissen, Rob D; Heenan, Peter B; Fukami, Tadashi; Lee, William G

    2015-07-01

    Plant radiations are widespread but their influence on community assembly has rarely been investigated. Theory and some evidence suggest that radiations can allow lineages to monopolize niche space when founding species arrive early into new bioclimatic regions and exploit ecological opportunities. These early radiations may subsequently reduce niche availability and dampen diversification of later arrivals. We tested this hypothesis of time-dependent lineage diversification and community dominance using the alpine flora of New Zealand. We estimated ages of 16 genera from published phylogenies and determined their relative occurrence across climatic and physical gradients in the alpine zone. We used these data to reconstruct occupancy of environmental space through time, integrating palaeoclimatic and palaeogeological changes. Our analysis suggested that earlier-colonizing lineages encountered a greater availability of environmental space, which promoted greater species diversity and occupancy of niche space. Genera that occupied broader niches were subsequently more dominant in local communities. An earlier time of arrival also contributed to greater diversity independently of its influence in accessing niche space. We suggest that plant radiations influence community assembly when they arise early in the occupancy of environmental space, allowing them to exclude later-arriving colonists from ecological communities by niche preemption. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  4. DEMOGRAPHIC VARIABLES INFLUENCING INDIVIDUAL ENTREPRENEURIAL ORIENTATION AND STRATEGIC THINKING CAPABILITY

    Directory of Open Access Journals (Sweden)

    Lara Jelenc

    2016-03-01

    Full Text Available Strategic thinking capability is interesting part of the cognitive development of each entrepreneur. This paper develops on notion that there a number of demographic variables that shape the behavior of each particular elements of entrepreneurial orientation and strategic component of each entrepreneur. The demographic variable that have significant role will take the role of moderator in further research. Since both constructs are multidimensional, the demographic variables are not influencing them in the same way. The empirical research has been performed on IT firms in Croatia in 2014. Individual entrepreneurial orientation is measured by the construct developed by Bolton and Lane’s (2012 individual entrepreneurial orientation instrument. The instrument is grounded in the seminal work of Miller (1983, Covin and Slevin (1986; 1988; 1989, Lumpkin and Dess (1996 and Covin and Wales (2011; consisting of three dimensions – risk-taking, innovation, and proactiveness. Strategic thinking was measured by Pisapia’s (2009 Strategic thinking questionnaire (STQ. The STQ asked respondents to rate how often they use systems thinking, reframing, and reflecting skills. Within the framework of individual entrepreneurial orientation the following demographic variables shape the trends: age, gender, education abroad and previous experience. Entrepreneurs between 40-60 years old are less prone to risk, female entrepreneurs are more proactive than men, education abroad provides with the additional proactiveness and the entrepreneur with previous experience is prone to higher risk, proactiveness and innovativeness. Within the framework of strategic thinking capability the following demographic variables shape the trends: age, gender, education and experience. Entrepreneurs older than 60 score high on system thinking as well as females, females also score higher on reframing. Entrepreneurs with PhD degree score lower on reframing, while managers working more

  5. Efficacy of Radiative Transfer Model Across Space, Time and Hydro-climates

    Science.gov (United States)

    Mohanty, B.; Neelam, M.

    2017-12-01

    The efficiency of radiative transfer model for better soil moisture retrievals is not yet clearly understood over natural systems with great variability and heterogeneity with respect to soil, land cover, topography, precipitation etc. However, this knowledge is important to direct and strategize future research direction and field campaigns. In this work, we present global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties on radiative transfer model (RTM) and to quantify climate-soil-vegetation interactions. A framework is proposed to understand soil moisture mechanisms underlying these interactions, and influence of these interactions on soil moisture retrieval accuracy. Soil moisture dynamics is observed to play a key role in variability of these interactions, i.e., it enhances both mean and variance of soil-vegetation coupling. The analysis is conducted for different support scales (Point Scale, 800 m, 1.6 km, 3.2 km, 6.4 km, 12.8 km, and 36 km), seasonality (time), hydro-climates, aggregation (scaling) methods and across Level I and Level II ecoregions of contiguous USA (CONUS). For undisturbed natural environments such as SGP'97 (Oklahoma, USA) and SMEX04 (Arizona, USA), the sensitivity of TB to land surface variables remain nearly uniform and are not influenced by extent, support scales or averaging method. On the contrary, for anthropogenically-manipulated environments such as SMEX02 (Iowa, USA) and SMAPVEX12 (Winnipeg, Canada), the sensitivity to variables are highly influenced by the distribution of land surface heterogeneity and upscaling methods. The climate-soil-vegetation interactions analyzed across all ecoregions are presented through a probability distribution function (PDF). The intensity of these interactions are categorized accordingly to yield "hotspots", where the RTM model fails to retrieve soil moisture. A ecoregion specific scaling function is proposed for these hotspots to rectify RTM for

  6. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  7. Variability in muscle dysmorphia symptoms: the influence of weight training.

    Science.gov (United States)

    Thomas, Liam S; Tod, David A; Lavallee, David E

    2011-03-01

    The purpose of this study was to examine the influence of a weight training session on muscle dysmorphia symptoms in young men who regularly weight trained. Using a within-subjects crossover design, 30 men (mean ± SD; 20.93 ± 2.60 years, 86.87 ± 10.59 kg, and 1.76 ± 0.01 m) were randomly allocated to 1 of 2 groups, and completed the Muscle Dysmorphic Disorder Inventory twice, once each on 2 separate days. One day 1, group 1 completed the questionnaire after a weight training session and group 2 on a rest day. One day 2, group 1 completed the questionnaire on a rest day and group 2 after a weight training session. The mean score for drive for size was significantly higher on a rest day (18.00) than on a training day (15.87; p = 0.001, d = 1.03). The mean score for appearance intolerance was significantly higher on a rest day (10.10) compared with that on a training day (8.97; p = 0.001, d = 0.69). The mean score for functional impairment was significantly higher on a rest day (10.20) than on a training day (9.47; p = 0.037, d = 0.40). These results provide evidence that muscle dysmorphia symptoms have state-like properties and may be influenced by situational variables. The results may indicate that strength and conditioning specialists and mental health professionals need to observe clients over time and take into account environmental variables before making decisions about the presence or absence of the condition.

  8. Influence of radiative irradiation on structure and physical-mechanical properties of polyolefins

    International Nuclear Information System (INIS)

    Kakhramanov, N.T.; Mamedova, N.A.; Gasanova, A.A.

    2014-01-01

    Full text : Today in the world it is synthesized a large number of polymer materials, which in one or another way satisfy the requirements for plastic construction products used in the various branches of industry and agriculture. In this work the main attention is paid to investigation of influence of radiative irradiation dose on structural peculiarities and basic physical-mechanical characteristics of cross-linked polyolefins

  9. [Pain and workplace. Sociodemographic variables influence in therapeutic response and labor productivity].

    Science.gov (United States)

    Vicente-Herrero, M T; López-González, Á A; Ramírez Iñiguez de la Torre, M V; Capdevila García, L M; Terradillos García, M J; Aguilar Jiménez, E

    2016-09-01

    Pain is a major cause of medical consultation. The complexity of managing it is due to its long duration and intensity, and it sometimes requires a combination of multiple drugs. The objective of this study is to assess the use of drugs for pain in workers, the clinical response obtained, its influence on estimating work productivity, its relationship to sociodemographic variables, and the type of drug used. A cross-sectional study on 1,080 workers, aged 18-65 years, during periodic surveys to monitor their health in companies in the service sector in Spain. Treatments used, clinical efficacy, influence on work productivity and sociodemographic variables (age, gender) are evaluated. The Brief Pain Inventory questionnaire, validated for Spain, was used to assess pain, and the SPSS(®) 20.0 package for the statistical analysis. NSAIDs and simple analgesics have higher percentages of improvement in pain (P=.032 and P<.0001, respectively). Men respond better to NSAIDs, and women to simple analgesics. Improved productivity is higher in men than in women (P=.042). No significant differences were observed for age, pain improvement or productivity, except in those over 55 years. The analgesic prescription pain conditions must consider the age and gender of the patient, as well as the type of drug. The choice of drug should be based on the aetiology and aspects unrelated to the clinical variables, such as sociodemographic, work or psychosocial. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  10. The influence of meteorological variables on the development of deep venous thrombosis.

    Science.gov (United States)

    Brown, Helen K; Simpson, A John; Murchison, John T

    2009-10-01

    The influence of weather on deep venous thrombosis (DVT) incidence remains controversial. We aimed to characterize the temporal association between DVT and meteorological variables including atmospheric pressure. Data relating to hospital admissions with DVT in Scotland were collected retrospectively for a 20 year period for which corresponding meteorological recordings were available. Weather variables were calculated as weighted daily averages to adjust for variations in population density. Seasonal variation in DVT and short-term effects of weather variables on the relative risk of developing DVT were assess using Poisson regression modelling. The models allowed for the identification of lag periods between variation in the weather and DVT presentation. A total of 37,336 cases of DVT were recorded. There was significant seasonal variation in DVT with a winter peak. Seasonal variation in wind speed and temperature were significantly associated with seasonal variation in DVT. When studying more immediate meteorological influences, low atmospheric pressure, high wind speed and high rainfall were significantly associated with an increased risk of DVT approximately 9-10 days later. The effect was most strikingly demonstrated for atmospheric pressure, every 10 millibar decrease in pressure being associated with a 2.1% increase in relative risk of DVT. Alterations in weather have a small but significant impact upon the incidence of DVT. DVT is particularly associated with reduction in atmospheric pressure giving weight to the hypothesis that reduced cabin pressure in long haul flights contributes to DVT. These findings have implications for our understanding of the pathogenesis of DVT.

  11. Familial influences on the full range of variability in attention and activity levels during adolescence: A longitudinal twin study.

    Science.gov (United States)

    Peng, Chun-Zi; Grant, Julia D; Heath, Andrew C; Reiersen, Angela M; Mulligan, Richard C; Anokhin, Andrey P

    2016-05-01

    To investigate familial influences on the full range of variability in attention and activity across adolescence, we collected maternal ratings of 339 twin pairs at ages 12, 14, and 16, and estimated the transmitted and new familial influences on attention and activity as measured by the Strengths and Weaknesses of Attention-Deficit/Hyperactivity Disorder Symptoms and Normal Behavior Scale. Familial influences were substantial for both traits across adolescence: genetic influences accounted for 54%-73% (attention) and 31%-73% (activity) of the total variance, and shared environmental influences accounted for 0%-22% of the attention variance and 13%-57% of the activity variance. The longitudinal stability of individual differences in attention and activity was largely accounted for by familial influences transmitted from previous ages. Innovations over adolescence were also partially attributable to familial influences. Studying the full range of variability in attention and activity may facilitate our understanding of attention-deficit/hyperactivity disorder's etiology and intervention.

  12. Increasing work-time influence: consequences for flexibility, variability, regularity and predictability.

    Science.gov (United States)

    Nabe-Nielsen, Kirsten; Garde, Anne Helene; Aust, Birgit; Diderichsen, Finn

    2012-01-01

    This quasi-experimental study investigated how an intervention aiming at increasing eldercare workers' influence on their working hours affected the flexibility, variability, regularity and predictability of the working hours. We used baseline (n = 296) and follow-up (n = 274) questionnaire data and interviews with intervention-group participants (n = 32). The work units in the intervention group designed their own intervention comprising either implementation of computerised self-scheduling (subgroup A), collection of information about the employees' work-time preferences by questionnaires (subgroup B), or discussion of working hours (subgroup C). Only computerised self-scheduling changed the working hours and the way they were planned. These changes implied more flexible but less regular working hours and an experience of less predictability and less continuity in the care of clients and in the co-operation with colleagues. In subgroup B and C, the participants ended up discussing the potential consequences of more work-time influence without actually implementing any changes. Employee work-time influence may buffer the adverse effects of shift work. However, our intervention study suggested that while increasing the individual flexibility, increasing work-time influence may also result in decreased regularity of the working hours and less continuity in the care of clients and co-operation with colleagues.

  13. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Science.gov (United States)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  14. The influence of environmental variables on platelet concentration in horse platelet-rich plasma.

    Science.gov (United States)

    Rinnovati, Riccardo; Romagnoli, Noemi; Gentilini, Fabio; Lambertini, Carlotta; Spadari, Alessandro

    2016-07-04

    Platelet-rich plasma (PRP) commonly refers to blood products which contain a higher platelet (PLT) concentration as compared to normal plasma. Autologous PRP has been shown to be safe and effective in promoting the natural processes of soft tissue healing or reconstruction in humans and horses. Variability in PLT concentration has been observed in practice between PRP preparations from different patients or from the same individual under different conditions. A change in PLT concentration could modify PRP efficacy in routine applications. The aim of this study was to test the influence of environmental, individual and agonistic variables on the PLT concentration of PRP in horses. Six healthy Standardbred mares were exposed to six different variables with a one-week washout period between variables, and PRP was subsequently obtained from each horse. The variables were time of withdrawal during the day (morning/evening), hydration status (overhydration/dehydration) treatment with anti-inflammatory drugs and training periods on a treadmill. The platelet concentration was significantly higher in horses treated with a non-steroidal anti-inflammatory drug (P = 0.03). The leukocyte concentration increased 2-9 fold with respect to whole blood in the PRP which was obtained after exposure to all the variable considered. Environmental variation in platelet concentration should be taken into consideration during PRP preparation.

  15. Design Analysis of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket (VASIMR)

    Science.gov (United States)

    Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.; Cassady, Leonard D.

    2011-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company, is a unique propulsion system that can potentially change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduce propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station. The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster unit has a unique heat rejection requirement of about 27 kW over a firing time of 15 minutes. In order to control rocket core temperatures, peak operating temperatures of about 300 C are expected within the thermal control loop. Design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient based radiator design. The paper will describe radiator design options for the VASIMR thermal control system for use on ISS as well as future exploration vehicles.

  16. Information and energetic approaches to the influence of ionizing radiation on the organism

    International Nuclear Information System (INIS)

    Bulanova, K.Ya.; Lobanok, L.M.; Kundas, S.P.; Konoplya, E.F.

    2005-01-01

    In order to reveal the regularities of interaction of organism with low-intensive ionizing radiation, cybernetic approaches are needed. The living organisms are self-regulating system of a behavioural type. The complexity of the organization is determined by the hierarchy of controlling system. Relation between systems are not of physico-chemical nature; they are based on control, i.e. on information processes. In information system, all the weak influences (including ionizing radiation ) are perceived in the form of signal. Signal information of a natural radiation background is vitally important for organisms as in conversed type, as bioradiation, it is used for management initiation, i. e. self-regulation, self-development and so on. In the case of a superfluous surge of information at man-caused impacts of ionizing radiation (up to 10 Gr) the information system loses its ability to solve information tasks quickly and begins to experience the state of tension. Brought to a very tensed state it is able to lose its balance, its stability, i.e. to die. The signal-information perception of radiation explains the effects of its low dose, non-linear character of dependence of biologic response of irradiated dose, hormesis phenomenon, apoptosis, remote consequences of irradiation, bystander effect and other postradiation effects. (authors)

  17. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  18. Lhermitte's sign: Incidence and treatment variables influencing risk after irradiation of the cervical spinal cord

    International Nuclear Information System (INIS)

    Fein, D.A.; Marcus, R.B. Jr.; Parsons, J.T.; Mendenhall, W.M.; Million, R.R.

    1993-01-01

    Lhermitte's sign is a relatively infrequent sequela of irradiation of the cervical spinal cord. In this study, the authors sought to determine whether various treatment parameters influenced the likelihood of developing Lhermitte's sign. Between October 1964 and December 1987, 2901 patients with malignancies of the upper respiratory tract were treated at the University of Florida. The dose of radiation to the cervical spinal cord was calculated for those patients who had a minimum 1-year follow-up. A total of 1112 patients who received a minimum of 3000 cGy to at least 2 cm of cervical spinal cord were included in this analysis. Forty patients (3.6%) developed Lhermitte's sign. The mean time to development of Lhermitte's sign after irradiation was 3 months, and the mean duration of symptoms was 6 months. No patient with Lhermitte's sign developed transverse myelitis. Several variables were examined in a univariate analysis, including total dose to the cervical spinal cord, length of cervical spinal cord irradiated, dose per fraction, continuous-course compared with split-course radiotherapy, and once-daily compared with twice-daily irradiation. Only two variables proved to be significant. Six (8%) of 75 patients who received > 5000 cGy to the cervical spinal cord developed Lhermitte's sign compared with 34 (3.3%) of 1037 patients who received < 5000 cGy (p = .04). For patients treated with once-daily fractionation, 28 (3.4%) of 821 patients who received < 200 cGy per fraction developed Lhermitte's sign compared with 6 (10%) of 58 patients who received ≥ 200 cGy (p = .02). An increased risk of developing Lhermitte's sign was demonstrated for patients who received either ≥ 200 cGy per fraction (one fraction per day) or ≥ 5000 cGy total dose to the cervical spinal cord. 29 refs., 1 fig., 5 tabs

  19. Environmental radiation monitoring results for the period 1984-95 in and around Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    Basu, A.S.; Khasnabis, B.K.; Bar, M.

    1997-04-01

    Variable Energy Cyclotron (VEC) located at Bidhan Nagar, Calcutta is being used for accelerating charged particles and does not contribute to any radioactive releases to the environment. However, it being a nuclear facility, the area surrounding the facility is being routinely monitored for background radiation exposure using thermoluminescent dosimeters. This report gives the summary of the results of the survey carried out over a period of 12 years, 1984-1995. It is observed that the general radiation background in areas far removed from the facility (up to 25 km) is higher than that existing within the boundaries of VEC centre (160±21 mR/year as against 121±20 mR/year)

  20. Gamma radiation influence on Cladonia substellata (lichen) and its effects on limestone rocks

    International Nuclear Information System (INIS)

    Silva, Helena P. de B.; Colaco, Waldeciro; Pereira, Eugenia C.; Silva, Nicacio H. da

    2009-01-01

    The lichens play an important role in decomposition of the rocky substrate, through the chemical weathering of their substances. This work aimed to determine the influence of gamma Ray on usnic acid production of Cladonia substellata and the influence of chelates formation in limestone rocks. Samples with 2.5 g of C. substellata were packed on paper envelopes for irradiation submission to gamma on a Co-60 source. They received 10 different doses: 5, 7, 10, 15, 20, 30, 40, 50, 60 and 80 Gy. Lichen irradiation was conducted on the gamma irradiator (Co-60), and packed over powdered limestone. Lichen samples were analyzed by High Performance Liquid Chromatography (HPLC) and rocky samples by X-Ray Diffractometry. The X-ray diffractogram obtained from the analysis of limestone not subjected to the action of lichen - control sample was compared with limestone subjected to C. substellata irradiated at doses 10, 30 and 80Gy. Increased production of the usnic acid and changes on the rocky samples were noted. We realized that C. substellata increments the usnic acid biosynthesis as the gamma radiation dose is increased, but there is a limit to it. The chelating effect of the usnic acid on limestone was proportional to the produced amount of the substance, which could be extrapolated to natural conditions, where excessive radiation may influence pedogenesis and ecological succession. (author)

  1. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  2. The influence of radiation on the enterotoxin and thermoresistant deoxyribo-nuclease production by Staphylococcus sp

    International Nuclear Information System (INIS)

    Szulc, M.; Pliszka, A.; Peconek, J.

    1980-01-01

    Six strains of Staph. aureus present in the environment with and without protein were exposed to X rays in the doses range from 1 to 400 Gy. The production of enterotoxin and thermoresistant deoxyribonuclease by enterotoxic strains No 262 and 100 was determined. All the strains showed similar radiosensitivity to X rays. About 1 per cent of protein in the environment exposed to radiation increased the resistance of Staphylococcus strains. The doses of radiation from 1 to 400 Gy did not influence the enterotoxin A and B production by bacteria multiplied from those which had survived the radiation. The irradiation of the strains present in the environment without protein brought about a temporary inhibition of thermoresistant deoxyribonuclease production. (author)

  3. Influence of ionizing radiation on human body

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2016-06-01

    Full Text Available This article describes positive and negative aspects of ionizing radiation and its effects on human body. Being a part of various medical procedures in medicine, ionising radiation has become an important aspect for both medical practitioners and patients. Commonly used in treatment, diagnostics and interventional radiology, its medical usage follows numerous rules, designed to reduce excessive exposure to ionizing radiation. Its widespread use makes it extremely important to research and confirm effects of various doses of radiation on patients of all ages. Two scientific theories, explaining radiation effects on human organism, stand in contrast: commonly accepted LNT-hypothesis and yet to be proven hormesis theory. Despite the fact that the current radiation protection standards are based on the linear theory (LNT-hypothesis, the hormesis theory arouses more and more interest, and numerous attempts are made to prove its validity. Further research expanding the knowledge on radiation hormesis can change the face of the future. Perhaps such researches will open up new possibilities for the use of ionizing radiation, as well as enable the calculation of the optimal and personalised radiation dose for each patient, allowing us to find a new “golden mean”. The authors therefore are careful and believe that these methods have a large future, primarily patient’s good should however be kept in mind.

  4. Progression paths in children's problem solving: The influence of dynamic testing, initial variability, and working memory.

    Science.gov (United States)

    Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G

    2017-01-01

    The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tropical influence on Euro-Asian autumn rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, A. [University of Maryland, College Park, MD (United States); ENEA, Rome (Italy); Ballabrera-Poy, J. [University of Maryland, ESSIC, College Park, MD (United States); Zeng, N. [University of Maryland, ESSIC, College Park, MD (United States); University of Maryland, Department of Meteorology,, College Park, MD (United States)

    2005-04-01

    The connection between autumn rainfall variability in the Euro-Asian domain and tropical climate is documented using state-of-the-art global observational datasets and re-analyses. Results suggest a robust statistical relationship between the El Nino Southern Oscillation (ENSO) and autumn rainfall in parts of southwest Europe, northern Africa and southwest Asia. The correlation between area-mean anomalies over this region (P{sub ea}) and the NINO3.4 index is 0.68, stationary over the last 50 years. Global ENSO-like tropical climate anomalies are observed in conjunction with P{sub ea} anomalies confirming the relationship found with the NINO3.4 index. Overall, the connection with Indo-Pacific variability is stronger than that with the eastern Pacific.While rainfall anomalies in southwest Europe and southwest Asia appear to largely co-vary as one pattern under the influence of ENSO, our results suggest that different mechanisms may be contributing to the observed anomalies. In the North Atlantic/European region, it is speculated that while a PNA-like mode maybe the prevailing teleconnection mechanism for high P{sub ea}, for low P{sub ea} tropical Atlantic ENSO related SST anomalies may be playing a more relevant role forcing northeastward propagating Rossby waves. Over southwest Asia, a more direct connection to the Indo-Pacific region is suggested by the upper air anomaly observed over southern Asia, possibly the Rossby wave response to enhanced heating in the Indian Ocean. (orig.)

  6. Spectroscopic analysis of Cepheid variables with 2D radiation-hydrodynamic simulations

    Science.gov (United States)

    Vasilyev, Valeriy

    2018-06-01

    The analysis of chemical enrichment history of dwarf galaxies allows to derive constraints on their formation and evolution. In this context, Cepheids play a very important role, as these periodically variable stars provide a means to obtain accurate distances. Besides, chemical composition of Cepheids can provide a strong constraint on the chemical evolution of the system. Standard spectroscopic analysis of Cepheids is based on using one-dimensional (1D) hydrostatic model atmospheres, with convection parametrised using the mixing-length theory. However, this quasi-static approach has theoretically not been validated. In my talk, I will discuss the validity of the quasi-static approximation in spectroscopy of short-periodic Cepheids. I will show the results obtained using a 2D time-dependent envelope model of a pulsating star computed with the radiation-hydrodynamics code CO5BOLD. I will then describe the impact of new models on the spectroscopic diagnostic of the effective temperature, surface gravity, microturbulent velocity, and metallicity. One of the interesting findings of my work is that 1D model atmospheres provide unbiased estimates of stellar parameters and abundances of Cepheid variables for certain phases of their pulsations. Convective inhomogeneities, however, also introduce biases. I will then discuss how these results can be used in a wider parameter space of pulsating stars and present an outlook for the future studies.

  7. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    Science.gov (United States)

    Demarco, R.; Nmira, F.; Consalvi, J. L.

    2013-05-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK

  8. Crosslinking of oriented polyethylene by electron beam radiation. Influence of morphology induced by drawing

    International Nuclear Information System (INIS)

    Aerle, N.A.J.M. van; Crevecoeur, G.; Lemstra, P.J.

    1988-01-01

    The influence of drawing on the crosslinking efficiency for electron beam radiation is reported for solution-crystallized ultra-high molecular weight polyethylene. A maximum in crosslinking efficiency is found at a draw ratio of approximately five, indicating an optimum morphology for inducing crosslinks during the hot-drawing process. (author)

  9. Multi-taxa integrated landscape genetics for zoonotic infectious diseases: deciphering variables influencing disease emergence.

    Science.gov (United States)

    Leo, Sarah S T; Gonzalez, Andrew; Millien, Virginie

    2016-05-01

    Zoonotic disease transmission systems involve sets of species interacting with each other and their environment. This complexity impedes development of disease monitoring and control programs that require reliable identification of spatial and biotic variables and mechanisms facilitating disease emergence. To overcome this difficulty, we propose a framework that simultaneously examines all species involved in disease emergence by integrating concepts and methods from population genetics, landscape ecology, and spatial statistics. Multi-taxa integrated landscape genetics (MTILG) can reveal how interspecific interactions and landscape variables influence disease emergence patterns. We test the potential of our MTILG-based framework by modelling the emergence of a disease system across multiple species dispersal, interspecific interaction, and landscape scenarios. Our simulations showed that both interspecific-dependent dispersal patterns and landscape characteristics significantly influenced disease spread. Using our framework, we were able to detect statistically similar inter-population genetic differences and highly correlated spatial genetic patterns that imply species-dependent dispersal. Additionally, species that were assigned coupled-dispersal patterns were affected to the same degree by similar landscape variables. This study underlines the importance of an integrated approach to investigating emergence of disease systems. MTILG is a robust approach for such studies and can identify potential avenues for targeted disease management strategies.

  10. The Influence of ENSO to the Rainfall Variability in North Sumatra Province

    Science.gov (United States)

    Irwandi, H.; Pusparini, N.; Ariantono, J. Y.; Kurniawan, R.; Tari, C. A.; Sudrajat, A.

    2018-04-01

    The El Niño Southern Oscillation (ENSO) is a global phenomenon that affects the variability of rainfall in North Sumatra. The influence of ENSO will be different for each region. This review will analyse the influence of ENSO activity on seasonal and annual rainfall variability. In this research, North Sumatra Province will be divided into 4 (four) regions based on topographical conditions, such as: East Coast (EC), East Slope (ES), Mountains (MT), and West Coast (WC). The method used was statistical and descriptive analysis. Data used in this research were rainfall data from 15 stations / climate observation posts which spread in North Sumatera region and also anomaly data of Nino 3.4 region from period 1981-2016. The results showed that the active El Niño had an effect on the decreasing the rainfall during the period of DJF, JJA and SON in East Coast, East Slope, and Mountains with the decreasing of average percentage of annual rainfall up to 7%. On the contrary, the active La Nina had an effect on the addition of rainfall during the period DJF and JJA in the East Coast and Mountains with the increasing of average percentage of annual rainfall up to 6%.

  11. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  12. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density

    Directory of Open Access Journals (Sweden)

    C. Berndt

    2018-02-01

    New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.

  13. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  14. Opportunities for scientists to influence policy: When does radiation metrology matter in development of national policy?

    International Nuclear Information System (INIS)

    Coursey, Bert M.

    2014-01-01

    Accurate measurements of radiation and radioactivity rarely rise to the level of national policy. The things that matter most to ordinary citizens do not normally include questions of science and technology. Citizens are more often concerned with issues close to home relating to commerce, health, safety, security and the environment. When questions of confidence in measurements arise, they are first directed to the ministry that has responsibilities in that area. When the required uncertainty in field measurements challenges the capability of the regulatory authorities, the National Metrology Institute may be asked to develop transfer standards to enhance the capabilities of the ministry with the mission lead. In this paper, we will consider eight instances over the past nine decades in which questions in radiation and radionuclide metrology in the US did rise to the level that they influenced decisions on national policy. These eight examples share some common threads. Radioactivity and ionizing radiation are useful tools in many disciplines, but can often represent potential or perceived threats to health and public safety. When unforeseen applications of radiation arise, or when environmental radioactivity from natural and man-made sources presents a possible health hazard, the radiation metrologists may be called upon to provide the technical underpinning for policy development. - Highlights: • We review instances in which accurate measurements of radiation influence policy. • Heads of state rely on senior science advisors to frame policy decisions. • Metrologists support federal agencies that have mission leads in different fields. • Metrologists are called on when other agencies lack requisite expertise. • Radionuclide metrologists must recognize and accept challenges

  15. VARIABLES THAT INFLUENCE STUDENTS’ CHOICE OF DISTANCE EDUCATION LATO SENSU GRADUATE BUSINESS PROGRAMS

    Directory of Open Access Journals (Sweden)

    Eduardo Mendes Nascimento

    2014-03-01

    Full Text Available Based on Scriven’s User-Focused Evaluation Theory, the general objective in this study was to identify and analyze the degree of importance Brazilian students attribute to the variables that influence them when choosing distance education lato sensu graduate business programs. The research is classified as descriptive and an electronic questionnaire was used to survey the data, involving 354 students from distance education lato sensu graduate business programs distributed across different Brazilian locations. The questionnaire included 16 variables, which the students were expected to score from 0 to 10. The results indicated that 04 variables obtained a mean score superior to 9, and that flexibility was the main factor the respondents considered in the choice of a distance education program. This evidences that the possibility to structure the program according to their available time is fundamental for the students. Nevertheless, having a trained teaching staff (second most influential variable and a curriculum appropriate to their pedagogical needs (fourth are also essential characteristics. Finally, the respondents indicated the cost as the third most important variable. Some authors even consider it decisive in the students’ choice as distance education programs are frequently cheaper than in-class programs. In addition, it was verified that women score the investigated internal variables higher than men. In addition, the location of the support hub appeared as a determinant variable in the choice of the program.

  16. Influence of various types of ionizing radiations on the properties of rubber based on SKN-18

    International Nuclear Information System (INIS)

    Smirnova, T.N.; Ol'khov, Yu.A.; Briskman, B.A.; Kotova, N.F.; Iskakov, L.I.; Milinchuk, V.K.; Bukanova, N.N.

    1993-01-01

    The influence of the γ radiation of 60 Co, neutrons of a nuclear reactor, and 100-MeV protons on the concentration of internodal chains in a network, the vitrification point of polar and nonpolar blocks of the rubber, as well as gas evolution and the physicomechanical characteristics of the rubber based on SKN-18, was investigated. Specific features were detected in the influence of the type of ionizing radiation, manifested most strongly in the polar block of the rubber. In the case of neutron irradiation the ratio of the rates of cross-linking and destruction is changed in the direction of an increase in the rate of cross-linking. During γ irradiation under vacuum there is a topological open-quotes condensationclose quotes of the chains of the polar block

  17. Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season.

    Science.gov (United States)

    Marin, Alicia; Ferreres, Federico; Barberá, Gonzalo G; Gil, María I

    2015-02-18

    The lack of consistency in homogeneous color throughout the season of pigmented baby leaf lettuce is a problem for growers because of the rejection of the product and consequently the economic loss. Changes in color as well as individual and total phenolic composition and content as a response to the climatic variables were studied following the analysis of three pigmented baby leaf lettuces over 16 consecutive weeks from February to May, which corresponded to the most important production season in winter in Europe. Color and phenolic content were significantly (P ≤ 0.001) affected by cultivar, harvest week, and climatic variables that occurred in the last week before harvest. Radiation and temperature showed positive correlations with the content of phenolic acids and flavonoids that increased in all three cultivars as the season progressed. Cyanidin-3-O-(6''-O-malonyl)-glucoside content showed positive correlations with temperature and radiation but only in Batavia cultivars whereas in red oak leaf the correlation was with cold temperatures. Regarding hue angle, a positive correlation was shown with the number of hours at temperatures lower than 7 °C. A relationship between hue angle and the content of anthocyanins was not possible to establish. These results suggest that the colorimetric measurement of color cannot be used as a good indicator of anthocyanin accumulation because other pigments such as chlorophylls and carotenoids may contribute as well to the leaf color of pigmented lettuce. This study provides information about the impact of genotype and environment interactions on the biosynthesis of phenolic compounds to explain the variability in the leaf color and product appearance.

  18. The cross-linking influence of electromagnetic radiation on water-soluble polyacrylan compositions with biopolymers

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2009-01-01

    Full Text Available The results of examinations of the cross-linking influence of electromagnetic radiation - in a microwave range – on polyacrylancompositions with biopolymers, are presented in the hereby paper. The cross-linking process of the tested compositions was determined on the basis of the FT-IR spectroscopic methods. It was shown that microwave operations can lead to the formation of new cross-linkedstructures with strong covalent bonds. The adsorption process and formation of active centres in polymer molecules as well as in highsilica sand were found due to microwave radiations. In this process hydroxyl groups (-OH - present in a polymer - and silane groups (Si- O-H - present in a matrix - are mainly taking part. Spectroscopic and strength tests performed for the system: biopolymer binding agent – matrix indicate that the microwave radiation can be applied for hardening moulding sands with biopolymer binders.

  19. Procedure to evaluate the ionizing radiation influence over LED and magnetic induction lamps

    International Nuclear Information System (INIS)

    Oliveira, Otavio Luis de; Menzel, Silvio Carlos; Ribas, Jacinto Oliveira

    2015-01-01

    The goal of this paper is to present a methodology to evaluate the ionizing radiation influence over Lighting Emitting Diode (LED) and Magnetic Induction (MI) lamps as they use a lot of electronic in their power supply. Considering they have a huge lifetime it is interesting to apply this technology into environments under ionizing radiation, such as a nuclear facility. Thus, it is possible to increase the period between two consecutive maintenance, reduce the repair and global maintenance costs and reduce the operational personnel exposure to ionizing radiation. In this context it is going to be presented a scheme to select different LED and MI lamps available in the Brazilian market, a methodology to irradiate several lamp samples according various radiation levels that can be found in the facilities and the electrical and photometric evaluation to be performed. Considering this methodology it will be possible to analyze the lamps capacity to withstand ionizing radiation, under regular operating conditions of the facilities and its effects in the performance and lifetime of the selected lamps. Thus, the procedures suggested in this work can be used as a guide to perform experiments and analysis to find specific lamps that can reduce the global maintenance costs and the personnel exposure. Hereafter, several lamps are going to be acquired and the tests performed, according the procedures here described. (author)

  20. Procedure to evaluate the ionizing radiation influence over LED and magnetic induction lamps

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Otavio Luis de; Menzel, Silvio Carlos, E-mail: otavioluis@ipen.br, E-mail: scmenzel@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CEN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Ribas, Jacinto Oliveira, E-mail: jacinto@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Gerencia de Eletrica e Instrumentacao

    2015-07-01

    The goal of this paper is to present a methodology to evaluate the ionizing radiation influence over Lighting Emitting Diode (LED) and Magnetic Induction (MI) lamps as they use a lot of electronic in their power supply. Considering they have a huge lifetime it is interesting to apply this technology into environments under ionizing radiation, such as a nuclear facility. Thus, it is possible to increase the period between two consecutive maintenance, reduce the repair and global maintenance costs and reduce the operational personnel exposure to ionizing radiation. In this context it is going to be presented a scheme to select different LED and MI lamps available in the Brazilian market, a methodology to irradiate several lamp samples according various radiation levels that can be found in the facilities and the electrical and photometric evaluation to be performed. Considering this methodology it will be possible to analyze the lamps capacity to withstand ionizing radiation, under regular operating conditions of the facilities and its effects in the performance and lifetime of the selected lamps. Thus, the procedures suggested in this work can be used as a guide to perform experiments and analysis to find specific lamps that can reduce the global maintenance costs and the personnel exposure. Hereafter, several lamps are going to be acquired and the tests performed, according the procedures here described. (author)

  1. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  2. The influence of non-radiation induced ESR background signal from paraffin-alanine probes for dosimetry in the radiotherapy dose range

    International Nuclear Information System (INIS)

    Wieser, A.; Lettau, C.; Fill, U.; Regulla, D.F.

    1993-01-01

    The yield of radicals induced by ionizing radiation in the amino acid alanine and its quantification by ESR spectroscopy has proven excellent reproducibility. Those radicals trapped in the crystal lattice are prevented from recombination providing a thermally very stable system. This allows alanine to be applied as a transfer dosemeter. With paraffin-alanine probes ESR dosimetry can be performed with a standard deviation of ± 0.5% in the dose range from 20 Gy up to 100 kGy. At 1 Gy dose level the error increases to ± 6%. This dose level is three orders of magnitude higher than the calculated detection threshold for alanine with modern X-band ESR spectrometers. It was found that the poor standard deviation at the 1 Gy dose level, is not mainly produced by a bad signal-to-noise ratio but by a variable non-radiation induced ESR background signal from the alanine probes within a batch. In the present study the main sources of error for ESR dosimetry in the dose range below 20 Gy were analyzed. The influences of the production process, UV light and humidity upon the ESR background signal from paraffin-alanine probes were investigated. Measurements are shown indicating a second stable structure of the alanine radical at room temperature. (author)

  3. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  4. Radiation therapy after radical prostatectomy for prostate cancer: evaluation of complications and influence of radiation timing on outcomes in a large, population-based cohort.

    Directory of Open Access Journals (Sweden)

    Sarah E Hegarty

    Full Text Available To evaluate the influence of timing of salvage and adjuvant radiation therapy on outcomes after prostatectomy for prostate cancer.Using the Surveillance, Epidemiology, and End Results-Medicare linked database, we identified prostate cancer patients diagnosed during 1995-2007 who had one or more adverse pathological features after prostatectomy. The final cohort of 6,137 eligible patients included men who received prostatectomy alone (n = 4,509 or with adjuvant (n = 894 or salvage (n = 734 radiation therapy. Primary outcomes were genitourinary, gastrointestinal, and erectile dysfunction events and survival after treatment(s.Radiation therapy after prostatectomy was associated with higher rates of gastrointestinal and genitourinary events, but not erectile dysfunction. In adjusted models, earlier treatment with adjuvant radiation therapy was not associated with increased rates of genitourinary or erectile dysfunction events compared to delayed salvage radiation therapy. Early adjuvant radiation therapy was associated with lower rates of gastrointestinal events that salvage radiation therapy, with hazard ratios of 0.80 (95% CI, 0.67-0.95 for procedure-defined and 0.70 (95% CI, 0.59, 0.83 for diagnosis-defined events. There was no significant difference between ART and non-ART groups (SRT or RP alone for overall survival (HR = 1.13 95% CI = (0.96, 1.34 p = 0.148.Radiation therapy after prostatectomy is associated with increased rates of gastrointestinal and genitourinary events. However, earlier radiation therapy is not associated with higher rates of gastrointestinal, genitourinary or sexual events. These findings oppose the conventional belief that delaying radiation therapy reduces the risk of radiation-related complications.

  5. Influence of winter NAO pattern on variable renewable energies potential in Europe over the 20th century

    Science.gov (United States)

    François, Baptiste; Raynaud, Damien; Hingray, Benoit; Creutin, Jean-Dominique

    2017-04-01

    Integration of Variable Renewable Energy (VRE) sources in the electricity system is a challenge because of temporal and spatial fluctuations of their power generation resulting from their driving weather variables (i.e. solar radiation wind speed, precipitation, and temperature). Very few attention was paid to low frequency variability (i.e. from annual to decades) even though it may have significant impact on energy system and energy market Following the current increase in electricity supplied by VRE generation, one could ask the question about the risk of ending up in a situation in which the level of production of one or more VRE is exceptionally low or exceptionally high for a long period of time and/or over a large area. What would be the risk for an investor if the return on investment has been calculated on a high energy production period? What would be the cost in term of carbon emission whether the system manager needs to turn on coal power plant to satisfy the demand? Such dramatic events would definitely impact future stakeholder decision to invest in a particular energy source or another. Weather low frequency variability is mainly governed by large-scale teleconnection patterns impacting the climate at global scale such as El Niño - Southern Oscillation (ENSO) in the tropics and in North America or the North Atlantic Oscillation (hereafter, NAO) in North America and Europe. Teleconnection pattern's influence on weather variability cascades to VRE variability and ends up by impacting electricity system. The aim of this study is to analysis the impact of the NAO on VRE generation in Europe during the winter season. The analysis is carried out over the twentieth century (i.e. from 1900 to 2010), in order to take into account climate low frequency variability, and for a set of 12 regions covering a large range of climates in Europe. Weather variable time series are obtained by using the ERA20C reanalysis and the SCAMP model (Sequential Constructive

  6. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    International Nuclear Information System (INIS)

    Demarco, R.; Nmira, F.; Consalvi, J.L.

    2013-01-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C 1 –C 3 hydrocarbon–air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated

  7. The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands.

    Science.gov (United States)

    Sullivan, Maura E; Booth, Robert K

    2011-07-01

    Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.

  8. Influence of radiation-damages on parameters of lattice oscillations in crystalline and vitreous SiO2

    International Nuclear Information System (INIS)

    Abdukadyrova, I.Kh.

    2008-01-01

    Using IR reflection spectroscopy, the influence of radiation-induced disturbances on a number of parameters of lattice oscillations in two SiO 2 modifications was investigated. Radiation kinetics of changes in spectral characteristics of fundamental oscillations in SiO 2 crystalline and glassy states was determined. Dose dependences of both reflectivity and degenerate mode vibrational frequency were found to show minima whose locations were governed by a type of a sample. Under higher doses of neutron radiation (10 21 cm -2 ), certain characteristics of bands were observed to be of the same values for the both materials modified. The features of radiation kinetics were found for dynamic parameters of the samples. It was deduced that specific character of radiation-induced changes observed in spectral and dynamic parameters of oscillations in the region of degenerate modes was due to both the accumulation of radiation damages and a change in the force field surrounding bridge-type bonds which was related with the change in the SiO 2 structure. (authors)

  9. Reduction of radiation biases by incorporating the missing cloud variability by means of downscaling techniques: a study using the 3-D MoCaRT model

    Directory of Open Access Journals (Sweden)

    S. Gimeno García

    2012-09-01

    Full Text Available Handling complexity to the smallest detail in atmospheric radiative transfer models is unfeasible in practice. On the one hand, the properties of the interacting medium, i.e., the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, especially for climate modelling and operational remote-sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications.

    Three-dimensional radiation models can deal with complex scenarios providing an accurate solution to the radiative transfer. In contrast, one-dimensional models are computationally more efficient, but introduce biases to the radiation results.

    With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a higher resolution. Performing the radiative transfer within the cloud fields at higher spatial resolution noticeably helps to improve the radiation results.

    We present a new Monte Carlo model, MoCaRT, that computes the radiative transfer in three-dimensional inhomogeneous atmospheres. The MoCaRT model is validated by comparison with the consensus results of the Intercomparison of Three-Dimensional Radiation Codes (I3RC project.

    In the framework of this paper, we aim at characterising cloud heterogeneity effects on radiances and broadband fluxes, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias. First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic

  10. Factors influencing incidence of acute grade 2 morbidity in conformal and standard radiation treatment of prostate cancer

    International Nuclear Information System (INIS)

    Hanks, Gerald E.; Schultheiss, Timothy E.; Hunt, Margie A.; Epstein, Barry

    1995-01-01

    Purpose: The fundament hypothesis of conformal radiation therapy is that tumor control can be increased by using conformal treatment techniques that allow a higher tumor dose while maintaining an acceptable level of complications. To test this hypothesis, it is necessary first to estimate the incidence of morbidity for both standard and conformal fields. In this study, we examine factors that influence the incidence of acute grade 2 morbidity in patients treated with conformal and standard radiation treatment for prostate cancer. Methods and Materials: Two hundred and forty-seven consecutive patients treated with conformal technique are combined with and compared to 162 consecutive patients treated with standard techniques. The conformal technique includes special immobilization by a cast, careful identification of the target volume in three dimensions, localization of the inferior border of the prostate using the retrograde urethrogram, and individually shaped portals that conform to the Planning Target Volume (PTV). Univariate analysis compares differences in the incidence of RTOG-EORTC grade two acute morbidity by technique, T stage, age, irradiated volume, and dose. Multivariate logistic regression includes these same variables. Results: In nearly all categories, the conformal treatment group experienced significantly fewer acute grade 2 complications than the standard treatment group. Only volume (prostate ± whole pelvis) and technique (conformal vs. standard) were significantly related to incidence of morbidity on multivariate analysis. When dose is treated as a continuous variable (rather than being dichotomized into two levels), a trend is observed on multivariate analysis, but it does not reach significant levels. The incidence of acute grade 2 morbidity in patients 65 years or older is significantly reduced by use of the conformal technique. Conclusion: The conformal technique is associated with fewer grade 2 acute toxicities for all patients. This

  11. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    Science.gov (United States)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  12. Physical activity levels of community-dwelling older adults are influenced by winter weather variables.

    Science.gov (United States)

    Jones, G R; Brandon, C; Gill, D P

    2017-07-01

    Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  14. Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.

    2016-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the

  15. Influence of transfer gate design and bias on the radiation hardness of pinned photodiode CMOS image sensors

    International Nuclear Information System (INIS)

    Goiffon, V.; Estribeau, M.; Cervantes, P.; Molina, R.; Magnan, P.; Gaillardin, M.

    2014-01-01

    The effects of Cobalt 60 gamma-ray irradiation on pinned photodiode (PPD) CMOS image sensors (CIS) are investigated by comparing the total ionizing dose (TID) response of several transfer gate (TG) and PPD designs manufactured using a 180 nm CIS process. The TID induced variations of charge transfer efficiency (CTE), pinning voltage, equilibrium full well capacity (EFWC), full well capacity (FWC) and dark current measured on the different pixel designs lead to the conclusion that only three degradation sources are responsible for all the observed radiation effects: the pre-metal dielectric (PMD) positive trapped charge, the TG sidewall spacer positive trapped charge and, with less influence, the TG channel shallow trench isolation (STI) trapped charge. The different FWC evolutions with TID presented here are in very good agreement with a recently proposed analytical model. This work also demonstrates that the peripheral STI is not responsible for the observed degradations and thus that the enclosed layout TG design does not improve the radiation hardness of PPD CIS. The results of this study also lead to the conclusion that the TG OFF voltage bias during irradiation has no influence on the radiation effects. Alternative design and process solutions to improve the radiation hardness of PPD CIS are discussed. (authors)

  16. What variables influence the ability of an AFO to improve function and when are they indicated?

    Science.gov (United States)

    Malas, Bryan S

    2011-05-01

    Children with spina bifida often present with functional deficits of the lower limb associated with neurosegmental lesion levels and require orthotic management. The most used orthosis for children with spina bifida is the ankle-foot orthosis (AFO). The AFO improves ambulation and reduces energy cost while walking. Despite the apparent benefits of using an AFO, limited evidence documents the influence of factors predicting the ability of an AFO to improve function and when they are indicated. These variables include AFO design, footwear, AFO-footwear combination, and data acquisition. When these variables are not adequately considered in clinical decision-making, there is a risk the AFO will be abandoned prematurely or the patient's stability, function, and safety compromised. The purposes of this study are to (1) describe the functional deficits based on lesion levels; (2) identify and describe variables that influence the ability of an AFO to control deformities; and (3) describe what variables are indicated for the AFO to control knee flexion during stance, hyperpronation, and valgus stress at the knee. A selective literature review was undertaken searching MEDLINE and Cochrane databases using terms related to "orthosis" and "spina bifida." Based on previous studies and gait analysis data, suggestions can be made regarding material selection/geometric configuration, sagittal alignment, footplate length, and trim lines of an AFO for reducing knee flexion, hyperpronation, and valgus stress at the knee. Further research is required to determine what variables allow an AFO to improve function.

  17. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China.

    Science.gov (United States)

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  18. Locoregional Tumor Progression After Radiation Therapy Influences Overall Survival in Pediatric Patients With Neuroblastoma

    International Nuclear Information System (INIS)

    Pai Panandiker, Atmaram S.; McGregor, Lisa; Krasin, Matthew J.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2010-01-01

    Purpose: There is renewed attention to primary site irradiation and local control for patients with high-risk neuroblastoma (NB). We conducted a retrospective review to identify factors that might predict for locoregional tumor control and its impact on overall survival. Methods and Materials: Between July 2000 through August 2006, a total of 44 pediatric patients with NB received radiation therapy (RT) with curative intent using computed tomography (CT)-based treatment planning. The median age was 3.4 years and the median cumulative dose was 23.4 Gy. Overall survival and locoregional tumor control were measured from the start of RT to the date of death or event as determined by CT/magnetic resonance imaging/meta-iodobenzylguanidine. The influence of age at irradiation, gender, race, cumulative radiation dose, International Neuroblastoma Staging System stage, treatment protocol and resection status was determined with respect to locoregional tumor control. Results: With a median follow-up of 34 months ± 21 months, locoregional tumor progression was observed in 11 (25%) and was evenly divided between primary site and adjacent nodal/visceral site failure. The influence of locoregional control reached borderline statistical significance (p = 0.06). Age (p = 0.5), dose (p = 0.6), resection status (p = 0.7), and International Neuroblastoma Staging System stage (p = 0.08) did not influence overall survival. Conclusions: Overall survival in high-risk neuroblastoma is influenced by locoregional tumor control. Despite CT-based planning, progression in adjacent nodal/visceral sites appears to be common; this requires further investigation regarding target volume definitions, dose, and the effects of systemic therapy.

  19. The variable contact pressure influence on the tensile force in the process of strip sliding in the flat die in ironing

    Directory of Open Access Journals (Sweden)

    Milan Djordjević

    2016-07-01

    Full Text Available Possibilities to influence the deep drawing process during its duration are limited and generally consist of influences at the flange of the thin sheet, mainly by the contact pressure (the blank holding force. The common characteristics of previous investigations were setting of the fixed values of the blank holding force or the holder's pressure within the ironing tool. The objective of this investigation was the continuous setting of the variable pressure during the sliding process, via the preset functions, in order to analyze the variable pressure influence on the ironing process. This is why an experimental computerized device was designed and constructed for analyzing the influence of the variable contact pressure on the sliding process of the model strip during the flat-die test. The multi-parameter experiment was conducted; various materials of the tested pieces were applied (primarily thin sheet made of Al alloys and low-carbon steels sheet, with and without coating; different versions of the tool's contact elements were used, with various friction regimes and influential parameters (variable contact pressure during the sliding process, etc.. This experimental device practically represents a simulator for realization and studying of the physical model of an important segment of the ironing process in the completely realistic conditions (materials, tools, etc.. The aim was to find the optimal combination of the variable contact pressure and the tribological parameters, so that the punch force, as one of the process output parameters, would have the minimal value, as well as to avoid the undesired effects during the forming (difficult sliding of the flange, appearance of thin sheet's wrinkling, structural destruction, etc.. Understanding the mutual dependence of the holder's variable pressure and other influences should enable improvement of the ironing process control and should contribute to better understanding of the phenomena

  20. Influence of density on radiation-chemical yield of molecular hydrogen formed at radiolysis of aqueous solution of NaOH

    International Nuclear Information System (INIS)

    Jafarov, Y.D.; Hajiyeva, S.R.; Ramazanova, N.K.; Aliyev, S.M.; Alasgarov, A.M.

    2014-01-01

    Full text : In atom and nuclear energy the specialists knowledge about radiation-chemical yield of the initial products formed under the influence of ionizing rays on water is of great importance from the point of security. The radiation-chemical yields of molecular hydrogen have been defined according to the graph and the obtained results

  1. Radiation Exposure in Endovascular Infra-Renal Aortic Aneurysm Repair and Factors that Influence It

    Directory of Open Access Journals (Sweden)

    Rui Machado

    Full Text Available Abstract Objective: The endovascular repair of aortic abdominal aneurysms exposes the patients and surgical team to ionizing radiation with risk of direct tissue damage and induction of gene mutation. This study aims to describe our standard of radiation exposure in endovascular aortic aneurysm repair and the factors that influence it. Methods: Retrospective analysis of a prospective database of patients with abdominal infra-renal aortic aneurysms submitted to endovascular repair. This study evaluated the radiation doses (dose area product (DAP, fluoroscopy durations and their relationships to the patients, aneurysms, and stent-graft characteristics. Results: This study included 127 patients with a mean age of 73 years. The mean DAP was 4.8 mGy.m2, and the fluoroscopy time was 21.8 minutes. Aortic bilateral iliac aneurysms, higher body mass index, aneurysms with diameters larger than 60 mm, necks with diameters larger than 28 mm, common iliac arteries with diameters larger than 20 mm, and neck angulations superior to 50 degrees were associated with an increased radiation dose. The number of anatomic risk factors present was associated with increased radiation exposure and fluoroscopy time, regardless of the anatomical risk factors. Conclusion: The radiation exposure during endovascular aortic aneurysm repair is significant (mean DAP 4.8 mGy.m2 with potential hazards to the surgical team and the patients. The anatomical characteristics of the aneurysm, patient characteristics, and the procedure's technical difficulty were all related to increased radiation exposure during endovascular aortic aneurysm repair procedures. Approximately 40% of radiation exposure can be explained by body mass index, neck angulation, aneurysm diameter, neck diameter, and aneurysm type.

  2. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  3. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  4. Influence of low dose ionizing radiation on amplification and antitumor activity of LAK/TIL cells

    International Nuclear Information System (INIS)

    Liu Wei; Hou Dianjun; Qiao Jianwei; Shang Ximei; Li Jieqing

    2000-01-01

    Objective: To study the influence of low dose ionization on amplification and antitumor activity of LAK/TIL cells. Methods: TIL cells isolated from Lewis lung cancer tissues and LAK cells from spleen of tumor-bearing mouse were irradiated with different low doses of X-rays and were cultured after irradiation. Results: Low dose ionizing radiation improved the amplification volume of LAK/TIL cells, decreased the cell death ratio in amplification process, and increased the toxicity of LAK/TIL cells, Conclusions: Low dose ionizing radiation can result in amplification of biologically activated lymphocytes, and decreases the death ratio of the cells in amplification process

  5. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  6. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  7. The results of radiotherapy for T1 glottic cancers. Influence of radiation beam energy

    International Nuclear Information System (INIS)

    Yamamoto, Michinori; Joja, Ikuo; Takemoto, Mitsuhiro; Kuroda, Masahiro; Hiraki, Yoshio

    1999-01-01

    We analyzed the influence of various parameters on the results of radiotherapy for T1 glottic cancer by assessing the outcomes of 60 patients with this cancer who received definitive radiotherapy between 1985 and 1994. Seven patients were treated with a cobalt-60 unit, and the other 53 with a linear accelerator (26 patients at 3-MV, 10 at 6-MV, and 17 at 10-MV). Of the 17 patients treated at 10-MV, 4 also received part of their treatment with a cobalt-60 unit. The total radiation dose ranged from 56 Gy to 70 Gy (mean, 61 Gy). The total radiation dose of 51 patients (85%) was 60 Gy. The factors found to influence local control were the strength of the radiation beam energy and whether or not there was gross tumor invasion of the anterior commissure. The local control rate was 71% in the patients treated with a 10-MV linear accelerator, 56% in those treated with a 6-MV linear accelerator and, 97% in those treated with a cobalt-60 unit or a 3-MV linear accelerator (P=0.0173). The local control rate was 43% in the patients with gross anterior commissure invasion and 88% in those without (P=0.0075). We conclude that low energy photon beams are more suitable for the treatment of early glottic cancers, especially if the lesion grossly invades the anterior commissure. (author)

  8. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    Directory of Open Access Journals (Sweden)

    Michael J Cruse

    Full Text Available Plant canopy interception of photosynthetically active radiation (PAR drives carbon dioxide (CO2, water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the

  9. Variables influencing the use of derivatives in South Africa – the development of a conceptual model

    Directory of Open Access Journals (Sweden)

    Stefan Schwegler

    2011-03-01

    Full Text Available This paper, which is the first in a two-part series, sets out the development of a conceptual model on the variables influencing investors’ decisions to use derivatives in their portfolios. Investor-specific variables include: the investor’s needs, goals and return expectations, the investor’s knowledge of financial markets, familiarity with different asset classes including derivative instruments, and the investor’s level of wealth and level of risk tolerance. Market-specific variables include: the level of volatility, standardisation, regulation and liquidity in a market, the level of information available on derivatives, the transparency of price determination, taxes, brokerage costs and product availability.

  10. The radiation and variable viscosity effects on electrically conducting fluid over a vertically moving plate subjected to suction and heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of); Moghimi, M.A. [Department of Mechanical Engineering, School of Engineering, Shaid Bahonar University, Kerman (Iran, Islamic Republic of); Nickaeen, M. [K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A new application of the differential quadrature method in thermo-fluid fields. {yields} Moving vertical plate with suction and heat flux is considered. {yields} Fluid with variable viscosity subjected to thermal radiation is studied. -- Abstract: In this paper, firstly, the applicability of the differential quadrature method (DQM) as an efficient and accurate numerical method for solving the problem of variable viscosity and thermally radiative unsteady magneto-hydrodynamic (MHD) flow over a moving vertical plate with suction and heat flux is investigated. The spatial as well as the temporal domains are discretized using the DQM. The fast rate of convergence of the method is demonstrated and for the cases that a solution is available, comparison is done. Then, effects of the temperature dependence of viscosity and different fluid parameters on the velocity and temperature of transient MHD flow subjected to the above mentioned boundary condition are studied.

  11. Influence of gamma radiation on productiveness of Cuba C-204 wheat variety in spring

    International Nuclear Information System (INIS)

    Caballero Torres, I.; Perez Talavera, S.; Diaz Esquivel, R.

    1995-01-01

    The percentage of flowers carrying seeds in spikes from seed irradiated plant with 100 to 800 Gy and non irradiated control plants was evaluated cv. Cuba C -204 wheat affectation. The results showed a significative (1 %) dose and s'pikes maturity time influence by bi factorial analysis. A significance of 1 % dose-maturity time interaction was obtained too and that bigger flowers carrying seeds percentage is obtained in 400 Gy radiated seeds plants. A delay of 5 days is present in the 500 Gy radiated plants maturity and a seed carrying flowers reduction of 35 % with reference to control. From 600 Gy up in the studied variety seeds were not obtained in the spring season

  12. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  13. Environmental variable influence in the process of suppliers choice: a study in agribusiness in the microregion of Assis-SP

    Directory of Open Access Journals (Sweden)

    Edenis Cesar Oliveira

    2016-08-01

    Full Text Available The global market characterized by competition, has demanded of new placements organizations, particularly as to how implement and develop relations with its trading partners. The Supply Chain Management emerges as a tool that provides organizations with the most effective management of the consequences of these relations. The incorporation of environmental issues in the organizational context reflected directly across chain. Organizations began to consider sustainability as a major factor in relations with its stakeholders, justifying the emergence of Sustainable Management of Supply Chain. The study aims to analyze the influence of environmental variable introduced in decisions and selection of suppliers of sugarcane agro-industries located in the micro-region of Assis-SP. Was held from Multiple Case Study in six agribusinesses, collecting data through semi-structured interviews, applied to sixteen actors directly involved with the subject matter, in addition to document analysis to support the interviews. For data analysis, applied to content analysis with the help of ATLAS.ti software. The results showed that, of the six surveyed companies, in agribusiness AGR2, FOR1 and for2 the environmental variable has a weak influence in the selection of its suppliers; in AGR1 the influence is average and only in AGR3 and AGR4 agribusinesses environmental variable has a strong influence.

  14. Modeling the optical radiation of the precataclysmic variable SDSS J212531-010745

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Solovyeva, Yu. N.; Sakhibullin, N. A.; Spiridonova, O. I.

    2015-03-01

    Optical observations are analyzed to derive a set of basic parameters for the precataclysmic variable star SDSS J212531-010745, whose primary is a PG1159-type star. Spectroscopic and multiband photometric observations of the star were performed in 2008-2011 with the 6-m telescope and the Zeiss-1000 telescope of the Special Astrophysical Observatory. The shape of the binary's orbital light curves is nearly sinusoidal, with the amplitude increasing with wavelength from Δ m = 0.40 m in the B band to Δ m = 0.73 m in the R band. The spectra contain absorption lines of HeII and neutral atoms, along with HI, HeI, CII, MgII, FeII emission lines, whose intensity increases synchronously with the brightness of the system. The optical radiation from SDSS J212531-010745 has a composite nature, corresponding to a model for a pre-cataclysmic variable with strong reflection effects. Cross-correlation techniques are used to measure the radial velocities and derive the component masses. Numerical modeling of the binary's light curves, radial velocities, and spectra is performed, and a complete set of parameters determined. Considerable abundance anomalies (to 1 dex) were detected for the secondary. The primary's characteristics correspond to the evolutionary predictions for DAO dwarfs with masses M ≈ 0.5 M ⊙, and the secondary's characteristics to low-mass, main-sequence stars with the solar metallicity.

  15. The influence of vegetable bioactive compounds on systemic immune reactions to ionizing radiation action

    International Nuclear Information System (INIS)

    Coretchi, Liuba; Plavan, Irina; Bahnarel, Ion; Rosca, Andrei

    2015-01-01

    The paper presents the summary of the scientific results analysis of the published in the last 10 years studies of the influence of secondary metabolites essential oils and essential-oil plants extracts, on the resistance/sensitivity of the animal and human body to the action of ionizing radiation. An essential problem is the development of new nanotechnologies for mitigation the onset of side effects caused by the use of ionizing radiation therapy of patients with different types of cancer. Widespread application of phyto therapy empiric reveals the beneficial effect of essential oils and essential-oil plants extracts on the immune system. The considered substances have natural antioxidant properties and contribute to the elimination of free radicals which are formed in the body under the action of stress, including ionizing radiation. This reveals about their use in mitigation of ionizing radiation action effects, as a radio protector agent. Unlike other preparations, used to activate the immune system, essential oils at low concentrations show a long-lasting system immune stimulation action. More of that, during their administration the onset of adverse reactions have not been demonstrated. (authors)

  16. A factorial experiment on image quality and radiation dose

    International Nuclear Information System (INIS)

    Norrman, E.; Persliden, J.

    2005-01-01

    To find if factorial experiments can be used in the optimisation of diagnostic imaging, a factorial experiment was performed to investigate some of the factors that influence image quality, kerma area product (KAP) and effective dose (E). In a factorial experiment the factors are varied together instead of one at a time, making it possible to discover interactions between the factors as well as major effects. The factors studied were tube potential, tube loading, focus size and filtration. Each factor was set to two levels (low and high). The influence of the factors on the response variables (image quality, KAP and E) was studied using a direct digital detector. The major effects of each factor on the response variables were estimated as well as the interaction effects between factors. The image quality, KAP and E were mainly influenced by tube loading, tube potential and filtration. There were some active interactions, for example, between tube potential and filtration and between tube loading and filtration. The study shows that factorial experiments can be used to predict the influence of various parameters on image quality and radiation dose. (authors)

  17. Low doses of radiation: epidemiological investigations

    International Nuclear Information System (INIS)

    Dikiy, N.P.; Dovbnya, A.N.; Medvedeva, E.P.

    2013-01-01

    Influence of small dozes of radiation was investigated with the help epidemiologic evidence. Correlation analysis, regression analysis and frequency analysis were used for investigating morbidity of various cancer illnesses. The pollution of the environment and the fallout of radionuclides in 1962 and 1986 years have an influence upon morbidity of cancer. Influence of small dozes of radiation on health of the population is multifactorial. Therefore depending on other adverse external conditions the influence of radiation in small dozes can be increased or is weakened. Such character of influence of radiation in small dozes proposes the differentiated approach at realization of preventive measures. Especially it concerns regions with favorable ecological conditions.

  18. Radiative effects on turbulent buoyancy-driven air flow in open square cavities

    International Nuclear Information System (INIS)

    Zamora, B.; Kaiser, A.S.

    2016-01-01

    The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)

  19. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1976-01-01

    The risk of iatrogenic tumors with radiation therapy is so outweighed by the benefit of cure that estimates of risk have not been considered necessary. However, with the introduction of chemotherapy, combined therapy, and particle radiation therapy, the comparative risks should be examined. In the case of radiation, total dose, fractionation, dose rate, dose distribution, and radiation quality should be considered in the estimation of risk. The biological factors that must be considered include incidence of tumors, latent period, degree of malignancy, and multiplicity of tumors. The risk of radiation induction of tumors is influenced by the genotype, sex, and age of the patient, the tissues that will be exposed, and previous therapy. With chemotherapy the number of cells at risk is usually markedly higher than with radiation therapy. Clearly the problem of the estimation of comparative risks is complex. This paper presents the current views on the comparative risks and the importance of the various factors that influence the estimation of risk

  20. Identification of variables and their influence on the human resources planning in the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Vivar, R.; Sánchez Rodríguez, A.; Pérez Campdesuñer, R.; García Vidal, G.

    2016-07-01

    The purpose of this paper lies in the use of experimental way through empirical tools for identification of the set of variables and their interrelationships and influences on the human resources planning at the territorial level. The methodology used to verify the existence of the variables that affect the planning of human resources at the territorial level consists of two phases: a qualitative study of the variables that influence the planning of human resources, where the explicit variables are measured and / or implied raised in the literature analyzing the main contributions and limitations expressed by each of the authors consulted. Then it proceeds to confirmatory phase (quantitative) to prove the existence of the dimensions of the planning of human resources in the territorial level through the use of multivariate statistics through the combination of expert analysis and techniques of factorial grouping. Identification is achieved by using empirical methods, variables that affect human resources planning at the territorial level, as well as their grouping essential dimensions, while the description of a theoretical model that integrates the dimensions is made essential and relationships that affect human resource planning at the regional level, which is characterized by the existence of systemic and prospective nature. The literature shows two streams that address a wide range of approaches to human resources planning. The first is oriented from the business object and the second part of the management in highlighting a limited territorial level to address this latest theoretical development, an element that has contributed to the fragmented treatment of human resources planning and management in general at this level. The originality of this paper is part of the creation and adaptation, on a scientific basis of a theoretical model developed from the conceptual contribution of this process at the territorial level where the key variables that affect this

  1. Influence of diuretic therapy on the features of heart rhythm variability changes in chronic heart failure patients

    Directory of Open Access Journals (Sweden)

    K R Alyeva

    2018-02-01

    Full Text Available Aim. To study comparative influence of furosemide and torasemide on heart rhythm variability in patients with chronic heart failure of ischemic origin. Methods. The study included 48 patients (29 males and 19 females with ischemic heart disease complicated by chronic heart failure, NYHA functional classes II-IV. All patients were randomized into two groups: group 1 (25 patients received furosemide as diuretic therapy, and group 2 (23 patients received torasemide. All patient underwent clinical examination including assessment of complaints and physical examination, laboratory and instrumental tests (electrocardiography, echocardiography, 6-minute walk test, 24 Hour Holter ECG monitoring before and 30 days after starting diuretic therapy. Results. Against the background of one-month diuretic therapy, positive dynamics of clinical parameters was registered in both main groups of patients receiving both furosemide and torasemide. In furosemide group deterioration of heart rhythm variability was observed. Torasemide treatment resulted in considerable improvement of vegetative regulation of heart activity. Conclusion. Diuretic therapy with furosemide is characterized by changes of time and spectral parameters of vegetative regulation of heart rhythm towards strengthening of sympathetic and attenuation of parasympathetic influence; diuretic therapy with torasemide resulted in considerable improvement of heart rhythm variability parameters, attenuation of sympathetic and strengthening of parasympathetic influence on heart rhythm that provides additional cardioprotection in the treatment of patients with chronic heart failure of ischemic origin.

  2. Advanced gastric adenocarcinoma. Influence of preoperative radiation therapy on toxicity and long-term survival rates

    International Nuclear Information System (INIS)

    Malzoni, Carlos Eduardo

    1996-01-01

    The surgical treatment of gastric cancer has better long-term survival rates when performed in patients with early gastric cancer. Worse results are obtained in treatment of advanced gastric cancer. Most patients in west centers are treated in advanced stages. A great number of them go through a surgical treatment unable by itself to cure them. the frequent local recurrence caused by failure of the surgical treatment has been keeping poor survival rates in patients with advanced gastric cancer for decades. The desire of improving survival is the reason of the use of adjuvant therapies. This paper achieved the retrospective study of the influence of preoperative radiation therapy (2000 cGy) in long-term survival rates (120 months) of patients with advanced gastric cancer on stages IIIa, IIIb and IV. The possible injuries caused in the liver and kidney were observed also as well as first group was treated by surgical and radiation therapies and the second received surgical treatment only. There was no statistical difference between the two groups when sex, age, race, occurrence of other diseases, nutritional assessment, TNM stage, occurrence of obstruction or bleeding caused by tumor, surgical procedure and hepatic and renal function were considered. Survival rates and changes on hepatic and renal function were statistically compared. The results showed a statistic improvement on the long-term survival rates of stage IIIa patients treated by preoperative radiation therapy. No statistic difference was observed on hepatic or renal function between the groups. No adverse influence of radiation therapy method was detected by the used parameters. There was no statistical difference between the two groups when immediate surgical complications were considered. (author)

  3. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  4. Comparative assessment of radiation versus nutritional and other factors that may influence immune status. Report of a Joint IAEA/WHO advisory group meeting, Vienna, Austria, 3-6 May 1994

    International Nuclear Information System (INIS)

    1994-01-01

    An Advisory Group Meeting was convened jointly by the International Atomic Energy Agency and the World Health Organization in May 1994 to review the role of radiation, nutrition, toxic chemicals and other factors that may influence immune status in human populations. Priorities for future research were proposed, and possibilities for using isotope in such studies were identified. The Group recommended that the IAEA should initiate a broadly based Co-ordinated Research Programme (CRP) focussed mainly on the effects of low-level radiation on immune status in human populations. The main variables of interest are (i) the level of individual radiation exposure, and (ii) the nutritional status. Possible experimental groups include persons living in areas of high radiation background (e.g. in countries where areas of high radiation background are known to occur naturally, or at high altitudes, or in areas affected by Chernobyl accident). Other possible experimental groups comprise radiation workers and uranium miners. It was also recommended that the contribution of toxic chemical exposure to immune dysfunction in these population groups should be assessed. Such research should be complemented by animal studies, and possibly also by in vitro studies with human and animal cells, by some participants in the CRP. This report has been prepared as a source of information for potential participants in the proposed CRP and for other persons associated with related programmes of the IAEA and the WHO. 15 refs, 1 fig., 7 tabs

  5. The influence of meteorological factors on solar ultraviolet radiation over Pretoria, South Africa for the year 2012

    CSIR Research Space (South Africa)

    Makgabutlane, M

    2013-09-01

    Full Text Available Pretoria receives a fair amount of solar ultraviolet radiation (UVR). Certain meteorological factors affect the amount of solar UVR that reaches the ground. The most dominant influencing meteorological factors are stratospheric ozone, cloud cover...

  6. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis.

    Science.gov (United States)

    Oguntunde, Philip G; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P  1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  7. Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale

    Directory of Open Access Journals (Sweden)

    C. Aguilar

    2010-12-01

    Full Text Available Distributed energy and water balance models require time-series surfaces of the climatological variables involved in hydrological processes. Among them, solar radiation constitutes a key variable to the circulation of water in the atmosphere. Most of the hydrological GIS-based models apply simple interpolation techniques to data measured at few weather stations disregarding topographic effects. Here, a topographic solar radiation algorithm has been included for the generation of detailed time-series solar radiation surfaces using limited data and simple methods in a mountainous watershed in southern Spain. The results show the major role of topography in local values and differences between the topographic approximation and the direct interpolation to measured data (IDW of up to +42% and −1800% in the estimated daily values. Also, the comparison of the predicted values with experimental data proves the usefulness of the algorithm for the estimation of spatially-distributed radiation values in a complex terrain, with a good fit for daily values (R2 = 0.93 and the best fits under cloudless skies at hourly time steps. Finally, evapotranspiration fields estimated through the ASCE-Penman-Monteith equation using both corrected and non-corrected radiation values address the hydrologic importance of using topographically-corrected solar radiation fields as inputs to the equation over uniform values with mean differences in the watershed of 61 mm/year and 142 mm/year of standard deviation. High speed computations in a 1300 km2 watershed in the south of Spain with up to a one-hour time scale in 30 × 30 m2 cells can be easily carried out on a desktop PC.

  8. Medical and biological aspects of ionizing radiation influence in consequence with accident at ChNPP; Mediko-byiologyichnyi aspekti vplivu yionyizuyuchoyi radyiatsyiyi vnaslyidok avaryiyi na ChAES

    Energy Technology Data Exchange (ETDEWEB)

    Shidlovs' ka, T A [Institute for Safety Problems of Nuclear Power Plants, Chornobyl (Ukraine)

    2011-07-01

    This monograph presents the issues on systematic influence of ionizing radiation on the biological systems. The results of personal complex studies because of influence of ionizing radiation in consequence with accident at ChNPP on auditory analyzer, creating voice, cardiovascular system and central nervous system are submitted.

  9. Daily weather variables and affective disorder admissions to psychiatric hospitals

    Science.gov (United States)

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2014-12-01

    Numerous studies have reported that admission rates in patients with affective disorders are subject to seasonal variation. Notwithstanding, there has been limited evaluation of the degree to which changeable daily meteorological patterns influence affective disorder admission rates. A handful of small studies have alluded to a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (heat waves in particular), wind direction and sunshine. We used the Kruskal-Wallis test, ARIMA and time-series regression analyses to examine whether daily meteorological variables—namely wind speed and direction, barometric pressure, rainfall, hours of sunshine, sunlight radiation and temperature—influence admission rates for mania and depression across 12 regions in Ireland over a 31-year period. Although we found some very weak but interesting trends for barometric pressure in relation to mania admissions, daily meteorological patterns did not appear to affect hospital admissions overall for mania or depression. Our results do not support the small number of papers to date that suggest a link between daily meteorological variables and affective disorder admissions. Further study is needed.

  10. Geographical influence on the radiation exposure of an air crew on board a subsonic aircraft

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Spurny, F.; Votockova, I.

    1996-01-01

    Radiation fields on board a subsonic aircraft have been studied on board an Airbus A310-300 during the flights Prague - Abu Dhabi - Bangkok and Bangkok - Abu Dhabi - Prague, during February 1995. A complex set of measuring instruments has been used for these studies: tissue equivalent proportional counter, moderator-type neutron rem-meter, environmental radiation dose rate meter, thermoluminescent and track etch detectors and bubble detectors. The results obtained are presented and analyzed; they are compared with the results obtained in the flights Prague - Montreal - Prague. Conclusions concerning the influence of geographical parameters on the aircrew exposure levels are formulated. (author). 13 refs., 2 figs., 3 tabs

  11. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  12. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    OpenAIRE

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to de...

  13. Influence of radiation on coronoelectrets based on polymer compositions of polypropylene and polyethylene

    International Nuclear Information System (INIS)

    Aliyev, A.A.

    2010-11-01

    Determination of non-equilibrium charge relaxation mechanism in dielectric films has a large scientific and practice interest in connection with application of dielectric films in microelectronics, electret techniques, electro photography and in other areas. However, a lot of questions connected with relaxation of non-equilibrium charge in nonpolar thin film polymers stay unsolved. In particular, the questions on determination of criteria rating to relaxation processes in nonpolar dielectrics to which numerous relaxation models known at present, on structure of trap energy spectra, on geometric displacing of traps and etc. are not studied. These factors make difficulties for interpretation of experimental results. With the purpose of study of preliminary influence of gamma-radiation on stability of coronoelectrets of PE, PP, and their mixes, electrets properties of HDPE/PP mixes at range of addition one of components (up to 10 percent) and influence of preliminary gamma-radiation in air up to dose 10 Mrad are investigated. Isotropic films of HDPE/PP, LDPE/PP with 50 percent mass concentration and 60-120 mkm thickness were obtained from melt, then were polarized by unipolar corona discharge in the electrodes system of needle - plate at distance of 1 cm between them, 5 min. change time of and 7 kV voltage. The electrets surface density charges from LD PEwith PP components irradiated by 3-5 Mrad dose is always below than at initial PELD transits through a maximum approximately in the field of 10 % masses of the PP component. PP Components in PELD excite magnification of electrets charge density (especially 10 percent masses), but in due course storages this effect less we shall feel and approximately in 720 hours, quantities of electrets charge effective surface density basically are commensurable. Preliminary gamma-radiation by 3 and 5 Mrad doses raises the quantity of surface density of electrets from intermixtures of PP-LDPE and LDPE-PP and the irradiated samples

  14. Influence of γ-radiation doses on the properties of TeOx: (x=2-3) thin film

    International Nuclear Information System (INIS)

    Dewan, Namrata; Sreenivas, K.; Gupta, Vinay

    2007-01-01

    The influence of γ-ray doses (10-50 Gy) on the optical and electrical properties of radio-frequency sputtered tellurium dioxide (TeO x ) thin film was studied. The composition of the as-deposited TeO x films deposited under 25% oxygen and 100% oxygen in the sputtering gas mixture (Ar+O 2 ) was x=2 and 3, respectively. TeO 3 films were found to be highly sensitive to the γ-radiation doses and the value of optical band gap decrease from 4.18 to 3.56 eV with increasing radiation dose from 10 to 50 Gy. Current-voltage characteristics of the films showed an increase in the value of conductivity with increasing radiation doses. Monotonic decrease in the values of dielectric constant for the deposited films with increase in radiation dose was observed. The effect of γ-ray doses on the properties of TeO x film has been correlated with the rearrangement of the bipyramidal structure of amorphous TeO x thin film

  15. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    Science.gov (United States)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  16. Epidemiological analysis of common influence of low doses of ionizing radiation, heavy metals and pesticides

    International Nuclear Information System (INIS)

    Shestopalov, V.M.; Naboka, M.V.

    1997-01-01

    Comparison of ecological danger of substances of a chemical and radiating nature on the territory of Chernobyl's exhaust of Kyiv area is conducted. Epidemiological analysis, is conducted in accordance with ''Methodological recommendations for radioecological assessment of territories by mapping''. Influence on children's morbity of 27 factors contamination of an environment (radiocesium, heavy metals, pesticides and fertilizer) was investigated. Analysis has shown, that the influence from all investigated ecological factors reaches 30-40%, differing in different zones of supervision. The influence of radioactive factors in the Northern part of Kyiv test site, is 6 times greater than the risk caused by heavy metals and agrochemical pollution. A greater influence of heavy metals was found in the center of the Kyiv test site. The result of our research on the territory of Chernobyl's exhaust shows that there exist factors of different nature which influence on human health is significant and create combinations dangerous for health. (author)

  17. The concept of attributes and preventions of the variables that influence the pipeline risk in the Muhlbauer Method

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, Alexandro G. [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil)

    2009-07-01

    There are several methods for the risk assessment and risk management applied to pipelines, among them the Muhlbauer's Method. Muhlbauer is an internationally recognized authority on pipeline risk management. The purpose of this model is to evaluate the public exposure to the risk and identify ways for management that risk in fact. The assessment is made by the attribution of quantitative values to the several items that influences in the pipeline risk. Because the ultimate goal of the risk assessment is to provide a means of risk management, it is sometimes useful to make a distinction between two types of risk variables. The risk evaluator can categorize each index risk variable as either an attribute or a prevention. This paper approaches the subject of the definition of attributes and preventions in the Muhlbauer basic model of risk assessment and also presents a classification of the variables that influence the risk in agreement with those two categories. (author)

  18. The influence of gamma radiation on HDPE properties for tibial tray

    International Nuclear Information System (INIS)

    Sulistioso, G.S.; Dewi, R.K.; Maria, C.P.; Nada, M.

    2012-01-01

    A research on HDPE as tibial tray in total knee joint replacement surgery has been done. The aims of this research were to characterize the influence of gamma radiation on chemical, and mechanical properties on HDPE is made by using hot press method then irradiated with various doses of gamma rays of 0 kGy, 25 kGy, 50 kGy, 75 kGy, 100 kGy, 125 kGy, and 150 kGy at a dose rate 9 kGy/h. The irradiated HDPE were tested for their chemical, and mechanical properties. The chemical properties test, involve crosslinking and free radicals. The mechanical properties test, involve hardness, tensile strength, and elongation at break. The results showed that gamma radiation from IRKA IV th category can enhance the, chemical properties of HDPE in terms of percentage and number of radical crosslinking and mechanical properties of HDPE in terms of hardness, tensile strength and elongation at break with different changes from the initial state before radiation also the optimum dose to obtain better physical, chemical, and mechanical properties of HDPE, crosslinking percentage at 99.71%; height of radical peroxide curve at 13 cm; hardness (shore A) at 94.33; modulus of elasticity at 1113.03 N/mm 2 ; yield stress at 26.38 N/mm 2 ; tensile strength at 31.11 N/mm 2 ; and elongation at break at 440.37%, so that HDPE can be used as tibial tray. (author)

  19. Influence of two different IR radiators on the antioxidative potential of the human skin

    International Nuclear Information System (INIS)

    Darvin, M E; Patzelt, A; Meinke, M; Sterry, W; Lademann, J

    2009-01-01

    Resonance Raman spectroscopy was used for the fast in vivo detection of the concentration of carotenoid antioxidant substances such as beta-carotene and lycopene in human skin and for the measurement of their degradation dynamics, subsequent to infrared (IR) irradiation emitted by two different IR radiators applied at the same power density. One of the radiators was equipped with a water filter in front of the radiation source (WIRA) and the other was a usual broadband system without a water filter (standard IR radiator – SIR). It was found that the SIR exerted a higher influence on the degradation of carotenoids in the skin than the WIRA. Furthermore, all twelve volunteers who participated in the study felt that the irradiation with the SIR was disagreeably warmer on the skin surface compared to the WIRA, in spite of the same power density values for both radiators on the skin surface. The average degradation magnitude of the carotenoids in the skin of all volunteers after an IR irradiation was determined at 23% for WIRA and 33% for the SIR. A correlation (R 2 ∼ 0.6) was found between the individual level of carotenoids in the skin of the volunteers and the magnitude of degradation of the carotenoids for both IR radiators. Taking the previous investigations into consideration, which clearly showed production of free radicals in the skin subsequent to IR irradiation, it can be concluded that during the application of WIRA irradiation on the skin, fewer radicals are produced in comparison to the SIR

  20. Influence functionals and black body radiation

    OpenAIRE

    Anglin, J. R.

    1993-01-01

    The Feynman-Vernon formalism is used to obtain a microscopic, quantum mechanical derivation of black body radiation, for a massless scalar field in 1+1 dimensions, weakly coupled to an environment of finite size. The model exhibits the absorption, thermal equilibrium, and emission properties of a canonical black body, but shows that the thermal radiation propagates outwards from the body, with the Planckian spectrum applying inside a wavefront region of finite thickness. The black body enviro...

  1. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  2. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Energy Technology Data Exchange (ETDEWEB)

    Avtaeva, S. V., E-mail: s_avtaeva@mail.ru [Kyrgyz-Russian Slavic University (Kyrgyzstan); Sosnin, E. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Saghi, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria); Panarin, V. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Rahmani, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)

    2013-09-15

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules

  3. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    International Nuclear Information System (INIS)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-01-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl 2 mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl 2 concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl 2 concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe* 2 (172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe* 2 molecule rapidly decreases with increasing Cl 2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl 2 mixtures is studied numerically. It is shown that an increase in the Cl 2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl 2 molecules and ionization of Xe atoms and Cl 2 molecules. The total energy deposited in the discharge

  4. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Science.gov (United States)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-09-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl2 mixtures at pressures of 240-250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl2 concentrations in the range of 0.01-1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl2 concentrations in the range of 0.1-5%. It is found that the radiation intensities of the emission bands of Xe*2(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01-0.1%. In this case, in the mixture, the radiation intensity of the Xe*2 molecule rapidly decreases with increasing Cl2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4-0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl2 mixtures is studied numerically. It is shown that an increase in the Cl2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl2 molecules and ionization of Xe atoms and Cl2 molecules. The total energy deposited in the discharge rises with increasing

  5. Influence of γ-radiation on the D.C. conductivity of poly(3-hexadecylthiophene) doped with iron trichloride in an atmosphere of organic agents

    International Nuclear Information System (INIS)

    Cik, G.; Szabo, L.; Merasicky, J.

    1996-01-01

    The influence of γ-radiation on the d.c. conductivity of poly(3-hexadecylthiophene) (PHDT) doped with FeCl 3 in chloroform, toluene, ethanol and nitrobenzene atmospheres has been studied. A different course of d.c. conductivity changes taking place in the atmosphere of solvent vapors (chloroform, toluene) and precipitants (ethanol, nitrobenzene) has been found. The character of changes can be influenced by polymer cross-linking initiated by γ-radiation. (author). 8 refs., 5 figs

  6. THE INFLUENCE OF EMPLOYEE JOB SATISFACTION AND SERVICE QUALITY ON PROFITABILITY IN PT. BANK JATIM: CUSTOMER SATISFACTION AS THE INTERVENING VARIABLE

    Directory of Open Access Journals (Sweden)

    Finanda Y.D.

    2018-02-01

    Full Text Available This research aimed to examine the influence of employee job satisfaction and service quality on profitability in PT. Bank Jatim, in which customer satisfaction was the intervening variable. According to literature review, the hypothesis of the research stated that employee job satisfaction and service quality influenced the profitability of the Bank and customer satisfaction as intervening variable proved to affect the relationship between independent variable and dependent variable. The data of the research were collected by using questionnaire from respondents that consisted of 92 permanent employees of PT. Bank Jatim in Gresik City. The technique of hypothesis testing was performed by using Multiple Regression Analysis (MRA and Path Analysis using SPSS 24 statistical application. The findings of the research indicated that employee job satisfaction and service quality have positive effect to profitability and customer satisfaction was shown as intervening variable. Specifically, this research found that employee satisfaction and service quality will improve the profitability of the company.

  7. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  8. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  9. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  10. Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements

    International Nuclear Information System (INIS)

    Surya Mohan, P.; Tarvainen, Tanja; Schweiger, Martin; Pulkkinen, Aki; Arridge, Simon R.

    2011-01-01

    Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the P N approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the P N approximation is compared against Monte Carlo simulations and other state-of-the-art methods.

  11. Influence of ionizing radiation on the spatial structure of erythrocyte membranes

    International Nuclear Information System (INIS)

    Dreval', V.Yi.; Syichevs'ka, L.V.; Doroshenko, A.O.; Roshal', O.D.

    1998-01-01

    Influence of gamma-radiation of doses of 10, 10 2 , 5 centre dot 10 2 , and 10 3 Gy on the structure of the protein-lipid complexes of erythrocyte membranes is investigated. The allotment of fluorescence of protein in the donor-acceptor pair of tryptophan-pyrene and the distance of protein from the surface of the lipid bilayer of a membrane are determined by the method of inductive-resonance transfer of energy. The pair is localized at the distance of above 3.2 nm from lipids. We find that the action of irradiation changes the space structure of proteins and lipids of the erythrocyte membrane

  12. Investigation of the radiative efficiency and threshold in InGaN laser diodes under the influence of efficiency droop

    International Nuclear Information System (INIS)

    Ryu, Han-Youl

    2012-01-01

    Based on the rate equation model of semiconductor lasers, the radiative efficiency and threshold current density of InGaN-based blue laser diodes (LDs) are theoretically investigated, including the effect of efficiency droop in the InGaN quantum wells. The peak point of the radiative efficiency versus current density relation is used as the parameter of the rate equation analysis. The threshold current density of InGaN blue LDs is found to depend strongly on the maximum radiative efficiency at low current density, implying that improving the maximum efficiency is important to maintain a high radiative efficiency at a large current density and to achieve a low-threshold lasing action under the influence of efficiency droop.

  13. Influence of rare earth elements on radiation defect formation in silicon

    International Nuclear Information System (INIS)

    Nazyrov, D.E.

    2006-01-01

    Full text: It is known that efficiency of form and kinetics annealing of radiation defects influence greatly presence of initial in controlling electrically active or inactive impurities, their concentration and position in a lattice of a semiconductor. From this point of view of impurities of group of rare earths elements (REE) are of great interest, they interact with primary radiation defects creating electrically passive complexes such as . Thus they increase radiation stability of silicon. The purpose of the given work was the investigation of effect of irradiation by γ-quanta 60 Co properties of silicon doped REE-by samarium, gadolinium and erbium. The doping of silicon was carried out by growth process. Concentration of REE - samarium, gadolinium and erbium in silicon according to neutron-activation analysis equaled 10 14 /5·10 18 cm 2 . Silicon doped by phosphorus - 15/50 Ωcm were used as control samples. The results of investigations were obtained from DLTS (deep level transient spectroscopy) measurements, Hall effect and electrical measurements on definition of a resistivity, lifetime of minority carriers of a charge and optically active of concentrations of oxygen and carbon. The optical recharge by the infrared light emitting diode (P=10 mV, λ=0,95 μm) was used for investigation of deep levels (DL) situated in lower half of band gap. In control samples irradiated by the γ-quanta 60 Co with a dose 10 16 / 5·10 18 cm -2 formation DL was found in band, the parameters of which are well-known: A-, E-centers etc. Depending on a dose of an effect of irradiate in an energy spectrum of radiation defects in Si of essential changes, except for concentration is not observed. The deep levels concentration the E c -0,17 eV and E c -0,4 eV in Si is essentially reduced with respect control samples. The comparison the dose of associations of observable levels in irradiated n-Si with similar associations in control samples shows, that a velocity of introduction

  14. Radiation types and their influence on thermoluminescence of materials

    International Nuclear Information System (INIS)

    Soika, C.; Delincee, H.

    1999-01-01

    The paper reports experiments investigating pure minerals (quartz and potash feldspar) and a mixture (sand) and their luminescence under the impact of various types of radiation. The materials were exposed to the radiation types commonly used for radiation treatment of food: 5 and 10 MeV electron radiation, 6 0Co-γ radiation with applied doses of 0.2 and 5.0 kGy. After measurements, the samples were normalized by re-irradiation with 2, 5, and 10 MeV electrons as well as β radiation ( 9 0Sr), γ radiation ( 6 0Co), and UV-C light (200-280 nm), applying radiation doses of 0.25 kGy and 1.0 kGy, or 0.5 J/cm 2 , respectively. The analysis of the first and second glow curves of each material showed that the radiation type determines the glow curve. UV light was found to be inappropriate for normalisation of those samples containing only quartz as a luminescent constituent. (orig./CB) [de

  15. Influences of rainfall variables and antecedent discharge on urban effluent concentrations and loads in wet weather.

    Science.gov (United States)

    Xu, Zuxin; Xiong, Lijun; Li, Huaizheng; Liao, Zhengliang; Yin, Hailong; Wu, Jun; Xu, Jin; Chen, Hao

    2017-04-01

    For storm drainages inappropriately connected with sewage, wet weather discharge is a major factor that adversely affects receiving waters. A study of the wet weather influences of rainfall-discharge variables on storm drainages connected with sewage was conducted in the downtown Shanghai area (374 ha). Two indicators, event mean concentration (EMC) and event pollutant load per unit area (EPL), were used to describe the pollution discharge during 20 rain events. The study showed that the total rainfall and discharge volume were important factors that affect the EMCs and EPLs of the chemical oxygen demand, total phosphorus, and especially those of NH 4 + -N. The pollutant concentrations at the beginning of the discharge and the discharge period were also major factors that influence the EMCs of these three pollutants. Regression relationships between the rainfall-discharge variables and discharge volume/ EPLs (R 2 = 0.824-0.981) were stronger than the relationships between the rainfall-discharge variables and EMCs. These regression equations can be considered reliable in the system, with a relative validation error of less than ±10% for the discharge volume, and less than ±20% for the EPLs. The results presented in this paper provide guidance for effectively controlling pollution in similar storm drainages.

  16. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valter Magalhaes; Pereira, Iraci Martinez, E-mail: valter.costa@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because a previous diagnosis allows the correction of the fault and, like this, to prevent the production stopped, improving operator's security and it's not provoking economics losses. The objective of this work is to build a set, using bivariate correlation and canonical correlation, which will be the set of input variables of an artificial neural network to monitor the greater number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. Initially, for the input set of neural network we selected the variables: nuclear power, primary circuit flow rate, control/safety rod position and difference in pressure in the core of the reactor, because almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The nuclear power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures; the primary circuit flow rate has the function of energy transport by removing the nucleus heat. An artificial neural network was trained and the results were satisfactory since the IEA-R1 Data Acquisition System reactor monitors 64 variables and, with a set of 9 input variables resulting from the correlation analysis, it was possible to monitor 51 variables. (author)

  17. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    International Nuclear Information System (INIS)

    Costa, Valter Magalhaes; Pereira, Iraci Martinez

    2011-01-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because a previous diagnosis allows the correction of the fault and, like this, to prevent the production stopped, improving operator's security and it's not provoking economics losses. The objective of this work is to build a set, using bivariate correlation and canonical correlation, which will be the set of input variables of an artificial neural network to monitor the greater number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. Initially, for the input set of neural network we selected the variables: nuclear power, primary circuit flow rate, control/safety rod position and difference in pressure in the core of the reactor, because almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The nuclear power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures; the primary circuit flow rate has the function of energy transport by removing the nucleus heat. An artificial neural network was trained and the results were satisfactory since the IEA-R1 Data Acquisition System reactor monitors 64 variables and, with a set of 9 input variables resulting from the correlation analysis, it was possible to monitor 51 variables. (author)

  18. Methodological principles of radiation influence upon specific function of female organism and gynecological diseases

    International Nuclear Information System (INIS)

    Tsvelev, Yu.V.; Kira, E.F.

    1994-01-01

    1025 women permanently residing at the territory subjected to radioactive contamination due to the Chernobyl NPP accident underwent dispensary examination in 1991-1992. Study of ionizing radiation influence on specific functions (menstrual, reproductive, secretory and gynecological) of female organism is carried out. It is found that the highest percentage in the structure of gynecological diseases is accounted for inflammatory diseases of uterine appendages and neck of the uterus. 1 tab

  19. A first look into the influence of triathlon wetsuit on resting blood pressure and heart rate variability

    Directory of Open Access Journals (Sweden)

    A Prado

    2016-12-01

    Full Text Available The purpose of this study was to investigate the effects of wearing a wetsuit on resting cardiovascular measures (blood pressure (BP, heart rate variability (HRV. The influence of position (upright, prone and wetsuit size were also explored. Participants (n=12 males, 33.3±12.1 years had BP and HRV measured during six resting conditions: standing or prone while not wearing a wetsuit (NWS, wearing the smallest (SWS, or largest (LWS wetsuit (based upon manufacturer guidelines. Heart rate was recorded continuously over 5-mins; BP was measured three times per condition. HRV was represented by the ratio of low (LF and high (HF frequency (LF/HF ratio; mean arterial pressure (MAP was calculated. Each dependent variable was analyzed using a 2 (position x 3 (wetsuit repeated measures ANOVA (α=0.05. Neither HRV parameter was influenced by position x wetsuit condition interaction (p>0.05 and MAP was not influenced by position (p=0.717. MAP and LF/HF ratio were both influenced by wetsuit condition (p<0.05 with higher during SWS than NWS (p=0.026 while LF/HF ratio was lower during SWS compared to NWS (p=0.032. LF/HF ratio was influenced by position being greater during standing vs. prone (p=0.001. It was concluded that during resting while on land (i.e., not submerged in water, wearing a small, tight-fitting wetsuit subtlety altered cardiovascular parameters for healthy, normotensive subjects.

  20. The influence of wavelength-dependent radiation in simulation of lamp-heated rapid thermal processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A. [Sandia National Labs., Livermore, CA (United States). Computational Mechanics Dept.

    1994-08-01

    Understanding the thermal response of lamp-heated rapid thermal processing (RTP) systems requires understanding relatively complex radiation exchange among opaque and partially transmitting surfaces and materials. The objective of this paper is to investigate the influence of wavelength-dependent radiative properties. The examples used for the analysis consider axisymmetric systems of the kind that were developed by Texas Instruments (TI) for the Microelectronics Manufacturing Science and Technology (MMST) Program and illustrate a number of wavelength-dependent (spectral) effects. The models execute quickly on workstation class computing flatforms, and thus permit rapid comparison of alternative reactor designs and physical models. The fast execution may also permit the incorporation of these models into real-time model-based process control algorithms.

  1. Influence of pretreatment temperature cycling on the radiating defect formation in silicon doped by samarium

    International Nuclear Information System (INIS)

    Abdurakhmanov, K.P.; Nazyrov, D.E.

    2006-01-01

    Full text: The raise of thermal and radiation stability as it is known, is one of actual problems of physics semiconductors. Recently it is established, that the rare-earth elements (REE) raise a stability of silicon to exterior action. In this connection the investigation of silicon doped REE by samarium and influence on its properties of heat treatments and radiation exposure is important. In sectional operation the outcomes of investigations of influence of samarium on thermal (600 degree C are reduced; 600 deg. + 900 deg. C; 900 deg. C; 900 deg. C + 600 deg. C; 1100 deg. C; 600 deg. C + 900 deg. C + 1100 deg. C; 900 deg. C + 600 deg. C + 1100 deg. C) thermal defect formation and radiation defect formation (exposure of γ-quanta 60 Co) both in beforehand wrought, and in thermally unfinished samples. After each cycle of heat treatments samples cool fast (throwing off in oil) or slowly (together with the furnace). Doping n-silicon REE by gadolinium and samarium was carried out during cultivation. The concentration of gadolinium and samarium in silicon, on sectional of a neutron-activation analysis was equaled 10 14 - 10 18 cm -3 . As control is model monocrystal silicon such as KEP-15/50. Para-meters of deep levels originating in control and doped REE samples, both past heat treatment or temperature cycling, and irradiated by the γ-quanta are defined by methods of a capacity spectroscopy: DLTS and IRC. The obtained outcomes have shown, that in irradiated with the γ-quanta 60 Co deep levels samples are formed with energies: E C -0,17 eV, E C -0,32 eV, EC-0,41 eV. Thus the parameters of deep levels vary depending on requirements of prestress heat treatment. For example heat treatment at 600 deg. C essentially increments a velocity of introduction of and centre (deep level of E C -0,17 eV), in comparison with a velocity of introduction of this level in samples with prestress heat treatment at 900 deg. C. In samples n-Si doped by samarium effectiveness of formation

  2. Influence of radioactive radiations on the immune apparatus

    International Nuclear Information System (INIS)

    Brocades Zaalberg, O.

    1975-01-01

    A short review is given on the effects of ionizing radiation on the immune response. Following an introduction on the function of the immune apparatus, the effect of radiation on the different celltypes of the immune system is described. In conclusion, the possible consequences of these effects on the prognosis of radiation victims is discussed

  3. What variables can influence clinical reasoning?

    Directory of Open Access Journals (Sweden)

    Vahid Ashoorion

    2012-01-01

    Full Text Available Background: Clinical reasoning is one of the most important competencies that a physician should achieve. Many medical schools and licensing bodies try to predict it based on some general measures such as critical thinking, personality, and emotional intelligence. This study aimed at providing a model to design the relationship between the constructs. Materials and Methods: Sixty-nine medical students participated in this study. A battery test devised that consist four parts: Clinical reasoning measures, personality NEO inventory, Bar-On EQ inventory, and California critical thinking questionnaire. All participants completed the tests. Correlation and multiple regression analysis consumed for data analysis. Results: There is low to moderate correlations between clinical reasoning and other variables. Emotional intelligence is the only variable that contributes clinical reasoning construct (r=0.17-0.34 (R 2 chnage = 0.46, P Value = 0.000. Conclusion: Although, clinical reasoning can be considered as a kind of thinking, no significant correlation detected between it and other constructs. Emotional intelligence (and its subscales is the only variable that can be used for clinical reasoning prediction.

  4. What variables can influence clinical reasoning?

    Science.gov (United States)

    Ashoorion, Vahid; Liaghatdar, Mohammad Javad; Adibi, Peyman

    2012-12-01

    Clinical reasoning is one of the most important competencies that a physician should achieve. Many medical schools and licensing bodies try to predict it based on some general measures such as critical thinking, personality, and emotional intelligence. This study aimed at providing a model to design the relationship between the constructs. Sixty-nine medical students participated in this study. A battery test devised that consist four parts: Clinical reasoning measures, personality NEO inventory, Bar-On EQ inventory, and California critical thinking questionnaire. All participants completed the tests. Correlation and multiple regression analysis consumed for data analysis. There is low to moderate correlations between clinical reasoning and other variables. Emotional intelligence is the only variable that contributes clinical reasoning construct (r=0.17-0.34) (R(2) chnage = 0.46, P Value = 0.000). Although, clinical reasoning can be considered as a kind of thinking, no significant correlation detected between it and other constructs. Emotional intelligence (and its subscales) is the only variable that can be used for clinical reasoning prediction.

  5. Influence of radiation on initial attachment of osteoblast-like cells on titanium plate

    International Nuclear Information System (INIS)

    Kakuta, Saburo; Hamazaki, Miki; Mitsumoto, Kazuyo; Itabashi, Yuto; Fujimori, Shinya; Miyazaki, Takashi; Nagumo, Masao

    1996-01-01

    Radiotherapy is a useful and convenient therapy for oral cancer. However, there are many side effects such as stomatitis and radionecrosis of jaws. Radionecrosis may cause loosing or infection of biomaterials used for reconstruction of jaws. In this experiment, in vitro investigation was performed to clarify the influence of radiation on initial attachment of osteoblast-like cells to the titanium plate. UMR-106 and MC3T3-E1 cells were used as osteoblast-like cells. Cell attachment was evaluated by alkaline phosphatase activity and staining attached cells with crystal violet. The results revealed that initial attachment of osteoblast-like cells to the titanium plate was dose-dependently decreased by radiation and that radiosensitivity of each cell was different respectively. Furthermore, the participation of active oxygen was suggested because of partial recovery of cell attachment by addition of superoxide dismutase and/or an antioxidant such as ascorbic acid. (author)

  6. Influence of heat and radiation on the germinability and viability of B. cereus BIS-59 spores

    International Nuclear Information System (INIS)

    Kamat, A.S.; Lewis, N.F.

    1983-01-01

    Spores of Bicillus cereus BIS-59, isolated in this laboratory from shrimps, exhibited an exponential gamma radiation survival curve with a d 10 value of 400 krad as compared with a D 10 value of 30 krad for the vegetative cells. The D 10 value of DPA-depleted spores was also 400 krad indicating that DPA does not influence the radiation response of these spores. Maximum germination monitored with irradiated spores was 60 percent as compared with 80 percent in case of unirradiated spores. Radiation-induced inhibition of the germination processes was not dose dependent. Heat treatment (15 min at 80 C) to spores resulted in activation of the germination process; however, increase in heating time (30 min and 60 min) increased the germination lag period. DPA-depleted spores were less heat resistant than normal spores and exhibited biphasic exponential inactivation. (author)

  7. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    Science.gov (United States)

    Václavík, Tomáš; Beckmann, Michael; Cord, Anna F; Bindewald, Anja M

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  8. Effects of UV-B radiation on leaf hair traits of invasive plants—Combining historical herbarium records with novel remote sensing data

    Science.gov (United States)

    Cord, Anna F.; Bindewald, Anja M.

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants’ native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  9. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    Directory of Open Access Journals (Sweden)

    Tomáš Václavík

    Full Text Available Ultraviolet-B (UV-B radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species and hair length (H. pilosella only. While accounting for other bioclimatic variables (i.e. temperature, precipitation and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere vs. the alien (Southern Hemisphere range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%, and hair density in E. vulgare (66.2%. Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation and other considered variables (herbivory damage, collection date were at

  10. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain). Estudio de la interaccin nubosidad-radiacion solar en Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Pablo-Davila, F. de, Labajo, J.L.; Tomas-Sanchez, C

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  11. Analysis of structural changes influence on radiation crosslinking of unsaturated polyester resins

    International Nuclear Information System (INIS)

    Pucic, I.; Ranogajec, F.

    1998-01-01

    Complete text of publication follows. DC-electrical conductivity has shown high sensitivity toward structural changes, especially to some low intensity transitions such as liquid-liquid transitions that are difficult to observe. It also showed favorable properties for monitoring of crosslinking of unsaturated polyester resins. However, when the rates were calculated using commonly applied formula: k lnσ =ln[(ln σ t - ln σ o )/(ln σ ∞ - ln σ o )] the sensitivity decreased. The extents of the reaction were shifted on time axis compared to non-logarithmic conductivity data and extraction analysis results. The logarithmic data had pronounced scattering at the end of the reaction so it was very difficult to determine end point of reaction and almost impossible to detect vitrification point. Some other features that can be seen on conductivity plot were lost. Therefore the results of DC-electrical conductivity monitoring of radiation and thermally initiated crosslinking of unsaturated polyester resins were interpreted in the same manner as the data collected by other non-electrical methods, using 'raw' data instead of its logarithmic form: k σ = ln [(σ t - σ o )/(σ ∞ - σ o )]. By this modification of data analysis the full sensitivity of electrical conductivity method to structural changes in reacting system was proven. Lower data scattering allowed observation of dose rate influences. The apparent rate constants calculated from conductivity itself showed the influence of upper liquid-liquid transition on the rate of radiation induced reaction that could not be seen if the logarithm of conductivity was used

  12. Role of an extract from kiwi fruits in reduction genetic consequences of influence ionization of radiation

    International Nuclear Information System (INIS)

    Akperova, G.A.

    2002-01-01

    Full text: Researches of plants extracts as perspective means of reduction of consequences of influence mutagenian factors of an environment gets the increasing urgency. The search of the proof-readers of the mutation of the process allowing to adjust stability organisms to increase of a radiating background in a usual ecological situation, has revealed presence of biologically active substances in crates of plants having anti-mutagenian properties. Proceeding from above-stated, purpose of the present research was the study of interrelation gene protection of action water-alcohol of an extract from kiwi fruits (EKF) with its influence on induction process free - radical and peroxide of oxidation lipids. The experiments are executed on white bread less mature rats with average weight 160 10 g. The circuit of experiments provided application EKF (0,2-0,5 mg/100 g) before influence of a gamma-irradiation (3 Gr). Alongside with the analysis of frequency induction of structural reorganizations chromosomes in cells bones of a brain thigh bones of rats, on variants of experiments registered the quantitative contents in mitochondrial of a fraction of a liver of an intermediate product free - radical and peroxide of reactions - malon dialdehid (MDA), being the indicator of speed of the given processes. Controls served intact and subjected to influence ionization of radiation. As a result of experiments is established, that the irradiation increases frequency induction chromosomes aberration in crates bones brain on a background of increase of the quantitative contents MDA in a liver of animals. It testifies to interrelation of occurrence of structural reorganizations chromosomes with intensity of formed processes of free - radical oxidation lipids. So, at influence ionization of radiation the frequency of structural reorganizations grows with 1,92 0,48 up to 15,10 1,21, contents MDA - with 2,23 0,20 up to 6,61 0,56 nmol/mg a protein . The introduction in the circuit of

  13. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao

    2017-07-19

    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  14. Study on radiation hazard. Influence of the teeth on mandibular hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R. (Kyushu Dental Coll., Kitakyusyu, Fukuoka (Japan))

    1981-05-01

    A series of experiments were designed to know the influence of the teeth on the radiation hazard for mandible. The right mandible of adult dogs were irradiated by means of an x-radiation generator (total dose was 3000 R and 6000 R). Radiation hazards for the soft tissue revealed a significant difference between the dentulous and edentulous mandibles, macroscopically. The gingiva of irradiated dentulous mandible showed an ulceration after the irradiation. Necrosis of the alveolar mucosa, buccal mucosa and skin followed an ulceration, and eventually exposure of the alveolar bone of mandible occurred. The pathologic condition progressed rapidly and a loosening and an exfoliation of the teeth or a pathologic fracture of the mandible occurred eventually. In the edentulous mandible (6000 R irradiated group) an ulceration of the skin developed as the first disturbance. The tissue necrosis progressed from the skin to the buccal mucosa and gingiva. Eventually an exposure of the alveolar bone occurred but no pathologic fracture was seen in the edentulous mandible. No specific pathologic findings were seen in the 3000 R irradiated edentulous mandible. The early roentgenological findings in the irradiated dentulous mandible were resorption of the alveolar crest and widening of the periodontal membrane space. Another changes of bone were osteoporosis and cortical bone destruction. In the edentulous mandible (6000 R irradiated group) pathologic bone condition occurred later than in the dentulous mandible, and osteosclerosis and cortical bone destruction were also seen. Periosteal reaction was found roentgenologically in the 6000 R irradiated dentulous and edentulous mandibles. No roentgenological findings were seen in the 3000 R irradiated edentulous mandible.

  15. Transient radiation responses of optical fibers: influence of MCVD process parameters

    International Nuclear Information System (INIS)

    Girard, Sylvain; Alessi, Antonino; Boukenter, Aziz; Ouerdane, Y.; Marcandella, Claude; Richard, Nicolas; Paillet, Philippe; Gaillardin, Marc; Raine, Melanie

    2012-01-01

    A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From pre-forms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results from the tested variations in drawing process parameters of Ge-doped, F-doped, and pure-silica-core fibers. This study reveals that the drawing process is not the main parameter to be optimized in order to enhance the radiation tolerance of MCVD specialty optical fibers for the LMJ harsh environment. From the hardness assurance point of view, a specialty fiber sufficiently tolerant to this environment should be robust against changes in the drawing process. The origins of the RIA observed in the different fibers are discussed on the basis of spectral decomposition of their measured RIA spectra, using sets of defects from the literature and related to the different core dopants. This analysis highlights the limits of the well-known defect set to reproduce the RIA above 1 for Ge-doped fibers whereas self-trapped holes and chlorine-related species seem responsible for the transient responses of pure-silica-core and F-doped fibers. (authors)

  16. Climate Variability and Sugarcane Yield in Louisiana.

    Science.gov (United States)

    Greenland, David

    2005-11-01

    This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and challenging one. Several methods of seeking and establishing the relations between yield and climate variables are employed. First, yield climate relations were investigated at a single research station where crop variety and growing conditions could be held constant and yield relations could be established between a predominant older crop variety and a newer one. Interviews with crop experts and a literature survey were used to identify potential climatic factors that control yield. A statistical analysis was performed using statewide yield data from the American Sugar Cane League from 1963 to 2002 and a climate database. Yield values for later years were adjusted downward to form an adjusted yield dataset. The climate database was principally constructed from daily and monthly values of maximum and minimum temperature and daily and monthly total precipitation for six cooperative weather-reporting stations representative of the area of sugarcane production. The influence of 74 different, though not independent, climate-related variables on sugarcane yield was investigated. The fact that a climate signal exists is demonstrated by comparing mean values of the climate variables corresponding to the upper and lower third of adjusted yield values. Most of these mean-value differences show an intuitively plausible difference between the high- and low-yield years. The difference between means of the climate variables for years corresponding to the upper and lower third of annual yield values for 13 of the variables is statistically significant at or above the 90% level. A correlation matrix was used to identify the variables that had the largest influence on annual yield. Four variables [called here critical climatic variables (CCV

  17. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions?

    Science.gov (United States)

    Pozolotina, Vera N; Antonova, Elena V

    2017-03-01

    The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.

  18. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    2017-09-22

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.

  19. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  20. The Influence of Matching Populations on Kinematic and Kinetic Variables in Runners with Iliotibial Band Syndrome

    Science.gov (United States)

    Grau, Stefan; Maiwald, Christian; Krauss, Inga; Axmann, Detlef; Horstmann, Thomas

    2008-01-01

    The purpose of this study was to assess how participant matching influences biomechanical variables when comparing healthy runners and runners with iliotibial band syndrome (ITBS). We examined 52 healthy runners (CO) and 18 with ITBS, using three-dimensional kinematics and pressure distribution. The study population was matched in three ways and…

  1. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  2. Perceptions of variability in facial emotion influence beliefs about the stability of psychological characteristics.

    Science.gov (United States)

    Weisbuch, Max; Grunberg, Rebecca L; Slepian, Michael L; Ambady, Nalini

    2016-10-01

    Beliefs about the malleability versus stability of traits (incremental vs. entity lay theories) have a profound impact on social cognition and self-regulation, shaping phenomena that range from the fundamental attribution error and group-based stereotyping to academic motivation and achievement. Less is known about the causes than the effects of these lay theories, and in the current work the authors examine the perception of facial emotion as a causal influence on lay theories. Specifically, they hypothesized that (a) within-person variability in facial emotion signals within-person variability in traits and (b) social environments replete with within-person variability in facial emotion encourage perceivers to endorse incremental lay theories. Consistent with Hypothesis 1, Study 1 participants were more likely to attribute dynamic (vs. stable) traits to a person who exhibited several different facial emotions than to a person who exhibited a single facial emotion across multiple images. Hypothesis 2 suggests that social environments support incremental lay theories to the extent that they include many people who exhibit within-person variability in facial emotion. Consistent with Hypothesis 2, participants in Studies 2-4 were more likely to endorse incremental theories of personality, intelligence, and morality after exposure to multiple individuals exhibiting within-person variability in facial emotion than after exposure to multiple individuals exhibiting a single emotion several times. Perceptions of within-person variability in facial emotion-rather than perceptions of simple diversity in facial emotion-were responsible for these effects. Discussion focuses on how social ecologies shape lay theories. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Tamayo Garcia, J. A.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  4. Influence of radiation dose and dose-rate on modification of barley seed radiosensitivity by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Sharma, G.J.

    1987-01-01

    Influence of radiation doses (100, 150 and 200 Gy) and dose-rates (1.27-0.023 Gy/Sec) on the modification of oxic and anoxic radiation damage by caffeine at different concentrations has been investigated using metabolizing barley seeds as test system. As the radiation dose increases from 100 to 200 Gy, the magnitude of oxic and anoxic damages increase at all the dose-rates. Caffeine is able to afford partial radioprotection against the oxic damage, at the same time potentiating the anoxic damage. However, caffeine effect against the oxic and anoxic components of damage depend largely upon the dose of radiation applied and also on the dose-rate used. The possible mechanism of action of caffeine in bringing about the differential modification of oxic and anoxic damages has been discussed. 19 refs., 2 tables. (author)

  5. Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US

    Science.gov (United States)

    Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001–2010. Annual baseline CO exhibited statistically signific...

  6. [The influence of variable and constant magnetic fields on biota and biological activity of ordinary chernozem soils].

    Science.gov (United States)

    Denisova, T V; Kazeev, K Sh

    2007-01-01

    In model experiments on influence variable magnetic fields of industrial frequency (50 Hz) an induction of 1500 and of 6000 mkTl and the constant magnetic field an induction of 6000 mkTl and of 15000 mkTl during 5 days of exposure on biological properties of chernozem ordinary is shown, that the soil microflora is more sensitive to magnetic fields, than enzymes activity. Bacteria are more sensitive, than microscopic mushrooms. Dehydrogenase it is steady against influence of all variants. Constant magnetic field by the induction of 15000 mkTl rendered practically identical authentic overwhelming influence on catalase and saccharase activity - on 51 and 47% accordingly.

  7. Effects of radiation-counselling convergence education on radiation awareness

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2017-01-01

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit

  8. Effects of radiation-counselling convergence education on radiation awareness

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of Radiological Science, College of Health Science, Cheongju University, Cheongju (Korea, Republic of)

    2017-06-15

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit.

  9. Ultraviolet-B radiation influences the abundance and distribution of phylloplane fungi on pedunculate oak (Quercus robur)

    International Nuclear Information System (INIS)

    Newsham, K.K.; Low, M.N.R.; McLeod, A.R.; Greenslade, P.D.; Emmett, B.A.

    1997-01-01

    influence the distribution of fungi on leaf surfaces and that future increases in u.v.-B radiation will directly affect the abundances of specific phylloplane fungi. (author)

  10. Influence of low-energy laser radiation on normal skin and certain tumor tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, S.D.; Karpenko, O.M.

    For some years, the authors' Institute has studied the influence of various types of low-energy laser radiation on normal tissue and the growth of tumors. Radiation at 3 and 30 J/cm/sup 2/ causes an increase in biological activity of various cell elements, manifested as an increase in mitotic activity of the cells in the basal layer of the epidermis, conglomeration of chromatin in the cell nuclei and an increase in degranulation of fat cells in the process of their migration to the reticular layer. Also noted was an increase in content of fibroblastic and lymphohistocytic elements in the dermis, as well as an increase in collagenization of connective tissue. It was found that irradiation of the skin by helium-neon, cadmium-helium and nitrogen lasers before and after grafting of the cells of various tumors modifies the course of the tumor process. This effect is apparently related to the fact that systematic irradiation results in changes creating a favorable background for survival and proliferation of tumor cells in the skin tissue medium. The changes facilitate an increase in survival and growth of both pigmented and nonpigmented tumors. Low power radiation stimulates the activity of the cells or cell structures; medium power stimulates their activity; high power suppresses activity.

  11. Training of human resources on radiation protection and safe use of radiation sources. Argentine experience

    International Nuclear Information System (INIS)

    Biaggio, Alfredo L.; Nasazzi, Nora B.; Arias, Cesar

    2004-01-01

    Argentina has a long experience in Radiation Protection training since 25 years ago. In the present work we analyse those variable and non variable training aspects according to scientific development, increasing radiation source diversity (including new concepts like orphan sources and security), mayor concern about patient in Radiation Protection, previous exposures, etc. We comment what we consider the main steps in the training of Radiation Protection specialists, like university degree, post graduate education distinguishing between formative and informative contents and on the job training. Moreover, we point out the trainees aptitudes and attitudes to be developed in order to work properly in this interdisciplinary field. (author)

  12. Radiative Transfer Through Discs of Cataclysmic Variables

    Czech Academy of Sciences Publication Activity Database

    Korčáková, Daniela; Nagel, T.; Werner, K.; Suleimanov, V.; Votruba, Viktor

    2010-01-01

    Roč. 1273, - (2010), s. 350-353 ISSN 1551-7616. [European White Dwarf Workshop /17./. Tübingen, 16.08.2010-20.08.2010] R&D Projects: GA ČR GP205/09/P476 Institutional research plan: CEZ:AV0Z10030501 Keywords : radiative transfer * Doppler effect, * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  13. The influence of the oestrous cycle on the radiation response of solid tumours

    Science.gov (United States)

    Swann, Patricia R.

    Oestrogen increases the transcription of nitric oxide synthase, thus increasing nitric oxide production, which can result in vasodilation of blood vessels. Fluctuating levels of oestrogen throughout the menstrual cycle has the potential to affect tumour blood flow. Variations of blood supply to a solid tumour can influence tumour oxygenation and subsequently the percentage of hypoxic cells. As hypoxic cells are more resistant to radiation than well-oxygenated cells, this could potentially affect the radiation response of the tumour. This project evaluated the impact of the oestrous stage on the radiation response of BCHT, RIF-1 and SCCvii tumours in syngeneic C3H mice. The oestrous cycle consists of the following stages, pro-oestrus, oestrus, metoestrus and dioestrus and each stage can be determined by the cellular composition of vaginal smears. The peak of oestrogen occurs in the ovulatory phase and a second smaller peak occurs in dioestrus. Subcutaneous tumour were treated at a volume of 200 - 250 mm3 with local irradiation of 10 Gy ionising radiation at different stages of the oestrous cycle. Tumours were excised either immediately or 24 hours after irradiation and disaggregated into a single cell suspension. Tumour cell survival was assessed by clonogenic assay of the excised tumour relative to untreated tumours excised at the corresponding oestrous stage. Tumours irradiated in oestrus consistently produced the lowest surviving fraction after immediate and delayed excision. Tumours irradiated in pro-oestrus and excised immediately after irradiation, showed a two-fold increase in surviving fraction compared to tumours irradiated in oestrus. The surviving fractions of tumours excised 24 hours after irradiation were less than for tumours excised immediately after irradiation. Surviving fractions of irradiated, clamped KHT tumours were independent of oestrous stage. To confirm that these oestrous stage dependent changes were due to changes in tumour perfusion, the

  14. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  15. Radiation damping and decoherence in quantum electrodynamics

    International Nuclear Information System (INIS)

    Breuer, H.P.

    2000-01-01

    The processes of radiation damping and decoherence in quantum electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in quantum electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states. (orig.)

  16. Influence of the flux density on the radiation damage of bipolar silicon transistors by protons and electrons

    International Nuclear Information System (INIS)

    Bannikov, Y.; Gorin, B.; Kozhevnikov, V.; Mikhnovich, V.; Gusev, L.

    1981-01-01

    It was found experimentally that the radiation damage of bipolar n-p-n transistors increased by a factor of 8--12 when the proton flux density was reduced from 4.07 x 10 10 to 2.5 x 10 7 cm -2 sec -1 . In the case of p-n-p transistors the effect was opposite: there was a reduction in the radiation damage by a factor of 2--3 when the dose rate was lowered between the same limits. A similar effect was observed for electrons but at dose rates three orders of magnitude greater. The results were attributed to the dependences of the radiation defect-forming reactions on the charge state of defects which was influenced by the formation of disordered regions in the case of proton irradiation

  17. Effects of estradiol and progesterone on the variability of the micronucleus assay

    International Nuclear Information System (INIS)

    Baeyens, Ans; Vandersickel, Veerle; Thierens, Hubert; Ridder, Leo De; Vral, Anne

    2005-01-01

    To investigate chromosomal radiosensitivity of lymphocytes the micronucleus (MN) assay has been used for many years. The results of these studies suggest the use of the MN assay as a biomarker for cancer predisposition. However, the MN assay has still some limitations associated with the reproducibility and sensitivity. Especially a high intra-individual variability has been observed. An explanation for this high intra-individual variability is not yet available. In literature it is suggested that the high variability among females is attributable to hormonal status. In this study we investigated if the high intra-individual variability in micronucleus formation in lymphocytes of females after in vitro exposure to ionising radiation is caused by variations in hormone levels of estradiol (E2) and progesterone (PROG). For this, the MN assay was performed on blood samples of 18 healthy women during 7 consecutive weeks while the estradiol and progesterone levels were determined at the same time. The MN assay was also examined in cultures of isolated blood lymphocytes with estradiol or progesterone levels added in vitro. The results demonstrated that estradiol and progesterone levels have no influence on the variations in radiation-induced MN yields observed in blood samples of healthy women. These conclusions were confirmed by the 'in vitro' experiments as no correlation between the MN yields and the concentrations of hormones (estradiol or progesterone) added in vitro to isolated lymphocytes cultures was observed

  18. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime

    Science.gov (United States)

    Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei

    2017-11-01

    In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width

  19. Does Set for Variability Mediate the Influence of Vocabulary Knowledge on the Development of Word Recognition Skills?

    Science.gov (United States)

    Tunmer, William E.; Chapman, James W.

    2012-01-01

    This study investigated the hypothesis that vocabulary influences word recognition skills indirectly through "set for variability", the ability to determine the correct pronunciation of approximations to spoken English words. One hundred forty children participating in a 3-year longitudinal study were administered reading and…

  20. Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal

    Science.gov (United States)

    Sreenivas, P.; Gnanaseelan, C.; Prasad, K. V. S. R.

    2012-01-01

    Zonally oscillating seasonal equatorial winds generate pairs of upwelling and downwelling Kelvin waves in the Equatorial Indian Ocean, which then advance in to the coastal Bay of Bengal. The first (second) equatorial upwelling Kelvin wave has its origin in the western (eastern) basin, whereas the downwelling Kelvin waves originate in the central basin. The observed interannual variability of these Kelvin waves is highly governed by the associated zonal wind changes in the central and eastern equatorial Indian Ocean during the anomalous years. The second downwelling (upwelling) Kelvin wave is absent (weak) during El Niño (La Niña) years, whereas the second upwelling Kelvin wave strengthened during El Niño years both in the equatorial Indian Ocean and Bay of Bengal. The large scale off equatorial Rossby waves occasionally feedback the equatorial Kelvin waves, which then strengthen the Bay of Bengal coastal Kelvin waves. The coastal Kelvin waves and the associated radiated Rossby waves from east play a dominant role in the mesoscale eddy generation in Bay of Bengal. The analysis of cyclogenesis characteristics in the bay over the past 65 years revealed that the active (suppressed) phases of cyclogenesis are coinciding with the downwelling (upwelling) planetary waves which influence the cyclone heat potential by altering the thermocline depth.

  1. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  2. Influence of ionizing radiation on Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Szarota, Rosa Maria

    2006-01-01

    Chagas's disease is one of the major public health problems in South America, promoting high prejudice to the local population. Despite the massive efforts to control it, this disease has no cure and presents puzzling unsolved questions. Considering that many researchers have used ionizing radiation to modify protozoans or biomolecules, we investigated the immunological response aspects of susceptible and resistant mice using irradiated parasites. Low radiation doses preserved the reproductive and invasive capacities of the parasite. Both susceptible and resistant animals, after immunization with irradiated parasites produced specific antibodies. After a challenge, the animals presented low parasitaemia, excepting those immunized with the antigen irradiated with higher doses. Using low radiation doses, we were able to selectively isolate trypomastigotes, leading to an improvement in the quality of the immune response, as previously reported when performing complement system assays. These data highlight the importance of selecting trypomastigote forms for immunization against T. cruz; and point towards ionizing radiation as an alternative to achieve this selection, since when this procedure is performed using complement, the subsequent steps are impaired by the difficulties to remove this component from the system. (author)

  3. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  4. Radiation versus radiation: nuclear energy in perspective

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1989-01-01

    This paper seeks to provide a proper perspective on radiation exposures from nuclear energy. Instead of comparing these exposures with other pollutants, natural and man-made, it assesses the radiation doses that result from the human environment and from the entire fuel cycle associated with nuclear generated electricity. It explores radiation versus radiation, not only in terms of absolute levels but, more importantly, of the enormous variability characterizing many radiation sources. The quantitative findings and their implications are meant to contribute to a balanced understanding of the radiological impact of nuclear energy, and so to help to bridge the information gap that is perceived to exist on this issue. The 1988 Unscear report and its seven scientific annexes provide an authoritative and dispassionate factual basis for examining radiation levels from all sources, natural and man-made. It is the main source for this paper. (author)

  5. Bilingualism and age are continuous variables that influence executive function.

    Science.gov (United States)

    Incera, Sara; McLennan, Conor T

    2018-05-01

    We analyzed the effects of bilingualism and age on executive function. We examined these variables along a continuum, as opposed to dichotomizing them. We investigated the impact that bilingualism and age have on two measures of executive control (Stroop and Flanker). The mouse-tracking paradigm allowed us to examine the continuous dynamics of the responses as participants completed each trial. First, we found that the Stroop effect was reduced with younger age and higher levels of bilingualism; however, no Bilingualism by Age interaction emerged. Second, after controlling for baseline, the Flanker effect was not influenced by bilingualism or age. These results support the notion that bilingualism is one way of enhancing some aspects of executive function - specifically those related to the Stroop task - across the adult life span. In sum, different levels of bilingualism, and different ages, result in varying degrees of executive function as measured by the Stroop task.

  6. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  7. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  8. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  9. Interobserver variability of radiation therapists aligning to fiducial markers for prostate radiation therapy.

    Science.gov (United States)

    Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Roberts, Lisa; Biggs, Jennifer; McCarthy, Alicia; Parfitt, Matthew; Fielding, Andrew

    2013-08-01

    As the use of fiducial markers (FMs) for the localisation of the prostate during external beam radiation therapy (EBRT) has become part of routine practice, radiation therapists (RTs) have become increasingly responsible for online image interpretation. The aim of this investigation was to quantify the limits of agreement (LoA) between RTs when localising to FMs with orthogonal kilovoltage (kV) imaging. Six patients receiving prostate EBRT utilising FMs were included in this study. Treatment localisation was performed using kV imaging prior to each fraction. Online stereoscopic assessment of FMs, performed by the treating RTs, was compared with the offline assessment by three RTs. Observer agreement was determined by pairwise Bland-Altman analysis. Stereoscopic analysis of 225 image pairs was performed online at the time of treatment, and offline by three RT observers. Eighteen pairwise Bland-Altman analyses were completed to assess the level of agreement between observers. Localisation by RTs was found to be within clinically acceptable 95% LoAs. Small differences between RTs, in both the online and offline setting, were found to be within clinically acceptable limits. RTs were able to make consistent and reliable judgements when matching FMs on planar kV imaging. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  10. A mechanism for solar ultraviolet flux variability

    International Nuclear Information System (INIS)

    Schatten, K.H.; Heath, D.F.

    1981-01-01

    Solar UV emission observed by a filter photometer on Nimbus IV from 1969 to 1973 is examined in an attempt to understand the short term (27 day) and secular variability. Two models are discussed to explain the variations - a calcium plage model and a chromospheric network (faculae and spicule) structure model. Both relate to the remnant magnetic fields of active regions. An association between UV brightenings and the large scale magnetic field has been found consistent with the network model. An increase in UV emittance can be achieved by raising the effective chromospheric temperature closer to a photospheric level. If the Sun's luminosity is constant on these time intervals the enhanced UV radiation could be partially offset by an overall decrease in photospheric temperature as measured by Livingston in visible photospheric profiles. Total solar luminosity may then show less variability, however, the UV to visible luminosity variation may have significant planetary influences. Lockwood and Thompson (1979) report a relation between solar activity and planetary albedos, and Schatten (1979) discussed a long-suspected relationship between solar activity and the Great Red Spot appearance. (orig.)

  11. The influence of solar system oscillation on the variability of the total solar irradiance

    Science.gov (United States)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  12. Influence of gamma radiation on oviposition and egg viability of Callosobruchus maculatus F. and grain loss in mungbean storage

    International Nuclear Information System (INIS)

    Dongre, T.K.; Rananavare, H.D.; Padwal Desai, S.R.

    1997-01-01

    Influence of gamma radiation on reproductive potential of Callosobruchus maculatus F. was studied by exposing them to 10, 30 and 50 Gy of radiation. Radiation at pupal stage was more effective in arresting egg laying and its further development. The dose of 50 Gy induced complete infertility in males when they were irradiated at pupal stage and only partial infertility was induced when irradiated at adult stage. In case of females whether irradiated at pupal or adult stage the dose of 50 Gy was sufficient to induce complete infertility. In order to assess the requirement of radiation doses for preventing the insect multiplication and subsequent damage in storage, mungbean samples with various developmental stages of insect were exposed to radiation at 50, 100 and 150 Gy. After three months of storage no grain damage was noticed when grains infested with different insect stages were irradiated with the dose of 100 or 150 Gy. (author)

  13. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    Science.gov (United States)

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  14. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  15. Influence of misonidazole, anaesthesia, clamping of the leg and stress of the animal during treatment on the radiation-induced skin reaction of mouse feet

    International Nuclear Information System (INIS)

    Wondergem, J.; Haveman, J.; Schueren, E. van der

    1982-01-01

    The influence of anaesthesia and misonidazole on the 'acute' (average of the scores between day 10 and 30) and 'late' (average of the scores between day 100 and 120) skin reaction of the feet of mice was investigated under two different conditions. Firstly, the legs were kept untaped in the radiation field; secondly, the legs were fixed with surgical tape on the backscatter block. Irradiation was carried out by X-radiation at a dose of 35 Gy. Results showed that stress in unanaesthetized animals has a large influence on the radiation response of mouse skin. Adequate treatment conditions, tranquillizers or anaesthesia can compensate for this factor. Taping of the animals' legs, resulting in clamping, interferes with the assessment of these modalities. No influence of misonidazole on the skin reaction could be demonstrated in conditions where no artificial hypoxia was induced. The importance of taking experimental conditions into account is pointed out for the correct assessment of the effect of radiosensitizers and possibly other anticancer drugs. (U.K.)

  16. ASSESSMENT OF THE INFLUENCE OF RADIATION AND DEFORMATION ON THE ELASTOMER DETERIORATION BY USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Jasminka Bonato

    2017-01-01

    Full Text Available Elastomers belong to the group of polymer materials and they have an important role as technical material in the shipbuilding industry. The radiation crosslinking of elastomers shows significant advantages over chemical crosslinking. It can improve mechanical strength, resistance to chemicals and insulation properties of elastomers. An undesirable side reaction, which can occur during radiation, is the degradation process. This results in cracks breaking, chemical disintegration and reduction of mechanical properties of elastomers. In this paper fuzzy logic is used to estimate the influence of radiation and deformation on the behavior of elastomer samples. A Gaussian model is created according to both the experts' experience and the measuring data. The results of the model are calculated by using the Normalized Roth Mean Square Error (NRMSE and the Roth Mean Square Error (RMSE. The so developed model gives new conceptions, which offer a possibility to improve the application of elastomer materials.

  17. Influence of dose and its distribution in time on dose-response relationships for low-LET radiation

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This book examines the influence of dose rate and magnitude on the genetic and carcinogenic effects of radiation exposure in animals and man. It systematically examines a broad range of biological effects in simple systems, plants, laboratory animals, and man with special attention given to the effects of prenatal irradiation, changes in life span, and tumorigenesis. An enormous volume of data is provided about human tumorigenesis and the data and shortcomings are summarized. There is an extended general discussion of the consideration in quantitative dose and dose rate relationships and of the limitations of the data and analyses which have led to a linear interpolation of risk at low doses and dose rates. An argument is made for dose rate dependence in tumorigenesis as being consistent with all other radiation effects and for the applicability of Dose Rate Effectiveness Factors (DREF) in providing a more realistic assessment of the risk of radiation carcinogenesis. The report is documented with 24 pages of references. There are numerous graphs and tables, all clear and to the point. This book is a superb review and summary of the data on radiation risks

  18. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  19. Influence of radiation on MHD peristaltic blood flow through a tapered channel in presence of slip and joule heating

    Science.gov (United States)

    Ahamad, N. Ameer; Ravikumar, S.; Govindaraju, Kalimuthu

    2017-07-01

    The aim of the present attempt was to investigate an effect of slip and joule heating on MHD peristaltic Newtonian fluid through an asymmetric vertical tapered channel under influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The effects of Hartmann number, porosity parameter, volumetric flow rate, radiation parameter, non uniform parameter, shift angle, Prandtl number, Brinkman number, heat source/sink parameter on temperature characteristics are presented graphically and discussed in detail.

  20. A New Top-Down Decadal Constraint on Black Carbon Emissions over Asia - Capturing The Influence of Widespread and Regularly Occurring Fires and Urbanization: Greater Atmospheric Loading and Variability, Larger Impacts on Radiative Forcing at the Surface and in the Atmosphere, and Possible Feedback Mechanisms

    Science.gov (United States)

    Cohen, J. B.

    2014-12-01

    A global top-down study of Black Carbon (BC) Emissions has found that sources are considerably higher than present day emissions datasets, with most of this underestimation stemming from the rapidly developing areas of East and Southeast Asia. An additional source in these regions is the frequent and sometimes annual influence of extreme biomass burning events, which emit additional BC and other aerosols into the atmosphere. An additional top-down study has shown that the emissions of BC from these biomass burning events in Southeast Asia contribute an additional 30% increase in the annual average BC emissions, and an additional 110% increase during the highest fire year. One important reason for this underestimation is that many of these source regions do not appear as fires, due to missing MODIS overpasses, intense cloud cover, and low fire temperatures at the wet surface. These new temporally and spatially varying emissions of BC are run in a state-of-the art combined model of aerosol physics, chemistry, and general circulation, including urban scale chemical processing and core/shell aerosol mixture impacts on radiation. The results reveal that this new dataset matches in space, time, and magnitude, an array of observations (remotely sensed, ground, and column) far better than other emission datasets: IPCC SRES, AEROCOM, BOND, and GFED. The modeled mean atmospheric extinction and loading are both much higher and more variable than previous modelling efforts, leading to a larger negative surface radiative forcing. At the same time, atmospheric absorption is enhanced and more variable, leading to intense atmospheric heating, with the average impact from 1.0-1.5 W/m2. This has impacts on the vertical stability in the source areas, and leads to changes in the dynamics such as a shifting of the ITCZ, reducing light precipitation and increasing strong convection. To support this, a bit of measurement-based evidence presented for each of these phenomena.

  1. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  2. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average

  3. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average

  4. Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection

    International Nuclear Information System (INIS)

    Meyer, Juergen; Phillips, Mark H; Cho, Paul S; Kalet, Ira; Doctor, Jason N

    2004-01-01

    The purpose is to incorporate clinically relevant factors such as patient-specific and dosimetric information as well as data from clinical trials in the decision-making process for the selection of prostate intensity-modulated radiation therapy (IMRT) plans. The approach is to incorporate the decision theoretic concept of an influence diagram into the solution of the multiobjective optimization inverse planning problem. A set of candidate IMRT plans was obtained by varying the importance factors for the planning target volume (PTV) and the organ-at-risk (OAR) in combination with simulated annealing to explore a large part of the solution space. The Pareto set for the PTV and OAR was analysed to demonstrate how the selection of the weighting factors influenced which part of the solution space was explored. An influence diagram based on a Bayesian network with 18 nodes was designed to model the decision process for plan selection. The model possessed nodes for clinical laboratory results, tumour grading, staging information, patient-specific information, dosimetric information, complications and survival statistics from clinical studies. A utility node was utilized for the decision-making process. The influence diagram successfully ranked the plans based on the available information. Sensitivity analyses were used to judge the reasonableness of the diagram and the results. In conclusion, influence diagrams lend themselves well to modelling the decision processes for IMRT plan selection. They provide an excellent means to incorporate the probabilistic nature of data and beliefs into one model. They also provide a means for introducing evidence-based medicine, in the form of results of clinical trials, into the decision-making process

  5. Influence of spectral solar radiation to the generating power of photovoltaic module; Taiyo denchi shutsuryoku eno taiyoko supekutoru eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Minaki, S.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, T.; Nakamura, H. [Japan quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    As to the influence of spectral solar radiation to generating power of solar cells, a study was conducted from the aspects of season, time zone, intensity of solar radiation, etc. In the study, spectral responsive variation correction coefficients were introduced as evaluation values expressing the influence of spectral solar radiation. For the spectral distribution, an all sky spectral pyranometer by wavelength was used, and data were used which were obtained in the measurement in experimental facilities of the solar techno center. Concerning solar cell relative spectral sensitivity values, used were relative spectral sensitivity values of monocrystal and amorphous standard solar cells to the short-circuit current. Spectral response variation correction coefficients are coefficients correcting variations in conversion efficiency of solar cells due to changes in the spectral distribution. The changes of spectral responsive variation correction coefficients were studied using data obtained during April 1994 and March 1996. As a result, it was found that the coefficients showed large changes in summer and small ones in winter and that amorphous solar cells indicate this trend conspicuously. 3 refs., 6 figs., 3 tabs.

  6. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  7. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait.

    Science.gov (United States)

    Tamburini, Paola; Storm, Fabio; Buckley, Chris; Bisi, Maria Cristina; Stagni, Rita; Mazzà, Claudia

    2018-01-01

    The availability of wearable sensors allows shifting gait analysis from the traditional laboratory settings, to daily life conditions. However, limited knowledge is available about whether alterations associated to different testing environment (e.g. indoor or outdoor) and walking protocols (e.g. free or controlled), result from actual differences in the motor behaviour of the tested subjects or from the sensitivity to these changes of the indexes adopted for the assessment. In this context, it was hypothesized that testing environment and walking protocols would not modify motor control stability in the gait of young healthy adults, who have a mature and structured gait pattern, but rather the variability of their motor pattern. To test this hypothesis, data from trunk and shank inertial sensors were collected from 19 young healthy participants during four walking tasks in different environments (indoor and outdoor) and in both controlled (i.e. following a predefined straight path) and free conditions. Results confirmed what hypothesized: variability indexes (Standard deviation, Coefficient of variation and Poincaré plots) were significantly influenced by both environment and walking conditions. Stability indexes (Harmonic ratio, Short term Lyapunov exponents, Recurrence quantification analysis and Sample entropy), on the contrary, did not highlight any change in the motor control. In conclusion, this study highlighted an influence of environment and testing condition on the assessment of specific characteristics of gait (i.e. variability and stability). In particular, for young healthy adults, both environment and testing conditions affect gait variability indexes, whereas neither affect gait stability indexes. Copyright © 2017. Published by Elsevier B.V.

  8. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  9. Modeling the variability of solar radiation data among weather stations by means of principal components analysis

    International Nuclear Information System (INIS)

    Zarzo, Manuel; Marti, Pau

    2011-01-01

    Research highlights: →Principal components analysis was applied to R s data recorded at 30 stations. → Four principal components explain 97% of the data variability. → The latent variables can be fitted according to latitude, longitude and altitude. → The PCA approach is more effective for gap infilling than conventional approaches. → The proposed method allows daily R s estimations at locations in the area of study. - Abstract: Measurements of global terrestrial solar radiation (R s ) are commonly recorded in meteorological stations. Daily variability of R s has to be taken into account for the design of photovoltaic systems and energy efficient buildings. Principal components analysis (PCA) was applied to R s data recorded at 30 stations in the Mediterranean coast of Spain. Due to equipment failures and site operation problems, time series of R s often present data gaps or discontinuities. The PCA approach copes with this problem and allows estimation of present and past values by taking advantage of R s records from nearby stations. The gap infilling performance of this methodology is compared with neural networks and alternative conventional approaches. Four principal components explain 66% of the data variability with respect to the average trajectory (97% if non-centered values are considered). A new method based on principal components regression was also developed for R s estimation if previous measurements are not available. By means of multiple linear regression, it was found that the latent variables associated to the four relevant principal components can be fitted according to the latitude, longitude and altitude of the station where data were recorded from. Additional geographical or climatic variables did not increase the predictive goodness-of-fit. The resulting models allow the estimation of daily R s values at any location in the area under study and present higher accuracy than artificial neural networks and some conventional approaches

  10. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation

    International Nuclear Information System (INIS)

    Planel, H.; Soleilhavoup, J.P.; Tixador, R.; Richoilley, G.; Conter, A.; Croute, F.; Caratero, C.; Gaubin, Y.

    1987-01-01

    Investigations carried out on the protozoan Paramecium tetraurelia and the cyanobacteria Synechococcus lividus, which were shielded against background radiation or exposed to very low doses of gamma radiation, demonstrated that radiation can stimulate the proliferation of these two single-cell organisms. Radiation hormesis depends on internal factors (age of starting cells) and external factors (lighting conditions). The stimulatory effect occurred only in a limited range of doses and disappeared for dose rates higher than 50 mGy/y

  11. The influence of fractionation and repair kinetics on radiation tolerance

    International Nuclear Information System (INIS)

    Rongen, E. van.

    1989-01-01

    The effect of irradiation of biological tissues is described as the sum of a linear and a quadratic function of the radiation dose, in which α and β and β are denoted as the coefficients of the linear and quadratic terms respectively. The rate of repair of radiation damage is expressed by the half-life time T 1 / 2. The purpose of the study described in this thesis was to determine the α/β and T 1 / 2 values for early and late effects in lungs and kidneys of the rat. Rats have been irradiated upon one of both organs in various numbers of fractions, which have been administered with long or short time intervals in order to obtain respectively complete and incomplete repair. From the results values for α/β and T 1 / 2 could be obtained by means of computer codes. The results of this investigation indicate that for the lung differences exist in α/β for early and late effects. The α/β value for early effects being larger: 3.5 Gy, than the one for late effecfts: 2.3 Gy. The values for T 1 / 2 were respectively 1.0 hour for early and 1.1 hour for late effects. The kidney experiments resulted in equal α/β values for early and late effects: resp. 1.7 and 1.8 Gy. The T 1 / 2 values, however, differed being resp. 1.6 hour and 2.1 hour. Also the influence of the fraction dose upon the α/β and T 1 / 2 values was investigated. For the lung such effects have not been found. In the kidney only between 20 and 40 weeks after the irradiation differences were observed, which disappeared after this period. The results of this investigation indicate that, in radiotherapy of tumors where lungs and kidneys are contained in the radiation field, a scheme following which a large number of small fractions are administered, would give therapeutical advantage with respect to standard therapy. (H.W.). 240 refs.; 38 figs.; 37 tabs

  12. Organizational factors influencing improvements in safety

    International Nuclear Information System (INIS)

    Marcus, A.; Nichols, M.L.; Olson, J.; Osborn, R.; Thurber, J.

    1992-01-01

    Research reported here seeks to identify the key organizational factors that influence safety-related performance indicators in nuclear power plants over time. It builds upon organizational factors identified in NUREG/CR-5437, and begins to develop a theory of safety-related performance and performance improvement based on economic and behavioral theories of the firm. Central to the theory are concepts of past performance, problem recognition, resource availability, resource allocation, and business strategies that focus attention. Variables which reflect those concepts are combined in statistical models and tested for their ability to explain scrams, safety system actuations, significant events, safety system failures, radiation exposure, and critical hours. Results show the performance indicators differ with respect to the sets of variables which serve as the best predictors of future performance, and past performance is the most consistent predictor of future performance

  13. Effects of growth reducer and nitrogen fertilization on morphological variables, SPAD index, interception of radiation and productivity of wheat

    OpenAIRE

    Elvis Felipe Elli; Braulio Otomar Caron; Sandro Luis Petter Medeiros; Elder Eloy; Gean Charles Monteiro; Denise Schmidt

    2015-01-01

    ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú), five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1), and application or no application of a growth reducer, with three replications. The following characteri...

  14. Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Influence of Li2CO3-ZnO-Fe2O3 powder reagents mixture density on the synthesis efficiency of lithium-zinc ferrites in the conditions of thermal heating or pulsed electron beam heating was studied by X-Ray diffraction and magnetization analysis. The results showed that the including a compaction of powder reagents mixture in ferrite synthesis leads to an increase in concentration of the spinel phase and decrease in initial components content in lithium-substituted ferrites synthesized by thermal or radiation-thermal heating.

  15. The influence of small dose radiation on some molecular and genetic parameters of peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Mel'nov, S.B.; Morozik, P.M.

    2001-01-01

    About 70% of Chernobyl radionuclide fallout was spread on the territory of Belarus. As a result, 2,5 million people now are living in contaminated areas under the pressure of the additional influence of low dose radiation. The aim of the current research is to definite the effects of this factor on some molecular and genetic characteristics of the children - prominent residents of the contaminated areas

  16. Influence of gender and types of sports training on QT variables in young elite athletes.

    Science.gov (United States)

    Omiya, Kazuto; Sekizuka, Hiromitsu; Kida, Keisuke; Suzuki, Kengo; Akashi, Yoshihiro J; Ohba, Haruo; Musha, Haruki

    2014-01-01

    Influence of gender and sports training on QT variables such as QT interval and dispersion (QT dispersion: QTD) in young elite athletes were evaluated. Subjects included 104 male and 97 female Japanese elite athletes (mean age 21.6 years). Sports included basketball, fencing, gymnastics, judo, swimming, tennis, track and field and volleyball. Age-matched healthy non-athletes (32 men and 20 women) were enrolled as controls. QT measurements were manually obtained from a 12-lead resting electrocardiogram and QTD was calculated as the difference between the longest and shortest QT intervals. A corrected QT interval (QTc) was obtained using Bazett's formula. Subjects were divided into two groups; an endurance training group and a static training group on the basis of their training types. Maximum and minimum QTc were significantly longer in female athletes than in male athletes (max: 414.2 vs. 404.5 ms, min: 375.1 vs. 359.2 ms, pgender and different characteristics of sports training may affect QT variables even in young elite athletes. Vigorous static exercise training may independently prolong QT variables.

  17. Influence of the most important data on the calculation of the maximum radiation exposure in the vicinity of nuclear facilities

    International Nuclear Information System (INIS)

    Schmidtlein, P.; Bonka, H.; Hesel, D.; Horn, H.G.

    1980-01-01

    Analysis of radiation exposure due to radionuclides released from nuclear facilities is discussed in relation to the demands of the Radiation Protection Oridinance in the Federal Republic of Germany. The results of the following estimations are presented as examples:- 1) The contribution of relevant radionuclides to the radiation exposure of an adult via the air pathway. 2) Contribution of relevant radionuclides to the radiation exposure of an adult via the water pathway. 3) Doses to lung and bone due to inhalation of 90 Sr aerosols with various particle diameters. 4) The influence of the plant-, milk- and meat transfer factors on the ingestion dose. 5) Accumulation factors in fish, in relation to consumption. 6) Variation of ground concentration due to loss of radionuclides via washing out into lower soil layers and harvest. (U.K.)

  18. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  19. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  20. Fatiguing exercise intensity influences the relationship between parameters reflecting neuromuscular function and postural control variables.

    Directory of Open Access Journals (Sweden)

    Sébastien Boyas

    Full Text Available The purpose of this study was to investigate the influence of fatiguing exercise intensity on the nature and extent of fatigue-induced changes in neuromuscular function and postural stability in quiet standing. We also explored the contribution of selected neuromuscular mechanisms involved in force production to postural stability impairment observed following fatigue using an approach based on multivariate regressions. Eighteen young subjects performed 30-s postural trials on one leg with their eyes closed. Postural trials were performed before and after fatiguing exercises of different intensities: 25, 50 and 75% of maximal isometric plantarflexor torque. Fatiguing exercises consisted of sustaining a plantarflexor isometric contraction at the target intensity until task failure. Maximal isometric plantarflexor torque, electromyographic activity of plantarflexor and dorsiflexor muscles, activation level (twitch interpolation technique and twitch contractile properties of plantarflexors were used to characterize neuromuscular function. The 25% exercise was associated with greater central fatigue whereas the 50 and 75% exercises involved mostly peripheral fatigue. However, all fatiguing exercises induced similar alterations in postural stability, which was unexpected considering previous literature. Stepwise multiple regression analyses showed that fatigue-related changes in selected parameters related to neuromuscular function could explain more than half (0.51≤R(2≤0.82 of the changes in postural variables for the 25% exercise. On the other hand, regression models were less predictive (0.17≤R(2≤0.73 for the 50 and 75% exercises. This study suggests that fatiguing exercise intensity does not influence the extent of postural stability impairment, but does influence the type of fatigue induced and the neuromuscular function predictors explaining changes in postural variables.

  1. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo

    2014-05-01

    To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. CT scans were performed on a chest phantom containing various nodules (10 and 12mm; +100, -630 and -800HU) at 120kVp with tube current-time settings of 10, 20, 50, and 100mAs. Each CT was reconstructed using filtered back projection (FBP), iDose(4) and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p>0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose(4) at all radiation dose settings (pvolumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

    Science.gov (United States)

    Zamora, Blas; Kaiser, Antonio S.

    2012-01-01

    The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

  3. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  4. Estimation of the influence of nuclear reactors in Vinca on the radiation situation in Belgrade

    International Nuclear Information System (INIS)

    Marsicanin, B.

    1981-01-01

    Both reactors RB and RA were built in the period of non existing environmental regulations nor IAEA recommendations. The objective of this study was to review the present radiation situation on the territory of Belgrade, especially the influence of these reactors which could arise in case of some emergency or possible accidental event. This report includes detailed technical data, demographic, meteorological and other information which are significant for the analysis of accidental radioactivity release from the reactors in Vinca

  5. Corn seed response to gamma radiation as a function of water content; Resposta de sementes de milho a radiacao gama em funcao do teor de agua

    Energy Technology Data Exchange (ETDEWEB)

    Viccini, Lyderson Facio [Juiz de Fora Univ., MG (Brazil). Dept. de Biologia; Saraiva, Luiz Sergio; Cruz, Cosme Damiao [Vicosa Univ., MG (Brazil). Dept. de Biologia Geral

    1997-07-01

    The study of the factors that affect the radiation efficiency is important, because it makes easier to get mutants that may be used as source of variability on improvement programs or as structural chromosomic aberrations for cytogenetics studies. The main of this research was to investigate the influence of corn seed water content on gamma radiation response. As a rule, the damage caused by irradiation was more evident on seeds with higher water content. Also, increased damages were observed with higher radiation doses. (author)

  6. Cytogenetics observation and radiation influence evaluation of exposed persons in a discontinuous radiation exposure event

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Yang Guoshan; Ge Shili; Jin Cuizhen; Yao Bo

    2003-01-01

    The cytogenetics results and dose estimation of exposed and related persons in an discontinuous radiation exposure event were reported in this paper. According to dicentrics + ring and micronucleus results combined with clinical data, slight (middle) degree of subacute radiation symptom of the victim was diagnosed. A part of 52 examined persons were exposed to radiation in a certain degree

  7. Influence of ionizing radiation on optical hardness of transparent dielectrics to action of huge intensity laser light

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Khalilov, R.A.

    2006-01-01

    Full text: This paper presents results of researches of optical hardness of γ -irradiated with doze 10 4 - 10 9 rad alkali-silicate (K, GLS, LGS) and quartz (KU, KV, KSG) glasses against influence of radiation neodymium laser with intensity q = 0,1-1000 GWt/cm 2 . It is observed, that the laser produces damage of surface and volume of investigated glasses before and after γ-irradiation. This damage has threshold character and is always accompanied by a bright luminescence of plasma. Definition of threshold values of intensity superficial q s and volumetric q d laser produced damage was made by the complex method - fixing the moment of damage of transparent dielectric by simultaneous registration of the laser impulse which has passed through plasma of breakdown, mass-charge spectrum of ions of plasma and measuring the energy falling on the glass, and of penetrated and mirror-image radiations; and by optical microscopy. This method of research of influence γ-induced in transparent dielectric radiating defects on its optical stability against influence of laser radiation allows not only to define values q s and q d in the investigated interval of dozes, but also to investigate in details physical phenomena taking place in this process of interaction. On the basis of the received data quantitative characteristics of optical durability of the investigated glasses on wave length of λ1,06 microns depending on dozes of γ-irradiation and intensity of laser radiation are made. Doze dependences of charge and power spectra and quantitative characteristics of ions of plasma of breakdown were investigated at q≥ q s . In the investigated interval of dozes of γ- irradiation and intensity of laser radiation by a method of optical microscopy the morphology of occurring laser damage as surfaces, and volume of glass is also studied. It is found, that γ -induced defects in investigated glasses strongly effect on thresholds of damage q s and q d and on characteristics of ions

  8. Characterizing synoptic and cloud variability in the northern atlantic using self-organizing maps

    Science.gov (United States)

    Fish, Carly

    Low-level clouds have a significant influence on the Earth's radiation budget and it is thus imperative to understand their behavior within the marine boundary layer (MBL). The cloud properties in the Northeast Atlantic region are highly variable in space and time and are a research focus for many atmospheric scientists. Characterizing the synoptic patterns in the region through the implementation of self-organizing maps (SOMs) enables a climatological grasp of cloud and atmospheric fields. ERA -- Interim and MODIS provide the platform to explore the variability in the Northeast Atlantic for over 30 years of data. Station data comes from CAP -- MBL on Graciosa Island in the Azores, which lies in a strong gradient of cloud and other atmospheric fields, offer an opportunity to incorporate an observational aspect for the years of 2009 and 2010.

  9. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    Science.gov (United States)

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  10. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip

    2002-01-01

    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  11. Influences on the reflectance of Arctic sea ice and the impact of anthropogenic impurities on the surface shortwave radiation balance

    OpenAIRE

    Schulz, Hannes; Herber, Andreas; Birnbaum, Gerit; Seckmeyer, Gunther

    2014-01-01

    In order to investigate influences on the reflectance of snow covered Arctic sea ice, a discrete ordinate method and Mie-Theory based radiative transfer model has been set up. This model, the Snow on Sea Ice Model (SoSIM), is able to investigate changes in spectral and spectrally integrated (broadband) albedo of a multi-layer snow cover on sea ice due to varying snow microphysical parameters, atmospheric composition and incoming solar radiation. For typical conditions in the Arctic sea-ice ar...

  12. The influence of radiolytic sensitizers in natural rubber latex vulcanization induced by ionizing radiation

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Souza, A. de

    1991-01-01

    This work made on radiation vulcanization of natural rubber latex process by gamma rays from 60 Co source and electron beam of 1.5 MeV, 25 m A by Dynamitron, instead of classic process using sulfur. The experiment was carried out to study the influence of sensitizers (C Cl 4 and n-butyl acrylate) and was reported the vulcanization dose for each sensitizers, related to maximum tensile strength. The results show the possibility to introduce the volatile sensitizer (n-butyl acrylate) instead of C Cl 4 (toxic) in industry applications. (author)

  13. Radiosensitivity of Arabidopsis thaliana L. in condition of influence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Shershunova, V.I.

    2000-01-01

    Arabidopsis thaliana is a convenient genetic object. This work represents the date of laboratory experiments concerning research of influence of chronic γ-irradiation on plants of arabidopsis at rosette stage (short stemmed mutant Lansberg Erecta). The findings contribute to the high sensitivity of rosette stage of arabidopsis to irradiation by γ-rays in low doses (0.67-10.0 cGy). It is shown in depressing effects of ionising radiation on growth, development, vitality and bearing of plants, but also in hightened output morphological anomalies of plants and embryonic lethalities in pods. (authors)

  14. Influence of accompanying immunocorrecting therapy on the quality of life of breast cancer patients at post-operative radiation therapy

    International Nuclear Information System (INIS)

    Prokhach, N.E.

    2013-01-01

    To investigate the influence of accompanying immunotherapy on the parameters of the quality of life of the patients with breast cancer with various profiles of cytokines at post-operative radiation therapy. The study was performed on 30 breast cancer patients at stages of combination therapy

  15. Variability of skin autofluorescence measurement over 6 and 12 weeks and the influence of benfotiamine treatment.

    Science.gov (United States)

    Stirban, Alin; Pop, Alexandra; Fischer, Annelie; Heckermann, Sascha; Tschoepe, Diethelm

    2013-09-01

    Measurements of skin autofluorescence (SAF) allow for a simple and noninvasive quantification of tissue advanced glycation end-products (AGEs), a marker linked to the risk of diabetes complications. The aim of this study was to test the repeatability of SAF over 6 and 12 weeks and to test whether benfotiamine, a thiamine prodrug suggested to reduce AGEs formation under hyperglycemic conditions, is able to attenuate SAF when administered over 6 weeks. In a double-blind, placebo-controlled, randomized, crossover study, 22 patients with type 2 diabetes mellitus (T2DM) received 900 mg/day benfotiamine or placebo for 6 weeks (washout period of 6 weeks between). At the beginning and at the end of each treatment period, SAF was assessed in the fasting state, as well as 2, 4, and 6 h following a mixed test meal. The respective intra-individual and inter-individual variability of fasting SAF was 6.9% and 24.5% within 6 weeks and 10.9% and 23.1% within 12 weeks. The respective variability calculated for triplicate comparisons was 9.9% and 27.7%. A short-term therapy with benfotiamine did not influence SAF significantly, nor did we find a significant postprandial SAF increase. In patients with T2DM, repeated, timely spaced SAF measurements have an intra-subject variability of below 11%. Using these data, sample sizes were calculated for interventional studies aiming at reducing SAF. Benfotiamine treatment for 6 weeks did not significantly influence SAF; for this, a longer-term therapy is probably needed.

  16. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  17. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    Science.gov (United States)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  18. An overview of somatic effects of radiation in the light of risk evaluation

    International Nuclear Information System (INIS)

    Silini, G.

    1983-01-01

    The main characteristics of non-stochastic and stochastic somatic effects of radiation in mammalian species, including the effects of irradiation in utero, for whole- and partial-body exposure are outlined. The dose dependencies of each class of effects, as they reflect on the presently accepted system of dose limitation are particularly examined. Basic knowledge about the mechanisms of induction and the main problems in extrapolating from animals to man and from experimental or clinical experience to radioprotection planning are reviewed. The influences of other physical (time, radiation quality) and biological (age, sex, genetic background) variables on the final effects are also discussed. Risk estimates for the relevant classes of effects are given, as the scientific starting point for setting radiation protection criteria. Finally an outlook on possible future developments at the scientific and applied levels is provided

  19. Microstructural characteristics of the hydroxyapatite and its influence in the Tl signal induced by gamma radiation

    International Nuclear Information System (INIS)

    Mendoza A, D.; Gonzalez M, P.R.; Hernandez A, M.; Estrada G, R.; Rodriguez L, V.

    2003-01-01

    The analysis carried out on different materials has shown that the quantity and type of dopants play an important role in the behaviour thermoluminescent signal induced by the ionizing radiation. More recent studies have also shown that the grain size influences strongly in the thermoluminescent signal. Plus still, the crystal growth habit and the crystalline degree have an important effect in the type and intensity thermoluminescent signal. In this sense, we present this work on the analysis of the thermoluminescent signal induced by the gamma radiation in the hydroxyapatite ceramic. Depending the growth habit, a variation of the peak temperature location, signal intensity and linearity range was observed; in particular cases a lineal relationship between glow curve and radiation dose was in the range from 2 to 1000 Gray. These results are complemented with a microstructural and crystalline degree analysis through scanning electron microscopy and X-ray Diffraction. The dose-response over the whole irradiation range opening up the possibility of employing this bio material as a dosimeter. (Author)

  20. Title Investigation of the influence of various factors on the power of heat exchange by radiation

    Directory of Open Access Journals (Sweden)

    Korolyov Alexander V.

    2017-04-01

    Full Text Available The issue of lack of knowledge of radiation heat transfer process has been repeatedly raised in various studies. Despite the fact that works on study of heat transfer by radiation covers a wide range of different industries, it should be noted the lack of materials on study of heat exchange processes by radiation in a core of a nuclear reactor. In this work, the fuel assemblies of the VVER-1000 reactor were used as the bodies under study. Aim: The aim of the research is to investigate the heat exchange process between heat transfer assemblies and to study of the effect of changing the distance between the fuel assemblies on their power taking into account the inter-radiating of assemblies. Materials and Methods: A general description of the process of heat transfer by radiation. A calculation study of the effect of geometric parameters on heat transfer in the close lattice of the reactor core is performed. The influence of heat transfer by radiation on the temperature change of the fuel assemblies surface of the VVER-1000 reactor at change in the cassette gap is studied. The change in the power of the fuel assemblies relative to the initial power with a change in the cassette gap was studied. Experimental measurements of the temperature at different distances from the radiation source were made with an obstacle in the path of radiation propagation in the form of glass and water of different levels. The heat radiation and convective heat transfer are calculated based on the obtained experimental data. The calculation of thermal radiation power and convective heat transfer based on the obtained experimental data is performed. Results: The calculation results show that in models that determine the temperature of the fuel assemblies in the core of the VVER-1000 reactor, the radiation heat transfer must be taken into account. In this case, the amount of transferred energy is the greater, the smaller the distance between objects. This is observed